git-annex/Utility/Matcher.hs

154 lines
4.3 KiB
Haskell
Raw Normal View History

2011-09-18 20:02:12 +00:00
{- A generic matcher.
-
- Can be used to check if a user-supplied condition,
- like "foo and ( bar or not baz )" matches. The condition must already
- be tokenized, and can contain arbitrary operations.
-
- If operations are not separated by and/or, they are defaulted to being
- anded together, so "foo bar baz" all must match.
-
- Is forgiving about misplaced closing parens, so "foo and (bar or baz"
- will be handled, as will "foo and ( bar or baz ) )"
-
- Copyright 2011-2013 Joey Hess <joey@kitenet.net>
2011-09-18 20:02:12 +00:00
-
- Licensed under the GNU GPL version 3 or higher.
-}
{-# LANGUAGE Rank2Types, KindSignatures #-}
2011-09-18 20:36:30 +00:00
module Utility.Matcher (
2011-09-18 20:02:12 +00:00
Token(..),
Matcher,
token,
tokens,
generate,
2011-09-18 20:02:12 +00:00
match,
matchM,
matchMrun,
isEmpty,
prop_matcher_sane
2011-09-18 20:02:12 +00:00
) where
import Common
2011-09-18 20:02:12 +00:00
{- A Token can be an Operation of an arbitrary type, or one of a few
- predefined peices of syntax. -}
data Token op = Operation op | And | Or | Not | Open | Close
2011-09-18 20:02:12 +00:00
deriving (Show, Eq)
data Matcher op = MAny
| MAnd (Matcher op) (Matcher op)
| MOr (Matcher op) (Matcher op)
| MNot (Matcher op)
| MOp op
2011-09-18 20:02:12 +00:00
deriving (Show, Eq)
{- Converts a word of syntax into a token. Doesn't handle operations. -}
token :: String -> Token op
token "and" = And
token "or" = Or
token "not" = Not
token "(" = Open
token ")" = Close
token t = error $ "unknown token " ++ t
tokens :: [String]
tokens = words "and or not ( )"
2011-09-18 20:02:12 +00:00
{- Converts a list of Tokens into a Matcher. -}
generate :: [Token op] -> Matcher op
generate = simplify . process MAny . tokenGroups
2012-12-13 04:24:19 +00:00
where
process m [] = m
process m ts = uncurry process $ consume m ts
consume m ((One And):y:rest) = (m `MAnd` process MAny [y], rest)
consume m ((One Or):y:rest) = (m `MOr` process MAny [y], rest)
consume m ((One Not):x:rest) = (m `MAnd` MNot (process MAny [x]), rest)
consume m ((One (Operation o)):rest) = (m `MAnd` MOp o, rest)
consume m (Group g:rest) = (process m g, rest)
consume m (_:rest) = consume m rest
consume m [] = (m, [])
simplify (MAnd MAny x) = simplify x
simplify (MAnd x MAny) = simplify x
simplify (MAnd x y) = MAnd (simplify x) (simplify y)
simplify (MOr x y) = MOr (simplify x) (simplify y)
simplify (MNot x) = MNot (simplify x)
simplify x = x
data TokenGroup op = One (Token op) | Group [TokenGroup op]
deriving (Show, Eq)
tokenGroups :: [Token op] -> [TokenGroup op]
tokenGroups [] = []
tokenGroups (t:ts) = go t
2012-12-13 04:24:19 +00:00
where
go Open =
let (gr, rest) = findClose ts
in gr : tokenGroups rest
go Close = tokenGroups ts -- not picky about missing Close
go _ = One t : tokenGroups ts
findClose :: [Token op] -> (TokenGroup op, [Token op])
findClose l =
let (g, rest) = go [] l
in (Group (reverse g), rest)
where
go c [] = (c, []) -- not picky about extra Close
go c (t:ts) = handle t
where
handle Close = (c, ts)
handle Open =
let (c', ts') = go [] ts
in go (Group (reverse c') : c) ts'
handle _ = go (One t:c) ts
2011-09-18 20:02:12 +00:00
{- Checks if a Matcher matches, using a supplied function to check
- the value of Operations. -}
match :: (op -> v -> Bool) -> Matcher op -> v -> Bool
match a m v = go m
2012-12-13 04:24:19 +00:00
where
go MAny = True
go (MAnd m1 m2) = go m1 && go m2
go (MOr m1 m2) = go m1 || go m2
go (MNot m1) = not $ go m1
go (MOp o) = a o v
2011-09-18 20:02:12 +00:00
{- Runs a monadic Matcher, where Operations are actions in the monad. -}
matchM :: Monad m => Matcher (v -> m Bool) -> v -> m Bool
matchM m v = matchMrun m $ \o -> o v
{- More generic running of a monadic Matcher, with full control over running
- of Operations. Mostly useful in order to match on more than one
- parameter. -}
matchMrun :: forall o (m :: * -> *). Monad m => Matcher o -> (o -> m Bool) -> m Bool
matchMrun m run = go m
2012-12-13 04:24:19 +00:00
where
go MAny = return True
go (MAnd m1 m2) = go m1 <&&> go m2
go (MOr m1 m2) = go m1 <||> go m2
go (MNot m1) = liftM not (go m1)
go (MOp o) = run o
{- Checks if a matcher contains no limits. -}
isEmpty :: Matcher a -> Bool
isEmpty MAny = True
isEmpty _ = False
prop_matcher_sane :: Bool
prop_matcher_sane = all (\m -> match dummy m ()) $ map generate
[ [Operation True]
, []
, [Operation False, Or, Operation True, Or, Operation False]
, [Operation True, Or, Operation True]
, [Operation True, And, Operation True]
, [Not, Open, Operation True, And, Operation False, Close]
, [Not, Open, Not, Open, Not, Operation False, Close, Close]
, [Not, Open, Not, Open, Not, Open, Not, Operation True, Close, Close]
]
where
dummy b _ = b