git-annex/standalone/android/haskell-patches/crypto-numbers_build-fix.patch

228 lines
7.5 KiB
Diff
Raw Normal View History

From 0cfdb30120976290068f4bcbebbf236b960afbb6 Mon Sep 17 00:00:00 2001
From: dummy <dummy@example.com>
Date: Thu, 26 Dec 2013 20:01:30 -0400
Subject: [PATCH] hack to build
---
Crypto/Number/Basic.hs | 14 --------------
Crypto/Number/ModArithmetic.hs | 29 -----------------------------
Crypto/Number/Prime.hs | 18 ------------------
crypto-numbers.cabal | 2 +-
4 files changed, 1 insertion(+), 62 deletions(-)
diff --git a/Crypto/Number/Basic.hs b/Crypto/Number/Basic.hs
index 65c14b3..eaee853 100644
--- a/Crypto/Number/Basic.hs
+++ b/Crypto/Number/Basic.hs
@@ -20,11 +20,7 @@ module Crypto.Number.Basic
, areEven
) where
-#if MIN_VERSION_integer_gmp(0,5,1)
-import GHC.Integer.GMP.Internals
-#else
import Data.Bits
-#endif
-- | sqrti returns two integer (l,b) so that l <= sqrt i <= b
-- the implementation is quite naive, use an approximation for the first number
@@ -63,25 +59,16 @@ sqrti i
-- gcde 'a' 'b' find (x,y,gcd(a,b)) where ax + by = d
--
gcde :: Integer -> Integer -> (Integer, Integer, Integer)
-#if MIN_VERSION_integer_gmp(0,5,1)
-gcde a b = (s, t, g)
- where (# g, s #) = gcdExtInteger a b
- t = (g - s * a) `div` b
-#else
gcde a b = if d < 0 then (-x,-y,-d) else (x,y,d) where
(d, x, y) = f (a,1,0) (b,0,1)
f t (0, _, _) = t
f (a', sa, ta) t@(b', sb, tb) =
let (q, r) = a' `divMod` b' in
f t (r, sa - (q * sb), ta - (q * tb))
-#endif
-- | get the extended GCD of two integer using the extended binary algorithm (HAC 14.61)
-- get (x,y,d) where d = gcd(a,b) and x,y satisfying ax + by = d
gcde_binary :: Integer -> Integer -> (Integer, Integer, Integer)
-#if MIN_VERSION_integer_gmp(0,5,1)
-gcde_binary = gcde
-#else
gcde_binary a' b'
| b' == 0 = (1,0,a')
| a' >= b' = compute a' b'
@@ -105,7 +92,6 @@ gcde_binary a' b'
in if u2 >= v2
then loop g x y (u2 - v2) v2 (a2 - c2) (b2 - d2) c2 d2
else loop g x y u2 (v2 - u2) a2 b2 (c2 - a2) (d2 - b2)
-#endif
-- | check if a list of integer are all even
areEven :: [Integer] -> Bool
diff --git a/Crypto/Number/ModArithmetic.hs b/Crypto/Number/ModArithmetic.hs
index 942c12f..f8cfc32 100644
--- a/Crypto/Number/ModArithmetic.hs
+++ b/Crypto/Number/ModArithmetic.hs
@@ -29,12 +29,8 @@ module Crypto.Number.ModArithmetic
import Control.Exception (throw, Exception)
import Data.Typeable
-#if MIN_VERSION_integer_gmp(0,5,1)
-import GHC.Integer.GMP.Internals
-#else
import Crypto.Number.Basic (gcde_binary)
import Data.Bits
-#endif
-- | Raised when two numbers are supposed to be coprimes but are not.
data CoprimesAssertionError = CoprimesAssertionError
@@ -55,13 +51,7 @@ expSafe :: Integer -- ^ base
-> Integer -- ^ exponant
-> Integer -- ^ modulo
-> Integer -- ^ result
-#if MIN_VERSION_integer_gmp(0,5,1)
-expSafe b e m
- | odd m = powModSecInteger b e m
- | otherwise = powModInteger b e m
-#else
expSafe = exponentiation
-#endif
-- | Compute the modular exponentiation of base^exponant using
-- the fastest algorithm without any consideration for
@@ -74,11 +64,7 @@ expFast :: Integer -- ^ base
-> Integer -- ^ modulo
-> Integer -- ^ result
expFast =
-#if MIN_VERSION_integer_gmp(0,5,1)
- powModInteger
-#else
exponentiation
-#endif
-- note on exponentiation: 0^0 is treated as 1 for mimicking the standard library;
-- the mathematic debate is still open on whether or not this is true, but pratically
@@ -87,22 +73,15 @@ expFast =
-- | exponentiation_rtl_binary computes modular exponentiation as b^e mod m
-- using the right-to-left binary exponentiation algorithm (HAC 14.79)
exponentiation_rtl_binary :: Integer -> Integer -> Integer -> Integer
-#if MIN_VERSION_integer_gmp(0,5,1)
-exponentiation_rtl_binary = expSafe
-#else
exponentiation_rtl_binary 0 0 m = 1 `mod` m
exponentiation_rtl_binary b e m = loop e b 1
where sq x = (x * x) `mod` m
loop !0 _ !a = a `mod` m
loop !i !s !a = loop (i `shiftR` 1) (sq s) (if odd i then a * s else a)
-#endif
-- | exponentiation computes modular exponentiation as b^e mod m
-- using repetitive squaring.
exponentiation :: Integer -> Integer -> Integer -> Integer
-#if MIN_VERSION_integer_gmp(0,5,1)
-exponentiation = expSafe
-#else
exponentiation b e m
| b == 1 = b
| e == 0 = 1
@@ -110,7 +89,6 @@ exponentiation b e m
| even e = let p = (exponentiation b (e `div` 2) m) `mod` m
in (p^(2::Integer)) `mod` m
| otherwise = (b * exponentiation b (e-1) m) `mod` m
-#endif
--{-# DEPRECATED exponantiation_rtl_binary "typo in API name it's called exponentiation_rtl_binary #-}
exponantiation_rtl_binary :: Integer -> Integer -> Integer -> Integer
@@ -122,17 +100,10 @@ exponantiation = exponentiation
-- | inverse computes the modular inverse as in g^(-1) mod m
inverse :: Integer -> Integer -> Maybe Integer
-#if MIN_VERSION_integer_gmp(0,5,1)
-inverse g m
- | r == 0 = Nothing
- | otherwise = Just r
- where r = recipModInteger g m
-#else
inverse g m
| d > 1 = Nothing
| otherwise = Just (x `mod` m)
where (x,_,d) = gcde_binary g m
-#endif
-- | Compute the modular inverse of 2 coprime numbers.
-- This is equivalent to inverse except that the result
diff --git a/Crypto/Number/Prime.hs b/Crypto/Number/Prime.hs
index 0cea9da..458c94d 100644
--- a/Crypto/Number/Prime.hs
+++ b/Crypto/Number/Prime.hs
@@ -3,9 +3,7 @@
#ifndef MIN_VERSION_integer_gmp
#define MIN_VERSION_integer_gmp(a,b,c) 0
#endif
-#if MIN_VERSION_integer_gmp(0,5,1)
{-# LANGUAGE MagicHash #-}
-#endif
-- |
-- Module : Crypto.Number.Prime
-- License : BSD-style
@@ -30,12 +28,7 @@ import Crypto.Number.Generate
import Crypto.Number.Basic (sqrti, gcde_binary)
import Crypto.Number.ModArithmetic (exponantiation)
-#if MIN_VERSION_integer_gmp(0,5,1)
-import GHC.Integer.GMP.Internals
-import GHC.Base
-#else
import Data.Bits
-#endif
-- | returns if the number is probably prime.
-- first a list of small primes are implicitely tested for divisibility,
@@ -78,21 +71,11 @@ findPrimeFromWith rng prop !n
-- | find a prime from a starting point with no specific property.
findPrimeFrom :: CPRG g => g -> Integer -> (Integer, g)
findPrimeFrom rng n =
-#if MIN_VERSION_integer_gmp(0,5,1)
- (nextPrimeInteger n, rng)
-#else
findPrimeFromWith rng (\g _ -> (True, g)) n
-#endif
-- | Miller Rabin algorithm return if the number is probably prime or composite.
-- the tries parameter is the number of recursion, that determines the accuracy of the test.
primalityTestMillerRabin :: CPRG g => g -> Int -> Integer -> (Bool, g)
-#if MIN_VERSION_integer_gmp(0,5,1)
-primalityTestMillerRabin rng (I# tries) !n =
- case testPrimeInteger n tries of
- 0# -> (False, rng)
- _ -> (True, rng)
-#else
primalityTestMillerRabin rng tries !n
| n <= 3 = error "Miller-Rabin requires tested value to be > 3"
| even n = (False, rng)
@@ -129,7 +112,6 @@ primalityTestMillerRabin rng tries !n
| x2 == 1 = False
| x2 /= nm1 = loop' ws ((x2*x2) `mod` n) (r+1)
| otherwise = loop ws
-#endif
{-
n < z -> witness to test
diff --git a/crypto-numbers.cabal b/crypto-numbers.cabal
index 9610e34..6669d78 100644
--- a/crypto-numbers.cabal
+++ b/crypto-numbers.cabal
@@ -15,7 +15,7 @@ Extra-Source-Files: Tests/*.hs
Flag integer-gmp
Description: Are we using integer-gmp?
- Default: True
+ Default: False
Library
Build-Depends: base >= 4 && < 5
--
1.7.10.4