electron/native_mate/function_template.h
2016-07-04 15:08:08 +09:00

282 lines
9.5 KiB
C++

// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE.chromium file.
#ifndef NATIVE_MATE_FUNCTION_TEMPLATE_H_
#define NATIVE_MATE_FUNCTION_TEMPLATE_H_
#include "base/callback.h"
#include "base/logging.h"
#include "native_mate/arguments.h"
#include "native_mate/wrappable.h"
#include "v8/include/v8.h"
namespace mate {
enum CreateFunctionTemplateFlags {
HolderIsFirstArgument = 1 << 0,
};
namespace internal {
struct Destroyable {
static void Destroy(Arguments* args) {
v8::Local<v8::Object> holder = args->GetHolder();
delete static_cast<WrappableBase*>(
holder->GetAlignedPointerFromInternalField(0));
holder->SetAlignedPointerInInternalField(0, nullptr);
}
static bool IsDestroyed(Arguments* args) {
v8::Local<v8::Object> holder = args->GetHolder();
return holder->InternalFieldCount() == 0 ||
holder->GetAlignedPointerFromInternalField(0) == nullptr;
}
};
template<typename T>
struct CallbackParamTraits {
typedef T LocalType;
};
template<typename T>
struct CallbackParamTraits<const T&> {
typedef T LocalType;
};
template<typename T>
struct CallbackParamTraits<const T*> {
typedef T* LocalType;
};
// CallbackHolder and CallbackHolderBase are used to pass a base::Callback from
// CreateFunctionTemplate through v8 (via v8::FunctionTemplate) to
// DispatchToCallback, where it is invoked.
// This simple base class is used so that we can share a single object template
// among every CallbackHolder instance.
class CallbackHolderBase {
public:
v8::Local<v8::External> GetHandle(v8::Isolate* isolate);
protected:
explicit CallbackHolderBase(v8::Isolate* isolate);
virtual ~CallbackHolderBase();
private:
static void FirstWeakCallback(
const v8::WeakCallbackInfo<CallbackHolderBase>& data);
static void SecondWeakCallback(
const v8::WeakCallbackInfo<CallbackHolderBase>& data);
v8::Global<v8::External> v8_ref_;
DISALLOW_COPY_AND_ASSIGN(CallbackHolderBase);
};
template<typename Sig>
class CallbackHolder : public CallbackHolderBase {
public:
CallbackHolder(v8::Isolate* isolate,
const base::Callback<Sig>& callback,
int flags)
: CallbackHolderBase(isolate), callback(callback), flags(flags) {}
base::Callback<Sig> callback;
int flags;
private:
virtual ~CallbackHolder() {}
DISALLOW_COPY_AND_ASSIGN(CallbackHolder);
};
template<typename T>
bool GetNextArgument(Arguments* args, int create_flags, bool is_first,
T* result) {
if (is_first && (create_flags & HolderIsFirstArgument) != 0) {
return args->GetHolder(result);
} else {
return args->GetNext(result);
}
}
// For advanced use cases, we allow callers to request the unparsed Arguments
// object and poke around in it directly.
inline bool GetNextArgument(Arguments* args, int create_flags, bool is_first,
Arguments* result) {
*result = *args;
return true;
}
inline bool GetNextArgument(Arguments* args, int create_flags, bool is_first,
Arguments** result) {
*result = args;
return true;
}
// It's common for clients to just need the isolate, so we make that easy.
inline bool GetNextArgument(Arguments* args, int create_flags,
bool is_first, v8::Isolate** result) {
*result = args->isolate();
return true;
}
// Classes for generating and storing an argument pack of integer indices
// (based on well-known "indices trick", see: http://goo.gl/bKKojn):
template <size_t... indices>
struct IndicesHolder {};
template <size_t requested_index, size_t... indices>
struct IndicesGenerator {
using type = typename IndicesGenerator<requested_index - 1,
requested_index - 1,
indices...>::type;
};
template <size_t... indices>
struct IndicesGenerator<0, indices...> {
using type = IndicesHolder<indices...>;
};
// Class template for extracting and storing single argument for callback
// at position |index|.
template <size_t index, typename ArgType>
struct ArgumentHolder {
using ArgLocalType = typename CallbackParamTraits<ArgType>::LocalType;
ArgLocalType value;
bool ok;
ArgumentHolder(Arguments* args, int create_flags)
: ok(false) {
if (index == 0 &&
(create_flags & HolderIsFirstArgument) &&
Destroyable::IsDestroyed(args)) {
args->ThrowError("Object has been destroyed");
return;
}
ok = GetNextArgument(args, create_flags, index == 0, &value);
if (!ok) {
// Ideally we would include the expected c++ type in the error
// message which we can access via typeid(ArgType).name()
// however we compile with no-rtti, which disables typeid.
args->ThrowError();
}
}
};
// Class template for converting arguments from JavaScript to C++ and running
// the callback with them.
template <typename IndicesType, typename... ArgTypes>
class Invoker {};
template <size_t... indices, typename... ArgTypes>
class Invoker<IndicesHolder<indices...>, ArgTypes...>
: public ArgumentHolder<indices, ArgTypes>... {
public:
// Invoker<> inherits from ArgumentHolder<> for each argument.
// C++ has always been strict about the class initialization order,
// so it is guaranteed ArgumentHolders will be initialized (and thus, will
// extract arguments from Arguments) in the right order.
Invoker(Arguments* args, int create_flags)
: ArgumentHolder<indices, ArgTypes>(args, create_flags)..., args_(args) {
// GCC thinks that create_flags is going unused, even though the
// expansion above clearly makes use of it. Per jyasskin@, casting
// to void is the commonly accepted way to convince the compiler
// that you're actually using a parameter/varible.
(void)create_flags;
}
bool IsOK() {
return And(ArgumentHolder<indices, ArgTypes>::ok...);
}
template <typename ReturnType>
void DispatchToCallback(base::Callback<ReturnType(ArgTypes...)> callback) {
v8::MicrotasksScope script_scope(
args_->isolate(), v8::MicrotasksScope::kRunMicrotasks);
args_->Return(callback.Run(ArgumentHolder<indices, ArgTypes>::value...));
}
// In C++, you can declare the function foo(void), but you can't pass a void
// expression to foo. As a result, we must specialize the case of Callbacks
// that have the void return type.
void DispatchToCallback(base::Callback<void(ArgTypes...)> callback) {
v8::MicrotasksScope script_scope(
args_->isolate(), v8::MicrotasksScope::kRunMicrotasks);
callback.Run(ArgumentHolder<indices, ArgTypes>::value...);
}
private:
static bool And() { return true; }
template <typename... T>
static bool And(bool arg1, T... args) {
return arg1 && And(args...);
}
Arguments* args_;
};
// DispatchToCallback converts all the JavaScript arguments to C++ types and
// invokes the base::Callback.
template <typename Sig>
struct Dispatcher {};
template <typename ReturnType, typename... ArgTypes>
struct Dispatcher<ReturnType(ArgTypes...)> {
static void DispatchToCallback(
const v8::FunctionCallbackInfo<v8::Value>& info) {
Arguments args(info);
v8::Local<v8::External> v8_holder;
CHECK(args.GetData(&v8_holder));
CallbackHolderBase* holder_base = reinterpret_cast<CallbackHolderBase*>(
v8_holder->Value());
typedef CallbackHolder<ReturnType(ArgTypes...)> HolderT;
HolderT* holder = static_cast<HolderT*>(holder_base);
using Indices = typename IndicesGenerator<sizeof...(ArgTypes)>::type;
Invoker<Indices, ArgTypes...> invoker(&args, holder->flags);
if (invoker.IsOK())
invoker.DispatchToCallback(holder->callback);
}
};
} // namespace internal
// CreateFunctionTemplate creates a v8::FunctionTemplate that will create
// JavaScript functions that execute a provided C++ function or base::Callback.
// JavaScript arguments are automatically converted via gin::Converter, as is
// the return value of the C++ function, if any.
//
// NOTE: V8 caches FunctionTemplates for a lifetime of a web page for its own
// internal reasons, thus it is generally a good idea to cache the template
// returned by this function. Otherwise, repeated method invocations from JS
// will create substantial memory leaks. See http://crbug.com/463487.
template<typename Sig>
v8::Local<v8::FunctionTemplate> CreateFunctionTemplate(
v8::Isolate* isolate, const base::Callback<Sig> callback,
int callback_flags = 0) {
typedef internal::CallbackHolder<Sig> HolderT;
HolderT* holder = new HolderT(isolate, callback, callback_flags);
return v8::FunctionTemplate::New(
isolate,
&internal::Dispatcher<Sig>::DispatchToCallback,
ConvertToV8<v8::Local<v8::External> >(isolate,
holder->GetHandle(isolate)));
}
// CreateFunctionHandler installs a CallAsFunction handler on the given
// object template that forwards to a provided C++ function or base::Callback.
template<typename Sig>
void CreateFunctionHandler(v8::Isolate* isolate,
v8::Local<v8::ObjectTemplate> tmpl,
const base::Callback<Sig> callback,
int callback_flags = 0) {
typedef internal::CallbackHolder<Sig> HolderT;
HolderT* holder = new HolderT(isolate, callback, callback_flags);
tmpl->SetCallAsFunctionHandler(&internal::Dispatcher<Sig>::DispatchToCallback,
ConvertToV8<v8::Local<v8::External> >(
isolate, holder->GetHandle(isolate)));
}
} // namespace mate
#endif // NATIVE_MATE_FUNCTION_TEMPLATE_H_