electron/shell/common/gin_helper/function_template.h
Calvin 37639b5400
refactor: replace gin_helper::MicrotasksScope with v8::MicrotasksScope (#46963)
* Remove microtasks_scope.h and microtasks_scope.cc

* Use v8::MicrotasksScope when ignoring browser checkpoint

These call always skip the browser checkpoint, so they are equivalent to using v8::MicrotasksScope directly (modulo the optional wrapper behavior).

* Remove MicrotasksScope from node_bindings.cc

This code seems contradictory: it explicitly specifies "do not run microtasks" yet runs a microtask checkpoint in the browser process.

Looking at its history, it [was introduced][1] with the intention to not run microtasks, but a [subtle C++ language behavior][2] caused it to do the opposite later in the same roll. Since the original intention was to not run microtasks, and since that is also the simplest explanation, we can assume `ignore_browser_checkpoint` should be true and migrate this to `v8::MicrotasksScope` as it is equivalent (modulo the optional wrapper behavior).

[1]: a4ea80dd47 (diff-efe58cf03c97028f37f801db044d396a5f428686da6595d2c692f1c052bbd09c)
[2]: https://github.com/electron/electron/pull/43185

* Migrate gin_helper/promise.h and gin_helper/promise.cc to v8::MicrotasksScope

Restores the [original][1] behavior of running the microtask checkpoint at destruction, but preserves the behavior of running microtasks in the browser process. This had last changed in the migration to gin_helper::MicroTasks.

[1]: https://github.com/electron/electron/pull/16401
2025-05-07 14:10:34 -05:00

423 lines
16 KiB
C++

// Copyright 2019 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE.chromium file.
#ifndef ELECTRON_SHELL_COMMON_GIN_HELPER_FUNCTION_TEMPLATE_H_
#define ELECTRON_SHELL_COMMON_GIN_HELPER_FUNCTION_TEMPLATE_H_
#include <optional>
#include <utility>
#include "base/functional/bind.h"
#include "base/functional/callback.h"
#include "base/memory/raw_ptr.h"
#include "gin/arguments.h"
#include "gin/per_isolate_data.h"
#include "shell/common/gin_helper/arguments.h"
#include "shell/common/gin_helper/destroyable.h"
#include "shell/common/gin_helper/error_thrower.h"
#include "v8/include/v8-context.h"
#include "v8/include/v8-external.h"
#include "v8/include/v8-microtask-queue.h"
#include "v8/include/v8-template.h"
// This file is forked from gin/function_template.h with 2 differences:
// 1. Support for additional types of arguments.
// 2. Support for warning using destroyed objects.
//
// TODO(zcbenz): We should seek to remove this file after removing native_mate.
namespace gin_helper {
struct InvokerOptions {
bool holder_is_first_argument = false;
const char* holder_type = nullptr; // Null if unknown or not applicable.
};
template <typename T>
struct CallbackParamTraits {
typedef T LocalType;
};
template <typename T>
struct CallbackParamTraits<const T&> {
typedef T LocalType;
};
template <typename T>
struct CallbackParamTraits<const T*> {
typedef T* LocalType;
};
// CallbackHolder and CallbackHolderBase are used to pass a
// base::RepeatingCallback from CreateFunctionTemplate through v8 (via
// v8::FunctionTemplate) to DispatchToCallback, where it is invoked.
// CallbackHolder will clean up the callback in two different scenarios:
// - If the garbage collector finds that it's garbage and collects it. (But note
// that even _if_ we become garbage, we might never get collected!)
// - If the isolate gets disposed.
//
// TODO(crbug.com/1285119): When gin::Wrappable gets migrated over to using
// cppgc, this class should also be considered for migration.
// This simple base class is used so that we can share a single object template
// among every CallbackHolder instance.
class CallbackHolderBase {
public:
CallbackHolderBase(const CallbackHolderBase&) = delete;
CallbackHolderBase& operator=(const CallbackHolderBase&) = delete;
v8::Local<v8::External> GetHandle(v8::Isolate* isolate);
protected:
explicit CallbackHolderBase(v8::Isolate* isolate);
virtual ~CallbackHolderBase();
private:
class DisposeObserver : gin::PerIsolateData::DisposeObserver {
public:
DisposeObserver(gin::PerIsolateData* per_isolate_data,
CallbackHolderBase* holder);
~DisposeObserver() override;
// gin::PerIsolateData::DisposeObserver
void OnBeforeDispose(v8::Isolate* isolate) override;
void OnDisposed() override;
private:
// Unlike in Chromium, it's possible for PerIsolateData to be null
// for a given isolate - e.g. in a Node.js Worker. Thus this
// needs to be a raw_ptr instead of a raw_ref.
const raw_ptr<gin::PerIsolateData> per_isolate_data_;
const raw_ref<CallbackHolderBase> holder_;
};
static void FirstWeakCallback(
const v8::WeakCallbackInfo<CallbackHolderBase>& data);
static void SecondWeakCallback(
const v8::WeakCallbackInfo<CallbackHolderBase>& data);
v8::Global<v8::External> v8_ref_;
DisposeObserver dispose_observer_;
};
template <typename Sig>
class CallbackHolder : public CallbackHolderBase {
public:
CallbackHolder(v8::Isolate* isolate,
base::RepeatingCallback<Sig> callback,
InvokerOptions invoker_options)
: CallbackHolderBase(isolate),
callback(std::move(callback)),
invoker_options(std::move(invoker_options)) {}
CallbackHolder(const CallbackHolder&) = delete;
CallbackHolder& operator=(const CallbackHolder&) = delete;
base::RepeatingCallback<Sig> callback;
InvokerOptions invoker_options;
private:
~CallbackHolder() override = default;
};
template <typename T>
bool GetNextArgument(gin::Arguments* args,
const InvokerOptions& invoker_options,
bool is_first,
T* result) {
if (is_first && invoker_options.holder_is_first_argument) {
return args->GetHolder(result);
} else {
return args->GetNext(result);
}
}
// Electron-specific GetNextArgument that supports std::optional.
template <typename T>
bool GetNextArgument(gin::Arguments* args,
const InvokerOptions& invoker_options,
bool is_first,
std::optional<T>* result) {
T converted;
// Use gin::Arguments::GetNext which always advances |next| counter.
if (args->GetNext(&converted))
result->emplace(std::move(converted));
return true;
}
// Electron-specific GetNextArgument that supports ErrorThrower.
inline bool GetNextArgument(gin::Arguments* args,
const InvokerOptions& invoker_options,
bool is_first,
ErrorThrower* result) {
*result = ErrorThrower(args->isolate());
return true;
}
// Electron-specific GetNextArgument that supports the gin_helper::Arguments.
inline bool GetNextArgument(gin::Arguments* args,
const InvokerOptions& invoker_options,
bool is_first,
gin_helper::Arguments** result) {
*result = static_cast<gin_helper::Arguments*>(args);
return true;
}
// For advanced use cases, we allow callers to request the unparsed Arguments
// object and poke around in it directly.
inline bool GetNextArgument(gin::Arguments* args,
const InvokerOptions& invoker_options,
bool is_first,
gin::Arguments* result) {
*result = *args;
return true;
}
inline bool GetNextArgument(gin::Arguments* args,
const InvokerOptions& invoker_options,
bool is_first,
gin::Arguments** result) {
*result = args;
return true;
}
// It's common for clients to just need the isolate, so we make that easy.
inline bool GetNextArgument(gin::Arguments* args,
const InvokerOptions& invoker_options,
bool is_first,
v8::Isolate** result) {
*result = args->isolate();
return true;
}
// Throws an error indicating conversion failure.
void ThrowConversionError(gin::Arguments* args,
const InvokerOptions& invoker_options,
size_t index);
// Class template for extracting and storing single argument for callback
// at position |index|.
template <size_t index, typename ArgType, typename = void>
struct ArgumentHolder {
using ArgLocalType = typename CallbackParamTraits<ArgType>::LocalType;
ArgLocalType value;
bool ok = false;
ArgumentHolder(gin::Arguments* args, const InvokerOptions& invoker_options) {
v8::Local<v8::Object> holder;
if (index == 0 && invoker_options.holder_is_first_argument &&
args->GetHolder(&holder) &&
gin_helper::Destroyable::IsDestroyed(holder)) {
args->ThrowTypeError("Object has been destroyed");
return;
}
ok = GetNextArgument(args, invoker_options, index == 0, &value);
if (!ok) {
ThrowConversionError(args, invoker_options, index);
}
}
};
// This is required for types such as v8::LocalVector<T>, which don't have
// a default constructor. To create an element of such a type, the isolate
// has to be provided.
template <size_t index, typename ArgType>
struct ArgumentHolder<
index,
ArgType,
std::enable_if_t<!std::is_default_constructible_v<
typename CallbackParamTraits<ArgType>::LocalType> &&
std::is_constructible_v<
typename CallbackParamTraits<ArgType>::LocalType,
v8::Isolate*>>> {
using ArgLocalType = typename CallbackParamTraits<ArgType>::LocalType;
ArgLocalType value;
bool ok;
ArgumentHolder(gin::Arguments* args, const InvokerOptions& invoker_options)
: value(args->isolate()),
ok(GetNextArgument(args, invoker_options, index == 0, &value)) {
if (!ok) {
ThrowConversionError(args, invoker_options, index);
}
}
};
// Class template for converting arguments from JavaScript to C++ and running
// the callback with them.
template <typename IndicesType, typename... ArgTypes>
class Invoker;
template <size_t... indices, typename... ArgTypes>
class Invoker<std::index_sequence<indices...>, ArgTypes...>
: public ArgumentHolder<indices, ArgTypes>... {
public:
// Invoker<> inherits from ArgumentHolder<> for each argument.
// C++ has always been strict about the class initialization order,
// so it is guaranteed ArgumentHolders will be initialized (and thus, will
// extract arguments from Arguments) in the right order.
Invoker(gin::Arguments* args, const InvokerOptions& invoker_options)
: ArgumentHolder<indices, ArgTypes>(args, invoker_options)...,
args_(args) {}
[[nodiscard]] bool IsOK() const {
return (... && ArgumentHolder<indices, ArgTypes>::ok);
}
template <typename ReturnType>
void DispatchToCallback(
base::RepeatingCallback<ReturnType(ArgTypes...)> callback) {
v8::MicrotasksScope microtasks_scope(args_->GetHolderCreationContext(),
v8::MicrotasksScope::kRunMicrotasks);
args_->Return(
callback.Run(std::move(ArgumentHolder<indices, ArgTypes>::value)...));
}
// In C++, you can declare the function foo(void), but you can't pass a void
// expression to foo. As a result, we must specialize the case of Callbacks
// that have the void return type.
void DispatchToCallback(base::RepeatingCallback<void(ArgTypes...)> callback) {
v8::MicrotasksScope microtasks_scope(args_->GetHolderCreationContext(),
v8::MicrotasksScope::kRunMicrotasks);
callback.Run(std::move(ArgumentHolder<indices, ArgTypes>::value)...);
}
private:
raw_ptr<gin::Arguments> args_;
};
// DispatchToCallback converts all the JavaScript arguments to C++ types and
// invokes the base::RepeatingCallback.
template <typename Sig>
struct Dispatcher {};
template <typename ReturnType, typename... ArgTypes>
struct Dispatcher<ReturnType(ArgTypes...)> {
static void DispatchToCallbackImpl(gin::Arguments* args) {
v8::Local<v8::External> v8_holder;
CHECK(args->GetData(&v8_holder));
CallbackHolderBase* holder_base =
reinterpret_cast<CallbackHolderBase*>(v8_holder->Value());
typedef CallbackHolder<ReturnType(ArgTypes...)> HolderT;
HolderT* holder = static_cast<HolderT*>(holder_base);
using Indices = std::index_sequence_for<ArgTypes...>;
Invoker<Indices, ArgTypes...> invoker(args, holder->invoker_options);
if (invoker.IsOK())
invoker.DispatchToCallback(holder->callback);
}
static void DispatchToCallback(
const v8::FunctionCallbackInfo<v8::Value>& info) {
gin::Arguments args(info);
DispatchToCallbackImpl(&args);
}
static void DispatchToCallbackForProperty(
v8::Local<v8::Name>,
const v8::PropertyCallbackInfo<v8::Value>& info) {
gin::Arguments args(info);
DispatchToCallbackImpl(&args);
}
};
// CreateFunctionTemplate creates a v8::FunctionTemplate that will create
// JavaScript functions that execute a provided C++ function or
// base::RepeatingCallback. JavaScript arguments are automatically converted via
// gin::Converter, as is the return value of the C++ function, if any.
// |invoker_options| contains additional parameters. If it contains a
// holder_type, it will be used to provide a useful conversion error if the
// holder is the first argument. If not provided, a generic invocation error
// will be used.
//
// NOTE: V8 caches FunctionTemplates for a lifetime of a web page for its own
// internal reasons, thus it is generally a good idea to cache the template
// returned by this function. Otherwise, repeated method invocations from JS
// will create substantial memory leaks. See http://crbug.com/463487.
//
// The callback will be destroyed if either the function template gets garbage
// collected or _after_ the isolate is disposed. Garbage collection can never be
// relied upon. As such, any destructors for objects bound to the callback must
// not depend on the isolate being alive at the point they are called. The order
// in which callbacks are destroyed is not guaranteed.
template <typename Sig>
v8::Local<v8::FunctionTemplate> CreateFunctionTemplate(
v8::Isolate* isolate,
base::RepeatingCallback<Sig> callback,
InvokerOptions invoker_options = {}) {
typedef CallbackHolder<Sig> HolderT;
HolderT* holder =
new HolderT(isolate, std::move(callback), std::move(invoker_options));
v8::Local<v8::FunctionTemplate> tmpl = v8::FunctionTemplate::New(
isolate, &Dispatcher<Sig>::DispatchToCallback,
gin::ConvertToV8<v8::Local<v8::External>>(isolate,
holder->GetHandle(isolate)),
v8::Local<v8::Signature>(), 0, v8::ConstructorBehavior::kAllow);
return tmpl;
}
// CreateDataPropertyCallback creates a v8::AccessorNameGetterCallback and
// corresponding data value that will hold and execute the provided
// base::RepeatingCallback, using automatic conversions similar to
// |CreateFunctionTemplate|.
//
// It is expected that these will be passed to v8::Template::SetLazyDataProperty
// or another similar function.
template <typename Sig>
std::pair<v8::AccessorNameGetterCallback, v8::Local<v8::Value>>
CreateDataPropertyCallback(v8::Isolate* isolate,
base::RepeatingCallback<Sig> callback,
InvokerOptions invoker_options = {}) {
typedef CallbackHolder<Sig> HolderT;
HolderT* holder =
new HolderT(isolate, std::move(callback), std::move(invoker_options));
return {&Dispatcher<Sig>::DispatchToCallbackForProperty,
gin::ConvertToV8<v8::Local<v8::External>>(
isolate, holder->GetHandle(isolate))};
}
// Base template - used only for non-member function pointers. Other types
// either go to one of the below specializations, or go here and fail to compile
// because of base::Bind().
template <typename T, typename Enable = void>
struct CallbackTraits {
static v8::Local<v8::FunctionTemplate> CreateTemplate(v8::Isolate* isolate,
T callback) {
return gin_helper::CreateFunctionTemplate(isolate,
base::BindRepeating(callback));
}
};
// Specialization for base::RepeatingCallback.
template <typename T>
struct CallbackTraits<base::RepeatingCallback<T>> {
static v8::Local<v8::FunctionTemplate> CreateTemplate(
v8::Isolate* isolate,
const base::RepeatingCallback<T>& callback) {
return gin_helper::CreateFunctionTemplate(isolate, callback);
}
};
// Specialization for member function pointers. We need to handle this case
// specially because the first parameter for callbacks to MFP should typically
// come from the JavaScript "this" object the function was called on, not
// from the first normal parameter.
template <typename T>
struct CallbackTraits<
T,
typename std::enable_if<std::is_member_function_pointer<T>::value>::type> {
static v8::Local<v8::FunctionTemplate> CreateTemplate(v8::Isolate* isolate,
T callback) {
InvokerOptions invoker_options = {.holder_is_first_argument = true};
return gin_helper::CreateFunctionTemplate(
isolate, base::BindRepeating(callback), std::move(invoker_options));
}
};
} // namespace gin_helper
#endif // ELECTRON_SHELL_COMMON_GIN_HELPER_FUNCTION_TEMPLATE_H_