// Copyright 2013 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE.chromium file. #ifndef NATIVE_MATE_FUNCTION_TEMPLATE_H_ #define NATIVE_MATE_FUNCTION_TEMPLATE_H_ #include "base/callback.h" #include "base/logging.h" #include "native_mate/arguments.h" #include "native_mate/wrappable_base.h" #include "v8/include/v8.h" namespace mate { enum CreateFunctionTemplateFlags { HolderIsFirstArgument = 1 << 0, }; namespace internal { struct Destroyable { static void Destroy(Arguments* args) { if (IsDestroyed(args)) return; v8::Local holder = args->GetHolder(); delete static_cast( holder->GetAlignedPointerFromInternalField(0)); holder->SetAlignedPointerInInternalField(0, nullptr); } static bool IsDestroyed(Arguments* args) { v8::Local holder = args->GetHolder(); return holder->InternalFieldCount() == 0 || holder->GetAlignedPointerFromInternalField(0) == nullptr; } }; template struct CallbackParamTraits { typedef T LocalType; }; template struct CallbackParamTraits { typedef T LocalType; }; template struct CallbackParamTraits { typedef T* LocalType; }; // CallbackHolder and CallbackHolderBase are used to pass a base::Callback from // CreateFunctionTemplate through v8 (via v8::FunctionTemplate) to // DispatchToCallback, where it is invoked. // This simple base class is used so that we can share a single object template // among every CallbackHolder instance. class CallbackHolderBase { public: v8::Local GetHandle(v8::Isolate* isolate); protected: explicit CallbackHolderBase(v8::Isolate* isolate); virtual ~CallbackHolderBase(); private: static void FirstWeakCallback( const v8::WeakCallbackInfo& data); static void SecondWeakCallback( const v8::WeakCallbackInfo& data); v8::Global v8_ref_; DISALLOW_COPY_AND_ASSIGN(CallbackHolderBase); }; template class CallbackHolder : public CallbackHolderBase { public: CallbackHolder(v8::Isolate* isolate, const base::Callback& callback, int flags) : CallbackHolderBase(isolate), callback(callback), flags(flags) {} base::Callback callback; int flags; private: virtual ~CallbackHolder() {} DISALLOW_COPY_AND_ASSIGN(CallbackHolder); }; template bool GetNextArgument(Arguments* args, int create_flags, bool is_first, T* result) { if (is_first && (create_flags & HolderIsFirstArgument) != 0) { return args->GetHolder(result); } else { return args->GetNext(result); } } // For advanced use cases, we allow callers to request the unparsed Arguments // object and poke around in it directly. inline bool GetNextArgument(Arguments* args, int create_flags, bool is_first, Arguments* result) { *result = *args; return true; } inline bool GetNextArgument(Arguments* args, int create_flags, bool is_first, Arguments** result) { *result = args; return true; } // It's common for clients to just need the isolate, so we make that easy. inline bool GetNextArgument(Arguments* args, int create_flags, bool is_first, v8::Isolate** result) { *result = args->isolate(); return true; } // Classes for generating and storing an argument pack of integer indices // (based on well-known "indices trick", see: http://goo.gl/bKKojn): template struct IndicesHolder {}; template struct IndicesGenerator { using type = typename IndicesGenerator::type; }; template struct IndicesGenerator<0, indices...> { using type = IndicesHolder; }; // Class template for extracting and storing single argument for callback // at position |index|. template struct ArgumentHolder { using ArgLocalType = typename CallbackParamTraits::LocalType; ArgLocalType value; bool ok; ArgumentHolder(Arguments* args, int create_flags) : ok(false) { if (index == 0 && (create_flags & HolderIsFirstArgument) && Destroyable::IsDestroyed(args)) { args->ThrowError("Object has been destroyed"); return; } ok = GetNextArgument(args, create_flags, index == 0, &value); if (!ok) { // Ideally we would include the expected c++ type in the error // message which we can access via typeid(ArgType).name() // however we compile with no-rtti, which disables typeid. args->ThrowError(); } } }; // Class template for converting arguments from JavaScript to C++ and running // the callback with them. template class Invoker {}; template class Invoker, ArgTypes...> : public ArgumentHolder... { public: // Invoker<> inherits from ArgumentHolder<> for each argument. // C++ has always been strict about the class initialization order, // so it is guaranteed ArgumentHolders will be initialized (and thus, will // extract arguments from Arguments) in the right order. Invoker(Arguments* args, int create_flags) : ArgumentHolder(args, create_flags)..., args_(args) { // GCC thinks that create_flags is going unused, even though the // expansion above clearly makes use of it. Per jyasskin@, casting // to void is the commonly accepted way to convince the compiler // that you're actually using a parameter/varible. (void)create_flags; } bool IsOK() { return And(ArgumentHolder::ok...); } template void DispatchToCallback(base::Callback callback) { v8::MicrotasksScope script_scope( args_->isolate(), v8::MicrotasksScope::kRunMicrotasks); args_->Return(callback.Run(ArgumentHolder::value...)); } // In C++, you can declare the function foo(void), but you can't pass a void // expression to foo. As a result, we must specialize the case of Callbacks // that have the void return type. void DispatchToCallback(base::Callback callback) { v8::MicrotasksScope script_scope( args_->isolate(), v8::MicrotasksScope::kRunMicrotasks); callback.Run(ArgumentHolder::value...); } private: static bool And() { return true; } template static bool And(bool arg1, T... args) { return arg1 && And(args...); } Arguments* args_; }; // DispatchToCallback converts all the JavaScript arguments to C++ types and // invokes the base::Callback. template struct Dispatcher {}; template struct Dispatcher { static void DispatchToCallback( const v8::FunctionCallbackInfo& info) { Arguments args(info); v8::Local v8_holder; args.GetData(&v8_holder); CallbackHolderBase* holder_base = reinterpret_cast( v8_holder->Value()); typedef CallbackHolder HolderT; HolderT* holder = static_cast(holder_base); using Indices = typename IndicesGenerator::type; Invoker invoker(&args, holder->flags); if (invoker.IsOK()) invoker.DispatchToCallback(holder->callback); } }; } // namespace internal // CreateFunctionTemplate creates a v8::FunctionTemplate that will create // JavaScript functions that execute a provided C++ function or base::Callback. // JavaScript arguments are automatically converted via gin::Converter, as is // the return value of the C++ function, if any. // // NOTE: V8 caches FunctionTemplates for a lifetime of a web page for its own // internal reasons, thus it is generally a good idea to cache the template // returned by this function. Otherwise, repeated method invocations from JS // will create substantial memory leaks. See http://crbug.com/463487. template v8::Local CreateFunctionTemplate( v8::Isolate* isolate, const base::Callback callback, int callback_flags = 0) { typedef internal::CallbackHolder HolderT; HolderT* holder = new HolderT(isolate, callback, callback_flags); return v8::FunctionTemplate::New( isolate, &internal::Dispatcher::DispatchToCallback, ConvertToV8 >(isolate, holder->GetHandle(isolate))); } // CreateFunctionHandler installs a CallAsFunction handler on the given // object template that forwards to a provided C++ function or base::Callback. template void CreateFunctionHandler(v8::Isolate* isolate, v8::Local tmpl, const base::Callback callback, int callback_flags = 0) { typedef internal::CallbackHolder HolderT; HolderT* holder = new HolderT(isolate, callback, callback_flags); tmpl->SetCallAsFunctionHandler(&internal::Dispatcher::DispatchToCallback, ConvertToV8 >( isolate, holder->GetHandle(isolate))); } } // namespace mate #endif // NATIVE_MATE_FUNCTION_TEMPLATE_H_