// Copyright (c) 2013 GitHub, Inc. // Use of this source code is governed by the MIT license that can be // found in the LICENSE file. #include #include "atom/common/api/api_messages.h" #include "atom/common/native_mate_converters/value_converter.h" #include "atom/common/node_bindings.h" #include "atom/common/node_includes.h" #include "atom/common/promise_util.h" #include "base/task/post_task.h" #include "base/values.h" #include "content/public/renderer/render_frame.h" #include "electron/atom/common/api/api.mojom.h" #include "native_mate/arguments.h" #include "native_mate/dictionary.h" #include "native_mate/handle.h" #include "native_mate/object_template_builder.h" #include "native_mate/wrappable.h" #include "services/service_manager/public/cpp/interface_provider.h" #include "third_party/blink/public/web/web_local_frame.h" using blink::WebLocalFrame; using content::RenderFrame; namespace { RenderFrame* GetCurrentRenderFrame() { WebLocalFrame* frame = WebLocalFrame::FrameForCurrentContext(); if (!frame) return nullptr; return RenderFrame::FromWebFrame(frame); } class IPCRenderer : public mate::Wrappable { public: explicit IPCRenderer(v8::Isolate* isolate) { Init(isolate); RenderFrame* render_frame = GetCurrentRenderFrame(); DCHECK(render_frame); render_frame->GetRemoteInterfaces()->GetInterface( mojo::MakeRequest(&electron_browser_ptr_)); render_frame->GetRemoteInterfaces()->GetInterface( mojo::MakeRequest(&electron_browser_sync_ptr_)); } static void BuildPrototype(v8::Isolate* isolate, v8::Local prototype) { prototype->SetClassName(mate::StringToV8(isolate, "IPCRenderer")); mate::ObjectTemplateBuilder(isolate, prototype->PrototypeTemplate()) .SetMethod("send", &IPCRenderer::Send) .SetMethod("sendSync", &IPCRenderer::SendSync) .SetMethod("sendTo", &IPCRenderer::SendTo) .SetMethod("sendToHost", &IPCRenderer::SendToHost) .SetMethod("invoke", &IPCRenderer::Invoke); } static mate::Handle Create(v8::Isolate* isolate) { return mate::CreateHandle(isolate, new IPCRenderer(isolate)); } void Send(mate::Arguments* args, bool internal, const std::string& channel, const base::ListValue& arguments) { electron_browser_ptr_->Message(internal, channel, arguments.Clone()); } v8::Local Invoke(mate::Arguments* args, const std::string& channel, const base::Value& arguments) { atom::util::Promise p(args->isolate()); auto handle = p.GetHandle(); electron_browser_ptr_->Invoke( channel, arguments.Clone(), base::BindOnce( [](atom::util::Promise p, base::Value value) { p.Resolve(value); }, std::move(p))); return handle; } void SendTo(mate::Arguments* args, bool internal, bool send_to_all, int32_t web_contents_id, const std::string& channel, const base::ListValue& arguments) { electron_browser_ptr_->MessageTo(internal, send_to_all, web_contents_id, channel, arguments.Clone()); } void SendToHost(mate::Arguments* args, const std::string& channel, const base::ListValue& arguments) { electron_browser_ptr_->MessageHost(channel, arguments.Clone()); } base::Value SendSync(mate::Arguments* args, bool internal, const std::string& channel, const base::ListValue& arguments) { // We aren't using a true synchronous mojo call here. We're calling an // asynchronous method and blocking on the result. The reason we're doing // this is a little complicated, so buckle up. // // Mojo has a concept of synchronous calls. However, synchronous calls are // dangerous. In particular, it's quite possible for two processes to call // synchronous methods on each other and cause a deadlock. Mojo has a // mechanism to avoid this kind of deadlock: if a process is waiting on the // result of a synchronous call, and it receives an incoming call for a // synchronous method, it will process that request immediately, even // though it's currently blocking. However, if it receives an incoming // request for an _asynchronous_ method, that can't cause a deadlock, so it // stashes the request on a queue to be processed once the synchronous // thing it's waiting on returns. // // This behavior is useful for preventing deadlocks, but it is inconvenient // here because it can result in messages being reordered. If the main // process is awaiting the result of a synchronous call (which it does only // very rarely, since it's bad to block the main process), and we send // first an asynchronous message to the main process, followed by a // synchronous message, then the main process will process the synchronous // one first. // // It turns out, Electron has some dependency on message ordering, // especially during window shutdown, and getting messages out of order can // result in, for example, remote objects disappearing unexpectedly. To // avoid these issues and guarantee consistent message ordering, we send // all messages to the main process as asynchronous messages. This causes // them to always be queued and processed in the same order they were // received, even if they were received while the main process was waiting // on a synchronous call. // // However, in the calling process, we still need to block on the result, // because the caller is expecting a result synchronously. So we do a bit // of a trick: we pass the Mojo handle over to a new thread, send the // asynchronous message from that thread, and then block on the result. // It's important that we pass the handle over to the new thread, because // that allows Mojo to process incoming messages (most importantly, the // response to our request) on the new thread. If we didn't pass it to a // new thread, and instead sent the call from the main thread, we would // never receive a response because Mojo wouldn't be able to run its // message handling code, because the main thread would be tied up blocking // on the WaitableEvent. // // Phew. If you got this far, here's a gold star: ⭐️ base::Value result; // A task is posted to a separate thread to execute the request so that // this thread may block on a waitable event. It is safe to pass raw // pointers to |result| and |event| as this stack frame will survive until // the request is complete. scoped_refptr task_runner = base::CreateSingleThreadTaskRunnerWithTraits({}); base::WaitableEvent response_received_event; // We unbind the interface from this thread to pass it over to the worker // thread temporarily. This requires that no callbacks be pending for this // interface. auto interface_info = electron_browser_sync_ptr_.PassInterface(); task_runner->PostTask( FROM_HERE, base::BindOnce(&IPCRenderer::SendMessageSyncOnWorkerThread, base::Unretained(&interface_info), base::Unretained(&response_received_event), base::Unretained(&result), internal, channel, base::Unretained(&arguments))); response_received_event.Wait(); electron_browser_sync_ptr_.Bind(std::move(interface_info)); return result; } private: static void SendMessageSyncOnWorkerThread( atom::mojom::ElectronBrowserPtrInfo* interface_info, base::WaitableEvent* event, base::Value* result, bool internal, const std::string& channel, const base::ListValue* arguments) { atom::mojom::ElectronBrowserPtr browser_ptr(std::move(*interface_info)); browser_ptr->MessageSync( internal, channel, arguments->Clone(), base::BindOnce(&IPCRenderer::ReturnSyncResponseToMainThread, std::move(browser_ptr), base::Unretained(interface_info), base::Unretained(event), base::Unretained(result))); } static void ReturnSyncResponseToMainThread( atom::mojom::ElectronBrowserPtr ptr, atom::mojom::ElectronBrowserPtrInfo* interface_info, base::WaitableEvent* event, base::Value* result, base::Value response) { *result = std::move(response); *interface_info = ptr.PassInterface(); event->Signal(); } atom::mojom::ElectronBrowserPtr electron_browser_ptr_; // We execute all synchronous calls on a separate mojo pipe, because // of the way that we block on the result of synchronous calls. atom::mojom::ElectronBrowserPtr electron_browser_sync_ptr_; }; void Initialize(v8::Local exports, v8::Local unused, v8::Local context, void* priv) { mate::Dictionary dict(context->GetIsolate(), exports); dict.Set("ipc", IPCRenderer::Create(context->GetIsolate())); } } // namespace NODE_LINKED_MODULE_CONTEXT_AWARE(atom_renderer_ipc, Initialize)