linux-uconsole/block/blk-core.c
Greg Kroah-Hartman 8d21bcc704 This is the 5.10.82 stable release
-----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCAAdFiEEZH8oZUiU471FcZm+ONu9yGCSaT4FAmGgq10ACgkQONu9yGCS
 aT6KDA/+N9ysKF4cH2zdUMhDAkjCKB3YqTEsJxSfGBkJu2wuncAEEtrKy9jxC+lv
 fz6BE1tduit/IQIhGTCXJlfe9NIxwU87f2v5JlHnYeXg4dz72c+Ei236l7ZvkSNE
 ii8/ikHGvbbhKv+BTgcRg7jVUMMy6eEpS6iJwMNLB/sHROjZXPogFoiYjbO+Jzc5
 0jTciMZv6r4yNhrdHBjhWHe6ZhB94H//Jy8MVYk37NGc5EbJmrMN83GM5ceSmhOZ
 PgxxyrVTv+SdGm0XViyK+94HXWGQHLXQF+Nsu3YEZfnNI+HNSPQKTqBLPM1hV7Ak
 h+IYW6VHPmcBmQzEdSA67uMKJayKtEwpkqO6aLRcj/NIThRiZoznbrtZOoGSXaU1
 0MzQRPum76GA5/SVGgtB8FrE6kcFm74eq82mXvUD+rgCp0HTbIpYQK9ZKSmbFOkv
 fYjcpWHZ8PEmffMbtIlVKSffVxcUILoNuQwnr21NGiRUrd54DhNPgVahmCKnvUTb
 847bGU/wQJPIF/2SO1rdpaA9MrPqZ/9sMEX3nSdx7xS8D+h2wfJqAJkLq0KBYt7R
 sbsXbfqbri893VHBo2YUqby3+7x3uNr118SjyiA8zpHHJpTBrVVImxSnW1z626HT
 KNJU4MSulLs+settJKAw1PHGRIGuW5TGSGF94p5LcsZDM2uIabU=
 =Wg4d
 -----END PGP SIGNATURE-----

Merge 5.10.82 into android12-5.10-lts

Changes in 5.10.82
	arm64: zynqmp: Do not duplicate flash partition label property
	arm64: zynqmp: Fix serial compatible string
	ARM: dts: sunxi: Fix OPPs node name
	arm64: dts: allwinner: h5: Fix GPU thermal zone node name
	arm64: dts: allwinner: a100: Fix thermal zone node name
	staging: wfx: ensure IRQ is ready before enabling it
	ARM: dts: NSP: Fix mpcore, mmc node names
	scsi: lpfc: Fix list_add() corruption in lpfc_drain_txq()
	arm64: dts: rockchip: Disable CDN DP on Pinebook Pro
	arm64: dts: hisilicon: fix arm,sp805 compatible string
	RDMA/bnxt_re: Check if the vlan is valid before reporting
	bus: ti-sysc: Add quirk handling for reinit on context lost
	bus: ti-sysc: Use context lost quirk for otg
	usb: musb: tusb6010: check return value after calling platform_get_resource()
	usb: typec: tipd: Remove WARN_ON in tps6598x_block_read
	ARM: dts: ux500: Skomer regulator fixes
	staging: rtl8723bs: remove possible deadlock when disconnect (v2)
	ARM: BCM53016: Specify switch ports for Meraki MR32
	arm64: dts: qcom: msm8998: Fix CPU/L2 idle state latency and residency
	arm64: dts: qcom: ipq6018: Fix qcom,controlled-remotely property
	arm64: dts: freescale: fix arm,sp805 compatible string
	ASoC: SOF: Intel: hda-dai: fix potential locking issue
	clk: imx: imx6ul: Move csi_sel mux to correct base register
	ASoC: nau8824: Add DMI quirk mechanism for active-high jack-detect
	scsi: advansys: Fix kernel pointer leak
	ALSA: intel-dsp-config: add quirk for APL/GLK/TGL devices based on ES8336 codec
	firmware_loader: fix pre-allocated buf built-in firmware use
	ARM: dts: omap: fix gpmc,mux-add-data type
	usb: host: ohci-tmio: check return value after calling platform_get_resource()
	ARM: dts: ls1021a: move thermal-zones node out of soc/
	ARM: dts: ls1021a-tsn: use generic "jedec,spi-nor" compatible for flash
	ALSA: ISA: not for M68K
	tty: tty_buffer: Fix the softlockup issue in flush_to_ldisc
	MIPS: sni: Fix the build
	scsi: scsi_debug: Fix out-of-bound read in resp_readcap16()
	scsi: scsi_debug: Fix out-of-bound read in resp_report_tgtpgs()
	scsi: target: Fix ordered tag handling
	scsi: target: Fix alua_tg_pt_gps_count tracking
	iio: imu: st_lsm6dsx: Avoid potential array overflow in st_lsm6dsx_set_odr()
	powerpc/5200: dts: fix memory node unit name
	ARM: dts: qcom: fix memory and mdio nodes naming for RB3011
	ALSA: gus: fix null pointer dereference on pointer block
	powerpc/dcr: Use cmplwi instead of 3-argument cmpli
	powerpc/8xx: Fix Oops with STRICT_KERNEL_RWX without DEBUG_RODATA_TEST
	sh: check return code of request_irq
	maple: fix wrong return value of maple_bus_init().
	f2fs: fix up f2fs_lookup tracepoints
	f2fs: fix to use WHINT_MODE
	sh: fix kconfig unmet dependency warning for FRAME_POINTER
	sh: math-emu: drop unused functions
	sh: define __BIG_ENDIAN for math-emu
	f2fs: compress: disallow disabling compress on non-empty compressed file
	f2fs: fix incorrect return value in f2fs_sanity_check_ckpt()
	clk: ingenic: Fix bugs with divided dividers
	clk/ast2600: Fix soc revision for AHB
	clk: qcom: gcc-msm8996: Drop (again) gcc_aggre1_pnoc_ahb_clk
	mips: BCM63XX: ensure that CPU_SUPPORTS_32BIT_KERNEL is set
	sched/core: Mitigate race cpus_share_cache()/update_top_cache_domain()
	perf/x86/vlbr: Add c->flags to vlbr event constraints
	blkcg: Remove extra blkcg_bio_issue_init
	tracing/histogram: Do not copy the fixed-size char array field over the field size
	perf bpf: Avoid memory leak from perf_env__insert_btf()
	perf bench futex: Fix memory leak of perf_cpu_map__new()
	perf tests: Remove bash construct from record+zstd_comp_decomp.sh
	drm/nouveau: hdmigv100.c: fix corrupted HDMI Vendor InfoFrame
	net-zerocopy: Copy straggler unaligned data for TCP Rx. zerocopy.
	net-zerocopy: Refactor skb frag fast-forward op.
	tcp: Fix uninitialized access in skb frags array for Rx 0cp.
	tracing: Add length protection to histogram string copies
	net: ipa: disable HOLB drop when updating timer
	net: bnx2x: fix variable dereferenced before check
	bnxt_en: reject indirect blk offload when hw-tc-offload is off
	tipc: only accept encrypted MSG_CRYPTO msgs
	net: reduce indentation level in sk_clone_lock()
	sock: fix /proc/net/sockstat underflow in sk_clone_lock()
	net/smc: Make sure the link_id is unique
	iavf: Fix return of set the new channel count
	iavf: check for null in iavf_fix_features
	iavf: free q_vectors before queues in iavf_disable_vf
	iavf: Fix failure to exit out from last all-multicast mode
	iavf: prevent accidental free of filter structure
	iavf: validate pointers
	iavf: Fix for the false positive ASQ/ARQ errors while issuing VF reset
	iavf: Fix for setting queues to 0
	MIPS: generic/yamon-dt: fix uninitialized variable error
	mips: bcm63xx: add support for clk_get_parent()
	mips: lantiq: add support for clk_get_parent()
	platform/x86: hp_accel: Fix an error handling path in 'lis3lv02d_probe()'
	net/mlx5e: nullify cq->dbg pointer in mlx5_debug_cq_remove()
	net/mlx5: Lag, update tracker when state change event received
	net/mlx5: E-Switch, Change mode lock from mutex to rw semaphore
	net/mlx5: E-Switch, return error if encap isn't supported
	scsi: core: sysfs: Fix hang when device state is set via sysfs
	net: sched: act_mirred: drop dst for the direction from egress to ingress
	net: dpaa2-eth: fix use-after-free in dpaa2_eth_remove
	net: virtio_net_hdr_to_skb: count transport header in UFO
	i40e: Fix correct max_pkt_size on VF RX queue
	i40e: Fix NULL ptr dereference on VSI filter sync
	i40e: Fix changing previously set num_queue_pairs for PFs
	i40e: Fix ping is lost after configuring ADq on VF
	i40e: Fix warning message and call stack during rmmod i40e driver
	i40e: Fix creation of first queue by omitting it if is not power of two
	i40e: Fix display error code in dmesg
	NFC: reorganize the functions in nci_request
	NFC: reorder the logic in nfc_{un,}register_device
	net: nfc: nci: Change the NCI close sequence
	NFC: add NCI_UNREG flag to eliminate the race
	e100: fix device suspend/resume
	KVM: PPC: Book3S HV: Use GLOBAL_TOC for kvmppc_h_set_dabr/xdabr()
	pinctrl: qcom: sdm845: Enable dual edge errata
	perf/x86/intel/uncore: Fix filter_tid mask for CHA events on Skylake Server
	perf/x86/intel/uncore: Fix IIO event constraints for Skylake Server
	s390/kexec: fix return code handling
	net: stmmac: dwmac-rk: Fix ethernet on rk3399 based devices
	arm64: vdso32: suppress error message for 'make mrproper'
	tun: fix bonding active backup with arp monitoring
	hexagon: export raw I/O routines for modules
	hexagon: clean up timer-regs.h
	tipc: check for null after calling kmemdup
	ipc: WARN if trying to remove ipc object which is absent
	mm: kmemleak: slob: respect SLAB_NOLEAKTRACE flag
	x86/hyperv: Fix NULL deref in set_hv_tscchange_cb() if Hyper-V setup fails
	powerpc/8xx: Fix pinned TLBs with CONFIG_STRICT_KERNEL_RWX
	scsi: qla2xxx: Fix mailbox direction flags in qla2xxx_get_adapter_id()
	s390/kexec: fix memory leak of ipl report buffer
	block: Check ADMIN before NICE for IOPRIO_CLASS_RT
	KVM: nVMX: don't use vcpu->arch.efer when checking host state on nested state load
	udf: Fix crash after seekdir
	net: stmmac: socfpga: add runtime suspend/resume callback for stratix10 platform
	btrfs: fix memory ordering between normal and ordered work functions
	parisc/sticon: fix reverse colors
	cfg80211: call cfg80211_stop_ap when switch from P2P_GO type
	drm/amd/display: Update swizzle mode enums
	drm/udl: fix control-message timeout
	drm/nouveau: Add a dedicated mutex for the clients list
	drm/nouveau: use drm_dev_unplug() during device removal
	drm/nouveau: clean up all clients on device removal
	drm/i915/dp: Ensure sink rate values are always valid
	drm/amdgpu: fix set scaling mode Full/Full aspect/Center not works on vga and dvi connectors
	scsi: ufs: core: Fix task management completion
	scsi: ufs: core: Fix task management completion timeout race
	hugetlbfs: flush TLBs correctly after huge_pmd_unshare
	RDMA/netlink: Add __maybe_unused to static inline in C file
	selinux: fix NULL-pointer dereference when hashtab allocation fails
	ASoC: DAPM: Cover regression by kctl change notification fix
	usb: max-3421: Use driver data instead of maintaining a list of bound devices
	ice: Delete always true check of PF pointer
	fs: export an inode_update_time helper
	btrfs: update device path inode time instead of bd_inode
	x86/Kconfig: Fix an unused variable error in dell-smm-hwmon
	ALSA: hda: hdac_ext_stream: fix potential locking issues
	ALSA: hda: hdac_stream: fix potential locking issue in snd_hdac_stream_assign()
	Revert "perf: Rework perf_event_exit_event()"
	Linux 5.10.82

Signed-off-by: Greg Kroah-Hartman <gregkh@google.com>
Change-Id: I56e067875dafc27c2e86fc3b8c47abb3296c6a18
2021-11-26 15:37:44 +01:00

1819 lines
48 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 1991, 1992 Linus Torvalds
* Copyright (C) 1994, Karl Keyte: Added support for disk statistics
* Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
* Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
* kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
* - July2000
* bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
*/
/*
* This handles all read/write requests to block devices
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/blk-mq.h>
#include <linux/highmem.h>
#include <linux/mm.h>
#include <linux/pagemap.h>
#include <linux/kernel_stat.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/completion.h>
#include <linux/slab.h>
#include <linux/swap.h>
#include <linux/writeback.h>
#include <linux/task_io_accounting_ops.h>
#include <linux/fault-inject.h>
#include <linux/list_sort.h>
#include <linux/delay.h>
#include <linux/ratelimit.h>
#include <linux/pm_runtime.h>
#include <linux/blk-cgroup.h>
#include <linux/t10-pi.h>
#include <linux/debugfs.h>
#include <linux/bpf.h>
#include <linux/psi.h>
#include <linux/sched/sysctl.h>
#include <linux/blk-crypto.h>
#define CREATE_TRACE_POINTS
#include <trace/events/block.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-sched.h"
#include "blk-pm.h"
#include "blk-rq-qos.h"
struct dentry *blk_debugfs_root;
EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_queue);
EXPORT_TRACEPOINT_SYMBOL_GPL(block_getrq);
EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_insert);
EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_issue);
EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_merge);
EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_requeue);
EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_complete);
DEFINE_IDA(blk_queue_ida);
/*
* For queue allocation
*/
struct kmem_cache *blk_requestq_cachep;
/*
* Controlling structure to kblockd
*/
static struct workqueue_struct *kblockd_workqueue;
/**
* blk_queue_flag_set - atomically set a queue flag
* @flag: flag to be set
* @q: request queue
*/
void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
{
set_bit(flag, &q->queue_flags);
}
EXPORT_SYMBOL(blk_queue_flag_set);
/**
* blk_queue_flag_clear - atomically clear a queue flag
* @flag: flag to be cleared
* @q: request queue
*/
void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
{
clear_bit(flag, &q->queue_flags);
}
EXPORT_SYMBOL(blk_queue_flag_clear);
/**
* blk_queue_flag_test_and_set - atomically test and set a queue flag
* @flag: flag to be set
* @q: request queue
*
* Returns the previous value of @flag - 0 if the flag was not set and 1 if
* the flag was already set.
*/
bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
{
return test_and_set_bit(flag, &q->queue_flags);
}
EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
void blk_rq_init(struct request_queue *q, struct request *rq)
{
memset(rq, 0, sizeof(*rq));
INIT_LIST_HEAD(&rq->queuelist);
rq->q = q;
rq->__sector = (sector_t) -1;
INIT_HLIST_NODE(&rq->hash);
RB_CLEAR_NODE(&rq->rb_node);
rq->tag = BLK_MQ_NO_TAG;
rq->internal_tag = BLK_MQ_NO_TAG;
rq->start_time_ns = ktime_get_ns();
rq->part = NULL;
blk_crypto_rq_set_defaults(rq);
}
EXPORT_SYMBOL(blk_rq_init);
#define REQ_OP_NAME(name) [REQ_OP_##name] = #name
static const char *const blk_op_name[] = {
REQ_OP_NAME(READ),
REQ_OP_NAME(WRITE),
REQ_OP_NAME(FLUSH),
REQ_OP_NAME(DISCARD),
REQ_OP_NAME(SECURE_ERASE),
REQ_OP_NAME(ZONE_RESET),
REQ_OP_NAME(ZONE_RESET_ALL),
REQ_OP_NAME(ZONE_OPEN),
REQ_OP_NAME(ZONE_CLOSE),
REQ_OP_NAME(ZONE_FINISH),
REQ_OP_NAME(ZONE_APPEND),
REQ_OP_NAME(WRITE_SAME),
REQ_OP_NAME(WRITE_ZEROES),
REQ_OP_NAME(SCSI_IN),
REQ_OP_NAME(SCSI_OUT),
REQ_OP_NAME(DRV_IN),
REQ_OP_NAME(DRV_OUT),
};
#undef REQ_OP_NAME
/**
* blk_op_str - Return string XXX in the REQ_OP_XXX.
* @op: REQ_OP_XXX.
*
* Description: Centralize block layer function to convert REQ_OP_XXX into
* string format. Useful in the debugging and tracing bio or request. For
* invalid REQ_OP_XXX it returns string "UNKNOWN".
*/
inline const char *blk_op_str(unsigned int op)
{
const char *op_str = "UNKNOWN";
if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
op_str = blk_op_name[op];
return op_str;
}
EXPORT_SYMBOL_GPL(blk_op_str);
static const struct {
int errno;
const char *name;
} blk_errors[] = {
[BLK_STS_OK] = { 0, "" },
[BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
[BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
[BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
[BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
[BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
[BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
[BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
[BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
[BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
[BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
[BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
/* device mapper special case, should not leak out: */
[BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
/* zone device specific errors */
[BLK_STS_ZONE_OPEN_RESOURCE] = { -ETOOMANYREFS, "open zones exceeded" },
[BLK_STS_ZONE_ACTIVE_RESOURCE] = { -EOVERFLOW, "active zones exceeded" },
/* everything else not covered above: */
[BLK_STS_IOERR] = { -EIO, "I/O" },
};
blk_status_t errno_to_blk_status(int errno)
{
int i;
for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
if (blk_errors[i].errno == errno)
return (__force blk_status_t)i;
}
return BLK_STS_IOERR;
}
EXPORT_SYMBOL_GPL(errno_to_blk_status);
int blk_status_to_errno(blk_status_t status)
{
int idx = (__force int)status;
if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
return -EIO;
return blk_errors[idx].errno;
}
EXPORT_SYMBOL_GPL(blk_status_to_errno);
static void print_req_error(struct request *req, blk_status_t status,
const char *caller)
{
int idx = (__force int)status;
if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
return;
printk_ratelimited(KERN_ERR
"%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
"phys_seg %u prio class %u\n",
caller, blk_errors[idx].name,
req->rq_disk ? req->rq_disk->disk_name : "?",
blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
req->cmd_flags & ~REQ_OP_MASK,
req->nr_phys_segments,
IOPRIO_PRIO_CLASS(req->ioprio));
}
static void req_bio_endio(struct request *rq, struct bio *bio,
unsigned int nbytes, blk_status_t error)
{
if (error)
bio->bi_status = error;
if (unlikely(rq->rq_flags & RQF_QUIET))
bio_set_flag(bio, BIO_QUIET);
bio_advance(bio, nbytes);
if (req_op(rq) == REQ_OP_ZONE_APPEND && error == BLK_STS_OK) {
/*
* Partial zone append completions cannot be supported as the
* BIO fragments may end up not being written sequentially.
*/
if (bio->bi_iter.bi_size)
bio->bi_status = BLK_STS_IOERR;
else
bio->bi_iter.bi_sector = rq->__sector;
}
/* don't actually finish bio if it's part of flush sequence */
if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
bio_endio(bio);
}
void blk_dump_rq_flags(struct request *rq, char *msg)
{
printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
rq->rq_disk ? rq->rq_disk->disk_name : "?",
(unsigned long long) rq->cmd_flags);
printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
(unsigned long long)blk_rq_pos(rq),
blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
printk(KERN_INFO " bio %p, biotail %p, len %u\n",
rq->bio, rq->biotail, blk_rq_bytes(rq));
}
EXPORT_SYMBOL(blk_dump_rq_flags);
/**
* blk_sync_queue - cancel any pending callbacks on a queue
* @q: the queue
*
* Description:
* The block layer may perform asynchronous callback activity
* on a queue, such as calling the unplug function after a timeout.
* A block device may call blk_sync_queue to ensure that any
* such activity is cancelled, thus allowing it to release resources
* that the callbacks might use. The caller must already have made sure
* that its ->submit_bio will not re-add plugging prior to calling
* this function.
*
* This function does not cancel any asynchronous activity arising
* out of elevator or throttling code. That would require elevator_exit()
* and blkcg_exit_queue() to be called with queue lock initialized.
*
*/
void blk_sync_queue(struct request_queue *q)
{
del_timer_sync(&q->timeout);
cancel_work_sync(&q->timeout_work);
}
EXPORT_SYMBOL(blk_sync_queue);
/**
* blk_set_pm_only - increment pm_only counter
* @q: request queue pointer
*/
void blk_set_pm_only(struct request_queue *q)
{
atomic_inc(&q->pm_only);
}
EXPORT_SYMBOL_GPL(blk_set_pm_only);
void blk_clear_pm_only(struct request_queue *q)
{
int pm_only;
pm_only = atomic_dec_return(&q->pm_only);
WARN_ON_ONCE(pm_only < 0);
if (pm_only == 0)
wake_up_all(&q->mq_freeze_wq);
}
EXPORT_SYMBOL_GPL(blk_clear_pm_only);
/**
* blk_put_queue - decrement the request_queue refcount
* @q: the request_queue structure to decrement the refcount for
*
* Decrements the refcount of the request_queue kobject. When this reaches 0
* we'll have blk_release_queue() called.
*
* Context: Any context, but the last reference must not be dropped from
* atomic context.
*/
void blk_put_queue(struct request_queue *q)
{
kobject_put(&q->kobj);
}
EXPORT_SYMBOL(blk_put_queue);
void blk_set_queue_dying(struct request_queue *q)
{
blk_queue_flag_set(QUEUE_FLAG_DYING, q);
/*
* When queue DYING flag is set, we need to block new req
* entering queue, so we call blk_freeze_queue_start() to
* prevent I/O from crossing blk_queue_enter().
*/
blk_freeze_queue_start(q);
if (queue_is_mq(q))
blk_mq_wake_waiters(q);
/* Make blk_queue_enter() reexamine the DYING flag. */
wake_up_all(&q->mq_freeze_wq);
}
EXPORT_SYMBOL_GPL(blk_set_queue_dying);
/**
* blk_cleanup_queue - shutdown a request queue
* @q: request queue to shutdown
*
* Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
* put it. All future requests will be failed immediately with -ENODEV.
*
* Context: can sleep
*/
void blk_cleanup_queue(struct request_queue *q)
{
/* cannot be called from atomic context */
might_sleep();
WARN_ON_ONCE(blk_queue_registered(q));
/* mark @q DYING, no new request or merges will be allowed afterwards */
blk_set_queue_dying(q);
blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
/*
* Drain all requests queued before DYING marking. Set DEAD flag to
* prevent that blk_mq_run_hw_queues() accesses the hardware queues
* after draining finished.
*/
blk_freeze_queue(q);
rq_qos_exit(q);
blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
/* for synchronous bio-based driver finish in-flight integrity i/o */
blk_flush_integrity();
/* @q won't process any more request, flush async actions */
del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
blk_sync_queue(q);
if (queue_is_mq(q))
blk_mq_exit_queue(q);
/*
* In theory, request pool of sched_tags belongs to request queue.
* However, the current implementation requires tag_set for freeing
* requests, so free the pool now.
*
* Queue has become frozen, there can't be any in-queue requests, so
* it is safe to free requests now.
*/
mutex_lock(&q->sysfs_lock);
if (q->elevator)
blk_mq_sched_free_requests(q);
mutex_unlock(&q->sysfs_lock);
percpu_ref_exit(&q->q_usage_counter);
/* @q is and will stay empty, shutdown and put */
blk_put_queue(q);
}
EXPORT_SYMBOL(blk_cleanup_queue);
/**
* blk_queue_enter() - try to increase q->q_usage_counter
* @q: request queue pointer
* @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM
*/
int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
{
const bool pm = flags & BLK_MQ_REQ_PM;
while (true) {
bool success = false;
rcu_read_lock();
if (percpu_ref_tryget_live(&q->q_usage_counter)) {
/*
* The code that increments the pm_only counter is
* responsible for ensuring that that counter is
* globally visible before the queue is unfrozen.
*/
if (pm || !blk_queue_pm_only(q)) {
success = true;
} else {
percpu_ref_put(&q->q_usage_counter);
}
}
rcu_read_unlock();
if (success)
return 0;
if (flags & BLK_MQ_REQ_NOWAIT)
return -EBUSY;
/*
* read pair of barrier in blk_freeze_queue_start(),
* we need to order reading __PERCPU_REF_DEAD flag of
* .q_usage_counter and reading .mq_freeze_depth or
* queue dying flag, otherwise the following wait may
* never return if the two reads are reordered.
*/
smp_rmb();
wait_event(q->mq_freeze_wq,
(!q->mq_freeze_depth &&
(pm || (blk_pm_request_resume(q),
!blk_queue_pm_only(q)))) ||
blk_queue_dying(q));
if (blk_queue_dying(q))
return -ENODEV;
}
}
static inline int bio_queue_enter(struct bio *bio)
{
struct request_queue *q = bio->bi_disk->queue;
bool nowait = bio->bi_opf & REQ_NOWAIT;
int ret;
ret = blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0);
if (unlikely(ret)) {
if (nowait && !blk_queue_dying(q))
bio_wouldblock_error(bio);
else
bio_io_error(bio);
}
return ret;
}
void blk_queue_exit(struct request_queue *q)
{
percpu_ref_put(&q->q_usage_counter);
}
static void blk_queue_usage_counter_release(struct percpu_ref *ref)
{
struct request_queue *q =
container_of(ref, struct request_queue, q_usage_counter);
wake_up_all(&q->mq_freeze_wq);
}
static void blk_rq_timed_out_timer(struct timer_list *t)
{
struct request_queue *q = from_timer(q, t, timeout);
kblockd_schedule_work(&q->timeout_work);
}
static void blk_timeout_work(struct work_struct *work)
{
}
struct request_queue *blk_alloc_queue(int node_id)
{
struct request_queue *q;
int ret;
q = kmem_cache_alloc_node(blk_requestq_cachep,
GFP_KERNEL | __GFP_ZERO, node_id);
if (!q)
return NULL;
q->last_merge = NULL;
q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL);
if (q->id < 0)
goto fail_q;
ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
if (ret)
goto fail_id;
q->backing_dev_info = bdi_alloc(node_id);
if (!q->backing_dev_info)
goto fail_split;
q->stats = blk_alloc_queue_stats();
if (!q->stats)
goto fail_stats;
q->node = node_id;
atomic_set(&q->nr_active_requests_shared_sbitmap, 0);
timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
laptop_mode_timer_fn, 0);
timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
INIT_WORK(&q->timeout_work, blk_timeout_work);
INIT_LIST_HEAD(&q->icq_list);
#ifdef CONFIG_BLK_CGROUP
INIT_LIST_HEAD(&q->blkg_list);
#endif
kobject_init(&q->kobj, &blk_queue_ktype);
mutex_init(&q->debugfs_mutex);
mutex_init(&q->sysfs_lock);
mutex_init(&q->sysfs_dir_lock);
spin_lock_init(&q->queue_lock);
init_waitqueue_head(&q->mq_freeze_wq);
mutex_init(&q->mq_freeze_lock);
/*
* Init percpu_ref in atomic mode so that it's faster to shutdown.
* See blk_register_queue() for details.
*/
if (percpu_ref_init(&q->q_usage_counter,
blk_queue_usage_counter_release,
PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
goto fail_bdi;
if (blkcg_init_queue(q))
goto fail_ref;
blk_queue_dma_alignment(q, 511);
blk_set_default_limits(&q->limits);
q->nr_requests = BLKDEV_MAX_RQ;
return q;
fail_ref:
percpu_ref_exit(&q->q_usage_counter);
fail_bdi:
blk_free_queue_stats(q->stats);
fail_stats:
bdi_put(q->backing_dev_info);
fail_split:
bioset_exit(&q->bio_split);
fail_id:
ida_simple_remove(&blk_queue_ida, q->id);
fail_q:
kmem_cache_free(blk_requestq_cachep, q);
return NULL;
}
EXPORT_SYMBOL(blk_alloc_queue);
/**
* blk_get_queue - increment the request_queue refcount
* @q: the request_queue structure to increment the refcount for
*
* Increment the refcount of the request_queue kobject.
*
* Context: Any context.
*/
bool blk_get_queue(struct request_queue *q)
{
if (likely(!blk_queue_dying(q))) {
__blk_get_queue(q);
return true;
}
return false;
}
EXPORT_SYMBOL(blk_get_queue);
/**
* blk_get_request - allocate a request
* @q: request queue to allocate a request for
* @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
* @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
*/
struct request *blk_get_request(struct request_queue *q, unsigned int op,
blk_mq_req_flags_t flags)
{
struct request *req;
WARN_ON_ONCE(op & REQ_NOWAIT);
WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PM));
req = blk_mq_alloc_request(q, op, flags);
if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
q->mq_ops->initialize_rq_fn(req);
return req;
}
EXPORT_SYMBOL(blk_get_request);
void blk_put_request(struct request *req)
{
blk_mq_free_request(req);
}
EXPORT_SYMBOL(blk_put_request);
static void handle_bad_sector(struct bio *bio, sector_t maxsector)
{
char b[BDEVNAME_SIZE];
pr_info_ratelimited("attempt to access beyond end of device\n"
"%s: rw=%d, want=%llu, limit=%llu\n",
bio_devname(bio, b), bio->bi_opf,
bio_end_sector(bio), maxsector);
}
#ifdef CONFIG_FAIL_MAKE_REQUEST
static DECLARE_FAULT_ATTR(fail_make_request);
static int __init setup_fail_make_request(char *str)
{
return setup_fault_attr(&fail_make_request, str);
}
__setup("fail_make_request=", setup_fail_make_request);
static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
{
return part->make_it_fail && should_fail(&fail_make_request, bytes);
}
static int __init fail_make_request_debugfs(void)
{
struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
NULL, &fail_make_request);
return PTR_ERR_OR_ZERO(dir);
}
late_initcall(fail_make_request_debugfs);
#else /* CONFIG_FAIL_MAKE_REQUEST */
static inline bool should_fail_request(struct hd_struct *part,
unsigned int bytes)
{
return false;
}
#endif /* CONFIG_FAIL_MAKE_REQUEST */
static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
{
const int op = bio_op(bio);
if (part->policy && op_is_write(op)) {
char b[BDEVNAME_SIZE];
if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
return false;
WARN_ONCE(1,
"Trying to write to read-only block-device %s (partno %d)\n",
bio_devname(bio, b), part->partno);
/* Older lvm-tools actually trigger this */
return false;
}
return false;
}
static noinline int should_fail_bio(struct bio *bio)
{
if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
return -EIO;
return 0;
}
ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
/*
* Check whether this bio extends beyond the end of the device or partition.
* This may well happen - the kernel calls bread() without checking the size of
* the device, e.g., when mounting a file system.
*/
static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
{
unsigned int nr_sectors = bio_sectors(bio);
if (nr_sectors && maxsector &&
(nr_sectors > maxsector ||
bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
handle_bad_sector(bio, maxsector);
return -EIO;
}
return 0;
}
/*
* Remap block n of partition p to block n+start(p) of the disk.
*/
static inline int blk_partition_remap(struct bio *bio)
{
struct hd_struct *p;
int ret = -EIO;
rcu_read_lock();
p = __disk_get_part(bio->bi_disk, bio->bi_partno);
if (unlikely(!p))
goto out;
if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
goto out;
if (unlikely(bio_check_ro(bio, p)))
goto out;
if (bio_sectors(bio)) {
if (bio_check_eod(bio, part_nr_sects_read(p)))
goto out;
bio->bi_iter.bi_sector += p->start_sect;
trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
bio->bi_iter.bi_sector - p->start_sect);
}
bio->bi_partno = 0;
ret = 0;
out:
rcu_read_unlock();
return ret;
}
/*
* Check write append to a zoned block device.
*/
static inline blk_status_t blk_check_zone_append(struct request_queue *q,
struct bio *bio)
{
sector_t pos = bio->bi_iter.bi_sector;
int nr_sectors = bio_sectors(bio);
/* Only applicable to zoned block devices */
if (!blk_queue_is_zoned(q))
return BLK_STS_NOTSUPP;
/* The bio sector must point to the start of a sequential zone */
if (pos & (blk_queue_zone_sectors(q) - 1) ||
!blk_queue_zone_is_seq(q, pos))
return BLK_STS_IOERR;
/*
* Not allowed to cross zone boundaries. Otherwise, the BIO will be
* split and could result in non-contiguous sectors being written in
* different zones.
*/
if (nr_sectors > q->limits.chunk_sectors)
return BLK_STS_IOERR;
/* Make sure the BIO is small enough and will not get split */
if (nr_sectors > q->limits.max_zone_append_sectors)
return BLK_STS_IOERR;
bio->bi_opf |= REQ_NOMERGE;
return BLK_STS_OK;
}
static noinline_for_stack bool submit_bio_checks(struct bio *bio)
{
struct request_queue *q = bio->bi_disk->queue;
blk_status_t status = BLK_STS_IOERR;
struct blk_plug *plug;
might_sleep();
plug = blk_mq_plug(q, bio);
if (plug && plug->nowait)
bio->bi_opf |= REQ_NOWAIT;
/*
* For a REQ_NOWAIT based request, return -EOPNOTSUPP
* if queue does not support NOWAIT.
*/
if ((bio->bi_opf & REQ_NOWAIT) && !blk_queue_nowait(q))
goto not_supported;
if (should_fail_bio(bio))
goto end_io;
if (bio->bi_partno) {
if (unlikely(blk_partition_remap(bio)))
goto end_io;
} else {
if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
goto end_io;
if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
goto end_io;
}
/*
* Filter flush bio's early so that bio based drivers without flush
* support don't have to worry about them.
*/
if (op_is_flush(bio->bi_opf) &&
!test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
if (!bio_sectors(bio)) {
status = BLK_STS_OK;
goto end_io;
}
}
if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
bio->bi_opf &= ~REQ_HIPRI;
switch (bio_op(bio)) {
case REQ_OP_DISCARD:
if (!blk_queue_discard(q))
goto not_supported;
break;
case REQ_OP_SECURE_ERASE:
if (!blk_queue_secure_erase(q))
goto not_supported;
break;
case REQ_OP_WRITE_SAME:
if (!q->limits.max_write_same_sectors)
goto not_supported;
break;
case REQ_OP_ZONE_APPEND:
status = blk_check_zone_append(q, bio);
if (status != BLK_STS_OK)
goto end_io;
break;
case REQ_OP_ZONE_RESET:
case REQ_OP_ZONE_OPEN:
case REQ_OP_ZONE_CLOSE:
case REQ_OP_ZONE_FINISH:
if (!blk_queue_is_zoned(q))
goto not_supported;
break;
case REQ_OP_ZONE_RESET_ALL:
if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q))
goto not_supported;
break;
case REQ_OP_WRITE_ZEROES:
if (!q->limits.max_write_zeroes_sectors)
goto not_supported;
break;
default:
break;
}
/*
* Various block parts want %current->io_context, so allocate it up
* front rather than dealing with lots of pain to allocate it only
* where needed. This may fail and the block layer knows how to live
* with it.
*/
if (unlikely(!current->io_context))
create_task_io_context(current, GFP_ATOMIC, q->node);
if (blk_throtl_bio(bio))
return false;
blk_cgroup_bio_start(bio);
blkcg_bio_issue_init(bio);
if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
trace_block_bio_queue(q, bio);
/* Now that enqueuing has been traced, we need to trace
* completion as well.
*/
bio_set_flag(bio, BIO_TRACE_COMPLETION);
}
return true;
not_supported:
status = BLK_STS_NOTSUPP;
end_io:
bio->bi_status = status;
bio_endio(bio);
return false;
}
static blk_qc_t __submit_bio(struct bio *bio)
{
struct gendisk *disk = bio->bi_disk;
blk_qc_t ret = BLK_QC_T_NONE;
if (blk_crypto_bio_prep(&bio)) {
if (!disk->fops->submit_bio)
return blk_mq_submit_bio(bio);
ret = disk->fops->submit_bio(bio);
}
blk_queue_exit(disk->queue);
return ret;
}
/*
* The loop in this function may be a bit non-obvious, and so deserves some
* explanation:
*
* - Before entering the loop, bio->bi_next is NULL (as all callers ensure
* that), so we have a list with a single bio.
* - We pretend that we have just taken it off a longer list, so we assign
* bio_list to a pointer to the bio_list_on_stack, thus initialising the
* bio_list of new bios to be added. ->submit_bio() may indeed add some more
* bios through a recursive call to submit_bio_noacct. If it did, we find a
* non-NULL value in bio_list and re-enter the loop from the top.
* - In this case we really did just take the bio of the top of the list (no
* pretending) and so remove it from bio_list, and call into ->submit_bio()
* again.
*
* bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
* bio_list_on_stack[1] contains bios that were submitted before the current
* ->submit_bio_bio, but that haven't been processed yet.
*/
static blk_qc_t __submit_bio_noacct(struct bio *bio)
{
struct bio_list bio_list_on_stack[2];
blk_qc_t ret = BLK_QC_T_NONE;
BUG_ON(bio->bi_next);
bio_list_init(&bio_list_on_stack[0]);
current->bio_list = bio_list_on_stack;
do {
struct request_queue *q = bio->bi_disk->queue;
struct bio_list lower, same;
if (unlikely(bio_queue_enter(bio) != 0))
continue;
/*
* Create a fresh bio_list for all subordinate requests.
*/
bio_list_on_stack[1] = bio_list_on_stack[0];
bio_list_init(&bio_list_on_stack[0]);
ret = __submit_bio(bio);
/*
* Sort new bios into those for a lower level and those for the
* same level.
*/
bio_list_init(&lower);
bio_list_init(&same);
while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
if (q == bio->bi_disk->queue)
bio_list_add(&same, bio);
else
bio_list_add(&lower, bio);
/*
* Now assemble so we handle the lowest level first.
*/
bio_list_merge(&bio_list_on_stack[0], &lower);
bio_list_merge(&bio_list_on_stack[0], &same);
bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
} while ((bio = bio_list_pop(&bio_list_on_stack[0])));
current->bio_list = NULL;
return ret;
}
static blk_qc_t __submit_bio_noacct_mq(struct bio *bio)
{
struct bio_list bio_list[2] = { };
blk_qc_t ret = BLK_QC_T_NONE;
current->bio_list = bio_list;
do {
struct gendisk *disk = bio->bi_disk;
if (unlikely(bio_queue_enter(bio) != 0))
continue;
if (!blk_crypto_bio_prep(&bio)) {
blk_queue_exit(disk->queue);
ret = BLK_QC_T_NONE;
continue;
}
ret = blk_mq_submit_bio(bio);
} while ((bio = bio_list_pop(&bio_list[0])));
current->bio_list = NULL;
return ret;
}
/**
* submit_bio_noacct - re-submit a bio to the block device layer for I/O
* @bio: The bio describing the location in memory and on the device.
*
* This is a version of submit_bio() that shall only be used for I/O that is
* resubmitted to lower level drivers by stacking block drivers. All file
* systems and other upper level users of the block layer should use
* submit_bio() instead.
*/
blk_qc_t submit_bio_noacct(struct bio *bio)
{
if (!submit_bio_checks(bio))
return BLK_QC_T_NONE;
/*
* We only want one ->submit_bio to be active at a time, else stack
* usage with stacked devices could be a problem. Use current->bio_list
* to collect a list of requests submited by a ->submit_bio method while
* it is active, and then process them after it returned.
*/
if (current->bio_list) {
bio_list_add(&current->bio_list[0], bio);
return BLK_QC_T_NONE;
}
if (!bio->bi_disk->fops->submit_bio)
return __submit_bio_noacct_mq(bio);
return __submit_bio_noacct(bio);
}
EXPORT_SYMBOL(submit_bio_noacct);
/**
* submit_bio - submit a bio to the block device layer for I/O
* @bio: The &struct bio which describes the I/O
*
* submit_bio() is used to submit I/O requests to block devices. It is passed a
* fully set up &struct bio that describes the I/O that needs to be done. The
* bio will be send to the device described by the bi_disk and bi_partno fields.
*
* The success/failure status of the request, along with notification of
* completion, is delivered asynchronously through the ->bi_end_io() callback
* in @bio. The bio must NOT be touched by thecaller until ->bi_end_io() has
* been called.
*/
blk_qc_t submit_bio(struct bio *bio)
{
if (blkcg_punt_bio_submit(bio))
return BLK_QC_T_NONE;
/*
* If it's a regular read/write or a barrier with data attached,
* go through the normal accounting stuff before submission.
*/
if (bio_has_data(bio)) {
unsigned int count;
if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
else
count = bio_sectors(bio);
if (op_is_write(bio_op(bio))) {
count_vm_events(PGPGOUT, count);
} else {
task_io_account_read(bio->bi_iter.bi_size);
count_vm_events(PGPGIN, count);
}
if (unlikely(block_dump)) {
char b[BDEVNAME_SIZE];
printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
current->comm, task_pid_nr(current),
op_is_write(bio_op(bio)) ? "WRITE" : "READ",
(unsigned long long)bio->bi_iter.bi_sector,
bio_devname(bio, b), count);
}
}
/*
* If we're reading data that is part of the userspace workingset, count
* submission time as memory stall. When the device is congested, or
* the submitting cgroup IO-throttled, submission can be a significant
* part of overall IO time.
*/
if (unlikely(bio_op(bio) == REQ_OP_READ &&
bio_flagged(bio, BIO_WORKINGSET))) {
unsigned long pflags;
blk_qc_t ret;
psi_memstall_enter(&pflags);
ret = submit_bio_noacct(bio);
psi_memstall_leave(&pflags);
return ret;
}
return submit_bio_noacct(bio);
}
EXPORT_SYMBOL(submit_bio);
/**
* blk_cloned_rq_check_limits - Helper function to check a cloned request
* for the new queue limits
* @q: the queue
* @rq: the request being checked
*
* Description:
* @rq may have been made based on weaker limitations of upper-level queues
* in request stacking drivers, and it may violate the limitation of @q.
* Since the block layer and the underlying device driver trust @rq
* after it is inserted to @q, it should be checked against @q before
* the insertion using this generic function.
*
* Request stacking drivers like request-based dm may change the queue
* limits when retrying requests on other queues. Those requests need
* to be checked against the new queue limits again during dispatch.
*/
static blk_status_t blk_cloned_rq_check_limits(struct request_queue *q,
struct request *rq)
{
unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
if (blk_rq_sectors(rq) > max_sectors) {
/*
* SCSI device does not have a good way to return if
* Write Same/Zero is actually supported. If a device rejects
* a non-read/write command (discard, write same,etc.) the
* low-level device driver will set the relevant queue limit to
* 0 to prevent blk-lib from issuing more of the offending
* operations. Commands queued prior to the queue limit being
* reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
* errors being propagated to upper layers.
*/
if (max_sectors == 0)
return BLK_STS_NOTSUPP;
printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
__func__, blk_rq_sectors(rq), max_sectors);
return BLK_STS_IOERR;
}
/*
* queue's settings related to segment counting like q->bounce_pfn
* may differ from that of other stacking queues.
* Recalculate it to check the request correctly on this queue's
* limitation.
*/
rq->nr_phys_segments = blk_recalc_rq_segments(rq);
if (rq->nr_phys_segments > queue_max_segments(q)) {
printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
__func__, rq->nr_phys_segments, queue_max_segments(q));
return BLK_STS_IOERR;
}
return BLK_STS_OK;
}
/**
* blk_insert_cloned_request - Helper for stacking drivers to submit a request
* @q: the queue to submit the request
* @rq: the request being queued
*/
blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
{
blk_status_t ret;
ret = blk_cloned_rq_check_limits(q, rq);
if (ret != BLK_STS_OK)
return ret;
if (rq->rq_disk &&
should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
return BLK_STS_IOERR;
if (blk_crypto_insert_cloned_request(rq))
return BLK_STS_IOERR;
if (blk_queue_io_stat(q))
blk_account_io_start(rq);
/*
* Since we have a scheduler attached on the top device,
* bypass a potential scheduler on the bottom device for
* insert.
*/
return blk_mq_request_issue_directly(rq, true);
}
EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
/**
* blk_rq_err_bytes - determine number of bytes till the next failure boundary
* @rq: request to examine
*
* Description:
* A request could be merge of IOs which require different failure
* handling. This function determines the number of bytes which
* can be failed from the beginning of the request without
* crossing into area which need to be retried further.
*
* Return:
* The number of bytes to fail.
*/
unsigned int blk_rq_err_bytes(const struct request *rq)
{
unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
unsigned int bytes = 0;
struct bio *bio;
if (!(rq->rq_flags & RQF_MIXED_MERGE))
return blk_rq_bytes(rq);
/*
* Currently the only 'mixing' which can happen is between
* different fastfail types. We can safely fail portions
* which have all the failfast bits that the first one has -
* the ones which are at least as eager to fail as the first
* one.
*/
for (bio = rq->bio; bio; bio = bio->bi_next) {
if ((bio->bi_opf & ff) != ff)
break;
bytes += bio->bi_iter.bi_size;
}
/* this could lead to infinite loop */
BUG_ON(blk_rq_bytes(rq) && !bytes);
return bytes;
}
EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
static void update_io_ticks(struct hd_struct *part, unsigned long now, bool end)
{
unsigned long stamp;
again:
stamp = READ_ONCE(part->stamp);
if (unlikely(stamp != now)) {
if (likely(cmpxchg(&part->stamp, stamp, now) == stamp))
__part_stat_add(part, io_ticks, end ? now - stamp : 1);
}
if (part->partno) {
part = &part_to_disk(part)->part0;
goto again;
}
}
static void blk_account_io_completion(struct request *req, unsigned int bytes)
{
if (req->part && blk_do_io_stat(req)) {
const int sgrp = op_stat_group(req_op(req));
struct hd_struct *part;
part_stat_lock();
part = req->part;
part_stat_add(part, sectors[sgrp], bytes >> 9);
part_stat_unlock();
}
}
void blk_account_io_done(struct request *req, u64 now)
{
/*
* Account IO completion. flush_rq isn't accounted as a
* normal IO on queueing nor completion. Accounting the
* containing request is enough.
*/
if (req->part && blk_do_io_stat(req) &&
!(req->rq_flags & RQF_FLUSH_SEQ)) {
const int sgrp = op_stat_group(req_op(req));
struct hd_struct *part;
part_stat_lock();
part = req->part;
update_io_ticks(part, jiffies, true);
part_stat_inc(part, ios[sgrp]);
part_stat_add(part, nsecs[sgrp], now - req->start_time_ns);
part_stat_unlock();
hd_struct_put(part);
}
}
void blk_account_io_start(struct request *rq)
{
if (!blk_do_io_stat(rq))
return;
rq->part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
part_stat_lock();
update_io_ticks(rq->part, jiffies, false);
part_stat_unlock();
}
static unsigned long __part_start_io_acct(struct hd_struct *part,
unsigned int sectors, unsigned int op)
{
const int sgrp = op_stat_group(op);
unsigned long now = READ_ONCE(jiffies);
part_stat_lock();
update_io_ticks(part, now, false);
part_stat_inc(part, ios[sgrp]);
part_stat_add(part, sectors[sgrp], sectors);
part_stat_local_inc(part, in_flight[op_is_write(op)]);
part_stat_unlock();
return now;
}
unsigned long part_start_io_acct(struct gendisk *disk, struct hd_struct **part,
struct bio *bio)
{
*part = disk_map_sector_rcu(disk, bio->bi_iter.bi_sector);
return __part_start_io_acct(*part, bio_sectors(bio), bio_op(bio));
}
EXPORT_SYMBOL_GPL(part_start_io_acct);
unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors,
unsigned int op)
{
return __part_start_io_acct(&disk->part0, sectors, op);
}
EXPORT_SYMBOL(disk_start_io_acct);
static void __part_end_io_acct(struct hd_struct *part, unsigned int op,
unsigned long start_time)
{
const int sgrp = op_stat_group(op);
unsigned long now = READ_ONCE(jiffies);
unsigned long duration = now - start_time;
part_stat_lock();
update_io_ticks(part, now, true);
part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
part_stat_local_dec(part, in_flight[op_is_write(op)]);
part_stat_unlock();
}
void part_end_io_acct(struct hd_struct *part, struct bio *bio,
unsigned long start_time)
{
__part_end_io_acct(part, bio_op(bio), start_time);
hd_struct_put(part);
}
EXPORT_SYMBOL_GPL(part_end_io_acct);
void disk_end_io_acct(struct gendisk *disk, unsigned int op,
unsigned long start_time)
{
__part_end_io_acct(&disk->part0, op, start_time);
}
EXPORT_SYMBOL(disk_end_io_acct);
/*
* Steal bios from a request and add them to a bio list.
* The request must not have been partially completed before.
*/
void blk_steal_bios(struct bio_list *list, struct request *rq)
{
if (rq->bio) {
if (list->tail)
list->tail->bi_next = rq->bio;
else
list->head = rq->bio;
list->tail = rq->biotail;
rq->bio = NULL;
rq->biotail = NULL;
}
rq->__data_len = 0;
}
EXPORT_SYMBOL_GPL(blk_steal_bios);
/**
* blk_update_request - Special helper function for request stacking drivers
* @req: the request being processed
* @error: block status code
* @nr_bytes: number of bytes to complete @req
*
* Description:
* Ends I/O on a number of bytes attached to @req, but doesn't complete
* the request structure even if @req doesn't have leftover.
* If @req has leftover, sets it up for the next range of segments.
*
* This special helper function is only for request stacking drivers
* (e.g. request-based dm) so that they can handle partial completion.
* Actual device drivers should use blk_mq_end_request instead.
*
* Passing the result of blk_rq_bytes() as @nr_bytes guarantees
* %false return from this function.
*
* Note:
* The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
* blk_rq_bytes() and in blk_update_request().
*
* Return:
* %false - this request doesn't have any more data
* %true - this request has more data
**/
bool blk_update_request(struct request *req, blk_status_t error,
unsigned int nr_bytes)
{
int total_bytes;
trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
if (!req->bio)
return false;
#ifdef CONFIG_BLK_DEV_INTEGRITY
if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
error == BLK_STS_OK)
req->q->integrity.profile->complete_fn(req, nr_bytes);
#endif
if (unlikely(error && !blk_rq_is_passthrough(req) &&
!(req->rq_flags & RQF_QUIET)))
print_req_error(req, error, __func__);
blk_account_io_completion(req, nr_bytes);
total_bytes = 0;
while (req->bio) {
struct bio *bio = req->bio;
unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
if (bio_bytes == bio->bi_iter.bi_size)
req->bio = bio->bi_next;
/* Completion has already been traced */
bio_clear_flag(bio, BIO_TRACE_COMPLETION);
req_bio_endio(req, bio, bio_bytes, error);
total_bytes += bio_bytes;
nr_bytes -= bio_bytes;
if (!nr_bytes)
break;
}
/*
* completely done
*/
if (!req->bio) {
/*
* Reset counters so that the request stacking driver
* can find how many bytes remain in the request
* later.
*/
req->__data_len = 0;
return false;
}
req->__data_len -= total_bytes;
/* update sector only for requests with clear definition of sector */
if (!blk_rq_is_passthrough(req))
req->__sector += total_bytes >> 9;
/* mixed attributes always follow the first bio */
if (req->rq_flags & RQF_MIXED_MERGE) {
req->cmd_flags &= ~REQ_FAILFAST_MASK;
req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
}
if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
/*
* If total number of sectors is less than the first segment
* size, something has gone terribly wrong.
*/
if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
blk_dump_rq_flags(req, "request botched");
req->__data_len = blk_rq_cur_bytes(req);
}
/* recalculate the number of segments */
req->nr_phys_segments = blk_recalc_rq_segments(req);
}
return true;
}
EXPORT_SYMBOL_GPL(blk_update_request);
#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
/**
* rq_flush_dcache_pages - Helper function to flush all pages in a request
* @rq: the request to be flushed
*
* Description:
* Flush all pages in @rq.
*/
void rq_flush_dcache_pages(struct request *rq)
{
struct req_iterator iter;
struct bio_vec bvec;
rq_for_each_segment(bvec, rq, iter)
flush_dcache_page(bvec.bv_page);
}
EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
#endif
/**
* blk_lld_busy - Check if underlying low-level drivers of a device are busy
* @q : the queue of the device being checked
*
* Description:
* Check if underlying low-level drivers of a device are busy.
* If the drivers want to export their busy state, they must set own
* exporting function using blk_queue_lld_busy() first.
*
* Basically, this function is used only by request stacking drivers
* to stop dispatching requests to underlying devices when underlying
* devices are busy. This behavior helps more I/O merging on the queue
* of the request stacking driver and prevents I/O throughput regression
* on burst I/O load.
*
* Return:
* 0 - Not busy (The request stacking driver should dispatch request)
* 1 - Busy (The request stacking driver should stop dispatching request)
*/
int blk_lld_busy(struct request_queue *q)
{
if (queue_is_mq(q) && q->mq_ops->busy)
return q->mq_ops->busy(q);
return 0;
}
EXPORT_SYMBOL_GPL(blk_lld_busy);
/**
* blk_rq_unprep_clone - Helper function to free all bios in a cloned request
* @rq: the clone request to be cleaned up
*
* Description:
* Free all bios in @rq for a cloned request.
*/
void blk_rq_unprep_clone(struct request *rq)
{
struct bio *bio;
while ((bio = rq->bio) != NULL) {
rq->bio = bio->bi_next;
bio_put(bio);
}
}
EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
/**
* blk_rq_prep_clone - Helper function to setup clone request
* @rq: the request to be setup
* @rq_src: original request to be cloned
* @bs: bio_set that bios for clone are allocated from
* @gfp_mask: memory allocation mask for bio
* @bio_ctr: setup function to be called for each clone bio.
* Returns %0 for success, non %0 for failure.
* @data: private data to be passed to @bio_ctr
*
* Description:
* Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
* Also, pages which the original bios are pointing to are not copied
* and the cloned bios just point same pages.
* So cloned bios must be completed before original bios, which means
* the caller must complete @rq before @rq_src.
*/
int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
struct bio_set *bs, gfp_t gfp_mask,
int (*bio_ctr)(struct bio *, struct bio *, void *),
void *data)
{
struct bio *bio, *bio_src;
if (!bs)
bs = &fs_bio_set;
__rq_for_each_bio(bio_src, rq_src) {
bio = bio_clone_fast(bio_src, gfp_mask, bs);
if (!bio)
goto free_and_out;
if (bio_ctr && bio_ctr(bio, bio_src, data))
goto free_and_out;
if (rq->bio) {
rq->biotail->bi_next = bio;
rq->biotail = bio;
} else {
rq->bio = rq->biotail = bio;
}
bio = NULL;
}
/* Copy attributes of the original request to the clone request. */
rq->__sector = blk_rq_pos(rq_src);
rq->__data_len = blk_rq_bytes(rq_src);
if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
rq->special_vec = rq_src->special_vec;
}
rq->nr_phys_segments = rq_src->nr_phys_segments;
rq->ioprio = rq_src->ioprio;
if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
goto free_and_out;
return 0;
free_and_out:
if (bio)
bio_put(bio);
blk_rq_unprep_clone(rq);
return -ENOMEM;
}
EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
int kblockd_schedule_work(struct work_struct *work)
{
return queue_work(kblockd_workqueue, work);
}
EXPORT_SYMBOL(kblockd_schedule_work);
int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
unsigned long delay)
{
return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
}
EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
/**
* blk_start_plug - initialize blk_plug and track it inside the task_struct
* @plug: The &struct blk_plug that needs to be initialized
*
* Description:
* blk_start_plug() indicates to the block layer an intent by the caller
* to submit multiple I/O requests in a batch. The block layer may use
* this hint to defer submitting I/Os from the caller until blk_finish_plug()
* is called. However, the block layer may choose to submit requests
* before a call to blk_finish_plug() if the number of queued I/Os
* exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
* %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if
* the task schedules (see below).
*
* Tracking blk_plug inside the task_struct will help with auto-flushing the
* pending I/O should the task end up blocking between blk_start_plug() and
* blk_finish_plug(). This is important from a performance perspective, but
* also ensures that we don't deadlock. For instance, if the task is blocking
* for a memory allocation, memory reclaim could end up wanting to free a
* page belonging to that request that is currently residing in our private
* plug. By flushing the pending I/O when the process goes to sleep, we avoid
* this kind of deadlock.
*/
void blk_start_plug(struct blk_plug *plug)
{
struct task_struct *tsk = current;
/*
* If this is a nested plug, don't actually assign it.
*/
if (tsk->plug)
return;
INIT_LIST_HEAD(&plug->mq_list);
INIT_LIST_HEAD(&plug->cb_list);
plug->rq_count = 0;
plug->multiple_queues = false;
plug->nowait = false;
/*
* Store ordering should not be needed here, since a potential
* preempt will imply a full memory barrier
*/
tsk->plug = plug;
}
EXPORT_SYMBOL(blk_start_plug);
static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
{
LIST_HEAD(callbacks);
while (!list_empty(&plug->cb_list)) {
list_splice_init(&plug->cb_list, &callbacks);
while (!list_empty(&callbacks)) {
struct blk_plug_cb *cb = list_first_entry(&callbacks,
struct blk_plug_cb,
list);
list_del(&cb->list);
cb->callback(cb, from_schedule);
}
}
}
struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
int size)
{
struct blk_plug *plug = current->plug;
struct blk_plug_cb *cb;
if (!plug)
return NULL;
list_for_each_entry(cb, &plug->cb_list, list)
if (cb->callback == unplug && cb->data == data)
return cb;
/* Not currently on the callback list */
BUG_ON(size < sizeof(*cb));
cb = kzalloc(size, GFP_ATOMIC);
if (cb) {
cb->data = data;
cb->callback = unplug;
list_add(&cb->list, &plug->cb_list);
}
return cb;
}
EXPORT_SYMBOL(blk_check_plugged);
void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
flush_plug_callbacks(plug, from_schedule);
if (!list_empty(&plug->mq_list))
blk_mq_flush_plug_list(plug, from_schedule);
}
/**
* blk_finish_plug - mark the end of a batch of submitted I/O
* @plug: The &struct blk_plug passed to blk_start_plug()
*
* Description:
* Indicate that a batch of I/O submissions is complete. This function
* must be paired with an initial call to blk_start_plug(). The intent
* is to allow the block layer to optimize I/O submission. See the
* documentation for blk_start_plug() for more information.
*/
void blk_finish_plug(struct blk_plug *plug)
{
if (plug != current->plug)
return;
blk_flush_plug_list(plug, false);
current->plug = NULL;
}
EXPORT_SYMBOL(blk_finish_plug);
void blk_io_schedule(void)
{
/* Prevent hang_check timer from firing at us during very long I/O */
unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
if (timeout)
io_schedule_timeout(timeout);
else
io_schedule();
}
EXPORT_SYMBOL_GPL(blk_io_schedule);
int __init blk_dev_init(void)
{
BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
sizeof_field(struct request, cmd_flags));
BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
sizeof_field(struct bio, bi_opf));
/* used for unplugging and affects IO latency/throughput - HIGHPRI */
kblockd_workqueue = alloc_workqueue("kblockd",
WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
if (!kblockd_workqueue)
panic("Failed to create kblockd\n");
blk_requestq_cachep = kmem_cache_create("request_queue",
sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
blk_debugfs_root = debugfs_create_dir("block", NULL);
return 0;
}