Merge branch 'next' into for-linus

Prepare input updates for 5.20 (or 6.0) merge window.
This commit is contained in:
Dmitry Torokhov 2022-08-02 10:06:12 -07:00
commit 8bb5e7f4dc
22173 changed files with 2154691 additions and 616939 deletions

View file

@ -1,6 +1,6 @@
# SPDX-License-Identifier: GPL-2.0
#
# clang-format configuration file. Intended for clang-format >= 4.
# clang-format configuration file. Intended for clang-format >= 11.
#
# For more information, see:
#
@ -13,7 +13,7 @@ AccessModifierOffset: -4
AlignAfterOpenBracket: Align
AlignConsecutiveAssignments: false
AlignConsecutiveDeclarations: false
#AlignEscapedNewlines: Left # Unknown to clang-format-4.0
AlignEscapedNewlines: Left
AlignOperands: true
AlignTrailingComments: false
AllowAllParametersOfDeclarationOnNextLine: false
@ -37,24 +37,24 @@ BraceWrapping:
AfterObjCDeclaration: false
AfterStruct: false
AfterUnion: false
#AfterExternBlock: false # Unknown to clang-format-5.0
AfterExternBlock: false
BeforeCatch: false
BeforeElse: false
IndentBraces: false
#SplitEmptyFunction: true # Unknown to clang-format-4.0
#SplitEmptyRecord: true # Unknown to clang-format-4.0
#SplitEmptyNamespace: true # Unknown to clang-format-4.0
SplitEmptyFunction: true
SplitEmptyRecord: true
SplitEmptyNamespace: true
BreakBeforeBinaryOperators: None
BreakBeforeBraces: Custom
#BreakBeforeInheritanceComma: false # Unknown to clang-format-4.0
BreakBeforeInheritanceComma: false
BreakBeforeTernaryOperators: false
BreakConstructorInitializersBeforeComma: false
#BreakConstructorInitializers: BeforeComma # Unknown to clang-format-4.0
BreakConstructorInitializers: BeforeComma
BreakAfterJavaFieldAnnotations: false
BreakStringLiterals: false
ColumnLimit: 80
CommentPragmas: '^ IWYU pragma:'
#CompactNamespaces: false # Unknown to clang-format-4.0
CompactNamespaces: false
ConstructorInitializerAllOnOneLineOrOnePerLine: false
ConstructorInitializerIndentWidth: 8
ContinuationIndentWidth: 8
@ -62,39 +62,56 @@ Cpp11BracedListStyle: false
DerivePointerAlignment: false
DisableFormat: false
ExperimentalAutoDetectBinPacking: false
#FixNamespaceComments: false # Unknown to clang-format-4.0
FixNamespaceComments: false
# Taken from:
# git grep -h '^#define [^[:space:]]*for_each[^[:space:]]*(' include/ \
# git grep -h '^#define [^[:space:]]*for_each[^[:space:]]*(' include/ tools/ \
# | sed "s,^#define \([^[:space:]]*for_each[^[:space:]]*\)(.*$, - '\1'," \
# | sort | uniq
# | LC_ALL=C sort -u
ForEachMacros:
- '__ata_qc_for_each'
- '__bio_for_each_bvec'
- '__bio_for_each_segment'
- '__evlist__for_each_entry'
- '__evlist__for_each_entry_continue'
- '__evlist__for_each_entry_from'
- '__evlist__for_each_entry_reverse'
- '__evlist__for_each_entry_safe'
- '__for_each_mem_range'
- '__for_each_mem_range_rev'
- '__for_each_thread'
- '__hlist_for_each_rcu'
- '__map__for_each_symbol_by_name'
- '__perf_evlist__for_each_entry'
- '__perf_evlist__for_each_entry_reverse'
- '__perf_evlist__for_each_entry_safe'
- '__rq_for_each_bio'
- '__shost_for_each_device'
- 'apei_estatus_for_each_section'
- 'ata_for_each_dev'
- 'ata_for_each_link'
- '__ata_qc_for_each'
- 'ata_qc_for_each'
- 'ata_qc_for_each_raw'
- 'ata_qc_for_each_with_internal'
- 'ax25_for_each'
- 'ax25_uid_for_each'
- '__bio_for_each_bvec'
- 'bio_for_each_bvec'
- 'bio_for_each_bvec_all'
- 'bio_for_each_folio_all'
- 'bio_for_each_integrity_vec'
- '__bio_for_each_segment'
- 'bio_for_each_segment'
- 'bio_for_each_segment_all'
- 'bio_list_for_each'
- 'bip_for_each_vec'
- 'bitmap_for_each_clear_region'
- 'bitmap_for_each_set_region'
- 'blkg_for_each_descendant_post'
- 'blkg_for_each_descendant_pre'
- 'blk_queue_for_each_rl'
- 'bond_for_each_slave'
- 'bond_for_each_slave_rcu'
- 'bpf__perf_for_each_map'
- 'bpf__perf_for_each_map_named'
- 'bpf_for_each_spilled_reg'
- 'bpf_object__for_each_map'
- 'bpf_object__for_each_program'
- 'bpf_object__for_each_safe'
- 'bpf_perf_object__for_each'
- 'btree_for_each_safe128'
- 'btree_for_each_safe32'
- 'btree_for_each_safe64'
@ -102,6 +119,7 @@ ForEachMacros:
- 'card_for_each_dev'
- 'cgroup_taskset_for_each'
- 'cgroup_taskset_for_each_leader'
- 'cpufreq_for_each_efficient_entry_idx'
- 'cpufreq_for_each_entry'
- 'cpufreq_for_each_entry_idx'
- 'cpufreq_for_each_valid_entry'
@ -109,9 +127,22 @@ ForEachMacros:
- 'css_for_each_child'
- 'css_for_each_descendant_post'
- 'css_for_each_descendant_pre'
- 'damon_for_each_region'
- 'damon_for_each_region_safe'
- 'damon_for_each_scheme'
- 'damon_for_each_scheme_safe'
- 'damon_for_each_target'
- 'damon_for_each_target_safe'
- 'data__for_each_file'
- 'data__for_each_file_new'
- 'data__for_each_file_start'
- 'device_for_each_child_node'
- 'displayid_iter_for_each'
- 'dma_fence_array_for_each'
- 'dma_fence_chain_for_each'
- 'dma_fence_unwrap_for_each'
- 'dma_resv_for_each_fence'
- 'dma_resv_for_each_fence_unlocked'
- 'do_for_each_ftrace_op'
- 'drm_atomic_crtc_for_each_plane'
- 'drm_atomic_crtc_state_for_each_plane'
@ -135,6 +166,25 @@ ForEachMacros:
- 'drm_mm_for_each_node'
- 'drm_mm_for_each_node_in_range'
- 'drm_mm_for_each_node_safe'
- 'dsa_switch_for_each_available_port'
- 'dsa_switch_for_each_cpu_port'
- 'dsa_switch_for_each_port'
- 'dsa_switch_for_each_port_continue_reverse'
- 'dsa_switch_for_each_port_safe'
- 'dsa_switch_for_each_user_port'
- 'dsa_tree_for_each_user_port'
- 'dso__for_each_symbol'
- 'dsos__for_each_with_build_id'
- 'elf_hash_for_each_possible'
- 'elf_section__for_each_rel'
- 'elf_section__for_each_rela'
- 'elf_symtab__for_each_symbol'
- 'evlist__for_each_cpu'
- 'evlist__for_each_entry'
- 'evlist__for_each_entry_continue'
- 'evlist__for_each_entry_from'
- 'evlist__for_each_entry_reverse'
- 'evlist__for_each_entry_safe'
- 'flow_action_for_each'
- 'for_each_acpi_dev_match'
- 'for_each_active_dev_scope'
@ -142,8 +192,11 @@ ForEachMacros:
- 'for_each_active_iommu'
- 'for_each_aggr_pgid'
- 'for_each_available_child_of_node'
- 'for_each_bench'
- 'for_each_bio'
- 'for_each_board_func_rsrc'
- 'for_each_btf_ext_rec'
- 'for_each_btf_ext_sec'
- 'for_each_bvec'
- 'for_each_card_auxs'
- 'for_each_card_auxs_safe'
@ -159,17 +212,22 @@ ForEachMacros:
- 'for_each_child_of_node'
- 'for_each_clear_bit'
- 'for_each_clear_bit_from'
- 'for_each_clear_bitrange'
- 'for_each_clear_bitrange_from'
- 'for_each_cmd'
- 'for_each_cmsghdr'
- 'for_each_collection'
- 'for_each_comp_order'
- 'for_each_compatible_node'
- 'for_each_component_dais'
- 'for_each_component_dais_safe'
- 'for_each_comp_order'
- 'for_each_console'
- 'for_each_cpu'
- 'for_each_cpu_and'
- 'for_each_cpu_not'
- 'for_each_cpu_wrap'
- 'for_each_dapm_widgets'
- 'for_each_dedup_cand'
- 'for_each_dev_addr'
- 'for_each_dev_scope'
- 'for_each_dma_cap_mask'
@ -179,13 +237,14 @@ ForEachMacros:
- 'for_each_dpcm_fe'
- 'for_each_drhd_unit'
- 'for_each_dss_dev'
- 'for_each_dtpm_table'
- 'for_each_efi_memory_desc'
- 'for_each_efi_memory_desc_in_map'
- 'for_each_element'
- 'for_each_element_extid'
- 'for_each_element_id'
- 'for_each_endpoint_of_node'
- 'for_each_event'
- 'for_each_event_tps'
- 'for_each_evictable_lru'
- 'for_each_fib6_node_rt_rcu'
- 'for_each_fib6_walker_rt'
@ -194,30 +253,35 @@ ForEachMacros:
- 'for_each_free_mem_range'
- 'for_each_free_mem_range_reverse'
- 'for_each_func_rsrc'
- 'for_each_group_evsel'
- 'for_each_group_member'
- 'for_each_hstate'
- 'for_each_if'
- 'for_each_inject_fn'
- 'for_each_insn'
- 'for_each_insn_prefix'
- 'for_each_intid'
- 'for_each_iommu'
- 'for_each_ip_tunnel_rcu'
- 'for_each_irq_nr'
- 'for_each_lang'
- 'for_each_link_codecs'
- 'for_each_link_cpus'
- 'for_each_link_platforms'
- 'for_each_lru'
- 'for_each_matching_node'
- 'for_each_matching_node_and_match'
- 'for_each_member'
- 'for_each_memcg_cache_index'
- 'for_each_mem_pfn_range'
- '__for_each_mem_range'
- 'for_each_mem_range'
- '__for_each_mem_range_rev'
- 'for_each_mem_range_rev'
- 'for_each_mem_region'
- 'for_each_member'
- 'for_each_memory'
- 'for_each_migratetype_order'
- 'for_each_msi_entry'
- 'for_each_msi_entry_safe'
- 'for_each_missing_reg'
- 'for_each_net'
- 'for_each_net_continue_reverse'
- 'for_each_net_rcu'
- 'for_each_netdev'
- 'for_each_netdev_continue'
- 'for_each_netdev_continue_rcu'
@ -227,12 +291,13 @@ ForEachMacros:
- 'for_each_netdev_rcu'
- 'for_each_netdev_reverse'
- 'for_each_netdev_safe'
- 'for_each_net_rcu'
- 'for_each_new_connector_in_state'
- 'for_each_new_crtc_in_state'
- 'for_each_new_mst_mgr_in_state'
- 'for_each_new_plane_in_state'
- 'for_each_new_plane_in_state_reverse'
- 'for_each_new_private_obj_in_state'
- 'for_each_new_reg'
- 'for_each_node'
- 'for_each_node_by_name'
- 'for_each_node_by_type'
@ -248,20 +313,20 @@ ForEachMacros:
- 'for_each_old_connector_in_state'
- 'for_each_old_crtc_in_state'
- 'for_each_old_mst_mgr_in_state'
- 'for_each_old_plane_in_state'
- 'for_each_old_private_obj_in_state'
- 'for_each_oldnew_connector_in_state'
- 'for_each_oldnew_crtc_in_state'
- 'for_each_oldnew_mst_mgr_in_state'
- 'for_each_oldnew_plane_in_state'
- 'for_each_oldnew_plane_in_state_reverse'
- 'for_each_oldnew_private_obj_in_state'
- 'for_each_old_plane_in_state'
- 'for_each_old_private_obj_in_state'
- 'for_each_online_cpu'
- 'for_each_online_node'
- 'for_each_online_pgdat'
- 'for_each_path'
- 'for_each_pci_bridge'
- 'for_each_pci_dev'
- 'for_each_pci_msi_entry'
- 'for_each_pcm_streams'
- 'for_each_physmem_range'
- 'for_each_populated_zone'
@ -269,6 +334,7 @@ ForEachMacros:
- 'for_each_present_cpu'
- 'for_each_prime_number'
- 'for_each_prime_number_from'
- 'for_each_probe_cache_entry'
- 'for_each_process'
- 'for_each_process_thread'
- 'for_each_prop_codec_conf'
@ -278,6 +344,8 @@ ForEachMacros:
- 'for_each_prop_dlc_cpus'
- 'for_each_prop_dlc_platforms'
- 'for_each_property_of_node'
- 'for_each_reg'
- 'for_each_reg_filtered'
- 'for_each_registered_fb'
- 'for_each_requested_gpio'
- 'for_each_requested_gpio_in_range'
@ -287,8 +355,12 @@ ForEachMacros:
- 'for_each_rtd_components'
- 'for_each_rtd_cpu_dais'
- 'for_each_rtd_dais'
- 'for_each_script'
- 'for_each_sec'
- 'for_each_set_bit'
- 'for_each_set_bit_from'
- 'for_each_set_bitrange'
- 'for_each_set_bitrange_from'
- 'for_each_set_clump8'
- 'for_each_sg'
- 'for_each_sg_dma_page'
@ -297,18 +369,25 @@ ForEachMacros:
- 'for_each_sgtable_dma_sg'
- 'for_each_sgtable_page'
- 'for_each_sgtable_sg'
- 'for_each_shell_test'
- 'for_each_sibling_event'
- 'for_each_subelement'
- 'for_each_subelement_extid'
- 'for_each_subelement_id'
- '__for_each_thread'
- 'for_each_sublist'
- 'for_each_subsystem'
- 'for_each_supported_activate_fn'
- 'for_each_supported_inject_fn'
- 'for_each_test'
- 'for_each_thread'
- 'for_each_token'
- 'for_each_unicast_dest_pgid'
- 'for_each_vsi'
- 'for_each_wakeup_source'
- 'for_each_zone'
- 'for_each_zone_zonelist'
- 'for_each_zone_zonelist_nodemask'
- 'func_for_each_insn'
- 'fwnode_for_each_available_child_node'
- 'fwnode_for_each_child_node'
- 'fwnode_graph_for_each_endpoint'
@ -322,7 +401,13 @@ ForEachMacros:
- 'hash_for_each_possible_safe'
- 'hash_for_each_rcu'
- 'hash_for_each_safe'
- 'hashmap__for_each_entry'
- 'hashmap__for_each_entry_safe'
- 'hashmap__for_each_key_entry'
- 'hashmap__for_each_key_entry_safe'
- 'hctx_for_each_ctx'
- 'hists__for_each_format'
- 'hists__for_each_sort_list'
- 'hlist_bl_for_each_entry'
- 'hlist_bl_for_each_entry_rcu'
- 'hlist_bl_for_each_entry_safe'
@ -338,7 +423,6 @@ ForEachMacros:
- 'hlist_for_each_entry_rcu_notrace'
- 'hlist_for_each_entry_safe'
- 'hlist_for_each_entry_srcu'
- '__hlist_for_each_rcu'
- 'hlist_for_each_safe'
- 'hlist_nulls_for_each_entry'
- 'hlist_nulls_for_each_entry_from'
@ -346,9 +430,6 @@ ForEachMacros:
- 'hlist_nulls_for_each_entry_safe'
- 'i3c_bus_for_each_i2cdev'
- 'i3c_bus_for_each_i3cdev'
- 'ide_host_for_each_port'
- 'ide_port_for_each_dev'
- 'ide_port_for_each_present_dev'
- 'idr_for_each_entry'
- 'idr_for_each_entry_continue'
- 'idr_for_each_entry_continue_ul'
@ -356,7 +437,12 @@ ForEachMacros:
- 'in_dev_for_each_ifa_rcu'
- 'in_dev_for_each_ifa_rtnl'
- 'inet_bind_bucket_for_each'
- 'inet_lhash2_for_each_icsk'
- 'inet_lhash2_for_each_icsk_continue'
- 'inet_lhash2_for_each_icsk_rcu'
- 'intlist__for_each_entry'
- 'intlist__for_each_entry_safe'
- 'kcore_copy__for_each_phdr'
- 'key_for_each'
- 'key_for_each_safe'
- 'klp_for_each_func'
@ -367,7 +453,9 @@ ForEachMacros:
- 'klp_for_each_object_static'
- 'kunit_suite_for_each_test_case'
- 'kvm_for_each_memslot'
- 'kvm_for_each_memslot_in_gfn_range'
- 'kvm_for_each_vcpu'
- 'libbpf_nla_for_each_attr'
- 'list_for_each'
- 'list_for_each_codec'
- 'list_for_each_codec_safe'
@ -387,6 +475,7 @@ ForEachMacros:
- 'list_for_each_entry_safe_from'
- 'list_for_each_entry_safe_reverse'
- 'list_for_each_entry_srcu'
- 'list_for_each_from'
- 'list_for_each_prev'
- 'list_for_each_prev_safe'
- 'list_for_each_safe'
@ -394,11 +483,18 @@ ForEachMacros:
- 'llist_for_each_entry'
- 'llist_for_each_entry_safe'
- 'llist_for_each_safe'
- 'map__for_each_symbol'
- 'map__for_each_symbol_by_name'
- 'map_for_each_event'
- 'map_for_each_metric'
- 'maps__for_each_entry'
- 'maps__for_each_entry_safe'
- 'mci_for_each_dimm'
- 'media_device_for_each_entity'
- 'media_device_for_each_intf'
- 'media_device_for_each_link'
- 'media_device_for_each_pad'
- 'msi_for_each_desc'
- 'nanddev_io_for_each_page'
- 'netdev_for_each_lower_dev'
- 'netdev_for_each_lower_private'
@ -423,6 +519,20 @@ ForEachMacros:
- 'pcl_for_each_chunk'
- 'pcl_for_each_segment'
- 'pcm_for_each_format'
- 'perf_config_items__for_each_entry'
- 'perf_config_sections__for_each_entry'
- 'perf_config_set__for_each_entry'
- 'perf_cpu_map__for_each_cpu'
- 'perf_evlist__for_each_entry'
- 'perf_evlist__for_each_entry_reverse'
- 'perf_evlist__for_each_entry_safe'
- 'perf_evlist__for_each_evsel'
- 'perf_evlist__for_each_mmap'
- 'perf_hpp_list__for_each_format'
- 'perf_hpp_list__for_each_format_safe'
- 'perf_hpp_list__for_each_sort_list'
- 'perf_hpp_list__for_each_sort_list_safe'
- 'perf_pmu__for_each_hybrid_pmu'
- 'ping_portaddr_for_each_entry'
- 'plist_for_each'
- 'plist_for_each_continue'
@ -442,6 +552,7 @@ ForEachMacros:
- 'rdma_for_each_block'
- 'rdma_for_each_port'
- 'rdma_umem_for_each_dma_block'
- 'resort_rb__for_each_entry'
- 'resource_list_for_each_entry'
- 'resource_list_for_each_entry_safe'
- 'rhl_for_each_entry_rcu'
@ -455,15 +566,18 @@ ForEachMacros:
- 'rht_for_each_from'
- 'rht_for_each_rcu'
- 'rht_for_each_rcu_from'
- '__rq_for_each_bio'
- 'rq_for_each_bvec'
- 'rq_for_each_segment'
- 'rq_list_for_each'
- 'rq_list_for_each_safe'
- 'scsi_for_each_prot_sg'
- 'scsi_for_each_sg'
- 'sctp_for_each_hentry'
- 'sctp_skb_for_each'
- 'sec_for_each_insn'
- 'sec_for_each_insn_continue'
- 'sec_for_each_insn_from'
- 'shdma_for_each_chan'
- '__shost_for_each_device'
- 'shost_for_each_device'
- 'sk_for_each'
- 'sk_for_each_bound'
@ -480,7 +594,13 @@ ForEachMacros:
- 'snd_soc_dapm_widget_for_each_path_safe'
- 'snd_soc_dapm_widget_for_each_sink_path'
- 'snd_soc_dapm_widget_for_each_source_path'
- 'strlist__for_each_entry'
- 'strlist__for_each_entry_safe'
- 'sym_for_each_insn'
- 'sym_for_each_insn_continue_reverse'
- 'symbols__for_each_entry'
- 'tb_property_for_each'
- 'tcf_act_for_each_action'
- 'tcf_exts_for_each_action'
- 'udp_portaddr_for_each_entry'
- 'udp_portaddr_for_each_entry_rcu'
@ -504,15 +624,17 @@ ForEachMacros:
- 'xbc_node_for_each_array_value'
- 'xbc_node_for_each_child'
- 'xbc_node_for_each_key_value'
- 'xbc_node_for_each_subkey'
- 'zorro_for_each_dev'
#IncludeBlocks: Preserve # Unknown to clang-format-5.0
IncludeBlocks: Preserve
IncludeCategories:
- Regex: '.*'
Priority: 1
IncludeIsMainRegex: '(Test)?$'
IndentCaseLabels: false
#IndentPPDirectives: None # Unknown to clang-format-5.0
IndentGotoLabels: false
IndentPPDirectives: None
IndentWidth: 8
IndentWrappedFunctionNames: false
JavaScriptQuotes: Leave
@ -522,13 +644,13 @@ MacroBlockBegin: ''
MacroBlockEnd: ''
MaxEmptyLinesToKeep: 1
NamespaceIndentation: None
#ObjCBinPackProtocolList: Auto # Unknown to clang-format-5.0
ObjCBinPackProtocolList: Auto
ObjCBlockIndentWidth: 8
ObjCSpaceAfterProperty: true
ObjCSpaceBeforeProtocolList: true
# Taken from git's rules
#PenaltyBreakAssignment: 10 # Unknown to clang-format-4.0
PenaltyBreakAssignment: 10
PenaltyBreakBeforeFirstCallParameter: 30
PenaltyBreakComment: 10
PenaltyBreakFirstLessLess: 0
@ -539,14 +661,14 @@ PenaltyReturnTypeOnItsOwnLine: 60
PointerAlignment: Right
ReflowComments: false
SortIncludes: false
#SortUsingDeclarations: false # Unknown to clang-format-4.0
SortUsingDeclarations: false
SpaceAfterCStyleCast: false
SpaceAfterTemplateKeyword: true
SpaceBeforeAssignmentOperators: true
#SpaceBeforeCtorInitializerColon: true # Unknown to clang-format-5.0
#SpaceBeforeInheritanceColon: true # Unknown to clang-format-5.0
SpaceBeforeParens: ControlStatements
#SpaceBeforeRangeBasedForLoopColon: true # Unknown to clang-format-5.0
SpaceBeforeCtorInitializerColon: true
SpaceBeforeInheritanceColon: true
SpaceBeforeParens: ControlStatementsExceptForEachMacros
SpaceBeforeRangeBasedForLoopColon: true
SpaceInEmptyParentheses: false
SpacesBeforeTrailingComments: 1
SpacesInAngles: false

1
.gitignore vendored
View file

@ -45,6 +45,7 @@
*.symversions
*.tab.[ch]
*.tar
*.usyms
*.xz
*.zst
Module.symvers

View file

@ -10,6 +10,8 @@
# Please keep this list dictionary sorted.
#
Aaron Durbin <adurbin@google.com>
Abel Vesa <abelvesa@kernel.org> <abel.vesa@nxp.com>
Abel Vesa <abelvesa@kernel.org> <abelvesa@gmail.com>
Abhinav Kumar <quic_abhinavk@quicinc.com> <abhinavk@codeaurora.org>
Adam Oldham <oldhamca@gmail.com>
Adam Radford <aradford@gmail.com>
@ -45,6 +47,7 @@ Andrey Konovalov <andreyknvl@gmail.com> <andreyknvl@google.com>
Andrey Ryabinin <ryabinin.a.a@gmail.com> <a.ryabinin@samsung.com>
Andrey Ryabinin <ryabinin.a.a@gmail.com> <aryabinin@virtuozzo.com>
Andrzej Hajda <andrzej.hajda@intel.com> <a.hajda@samsung.com>
André Almeida <andrealmeid@igalia.com> <andrealmeid@collabora.com>
Andy Adamson <andros@citi.umich.edu>
Antoine Tenart <atenart@kernel.org> <antoine.tenart@bootlin.com>
Antoine Tenart <atenart@kernel.org> <antoine.tenart@free-electrons.com>
@ -71,6 +74,7 @@ Boris Brezillon <bbrezillon@kernel.org> <boris.brezillon@free-electrons.com>
Brian Avery <b.avery@hp.com>
Brian King <brking@us.ibm.com>
Brian Silverman <bsilver16384@gmail.com> <brian.silverman@bluerivertech.com>
Cai Huoqing <cai.huoqing@linux.dev> <caihuoqing@baidu.com>
Changbin Du <changbin.du@intel.com> <changbin.du@gmail.com>
Changbin Du <changbin.du@intel.com> <changbin.du@intel.com>
Chao Yu <chao@kernel.org> <chao2.yu@samsung.com>
@ -83,6 +87,7 @@ Christian Borntraeger <borntraeger@linux.ibm.com> <borntrae@de.ibm.com>
Christian Brauner <brauner@kernel.org> <christian@brauner.io>
Christian Brauner <brauner@kernel.org> <christian.brauner@canonical.com>
Christian Brauner <brauner@kernel.org> <christian.brauner@ubuntu.com>
Christian Marangi <ansuelsmth@gmail.com>
Christophe Ricard <christophe.ricard@gmail.com>
Christoph Hellwig <hch@lst.de>
Colin Ian King <colin.king@intel.com> <colin.king@canonical.com>
@ -163,6 +168,7 @@ Jan Glauber <jan.glauber@gmail.com> <jang@de.ibm.com>
Jan Glauber <jan.glauber@gmail.com> <jang@linux.vnet.ibm.com>
Jan Glauber <jan.glauber@gmail.com> <jglauber@cavium.com>
Jarkko Sakkinen <jarkko@kernel.org> <jarkko.sakkinen@linux.intel.com>
Jarkko Sakkinen <jarkko@kernel.org> <jarkko@profian.com>
Jason Gunthorpe <jgg@ziepe.ca> <jgg@mellanox.com>
Jason Gunthorpe <jgg@ziepe.ca> <jgg@nvidia.com>
Jason Gunthorpe <jgg@ziepe.ca> <jgunthorpe@obsidianresearch.com>
@ -199,10 +205,13 @@ Jordan Crouse <jordan@cosmicpenguin.net> <jcrouse@codeaurora.org>
<josh@joshtriplett.org> <josht@linux.vnet.ibm.com>
<josh@joshtriplett.org> <josht@us.ibm.com>
<josh@joshtriplett.org> <josht@vnet.ibm.com>
Josh Poimboeuf <jpoimboe@kernel.org> <jpoimboe@redhat.com>
Josh Poimboeuf <jpoimboe@kernel.org> <jpoimboe@us.ibm.com>
Juha Yrjola <at solidboot.com>
Juha Yrjola <juha.yrjola@nokia.com>
Juha Yrjola <juha.yrjola@solidboot.com>
Julien Thierry <julien.thierry.kdev@gmail.com> <julien.thierry@arm.com>
Kalle Valo <kvalo@kernel.org> <kvalo@codeaurora.org>
Kalyan Thota <quic_kalyant@quicinc.com> <kalyan_t@codeaurora.org>
Kay Sievers <kay.sievers@vrfy.org>
Kees Cook <keescook@chromium.org> <kees.cook@canonical.com>
@ -212,6 +221,7 @@ Kees Cook <keescook@chromium.org> <kees@ubuntu.com>
Keith Busch <kbusch@kernel.org> <keith.busch@intel.com>
Keith Busch <kbusch@kernel.org> <keith.busch@linux.intel.com>
Kenneth W Chen <kenneth.w.chen@intel.com>
Kirill Tkhai <kirill.tkhai@openvz.org> <ktkhai@virtuozzo.com>
Konstantin Khlebnikov <koct9i@gmail.com> <khlebnikov@yandex-team.ru>
Konstantin Khlebnikov <koct9i@gmail.com> <k.khlebnikov@samsung.com>
Koushik <raghavendra.koushik@neterion.com>
@ -232,6 +242,7 @@ Linus Lüssing <linus.luessing@c0d3.blue> <linus.luessing@web.de>
<linux-hardening@vger.kernel.org> <kernel-hardening@lists.openwall.com>
Li Yang <leoyang.li@nxp.com> <leoli@freescale.com>
Li Yang <leoyang.li@nxp.com> <leo@zh-kernel.org>
Lorenzo Pieralisi <lpieralisi@kernel.org> <lorenzo.pieralisi@arm.com>
Lukasz Luba <lukasz.luba@arm.com> <l.luba@partner.samsung.com>
Maciej W. Rozycki <macro@mips.com> <macro@imgtec.com>
Maciej W. Rozycki <macro@orcam.me.uk> <macro@linux-mips.org>
@ -247,6 +258,7 @@ Mark Yao <markyao0591@gmail.com> <mark.yao@rock-chips.com>
Martin Kepplinger <martink@posteo.de> <martin.kepplinger@ginzinger.com>
Martin Kepplinger <martink@posteo.de> <martin.kepplinger@puri.sm>
Martin Kepplinger <martink@posteo.de> <martin.kepplinger@theobroma-systems.com>
Martyna Szapar-Mudlaw <martyna.szapar-mudlaw@linux.intel.com> <martyna.szapar-mudlaw@intel.com>
Mathieu Othacehe <m.othacehe@gmail.com>
Matthew Wilcox <willy@infradead.org> <matthew.r.wilcox@intel.com>
Matthew Wilcox <willy@infradead.org> <matthew@wil.cx>
@ -389,6 +401,11 @@ Uwe Kleine-König <ukleinek@strlen.de>
Uwe Kleine-König <ukl@pengutronix.de>
Uwe Kleine-König <Uwe.Kleine-Koenig@digi.com>
Valdis Kletnieks <Valdis.Kletnieks@vt.edu>
Vasily Averin <vasily.averin@linux.dev> <vvs@virtuozzo.com>
Vasily Averin <vasily.averin@linux.dev> <vvs@openvz.org>
Vasily Averin <vasily.averin@linux.dev> <vvs@parallels.com>
Vasily Averin <vasily.averin@linux.dev> <vvs@sw.ru>
Valentin Schneider <vschneid@redhat.com> <valentin.schneider@arm.com>
Vinod Koul <vkoul@kernel.org> <vinod.koul@intel.com>
Vinod Koul <vkoul@kernel.org> <vinod.koul@linux.intel.com>
Vinod Koul <vkoul@kernel.org> <vkoul@infradead.org>

View file

@ -0,0 +1,10 @@
What: /proc/i8k
Date: November 2001
KernelVersion: 2.4.14
Contact: Pali Rohár <pali@kernel.org>
Description: Legacy interface for getting/setting sensor information like
fan speed, temperature, serial number, hotkey status etc
on Dell Laptops.
Since the driver is now using the standard hwmon sysfs interface,
the procfs interface is deprecated.
Users: https://github.com/vitorafsr/i8kutils

View file

@ -0,0 +1,37 @@
What: /sys/devices/system/machinecheck/machinecheckX/tolerant
Contact: Borislav Petkov <bp@suse.de>
Date: Dec, 2021
Description:
Unused and obsolete after the advent of recoverable machine
checks (see last sentence below) and those are present since
2010 (Nehalem).
Original description:
The entries appear for each CPU, but they are truly shared
between all CPUs.
Tolerance level. When a machine check exception occurs for a
non corrected machine check the kernel can take different
actions.
Since machine check exceptions can happen any time it is
sometimes risky for the kernel to kill a process because it
defies normal kernel locking rules. The tolerance level
configures how hard the kernel tries to recover even at some
risk of deadlock. Higher tolerant values trade potentially
better uptime with the risk of a crash or even corruption
(for tolerant >= 3).
== ===========================================================
0 always panic on uncorrected errors, log corrected errors
1 panic or SIGBUS on uncorrected errors, log corrected errors
2 SIGBUS or log uncorrected errors, log corrected errors
3 never panic or SIGBUS, log all errors (for testing only)
== ===========================================================
Default: 1
Note this only makes a difference if the CPU allows recovery
from a machine check exception. Current x86 CPUs generally
do not.

View file

@ -155,6 +155,55 @@ Description:
last zone of the device which may be smaller.
What: /sys/block/<disk>/queue/crypto/
Date: February 2022
Contact: linux-block@vger.kernel.org
Description:
The presence of this subdirectory of /sys/block/<disk>/queue/
indicates that the device supports inline encryption. This
subdirectory contains files which describe the inline encryption
capabilities of the device. For more information about inline
encryption, refer to Documentation/block/inline-encryption.rst.
What: /sys/block/<disk>/queue/crypto/max_dun_bits
Date: February 2022
Contact: linux-block@vger.kernel.org
Description:
[RO] This file shows the maximum length, in bits, of data unit
numbers accepted by the device in inline encryption requests.
What: /sys/block/<disk>/queue/crypto/modes/<mode>
Date: February 2022
Contact: linux-block@vger.kernel.org
Description:
[RO] For each crypto mode (i.e., encryption/decryption
algorithm) the device supports with inline encryption, a file
will exist at this location. It will contain a hexadecimal
number that is a bitmask of the supported data unit sizes, in
bytes, for that crypto mode.
Currently, the crypto modes that may be supported are:
* AES-256-XTS
* AES-128-CBC-ESSIV
* Adiantum
For example, if a device supports AES-256-XTS inline encryption
with data unit sizes of 512 and 4096 bytes, the file
/sys/block/<disk>/queue/crypto/modes/AES-256-XTS will exist and
will contain "0x1200".
What: /sys/block/<disk>/queue/crypto/num_keyslots
Date: February 2022
Contact: linux-block@vger.kernel.org
Description:
[RO] This file shows the number of keyslots the device has for
use with inline encryption.
What: /sys/block/<disk>/queue/dax
Date: June 2016
Contact: linux-block@vger.kernel.org

View file

@ -19,3 +19,13 @@ Description: The file holds the OEM PK Hash value of the endpoint device
read without having the device power on at least once, the file
will read all 0's.
Users: Any userspace application or clients interested in device info.
What: /sys/bus/mhi/devices/.../soc_reset
Date: April 2022
KernelVersion: 5.19
Contact: mhi@lists.linux.dev
Description: Initiates a SoC reset on the MHI controller. A SoC reset is
a reset of last resort, and will require a complete re-init.
This can be useful as a method of recovery if the device is
non-responsive, or as a means of loading new firmware as a
system administration task.

View file

@ -86,6 +86,10 @@ What: /sys/devices/system/cpu/cpuX/topology/die_cpus
Description: internal kernel map of CPUs within the same die.
Values: hexadecimal bitmask.
What: /sys/devices/system/cpu/cpuX/topology/ppin
Description: per-socket protected processor inventory number
Values: hexadecimal.
What: /sys/devices/system/cpu/cpuX/topology/die_cpus_list
Description: human-readable list of CPUs within the same die.
The format is like 0-3, 8-11, 14,17.

View file

@ -113,3 +113,144 @@ Description:
# echo 0 > /sys/devices/platform/firmware\:zynqmp-firmware/health_status
Users: Xilinx
What: /sys/devices/platform/firmware\:zynqmp-firmware/feature_config_id
Date: Feb 2022
KernelVersion: 5.18
Contact: "Ronak Jain" <ronak.jain@xilinx.com>
Description:
This sysfs interface allows user to configure features at
runtime. The user can enable or disable features running at
firmware as well as the user can configure the parameters of
the features at runtime. The supported features are over
temperature and external watchdog. Here, the external watchdog
is completely different than the /dev/watchdog as the external
watchdog is running on the firmware and it is used to monitor
the health of firmware not APU(Linux). Also, the external
watchdog is interfaced outside of the zynqmp soc.
The supported config ids are for the feature configuration is,
1. PM_FEATURE_OVERTEMP_STATUS = 1, the user can enable or
disable the over temperature feature.
2. PM_FEATURE_OVERTEMP_VALUE = 2, the user can configure the
over temperature limit in Degree Celsius.
3. PM_FEATURE_EXTWDT_STATUS = 3, the user can enable or disable
the external watchdog feature.
4. PM_FEATURE_EXTWDT_VALUE = 4, the user can configure the
external watchdog feature.
Usage:
Select over temperature config ID to enable/disable feature
# echo 1 > /sys/devices/platform/firmware\:zynqmp-firmware/feature_config_id
Check over temperature config ID is selected or not
# cat /sys/devices/platform/firmware\:zynqmp-firmware/feature_config_id
The expected result is 1.
Select over temperature config ID to configure OT limit
# echo 2 > /sys/devices/platform/firmware\:zynqmp-firmware/feature_config_id
Check over temperature config ID is selected or not
# cat /sys/devices/platform/firmware\:zynqmp-firmware/feature_config_id
The expected result is 2.
Select external watchdog config ID to enable/disable feature
# echo 3 > /sys/devices/platform/firmware\:zynqmp-firmware/feature_config_id
Check external watchdog config ID is selected or not
# cat /sys/devices/platform/firmware\:zynqmp-firmware/feature_config_id
The expected result is 3.
Select external watchdog config ID to configure time interval
# echo 4 > /sys/devices/platform/firmware\:zynqmp-firmware/feature_config_id
Check external watchdog config ID is selected or not
# cat /sys/devices/platform/firmware\:zynqmp-firmware/feature_config_id
The expected result is 4.
Users: Xilinx
What: /sys/devices/platform/firmware\:zynqmp-firmware/feature_config_value
Date: Feb 2022
KernelVersion: 5.18
Contact: "Ronak Jain" <ronak.jain@xilinx.com>
Description:
This sysfs interface allows to configure features at runtime.
The user can enable or disable features running at firmware.
Also, the user can configure the parameters of the features
at runtime. The supported features are over temperature and
external watchdog. Here, the external watchdog is completely
different than the /dev/watchdog as the external watchdog is
running on the firmware and it is used to monitor the health
of firmware not APU(Linux). Also, the external watchdog is
interfaced outside of the zynqmp soc.
By default the features are disabled in the firmware. The user
can enable features by querying appropriate config id of the
features.
The default limit for the over temperature is 90 Degree Celsius.
The default timer interval for the external watchdog is 570ms.
The supported config ids are for the feature configuration is,
1. PM_FEATURE_OVERTEMP_STATUS = 1, the user can enable or
disable the over temperature feature.
2. PM_FEATURE_OVERTEMP_VALUE = 2, the user can configure the
over temperature limit in Degree Celsius.
3. PM_FEATURE_EXTWDT_STATUS = 3, the user can enable or disable
the external watchdog feature.
4. PM_FEATURE_EXTWDT_VALUE = 4, the user can configure the
external watchdog feature.
Usage:
Enable over temperature feature
# echo 1 > /sys/devices/platform/firmware\:zynqmp-firmware/feature_config_id
# echo 1 > /sys/devices/platform/firmware\:zynqmp-firmware/feature_config_value
Check whether the over temperature feature is enabled or not
# cat /sys/devices/platform/firmware\:zynqmp-firmware/feature_config_value
The expected result is 1.
Disable over temperature feature
# echo 1 > /sys/devices/platform/firmware\:zynqmp-firmware/feature_config_id
# echo 0 > /sys/devices/platform/firmware\:zynqmp-firmware/feature_config_value
Check whether the over temperature feature is disabled or not
# cat /sys/devices/platform/firmware\:zynqmp-firmware/feature_config_value
The expected result is 0.
Configure over temperature limit to 50 Degree Celsius
# echo 2 > /sys/devices/platform/firmware\:zynqmp-firmware/feature_config_id
# echo 50 > /sys/devices/platform/firmware\:zynqmp-firmware/feature_config_value
Check whether the over temperature limit is configured or not
# cat /sys/devices/platform/firmware\:zynqmp-firmware/feature_config_value
The expected result is 50.
Enable external watchdog feature
# echo 3 > /sys/devices/platform/firmware\:zynqmp-firmware/feature_config_id
# echo 1 > /sys/devices/platform/firmware\:zynqmp-firmware/feature_config_value
Check whether the external watchdog feature is enabled or not
# cat /sys/devices/platform/firmware\:zynqmp-firmware/feature_config_value
The expected result is 1.
Disable external watchdog feature
# echo 3 > /sys/devices/platform/firmware\:zynqmp-firmware/feature_config_id
# echo 0 > /sys/devices/platform/firmware\:zynqmp-firmware/feature_config_value
Check whether the external watchdog feature is disabled or not
# cat /sys/devices/platform/firmware\:zynqmp-firmware/feature_config_value
The expected result is 0.
Configure external watchdog timer interval to 500ms
# echo 4 > /sys/devices/platform/firmware\:zynqmp-firmware/feature_config_id
# echo 500 > /sys/devices/platform/firmware\:zynqmp-firmware/feature_config_value
Check whether the external watchdog timer interval is configured or not
# cat /sys/devices/platform/firmware\:zynqmp-firmware/feature_config_value
The expected result is 500.
Users: Xilinx

View file

@ -467,3 +467,39 @@ Description: These files provide the maximum powered required for line card
feeding and line card configuration Id.
The files are read only.
What: /sys/devices/platform/mlxplat/mlxreg-io/hwmon/hwmon*/phy_reset
Date: May 2022
KernelVersion: 5.19
Contact: Vadim Pasternak <vadimpmellanox.com>
Description: This file allows to reset PHY 88E1548 when attribute is set 0
due to some abnormal PHY behavior.
Expected behavior:
When phy_reset is written 1, all PHY 88E1548 are released
from the reset state, when 0 - are hold in reset state.
The files are read/write.
What: /sys/devices/platform/mlxplat/mlxreg-io/hwmon/hwmon*/mac_reset
Date: May 2022
KernelVersion: 5.19
Contact: Vadim Pasternak <vadimpmellanox.com>
Description: This file allows to reset ASIC MT52132 when attribute is set 0
due to some abnormal ASIC behavior.
Expected behavior:
When mac_reset is written 1, the ASIC MT52132 is released
from the reset state, when 0 - is hold in reset state.
The files are read/write.
What: /sys/devices/platform/mlxplat/mlxreg-io/hwmon/hwmon*/qsfp_pwr_good
Date: May 2022
KernelVersion: 5.19
Contact: Vadim Pasternak <vadimpmellanox.com>
Description: This file shows QSFP ports power status. The value is set to 0
when one of any QSFP ports is plugged. The value is set to 1 when
there are no any QSFP ports are plugged.
The possible values are:
0 - Power good, 1 - Not power good.
The files are read only.

View file

@ -6,7 +6,7 @@ Description:
===================== =======================================
c_chmask capture channel mask
c_srate capture sampling rate
c_srate list of capture sampling rates (comma-separated)
c_ssize capture sample size (bytes)
c_mute_present capture mute control enable
c_volume_present capture volume control enable
@ -17,7 +17,7 @@ Description:
c_volume_res capture volume control resolution
(in 1/256 dB)
p_chmask playback channel mask
p_srate playback sampling rate
p_srate list of playback sampling rates (comma-separated)
p_ssize playback sample size (bytes)
p_mute_present playback mute control enable
p_volume_present playback volume control enable
@ -29,4 +29,5 @@ Description:
(in 1/256 dB)
req_number the number of pre-allocated requests
for both capture and playback
function_name name of the interface
===================== =======================================

View file

@ -6,8 +6,9 @@ Description:
===================== =======================================
c_chmask capture channel mask
c_srate capture sampling rate
c_srate list of capture sampling rates (comma-separated)
c_ssize capture sample size (bytes)
c_hs_bint capture bInterval for HS/SS (1-4: fixed, 0: auto)
c_sync capture synchronization type
(async/adaptive)
c_mute_present capture mute control enable
@ -20,8 +21,9 @@ Description:
(in 1/256 dB)
fb_max maximum extra bandwidth in async mode
p_chmask playback channel mask
p_srate playback sampling rate
p_srate list of playback sampling rates (comma-separated)
p_ssize playback sample size (bytes)
p_hs_bint playback bInterval for HS/SS (1-4: fixed, 0: auto)
p_mute_present playback mute control enable
p_volume_present playback volume control enable
p_volume_min playback volume control min value
@ -32,4 +34,5 @@ Description:
(in 1/256 dB)
req_number the number of pre-allocated requests
for both capture and playback
function_name name of the interface
===================== =======================================

View file

@ -7,6 +7,7 @@ Description: UVC function directory
streaming_maxburst 0..15 (ss only)
streaming_maxpacket 1..1023 (fs), 1..3072 (hs/ss)
streaming_interval 1..16
function_name string [32]
=================== =============================
What: /config/usb-gadget/gadget/functions/uvc.name/control

View file

@ -12,24 +12,7 @@ What: /sys/kernel/debug/habanalabs/hl<n>/clk_gate
Date: May 2020
KernelVersion: 5.8
Contact: ogabbay@kernel.org
Description: Allow the root user to disable/enable in runtime the clock
gating mechanism in Gaudi. Due to how Gaudi is built, the
clock gating needs to be disabled in order to access the
registers of the TPC and MME engines. This is sometimes needed
during debug by the user and hence the user needs this option.
The user can supply a bitmask value, each bit represents
a different engine to disable/enable its clock gating feature.
The bitmask is composed of 20 bits:
======= ============
0 - 7 DMA channels
8 - 11 MME engines
12 - 19 TPC engines
======= ============
The bit's location of a specific engine can be determined
using (1 << GAUDI_ENGINE_ID_*). GAUDI_ENGINE_ID_* values
are defined in uapi habanalabs.h file in enum gaudi_engine_id
Description: This setting is now deprecated as clock gating is handled solely by the f/w
What: /sys/kernel/debug/habanalabs/hl<n>/command_buffers
Date: Jan 2019
@ -187,6 +170,20 @@ KernelVersion: 5.1
Contact: ogabbay@kernel.org
Description: Sets the state of the third S/W led on the device
What: /sys/kernel/debug/habanalabs/hl<n>/memory_scrub
Date: May 2022
KernelVersion: 5.19
Contact: dhirschfeld@habana.ai
Description: Allows the root user to scrub the dram memory. The scrubbing
value can be set using the debugfs file memory_scrub_val.
What: /sys/kernel/debug/habanalabs/hl<n>/memory_scrub_val
Date: May 2022
KernelVersion: 5.19
Contact: dhirschfeld@habana.ai
Description: The value to which the dram will be set to when the user
scrubs the dram using 'memory_scrub' debugfs file
What: /sys/kernel/debug/habanalabs/hl<n>/mmu
Date: Jan 2019
KernelVersion: 5.1
@ -207,6 +204,30 @@ Description: Check and display page fault or access violation mmu errors for
echo "0x200" > /sys/kernel/debug/habanalabs/hl0/mmu_error
cat /sys/kernel/debug/habanalabs/hl0/mmu_error
What: /sys/kernel/debug/habanalabs/hl<n>/monitor_dump
Date: Mar 2022
KernelVersion: 5.19
Contact: osharabi@habana.ai
Description: Allows the root user to dump monitors status from the device's
protected config space.
This property is a binary blob that contains the result of the
monitors registers dump.
This custom interface is needed (instead of using the generic
Linux user-space PCI mapping) because this space is protected
and cannot be accessed using PCI read.
This interface doesn't support concurrency in the same device.
Only supported on GAUDI.
What: /sys/kernel/debug/habanalabs/hl<n>/monitor_dump_trig
Date: Mar 2022
KernelVersion: 5.19
Contact: osharabi@habana.ai
Description: Triggers dump of monitor data. The value to trigger the operation
must be 1. Triggering the monitor dump operation initiates dump of
current registers values of all monitors.
When the write is finished, the user can read the "monitor_dump"
blob
What: /sys/kernel/debug/habanalabs/hl<n>/set_power_state
Date: Jan 2019
KernelVersion: 5.1
@ -239,6 +260,7 @@ KernelVersion: 5.6
Contact: ogabbay@kernel.org
Description: Sets the stop-on_error option for the device engines. Value of
"0" is for disable, otherwise enable.
Relevant only for GOYA and GAUDI.
What: /sys/kernel/debug/habanalabs/hl<n>/timeout_locked
Date: Sep 2021

View file

@ -1,140 +1,164 @@
What: /sys/kernel/debug/hisi_hpre/<bdf>/cluster[0-3]/regs
Date: Sep 2019
Contact: linux-crypto@vger.kernel.org
Description: Dump debug registers from the HPRE cluster.
What: /sys/kernel/debug/hisi_hpre/<bdf>/cluster[0-3]/regs
Date: Sep 2019
Contact: linux-crypto@vger.kernel.org
Description: Dump debug registers from the HPRE cluster.
Only available for PF.
What: /sys/kernel/debug/hisi_hpre/<bdf>/cluster[0-3]/cluster_ctrl
Date: Sep 2019
Contact: linux-crypto@vger.kernel.org
Description: Write the HPRE core selection in the cluster into this file,
What: /sys/kernel/debug/hisi_hpre/<bdf>/cluster[0-3]/cluster_ctrl
Date: Sep 2019
Contact: linux-crypto@vger.kernel.org
Description: Write the HPRE core selection in the cluster into this file,
and then we can read the debug information of the core.
Only available for PF.
What: /sys/kernel/debug/hisi_hpre/<bdf>/rdclr_en
Date: Sep 2019
Contact: linux-crypto@vger.kernel.org
Description: HPRE cores debug registers read clear control. 1 means enable
What: /sys/kernel/debug/hisi_hpre/<bdf>/rdclr_en
Date: Sep 2019
Contact: linux-crypto@vger.kernel.org
Description: HPRE cores debug registers read clear control. 1 means enable
register read clear, otherwise 0. Writing to this file has no
functional effect, only enable or disable counters clear after
reading of these registers.
Only available for PF.
What: /sys/kernel/debug/hisi_hpre/<bdf>/current_qm
Date: Sep 2019
Contact: linux-crypto@vger.kernel.org
Description: One HPRE controller has one PF and multiple VFs, each function
What: /sys/kernel/debug/hisi_hpre/<bdf>/current_qm
Date: Sep 2019
Contact: linux-crypto@vger.kernel.org
Description: One HPRE controller has one PF and multiple VFs, each function
has a QM. Select the QM which below qm refers to.
Only available for PF.
What: /sys/kernel/debug/hisi_hpre/<bdf>/regs
Date: Sep 2019
Contact: linux-crypto@vger.kernel.org
Description: Dump debug registers from the HPRE.
What: /sys/kernel/debug/hisi_hpre/<bdf>/alg_qos
Date: Jun 2021
Contact: linux-crypto@vger.kernel.org
Description: The <bdf> is related the function for PF and VF.
HPRE driver supports to configure each function's QoS, the driver
supports to write <bdf> value to alg_qos in the host. Such as
"echo <bdf> value > alg_qos". The qos value is 1~1000, means
1/1000~1000/1000 of total QoS. The driver reading alg_qos to
get related QoS in the host and VM, Such as "cat alg_qos".
What: /sys/kernel/debug/hisi_hpre/<bdf>/regs
Date: Sep 2019
Contact: linux-crypto@vger.kernel.org
Description: Dump debug registers from the HPRE.
Only available for PF.
What: /sys/kernel/debug/hisi_hpre/<bdf>/qm/regs
Date: Sep 2019
Contact: linux-crypto@vger.kernel.org
Description: Dump debug registers from the QM.
What: /sys/kernel/debug/hisi_hpre/<bdf>/qm/regs
Date: Sep 2019
Contact: linux-crypto@vger.kernel.org
Description: Dump debug registers from the QM.
Available for PF and VF in host. VF in guest currently only
has one debug register.
What: /sys/kernel/debug/hisi_hpre/<bdf>/qm/current_q
Date: Sep 2019
Contact: linux-crypto@vger.kernel.org
Description: One QM may contain multiple queues. Select specific queue to
What: /sys/kernel/debug/hisi_hpre/<bdf>/qm/current_q
Date: Sep 2019
Contact: linux-crypto@vger.kernel.org
Description: One QM may contain multiple queues. Select specific queue to
show its debug registers in above regs.
Only available for PF.
What: /sys/kernel/debug/hisi_hpre/<bdf>/qm/clear_enable
Date: Sep 2019
Contact: linux-crypto@vger.kernel.org
Description: QM debug registers(regs) read clear control. 1 means enable
What: /sys/kernel/debug/hisi_hpre/<bdf>/qm/clear_enable
Date: Sep 2019
Contact: linux-crypto@vger.kernel.org
Description: QM debug registers(regs) read clear control. 1 means enable
register read clear, otherwise 0.
Writing to this file has no functional effect, only enable or
disable counters clear after reading of these registers.
Only available for PF.
What: /sys/kernel/debug/hisi_hpre/<bdf>/qm/err_irq
Date: Apr 2020
Contact: linux-crypto@vger.kernel.org
Description: Dump the number of invalid interrupts for
What: /sys/kernel/debug/hisi_hpre/<bdf>/qm/err_irq
Date: Apr 2020
Contact: linux-crypto@vger.kernel.org
Description: Dump the number of invalid interrupts for
QM task completion.
Available for both PF and VF, and take no other effect on HPRE.
What: /sys/kernel/debug/hisi_hpre/<bdf>/qm/aeq_irq
Date: Apr 2020
Contact: linux-crypto@vger.kernel.org
Description: Dump the number of QM async event queue interrupts.
What: /sys/kernel/debug/hisi_hpre/<bdf>/qm/aeq_irq
Date: Apr 2020
Contact: linux-crypto@vger.kernel.org
Description: Dump the number of QM async event queue interrupts.
Available for both PF and VF, and take no other effect on HPRE.
What: /sys/kernel/debug/hisi_hpre/<bdf>/qm/abnormal_irq
Date: Apr 2020
Contact: linux-crypto@vger.kernel.org
Description: Dump the number of interrupts for QM abnormal event.
What: /sys/kernel/debug/hisi_hpre/<bdf>/qm/abnormal_irq
Date: Apr 2020
Contact: linux-crypto@vger.kernel.org
Description: Dump the number of interrupts for QM abnormal event.
Available for both PF and VF, and take no other effect on HPRE.
What: /sys/kernel/debug/hisi_hpre/<bdf>/qm/create_qp_err
Date: Apr 2020
Contact: linux-crypto@vger.kernel.org
Description: Dump the number of queue allocation errors.
What: /sys/kernel/debug/hisi_hpre/<bdf>/qm/create_qp_err
Date: Apr 2020
Contact: linux-crypto@vger.kernel.org
Description: Dump the number of queue allocation errors.
Available for both PF and VF, and take no other effect on HPRE.
What: /sys/kernel/debug/hisi_hpre/<bdf>/qm/mb_err
Date: Apr 2020
Contact: linux-crypto@vger.kernel.org
Description: Dump the number of failed QM mailbox commands.
What: /sys/kernel/debug/hisi_hpre/<bdf>/qm/mb_err
Date: Apr 2020
Contact: linux-crypto@vger.kernel.org
Description: Dump the number of failed QM mailbox commands.
Available for both PF and VF, and take no other effect on HPRE.
What: /sys/kernel/debug/hisi_hpre/<bdf>/qm/status
Date: Apr 2020
Contact: linux-crypto@vger.kernel.org
Description: Dump the status of the QM.
What: /sys/kernel/debug/hisi_hpre/<bdf>/qm/status
Date: Apr 2020
Contact: linux-crypto@vger.kernel.org
Description: Dump the status of the QM.
Four states: initiated, started, stopped and closed.
Available for both PF and VF, and take no other effect on HPRE.
What: /sys/kernel/debug/hisi_hpre/<bdf>/hpre_dfx/send_cnt
Date: Apr 2020
Contact: linux-crypto@vger.kernel.org
Description: Dump the total number of sent requests.
What: /sys/kernel/debug/hisi_hpre/<bdf>/qm/diff_regs
Date: Mar 2022
Contact: linux-crypto@vger.kernel.org
Description: QM debug registers(regs) read hardware register value. This
node is used to show the change of the qm register values. This
node can be help users to check the change of register values.
What: /sys/kernel/debug/hisi_hpre/<bdf>/hpre_dfx/diff_regs
Date: Mar 2022
Contact: linux-crypto@vger.kernel.org
Description: HPRE debug registers(regs) read hardware register value. This
node is used to show the change of the register values. This
node can be help users to check the change of register values.
What: /sys/kernel/debug/hisi_hpre/<bdf>/hpre_dfx/send_cnt
Date: Apr 2020
Contact: linux-crypto@vger.kernel.org
Description: Dump the total number of sent requests.
Available for both PF and VF, and take no other effect on HPRE.
What: /sys/kernel/debug/hisi_hpre/<bdf>/hpre_dfx/recv_cnt
Date: Apr 2020
Contact: linux-crypto@vger.kernel.org
Description: Dump the total number of received requests.
What: /sys/kernel/debug/hisi_hpre/<bdf>/hpre_dfx/recv_cnt
Date: Apr 2020
Contact: linux-crypto@vger.kernel.org
Description: Dump the total number of received requests.
Available for both PF and VF, and take no other effect on HPRE.
What: /sys/kernel/debug/hisi_hpre/<bdf>/hpre_dfx/send_busy_cnt
Date: Apr 2020
Contact: linux-crypto@vger.kernel.org
Description: Dump the total number of requests sent
What: /sys/kernel/debug/hisi_hpre/<bdf>/hpre_dfx/send_busy_cnt
Date: Apr 2020
Contact: linux-crypto@vger.kernel.org
Description: Dump the total number of requests sent
with returning busy.
Available for both PF and VF, and take no other effect on HPRE.
What: /sys/kernel/debug/hisi_hpre/<bdf>/hpre_dfx/send_fail_cnt
Date: Apr 2020
Contact: linux-crypto@vger.kernel.org
Description: Dump the total number of completed but error requests.
What: /sys/kernel/debug/hisi_hpre/<bdf>/hpre_dfx/send_fail_cnt
Date: Apr 2020
Contact: linux-crypto@vger.kernel.org
Description: Dump the total number of completed but error requests.
Available for both PF and VF, and take no other effect on HPRE.
What: /sys/kernel/debug/hisi_hpre/<bdf>/hpre_dfx/invalid_req_cnt
Date: Apr 2020
Contact: linux-crypto@vger.kernel.org
Description: Dump the total number of invalid requests being received.
What: /sys/kernel/debug/hisi_hpre/<bdf>/hpre_dfx/invalid_req_cnt
Date: Apr 2020
Contact: linux-crypto@vger.kernel.org
Description: Dump the total number of invalid requests being received.
Available for both PF and VF, and take no other effect on HPRE.
What: /sys/kernel/debug/hisi_hpre/<bdf>/hpre_dfx/overtime_thrhld
Date: Apr 2020
Contact: linux-crypto@vger.kernel.org
Description: Set the threshold time for counting the request which is
What: /sys/kernel/debug/hisi_hpre/<bdf>/hpre_dfx/overtime_thrhld
Date: Apr 2020
Contact: linux-crypto@vger.kernel.org
Description: Set the threshold time for counting the request which is
processed longer than the threshold.
0: disable(default), 1: 1 microsecond.
Available for both PF and VF, and take no other effect on HPRE.
What: /sys/kernel/debug/hisi_hpre/<bdf>/hpre_dfx/over_thrhld_cnt
Date: Apr 2020
Contact: linux-crypto@vger.kernel.org
Description: Dump the total number of time out requests.
What: /sys/kernel/debug/hisi_hpre/<bdf>/hpre_dfx/over_thrhld_cnt
Date: Apr 2020
Contact: linux-crypto@vger.kernel.org
Description: Dump the total number of time out requests.
Available for both PF and VF, and take no other effect on HPRE.

View file

@ -1,113 +1,137 @@
What: /sys/kernel/debug/hisi_sec2/<bdf>/clear_enable
Date: Oct 2019
Contact: linux-crypto@vger.kernel.org
Description: Enabling/disabling of clear action after reading
What: /sys/kernel/debug/hisi_sec2/<bdf>/clear_enable
Date: Oct 2019
Contact: linux-crypto@vger.kernel.org
Description: Enabling/disabling of clear action after reading
the SEC debug registers.
0: disable, 1: enable.
Only available for PF, and take no other effect on SEC.
What: /sys/kernel/debug/hisi_sec2/<bdf>/current_qm
Date: Oct 2019
Contact: linux-crypto@vger.kernel.org
Description: One SEC controller has one PF and multiple VFs, each function
What: /sys/kernel/debug/hisi_sec2/<bdf>/current_qm
Date: Oct 2019
Contact: linux-crypto@vger.kernel.org
Description: One SEC controller has one PF and multiple VFs, each function
has a QM. This file can be used to select the QM which below
qm refers to.
Only available for PF.
What: /sys/kernel/debug/hisi_sec2/<bdf>/qm/qm_regs
Date: Oct 2019
Contact: linux-crypto@vger.kernel.org
Description: Dump of QM related debug registers.
What: /sys/kernel/debug/hisi_sec2/<bdf>/alg_qos
Date: Jun 2021
Contact: linux-crypto@vger.kernel.org
Description: The <bdf> is related the function for PF and VF.
SEC driver supports to configure each function's QoS, the driver
supports to write <bdf> value to alg_qos in the host. Such as
"echo <bdf> value > alg_qos". The qos value is 1~1000, means
1/1000~1000/1000 of total QoS. The driver reading alg_qos to
get related QoS in the host and VM, Such as "cat alg_qos".
What: /sys/kernel/debug/hisi_sec2/<bdf>/qm/qm_regs
Date: Oct 2019
Contact: linux-crypto@vger.kernel.org
Description: Dump of QM related debug registers.
Available for PF and VF in host. VF in guest currently only
has one debug register.
What: /sys/kernel/debug/hisi_sec2/<bdf>/qm/current_q
Date: Oct 2019
Contact: linux-crypto@vger.kernel.org
Description: One QM of SEC may contain multiple queues. Select specific
What: /sys/kernel/debug/hisi_sec2/<bdf>/qm/current_q
Date: Oct 2019
Contact: linux-crypto@vger.kernel.org
Description: One QM of SEC may contain multiple queues. Select specific
queue to show its debug registers in above 'regs'.
Only available for PF.
What: /sys/kernel/debug/hisi_sec2/<bdf>/qm/clear_enable
Date: Oct 2019
Contact: linux-crypto@vger.kernel.org
Description: Enabling/disabling of clear action after reading
What: /sys/kernel/debug/hisi_sec2/<bdf>/qm/clear_enable
Date: Oct 2019
Contact: linux-crypto@vger.kernel.org
Description: Enabling/disabling of clear action after reading
the SEC's QM debug registers.
0: disable, 1: enable.
Only available for PF, and take no other effect on SEC.
What: /sys/kernel/debug/hisi_sec2/<bdf>/qm/err_irq
Date: Apr 2020
Contact: linux-crypto@vger.kernel.org
Description: Dump the number of invalid interrupts for
What: /sys/kernel/debug/hisi_sec2/<bdf>/qm/err_irq
Date: Apr 2020
Contact: linux-crypto@vger.kernel.org
Description: Dump the number of invalid interrupts for
QM task completion.
Available for both PF and VF, and take no other effect on SEC.
What: /sys/kernel/debug/hisi_sec2/<bdf>/qm/aeq_irq
Date: Apr 2020
Contact: linux-crypto@vger.kernel.org
Description: Dump the number of QM async event queue interrupts.
What: /sys/kernel/debug/hisi_sec2/<bdf>/qm/aeq_irq
Date: Apr 2020
Contact: linux-crypto@vger.kernel.org
Description: Dump the number of QM async event queue interrupts.
Available for both PF and VF, and take no other effect on SEC.
What: /sys/kernel/debug/hisi_sec2/<bdf>/qm/abnormal_irq
Date: Apr 2020
Contact: linux-crypto@vger.kernel.org
Description: Dump the number of interrupts for QM abnormal event.
What: /sys/kernel/debug/hisi_sec2/<bdf>/qm/abnormal_irq
Date: Apr 2020
Contact: linux-crypto@vger.kernel.org
Description: Dump the number of interrupts for QM abnormal event.
Available for both PF and VF, and take no other effect on SEC.
What: /sys/kernel/debug/hisi_sec2/<bdf>/qm/create_qp_err
Date: Apr 2020
Contact: linux-crypto@vger.kernel.org
Description: Dump the number of queue allocation errors.
What: /sys/kernel/debug/hisi_sec2/<bdf>/qm/create_qp_err
Date: Apr 2020
Contact: linux-crypto@vger.kernel.org
Description: Dump the number of queue allocation errors.
Available for both PF and VF, and take no other effect on SEC.
What: /sys/kernel/debug/hisi_sec2/<bdf>/qm/mb_err
Date: Apr 2020
Contact: linux-crypto@vger.kernel.org
Description: Dump the number of failed QM mailbox commands.
What: /sys/kernel/debug/hisi_sec2/<bdf>/qm/mb_err
Date: Apr 2020
Contact: linux-crypto@vger.kernel.org
Description: Dump the number of failed QM mailbox commands.
Available for both PF and VF, and take no other effect on SEC.
What: /sys/kernel/debug/hisi_sec2/<bdf>/qm/status
Date: Apr 2020
Contact: linux-crypto@vger.kernel.org
Description: Dump the status of the QM.
What: /sys/kernel/debug/hisi_sec2/<bdf>/qm/status
Date: Apr 2020
Contact: linux-crypto@vger.kernel.org
Description: Dump the status of the QM.
Four states: initiated, started, stopped and closed.
Available for both PF and VF, and take no other effect on SEC.
What: /sys/kernel/debug/hisi_sec2/<bdf>/sec_dfx/send_cnt
Date: Apr 2020
Contact: linux-crypto@vger.kernel.org
Description: Dump the total number of sent requests.
What: /sys/kernel/debug/hisi_sec2/<bdf>/qm/diff_regs
Date: Mar 2022
Contact: linux-crypto@vger.kernel.org
Description: QM debug registers(regs) read hardware register value. This
node is used to show the change of the qm register values. This
node can be help users to check the change of register values.
What: /sys/kernel/debug/hisi_sec2/<bdf>/sec_dfx/diff_regs
Date: Mar 2022
Contact: linux-crypto@vger.kernel.org
Description: SEC debug registers(regs) read hardware register value. This
node is used to show the change of the register values. This
node can be help users to check the change of register values.
What: /sys/kernel/debug/hisi_sec2/<bdf>/sec_dfx/send_cnt
Date: Apr 2020
Contact: linux-crypto@vger.kernel.org
Description: Dump the total number of sent requests.
Available for both PF and VF, and take no other effect on SEC.
What: /sys/kernel/debug/hisi_sec2/<bdf>/sec_dfx/recv_cnt
Date: Apr 2020
Contact: linux-crypto@vger.kernel.org
Description: Dump the total number of received requests.
What: /sys/kernel/debug/hisi_sec2/<bdf>/sec_dfx/recv_cnt
Date: Apr 2020
Contact: linux-crypto@vger.kernel.org
Description: Dump the total number of received requests.
Available for both PF and VF, and take no other effect on SEC.
What: /sys/kernel/debug/hisi_sec2/<bdf>/sec_dfx/send_busy_cnt
Date: Apr 2020
Contact: linux-crypto@vger.kernel.org
Description: Dump the total number of requests sent with returning busy.
What: /sys/kernel/debug/hisi_sec2/<bdf>/sec_dfx/send_busy_cnt
Date: Apr 2020
Contact: linux-crypto@vger.kernel.org
Description: Dump the total number of requests sent with returning busy.
Available for both PF and VF, and take no other effect on SEC.
What: /sys/kernel/debug/hisi_sec2/<bdf>/sec_dfx/err_bd_cnt
Date: Apr 2020
Contact: linux-crypto@vger.kernel.org
Description: Dump the total number of BD type error requests
What: /sys/kernel/debug/hisi_sec2/<bdf>/sec_dfx/err_bd_cnt
Date: Apr 2020
Contact: linux-crypto@vger.kernel.org
Description: Dump the total number of BD type error requests
to be received.
Available for both PF and VF, and take no other effect on SEC.
What: /sys/kernel/debug/hisi_sec2/<bdf>/sec_dfx/invalid_req_cnt
Date: Apr 2020
Contact: linux-crypto@vger.kernel.org
Description: Dump the total number of invalid requests being received.
What: /sys/kernel/debug/hisi_sec2/<bdf>/sec_dfx/invalid_req_cnt
Date: Apr 2020
Contact: linux-crypto@vger.kernel.org
Description: Dump the total number of invalid requests being received.
Available for both PF and VF, and take no other effect on SEC.
What: /sys/kernel/debug/hisi_sec2/<bdf>/sec_dfx/done_flag_cnt
Date: Apr 2020
Contact: linux-crypto@vger.kernel.org
Description: Dump the total number of completed but marked error requests
What: /sys/kernel/debug/hisi_sec2/<bdf>/sec_dfx/done_flag_cnt
Date: Apr 2020
Contact: linux-crypto@vger.kernel.org
Description: Dump the total number of completed but marked error requests
to be received.
Available for both PF and VF, and take no other effect on SEC.

View file

@ -1,114 +1,138 @@
What: /sys/kernel/debug/hisi_zip/<bdf>/comp_core[01]/regs
Date: Nov 2018
Contact: linux-crypto@vger.kernel.org
Description: Dump of compression cores related debug registers.
What: /sys/kernel/debug/hisi_zip/<bdf>/comp_core[01]/regs
Date: Nov 2018
Contact: linux-crypto@vger.kernel.org
Description: Dump of compression cores related debug registers.
Only available for PF.
What: /sys/kernel/debug/hisi_zip/<bdf>/decomp_core[0-5]/regs
Date: Nov 2018
Contact: linux-crypto@vger.kernel.org
Description: Dump of decompression cores related debug registers.
What: /sys/kernel/debug/hisi_zip/<bdf>/decomp_core[0-5]/regs
Date: Nov 2018
Contact: linux-crypto@vger.kernel.org
Description: Dump of decompression cores related debug registers.
Only available for PF.
What: /sys/kernel/debug/hisi_zip/<bdf>/clear_enable
Date: Nov 2018
Contact: linux-crypto@vger.kernel.org
Description: Compression/decompression core debug registers read clear
What: /sys/kernel/debug/hisi_zip/<bdf>/clear_enable
Date: Nov 2018
Contact: linux-crypto@vger.kernel.org
Description: Compression/decompression core debug registers read clear
control. 1 means enable register read clear, otherwise 0.
Writing to this file has no functional effect, only enable or
disable counters clear after reading of these registers.
Only available for PF.
What: /sys/kernel/debug/hisi_zip/<bdf>/current_qm
Date: Nov 2018
Contact: linux-crypto@vger.kernel.org
Description: One ZIP controller has one PF and multiple VFs, each function
What: /sys/kernel/debug/hisi_zip/<bdf>/current_qm
Date: Nov 2018
Contact: linux-crypto@vger.kernel.org
Description: One ZIP controller has one PF and multiple VFs, each function
has a QM. Select the QM which below qm refers to.
Only available for PF.
What: /sys/kernel/debug/hisi_zip/<bdf>/qm/regs
Date: Nov 2018
Contact: linux-crypto@vger.kernel.org
Description: Dump of QM related debug registers.
What: /sys/kernel/debug/hisi_zip/<bdf>/alg_qos
Date: Jun 2021
Contact: linux-crypto@vger.kernel.org
Description: The <bdf> is related the function for PF and VF.
ZIP driver supports to configure each function's QoS, the driver
supports to write <bdf> value to alg_qos in the host. Such as
"echo <bdf> value > alg_qos". The qos value is 1~1000, means
1/1000~1000/1000 of total QoS. The driver reading alg_qos to
get related QoS in the host and VM, Such as "cat alg_qos".
What: /sys/kernel/debug/hisi_zip/<bdf>/qm/regs
Date: Nov 2018
Contact: linux-crypto@vger.kernel.org
Description: Dump of QM related debug registers.
Available for PF and VF in host. VF in guest currently only
has one debug register.
What: /sys/kernel/debug/hisi_zip/<bdf>/qm/current_q
Date: Nov 2018
Contact: linux-crypto@vger.kernel.org
Description: One QM may contain multiple queues. Select specific queue to
What: /sys/kernel/debug/hisi_zip/<bdf>/qm/current_q
Date: Nov 2018
Contact: linux-crypto@vger.kernel.org
Description: One QM may contain multiple queues. Select specific queue to
show its debug registers in above regs.
Only available for PF.
What: /sys/kernel/debug/hisi_zip/<bdf>/qm/clear_enable
Date: Nov 2018
Contact: linux-crypto@vger.kernel.org
Description: QM debug registers(regs) read clear control. 1 means enable
What: /sys/kernel/debug/hisi_zip/<bdf>/qm/clear_enable
Date: Nov 2018
Contact: linux-crypto@vger.kernel.org
Description: QM debug registers(regs) read clear control. 1 means enable
register read clear, otherwise 0.
Writing to this file has no functional effect, only enable or
disable counters clear after reading of these registers.
Only available for PF.
What: /sys/kernel/debug/hisi_zip/<bdf>/qm/err_irq
Date: Apr 2020
Contact: linux-crypto@vger.kernel.org
Description: Dump the number of invalid interrupts for
What: /sys/kernel/debug/hisi_zip/<bdf>/qm/err_irq
Date: Apr 2020
Contact: linux-crypto@vger.kernel.org
Description: Dump the number of invalid interrupts for
QM task completion.
Available for both PF and VF, and take no other effect on ZIP.
What: /sys/kernel/debug/hisi_zip/<bdf>/qm/aeq_irq
Date: Apr 2020
Contact: linux-crypto@vger.kernel.org
Description: Dump the number of QM async event queue interrupts.
What: /sys/kernel/debug/hisi_zip/<bdf>/qm/aeq_irq
Date: Apr 2020
Contact: linux-crypto@vger.kernel.org
Description: Dump the number of QM async event queue interrupts.
Available for both PF and VF, and take no other effect on ZIP.
What: /sys/kernel/debug/hisi_zip/<bdf>/qm/abnormal_irq
Date: Apr 2020
Contact: linux-crypto@vger.kernel.org
Description: Dump the number of interrupts for QM abnormal event.
What: /sys/kernel/debug/hisi_zip/<bdf>/qm/abnormal_irq
Date: Apr 2020
Contact: linux-crypto@vger.kernel.org
Description: Dump the number of interrupts for QM abnormal event.
Available for both PF and VF, and take no other effect on ZIP.
What: /sys/kernel/debug/hisi_zip/<bdf>/qm/create_qp_err
Date: Apr 2020
Contact: linux-crypto@vger.kernel.org
Description: Dump the number of queue allocation errors.
What: /sys/kernel/debug/hisi_zip/<bdf>/qm/create_qp_err
Date: Apr 2020
Contact: linux-crypto@vger.kernel.org
Description: Dump the number of queue allocation errors.
Available for both PF and VF, and take no other effect on ZIP.
What: /sys/kernel/debug/hisi_zip/<bdf>/qm/mb_err
Date: Apr 2020
Contact: linux-crypto@vger.kernel.org
Description: Dump the number of failed QM mailbox commands.
What: /sys/kernel/debug/hisi_zip/<bdf>/qm/mb_err
Date: Apr 2020
Contact: linux-crypto@vger.kernel.org
Description: Dump the number of failed QM mailbox commands.
Available for both PF and VF, and take no other effect on ZIP.
What: /sys/kernel/debug/hisi_zip/<bdf>/qm/status
Date: Apr 2020
Contact: linux-crypto@vger.kernel.org
Description: Dump the status of the QM.
What: /sys/kernel/debug/hisi_zip/<bdf>/qm/status
Date: Apr 2020
Contact: linux-crypto@vger.kernel.org
Description: Dump the status of the QM.
Four states: initiated, started, stopped and closed.
Available for both PF and VF, and take no other effect on ZIP.
What: /sys/kernel/debug/hisi_zip/<bdf>/zip_dfx/send_cnt
Date: Apr 2020
Contact: linux-crypto@vger.kernel.org
Description: Dump the total number of sent requests.
What: /sys/kernel/debug/hisi_zip/<bdf>/qm/diff_regs
Date: Mar 2022
Contact: linux-crypto@vger.kernel.org
Description: QM debug registers(regs) read hardware register value. This
node is used to show the change of the qm registers value. This
node can be help users to check the change of register values.
What: /sys/kernel/debug/hisi_zip/<bdf>/zip_dfx/diff_regs
Date: Mar 2022
Contact: linux-crypto@vger.kernel.org
Description: ZIP debug registers(regs) read hardware register value. This
node is used to show the change of the registers value. this
node can be help users to check the change of register values.
What: /sys/kernel/debug/hisi_zip/<bdf>/zip_dfx/send_cnt
Date: Apr 2020
Contact: linux-crypto@vger.kernel.org
Description: Dump the total number of sent requests.
Available for both PF and VF, and take no other effect on ZIP.
What: /sys/kernel/debug/hisi_zip/<bdf>/zip_dfx/recv_cnt
Date: Apr 2020
Contact: linux-crypto@vger.kernel.org
Description: Dump the total number of received requests.
What: /sys/kernel/debug/hisi_zip/<bdf>/zip_dfx/recv_cnt
Date: Apr 2020
Contact: linux-crypto@vger.kernel.org
Description: Dump the total number of received requests.
Available for both PF and VF, and take no other effect on ZIP.
What: /sys/kernel/debug/hisi_zip/<bdf>/zip_dfx/send_busy_cnt
Date: Apr 2020
Contact: linux-crypto@vger.kernel.org
Description: Dump the total number of requests received
What: /sys/kernel/debug/hisi_zip/<bdf>/zip_dfx/send_busy_cnt
Date: Apr 2020
Contact: linux-crypto@vger.kernel.org
Description: Dump the total number of requests received
with returning busy.
Available for both PF and VF, and take no other effect on ZIP.
What: /sys/kernel/debug/hisi_zip/<bdf>/zip_dfx/err_bd_cnt
Date: Apr 2020
Contact: linux-crypto@vger.kernel.org
Description: Dump the total number of BD type error requests
What: /sys/kernel/debug/hisi_zip/<bdf>/zip_dfx/err_bd_cnt
Date: Apr 2020
Contact: linux-crypto@vger.kernel.org
Description: Dump the total number of BD type error requests
to be received.
Available for both PF and VF, and take no other effect on ZIP.

View file

@ -27,8 +27,9 @@ Description:
[fowner=] [fgroup=]]
lsm: [[subj_user=] [subj_role=] [subj_type=]
[obj_user=] [obj_role=] [obj_type=]]
option: [[appraise_type=]] [template=] [permit_directio]
[appraise_flag=] [appraise_algos=] [keyrings=]
option: [digest_type=] [template=] [permit_directio]
[appraise_type=] [appraise_flag=]
[appraise_algos=] [keyrings=]
base:
func:= [BPRM_CHECK][MMAP_CHECK][CREDS_CHECK][FILE_CHECK][MODULE_CHECK]
[FIRMWARE_CHECK]
@ -47,10 +48,21 @@ Description:
fgroup:= decimal value
lsm: are LSM specific
option:
appraise_type:= [imasig] [imasig|modsig]
appraise_type:= [imasig] | [imasig|modsig] | [sigv3]
where 'imasig' is the original or the signature
format v2.
where 'modsig' is an appended signature,
where 'sigv3' is the signature format v3. (Currently
limited to fsverity digest based signatures
stored in security.ima xattr. Requires
specifying "digest_type=verity" first.)
appraise_flag:= [check_blacklist]
Currently, blacklist check is only for files signed with appended
signature.
digest_type:= verity
Require fs-verity's file digest instead of the
regular IMA file hash.
keyrings:= list of keyrings
(eg, .builtin_trusted_keys|.ima). Only valid
when action is "measure" and func is KEY_CHECK.
@ -149,3 +161,30 @@ Description:
security.ima xattr of a file:
appraise func=SETXATTR_CHECK appraise_algos=sha256,sha384,sha512
Example of a 'measure' rule requiring fs-verity's digests
with indication of type of digest in the measurement list.
measure func=FILE_CHECK digest_type=verity \
template=ima-ngv2
Example of 'measure' and 'appraise' rules requiring fs-verity
signatures (format version 3) stored in security.ima xattr.
The 'measure' rule specifies the 'ima-sigv3' template option,
which includes the indication of type of digest and the file
signature in the measurement list.
measure func=BPRM_CHECK digest_type=verity \
template=ima-sigv3
The 'appraise' rule specifies the type and signature format
version (sigv3) required.
appraise func=BPRM_CHECK digest_type=verity \
appraise_type=sigv3
All of these policy rules could, for example, be constrained
either based on a filesystem's UUID (fsuuid) or based on LSM
labels.

View file

@ -0,0 +1,51 @@
What: security/secrets/coco
Date: February 2022
Contact: Dov Murik <dovmurik@linux.ibm.com>
Description:
Exposes confidential computing (coco) EFI secrets to
userspace via securityfs.
EFI can declare memory area used by confidential computing
platforms (such as AMD SEV and SEV-ES) for secret injection by
the Guest Owner during VM's launch. The secrets are encrypted
by the Guest Owner and decrypted inside the trusted enclave,
and therefore are not readable by the untrusted host.
The efi_secret module exposes the secrets to userspace. Each
secret appears as a file under <securityfs>/secrets/coco,
where the filename is the GUID of the entry in the secrets
table. This module is loaded automatically by the EFI driver
if the EFI secret area is populated.
Two operations are supported for the files: read and unlink.
Reading the file returns the content of secret entry.
Unlinking the file overwrites the secret data with zeroes and
removes the entry from the filesystem. A secret cannot be read
after it has been unlinked.
For example, listing the available secrets::
# modprobe efi_secret
# ls -l /sys/kernel/security/secrets/coco
-r--r----- 1 root root 0 Jun 28 11:54 736870e5-84f0-4973-92ec-06879ce3da0b
-r--r----- 1 root root 0 Jun 28 11:54 83c83f7f-1356-4975-8b7e-d3a0b54312c6
-r--r----- 1 root root 0 Jun 28 11:54 9553f55d-3da2-43ee-ab5d-ff17f78864d2
-r--r----- 1 root root 0 Jun 28 11:54 e6f5a162-d67f-4750-a67c-5d065f2a9910
Reading the secret data by reading a file::
# cat /sys/kernel/security/secrets/coco/e6f5a162-d67f-4750-a67c-5d065f2a9910
the-content-of-the-secret-data
Wiping a secret by unlinking a file::
# rm /sys/kernel/security/secrets/coco/e6f5a162-d67f-4750-a67c-5d065f2a9910
# ls -l /sys/kernel/security/secrets/coco
-r--r----- 1 root root 0 Jun 28 11:54 736870e5-84f0-4973-92ec-06879ce3da0b
-r--r----- 1 root root 0 Jun 28 11:54 83c83f7f-1356-4975-8b7e-d3a0b54312c6
-r--r----- 1 root root 0 Jun 28 11:54 9553f55d-3da2-43ee-ab5d-ff17f78864d2
Note: The binary format of the secrets table injected by the
Guest Owner is described in
drivers/virt/coco/efi_secret/efi_secret.c under "Structure of
the EFI secret area".

View file

@ -107,13 +107,14 @@ Description:
described in ATA8 7.16 and 7.17. Only valid if
the device is not a PM.
pio_mode: (RO) Transfer modes supported by the device when
in PIO mode. Mostly used by PATA device.
pio_mode: (RO) PIO transfer mode used by the device.
Mostly used by PATA devices.
xfer_mode: (RO) Current transfer mode
xfer_mode: (RO) Current transfer mode. Mostly used by
PATA devices.
dma_mode: (RO) Transfer modes supported by the device when
in DMA mode. Mostly used by PATA device.
dma_mode: (RO) DMA transfer mode used by the device.
Mostly used by PATA devices.
class: (RO) Device class. Can be "ata" for disk,
"atapi" for packet device, "pmp" for PM, or

View file

@ -1,3 +1,12 @@
What: /sys/bus/cxl/flush
Date: Januarry, 2022
KernelVersion: v5.18
Contact: linux-cxl@vger.kernel.org
Description:
(WO) If userspace manually unbinds a port the kernel schedules
all descendant memdevs for unbind. Writing '1' to this attribute
flushes that work.
What: /sys/bus/cxl/devices/memX/firmware_version
Date: December, 2020
KernelVersion: v5.12
@ -25,6 +34,24 @@ Description:
identically named field in the Identify Memory Device Output
Payload in the CXL-2.0 specification.
What: /sys/bus/cxl/devices/memX/serial
Date: January, 2022
KernelVersion: v5.18
Contact: linux-cxl@vger.kernel.org
Description:
(RO) 64-bit serial number per the PCIe Device Serial Number
capability. Mandatory for CXL devices, see CXL 2.0 8.1.12.2
Memory Device PCIe Capabilities and Extended Capabilities.
What: /sys/bus/cxl/devices/memX/numa_node
Date: January, 2022
KernelVersion: v5.18
Contact: linux-cxl@vger.kernel.org
Description:
(RO) If NUMA is enabled and the platform has affinitized the
host PCI device for this memory device, emit the CPU node
affinity for this device.
What: /sys/bus/cxl/devices/*/devtype
Date: June, 2021
KernelVersion: v5.14
@ -34,6 +61,15 @@ Description:
the same value communicated in the DEVTYPE environment variable
for uevents for devices on the "cxl" bus.
What: /sys/bus/cxl/devices/*/modalias
Date: December, 2021
KernelVersion: v5.18
Contact: linux-cxl@vger.kernel.org
Description:
CXL device objects export the modalias attribute which mirrors
the same value communicated in the MODALIAS environment variable
for uevents for devices on the "cxl" bus.
What: /sys/bus/cxl/devices/portX/uport
Date: June, 2021
KernelVersion: v5.14

View file

@ -476,6 +476,7 @@ What: /sys/bus/iio/devices/iio:deviceX/in_voltageY_i_calibscale
What: /sys/bus/iio/devices/iio:deviceX/in_voltageY_q_calibscale
What: /sys/bus/iio/devices/iio:deviceX/in_voltage_i_calibscale
What: /sys/bus/iio/devices/iio:deviceX/in_voltage_q_calibscale
What: /sys/bus/iio/devices/iio:deviceX/in_altvoltage_calibscale
What: /sys/bus/iio/devices/iio:deviceX/in_voltage_calibscale
What: /sys/bus/iio/devices/iio:deviceX/in_accel_x_calibscale
What: /sys/bus/iio/devices/iio:deviceX/in_accel_y_calibscale
@ -1213,6 +1214,32 @@ Description:
number or direction is not specified, applies to all channels of
this type.
What: /sys/.../iio:deviceX/events/in_accel_mag_referenced_en
What: /sys/.../iio:deviceX/events/in_accel_mag_referenced_rising_en
What: /sys/.../iio:deviceX/events/in_accel_mag_referenced_falling_en
What: /sys/.../iio:deviceX/events/in_accel_y_mag_referenced_en
What: /sys/.../iio:deviceX/events/in_accel_y_mag_referenced_rising_en
What: /sys/.../iio:deviceX/events/in_accel_y_mag_referenced_falling_en
KernelVersion: 5.18
Contact: linux-iio@vger.kernel.org
Description:
Similar to in_accel_mag[_y][_rising|_falling]_en, but the event
value is relative to a reference magnitude. The reference magnitude
includes the graviational acceleration.
What: /sys/.../iio:deviceX/events/in_accel_mag_referenced_value
What: /sys/.../iio:deviceX/events/in_accel_mag_referenced_rising_value
What: /sys/.../iio:deviceX/events/in_accel_mag_referenced_falling_value
What: /sys/.../iio:deviceX/events/in_accel_y_mag_referenced_value
What: /sys/.../iio:deviceX/events/in_accel_y_mag_referenced_rising_value
What: /sys/.../iio:deviceX/events/in_accel_y_mag_referenced_falling_value
KernelVersion: 5.18
Contact: linux-iio@vger.kernel.org
Description:
The value to which the reference magnitude of the channel is
compared. If the axis is not specified, it applies to all channels
of this type.
What: /sys/.../events/in_steps_change_en
KernelVersion: 4.0
Contact: linux-iio@vger.kernel.org
@ -1252,6 +1279,10 @@ Description:
Actually start the buffer capture up. Will start trigger
if first device and appropriate.
Note that it might be impossible to configure other attributes,
(e.g.: events, scale, sampling rate) if they impact the currently
active buffer capture session.
What: /sys/bus/iio/devices/iio:deviceX/bufferY
KernelVersion: 5.11
Contact: linux-iio@vger.kernel.org

View file

@ -0,0 +1,13 @@
What: /sys/bus/iio/devices/iio:deviceX/in_voltageY-voltageZ_balance_switch_en
KernelVersion: 5.14
Contact: linux-iio@vger.kernel.org
Description:
Used to enable an output for balancing cells for time
controlled via in_voltage_Y-voltageZ_balance_switch_timer.
What: /sys/bus/iio/devices/iio:deviceX/in_voltageY-voltageZ_balance_switch_timer
KernelVersion: 5.14
Contact: linux-iio@vger.kernel.org
Description:
Time in seconds for which balance switch will be turned on.
Multiple of 71.5 seconds.

View file

@ -0,0 +1,86 @@
What: /sys/bus/iio/devices/iio:deviceX/out_voltageY_dither_en
KernelVersion: 5.18
Contact: linux-iio@vger.kernel.org
Description:
Dither enable. Write 1 to enable dither or 0 to disable it. This is useful
for changing the dither parameters. They way it should be done is:
- disable dither operation;
- change dither parameters (eg: frequency, phase...);
- enabled dither operation
What: /sys/bus/iio/devices/iio:deviceX/out_voltageY_dither_raw
KernelVersion: 5.18
Contact: linux-iio@vger.kernel.org
Description:
This raw, unscaled value refers to the dither signal amplitude.
The same scale as in out_voltageY_raw applies. However, the
offset might be different as it's always 0 for this attribute.
What: /sys/bus/iio/devices/iio:deviceX/out_voltageY_dither_raw_available
KernelVersion: 5.18
Contact: linux-iio@vger.kernel.org
Description:
Available range for dither raw amplitude values.
What: /sys/bus/iio/devices/iio:deviceX/out_voltageY_dither_offset
KernelVersion: 5.18
Contact: linux-iio@vger.kernel.org
Description:
Offset applied to out_voltageY_dither_raw. Read only attribute
always set to 0.
What: /sys/bus/iio/devices/iio:deviceX/out_voltageY_dither_frequency
KernelVersion: 5.18
Contact: linux-iio@vger.kernel.org
Description:
Sets the dither signal frequency. Units are in Hz.
What: /sys/bus/iio/devices/iio:deviceX/out_voltageY_dither_frequency_available
KernelVersion: 5.18
Contact: linux-iio@vger.kernel.org
Description:
Returns the available values for the dither frequency.
What: /sys/bus/iio/devices/iio:deviceX/out_voltageY_dither_phase
KernelVersion: 5.18
Contact: linux-iio@vger.kernel.org
Description:
Sets the dither signal phase. Units are in Radians.
What: /sys/bus/iio/devices/iio:deviceX/out_voltageY_dither_phase_available
KernelVersion: 5.18
Contact: linux-iio@vger.kernel.org
Description:
Returns the available values for the dither phase.
What: /sys/bus/iio/devices/iio:deviceX/out_voltageY_toggle_en
KernelVersion: 5.18
Contact: linux-iio@vger.kernel.org
Description:
Toggle enable. Write 1 to enable toggle or 0 to disable it. This is
useful when one wants to change the DAC output codes. The way it should
be done is:
- disable toggle operation;
- change out_voltageY_raw0 and out_voltageY_raw1;
- enable toggle operation.
What: /sys/bus/iio/devices/iio:deviceX/out_voltageY_raw0
What: /sys/bus/iio/devices/iio:deviceX/out_voltageY_raw1
KernelVersion: 5.18
Contact: linux-iio@vger.kernel.org
Description:
It has the same meaning as out_voltageY_raw. This attribute is
specific to toggle enabled channels and refers to the DAC output
code in INPUT_A (_raw0) and INPUT_B (_raw1). The same scale and offset
as in out_voltageY_raw applies.
What: /sys/bus/iio/devices/iio:deviceX/out_voltageY_symbol
KernelVersion: 5.18
Contact: linux-iio@vger.kernel.org
Description:
Performs a SW toggle. This attribute is specific to toggle
enabled channels and allows to toggle between out_voltageY_raw0
and out_voltageY_raw1 through software. Writing 0 will select
out_voltageY_raw0 while 1 selects out_voltageY_raw1.

View file

@ -0,0 +1,23 @@
What: /sys/bus/iio/devices/iio:deviceX/in_altvoltage0_i_calibscale_coarse
KernelVersion: 5.18
Contact: linux-iio@vger.kernel.org
Description:
Read/write value for the digital attenuator gain (IF_I) with coarse steps.
What: /sys/bus/iio/devices/iio:deviceX/in_altvoltage0_q_calibscale_coarse
KernelVersion: 5.18
Contact: linux-iio@vger.kernel.org
Description:
Read/write value for the digital attenuator gain (IF_Q) with coarse steps.
What: /sys/bus/iio/devices/iio:deviceX/in_altvoltage0_i_calibscale_fine
KernelVersion: 5.18
Contact: linux-iio@vger.kernel.org
Description:
Read/write value for the digital attenuator gain (IF_I) with fine steps.
What: /sys/bus/iio/devices/iio:deviceX/in_altvoltage0_q_calibscale_fine
KernelVersion: 5.18
Contact: linux-iio@vger.kernel.org
Description:
Read/write value for the digital attenuator gain (IF_Q) with fine steps.

View file

@ -0,0 +1,28 @@
What: /sys/bus/iio/devices/iio:deviceX/in_proximity<id>_setup
Date: November 2021
KernelVersion: 5.17
Contact: Gwendal Grignou <gwendal@chromium.org>
Description:
SX9324 has 3 inputs, CS0, CS1 and CS2. Hardware layout
defines if the input is
+ not connected (HZ),
+ grounded (GD),
+ connected to an antenna where it can act as a base
(DS - data shield), or measured input (MI).
The sensor rotates measurement across 4 phases
(PH0, PH1, PH2, PH3), where the inputs are configured
and then measured.
By default, during the first phase, [PH0], CS0 is measured,
while CS1 and CS2 are used as shields.
`cat in_proximity0_setup` returns "MI,DS,DS".
[PH1], CS1 is measured, CS0 and CS2 are shield:
`cat in_proximity1_setup` returns "DS,MI,DS".
[PH2], CS2 is measured, CS0 and CS1 are shield:
`cat in_proximity1_setup` returns "DS,DS,MI".
[PH3], CS1 and CS2 are measured (combo mode):
`cat in_proximity1_setup` returns "DS,MI,MI".
Note, these are the chip default. Hardware layout will most
likely dictate different output. The entry is read-only.

View file

@ -1,4 +1,4 @@
What: /sys/bus/iio/devices/iio:deviceX/conversion_mode
What: /sys/bus/iio/devices/iio:deviceX/in_conversion_mode
KernelVersion: 4.2
Contact: linux-iio@vger.kernel.org
Description:

View file

@ -6,3 +6,38 @@ Description:
The libnvdimm sub-system implements a common sysfs interface for
platform nvdimm resources. See Documentation/driver-api/nvdimm/.
What: /sys/bus/event_source/devices/nmemX/format
Date: February 2022
KernelVersion: 5.18
Contact: Kajol Jain <kjain@linux.ibm.com>
Description: (RO) Attribute group to describe the magic bits
that go into perf_event_attr.config for a particular pmu.
(See ABI/testing/sysfs-bus-event_source-devices-format).
Each attribute under this group defines a bit range of the
perf_event_attr.config. Supported attribute is listed
below::
event = "config:0-4" - event ID
For example::
ctl_res_cnt = "event=0x1"
What: /sys/bus/event_source/devices/nmemX/events
Date: February 2022
KernelVersion: 5.18
Contact: Kajol Jain <kjain@linux.ibm.com>
Description: (RO) Attribute group to describe performance monitoring events
for the nvdimm memory device. Each attribute in this group
describes a single performance monitoring event supported by
this nvdimm pmu. The name of the file is the name of the event.
(See ABI/testing/sysfs-bus-event_source-devices-events). A
listing of the events supported by a given nvdimm provider type
can be found in Documentation/driver-api/nvdimm/$provider.
What: /sys/bus/event_source/devices/nmemX/cpumask
Date: February 2022
KernelVersion: 5.18
Contact: Kajol Jain <kjain@linux.ibm.com>
Description: (RO) This sysfs file exposes the cpumask which is designated to
to retrieve nvdimm pmu event counter data.

View file

@ -61,3 +61,15 @@ Description:
* "CchRHCnt" : Cache Read Hit Count
* "CchWHCnt" : Cache Write Hit Count
* "FastWCnt" : Fast Write Count
What: /sys/bus/nd/devices/nmemX/papr/health_bitmap_inject
Date: Jan, 2022
KernelVersion: v5.17
Contact: linuxppc-dev <linuxppc-dev@lists.ozlabs.org>, nvdimm@lists.linux.dev,
Description:
(RO) Reports the health bitmap inject bitmap that is applied to
bitmap received from PowerVM via the H_SCM_HEALTH. This is used
to forcibly set specific bits returned from Hcall. These is then
used to simulate various health or shutdown states for an nvdimm
and are set by user-space tools like ndctl by issuing a PAPR DSM.

View file

@ -0,0 +1,16 @@
What: /sys/bus/peci/rescan
Date: July 2021
KernelVersion: 5.18
Contact: Iwona Winiarska <iwona.winiarska@intel.com>
Description:
Writing a non-zero value to this attribute will
initiate scan for PECI devices on all PECI controllers
in the system.
What: /sys/bus/peci/devices/<controller_id>-<device_addr>/remove
Date: July 2021
KernelVersion: 5.18
Contact: Iwona Winiarska <iwona.winiarska@intel.com>
Description:
Writing a non-zero value to this attribute will
remove the PECI device and any of its children.

View file

@ -293,6 +293,16 @@ Contact: thunderbolt-software@lists.01.org
Description: This contains XDomain service specific settings as
bitmask. Format: %x
What: /sys/bus/thunderbolt/devices/usb4_portX/connector
Date: April 2022
Contact: Heikki Krogerus <heikki.krogerus@linux.intel.com>
Description:
Symlink to the USB Type-C connector. This link is only
created when USB Type-C Connector Class is enabled,
and only if the system firmware is capable of
describing the connection between a port and its
connector.
What: /sys/bus/thunderbolt/devices/usb4_portX/link
Date: Sep 2021
KernelVersion: v5.14

View file

@ -103,8 +103,8 @@ What: /sys/class/cxl/<afu>/api_version_compatible
Date: September 2014
Contact: linuxppc-dev@lists.ozlabs.org
Description: read only
Decimal value of the the lowest version of the userspace API
this this kernel supports.
Decimal value of the lowest version of the userspace API
this kernel supports.
Users: https://github.com/ibm-capi/libcxl

View file

@ -0,0 +1,77 @@
What: /sys/class/firmware/.../data
Date: July 2022
KernelVersion: 5.19
Contact: Russ Weight <russell.h.weight@intel.com>
Description: The data sysfs file is used for firmware-fallback and for
firmware uploads. Cat a firmware image to this sysfs file
after you echo 1 to the loading sysfs file. When the firmware
image write is complete, echo 0 to the loading sysfs file. This
sequence will signal the completion of the firmware write and
signal the lower-level driver that the firmware data is
available.
What: /sys/class/firmware/.../cancel
Date: July 2022
KernelVersion: 5.19
Contact: Russ Weight <russell.h.weight@intel.com>
Description: Write-only. For firmware uploads, write a "1" to this file to
request that the transfer of firmware data to the lower-level
device be canceled. This request will be rejected (EBUSY) if
the update cannot be canceled (e.g. a FLASH write is in
progress) or (ENODEV) if there is no firmware update in progress.
What: /sys/class/firmware/.../error
Date: July 2022
KernelVersion: 5.19
Contact: Russ Weight <russell.h.weight@intel.com>
Description: Read-only. Returns a string describing a failed firmware
upload. This string will be in the form of <STATUS>:<ERROR>,
where <STATUS> will be one of the status strings described
for the status sysfs file and <ERROR> will be one of the
following: "hw-error", "timeout", "user-abort", "device-busy",
"invalid-file-size", "read-write-error", "flash-wearout". The
error sysfs file is only meaningful when the current firmware
upload status is "idle". If this file is read while a firmware
transfer is in progress, then the read will fail with EBUSY.
What: /sys/class/firmware/.../loading
Date: July 2022
KernelVersion: 5.19
Contact: Russ Weight <russell.h.weight@intel.com>
Description: The loading sysfs file is used for both firmware-fallback and
for firmware uploads. Echo 1 onto the loading file to indicate
you are writing a firmware file to the data sysfs node. Echo
-1 onto this file to abort the data write or echo 0 onto this
file to indicate that the write is complete. For firmware
uploads, the zero value also triggers the transfer of the
firmware data to the lower-level device driver.
What: /sys/class/firmware/.../remaining_size
Date: July 2022
KernelVersion: 5.19
Contact: Russ Weight <russell.h.weight@intel.com>
Description: Read-only. For firmware upload, this file contains the size
of the firmware data that remains to be transferred to the
lower-level device driver. The size value is initialized to
the full size of the firmware image that was previously
written to the data sysfs file. This value is periodically
updated during the "transferring" phase of the firmware
upload.
Format: "%u".
What: /sys/class/firmware/.../status
Date: July 2022
KernelVersion: 5.19
Contact: Russ Weight <russell.h.weight@intel.com>
Description: Read-only. Returns a string describing the current status of
a firmware upload. The string will be one of the following:
idle, "receiving", "preparing", "transferring", "programming".
What: /sys/class/firmware/.../timeout
Date: July 2022
KernelVersion: 5.19
Contact: Russ Weight <russell.h.weight@intel.com>
Description: This file supports the timeout mechanism for firmware
fallback. This file has no affect on firmware uploads. For
more information on timeouts please see the documentation
for firmware fallback.

View file

@ -116,7 +116,7 @@ Description:
<value>[ForceIf:<attribute>=<value>]
<value>[ForceIfNot:<attribute>=<value>]
For example:
For example::
LegacyOrom/dell_value_modifier has value:
Disabled[ForceIf:SecureBoot=Enabled]
@ -212,7 +212,7 @@ Description:
the next boot.
Lenovo specific class extensions
------------------------------
--------------------------------
On Lenovo systems the following additional settings are available:
@ -246,6 +246,55 @@ Description:
that is being referenced (e.g hdd0, hdd1 etc)
This attribute defaults to device 0.
certificate, signature, save_signature:
These attributes are used for certificate based authentication. This is
used in conjunction with a signing server as an alternative to password
based authentication.
The user writes to the attribute(s) with a BASE64 encoded string obtained
from the signing server.
The attributes can be displayed to check the stored value.
Some usage examples:
Installing a certificate to enable feature::
echo "supervisor password" > authentication/Admin/current_password
echo "signed certificate" > authentication/Admin/certificate
Updating the installed certificate::
echo "signature" > authentication/Admin/signature
echo "signed certificate" > authentication/Admin/certificate
Removing the installed certificate::
echo "signature" > authentication/Admin/signature
echo "" > authentication/Admin/certificate
Changing a BIOS setting::
echo "signature" > authentication/Admin/signature
echo "save signature" > authentication/Admin/save_signature
echo Enable > attribute/PasswordBeep/current_value
You cannot enable certificate authentication if a supervisor password
has not been set.
Clearing the certificate results in no bios-admin authentication method
being configured allowing anyone to make changes.
After any of these operations the system must reboot for the changes to
take effect.
certificate_thumbprint:
Read only attribute used to display the MD5, SHA1 and SHA256 thumbprints
for the certificate installed in the BIOS.
certificate_to_password:
Write only attribute used to switch from certificate based authentication
back to password based.
Usage::
echo "signature" > authentication/Admin/signature
echo "password" > authentication/Admin/certificate_to_password
What: /sys/class/firmware-attributes/*/attributes/pending_reboot
@ -300,7 +349,7 @@ Description:
# echo "factory" > /sys/class/firmware-attributes/*/device/attributes/reset_bios
# cat /sys/class/firmware-attributes/*/device/attributes/reset_bios
# builtinsafe lastknowngood [factory] custom
builtinsafe lastknowngood [factory] custom
Note that any changes to this attribute requires a reboot
for changes to take effect.

View file

@ -9,6 +9,14 @@ Description:
RO
What: /sys/class/hwmon/hwmonX/label
Description:
A descriptive label that allows to uniquely identify a
device within the system.
The contents of the label are free-form.
RO
What: /sys/class/hwmon/hwmonX/update_interval
Description:
The interval at which the chip will update readings.

View file

@ -380,13 +380,17 @@ Description:
algorithm to adjust the charge rate dynamically, without
any user configuration required. "Custom" means that the charger
uses the charge_control_* properties as configuration for some
different algorithm.
different algorithm. "Long Life" means the charger reduces its
charging rate in order to prolong the battery health. "Bypass"
means the charger bypasses the charging path around the
integrated converter allowing for a "smart" wall adaptor to
perform the power conversion externally.
Access: Read, Write
Valid values:
"Unknown", "N/A", "Trickle", "Fast", "Standard",
"Adaptive", "Custom"
"Adaptive", "Custom", "Long Life", "Bypass"
What: /sys/class/power_supply/<supply_name>/charge_term_current
Date: July 2014

View file

@ -370,3 +370,84 @@ Description:
'unknown' means software cannot determine the state, or
the reported state is invalid.
What: /sys/class/regulator/.../under_voltage
Date: April 2022
KernelVersion: 5.18
Contact: Zev Weiss <zev@bewilderbeest.net>
Description:
Some regulator directories will contain a field called
under_voltage. This indicates if the device reports an
under-voltage fault (1) or not (0).
What: /sys/class/regulator/.../over_current
Date: April 2022
KernelVersion: 5.18
Contact: Zev Weiss <zev@bewilderbeest.net>
Description:
Some regulator directories will contain a field called
over_current. This indicates if the device reports an
over-current fault (1) or not (0).
What: /sys/class/regulator/.../regulation_out
Date: April 2022
KernelVersion: 5.18
Contact: Zev Weiss <zev@bewilderbeest.net>
Description:
Some regulator directories will contain a field called
regulation_out. This indicates if the device reports an
out-of-regulation fault (1) or not (0).
What: /sys/class/regulator/.../fail
Date: April 2022
KernelVersion: 5.18
Contact: Zev Weiss <zev@bewilderbeest.net>
Description:
Some regulator directories will contain a field called
fail. This indicates if the device reports an output failure
(1) or not (0).
What: /sys/class/regulator/.../over_temp
Date: April 2022
KernelVersion: 5.18
Contact: Zev Weiss <zev@bewilderbeest.net>
Description:
Some regulator directories will contain a field called
over_temp. This indicates if the device reports an
over-temperature fault (1) or not (0).
What: /sys/class/regulator/.../under_voltage_warn
Date: April 2022
KernelVersion: 5.18
Contact: Zev Weiss <zev@bewilderbeest.net>
Description:
Some regulator directories will contain a field called
under_voltage_warn. This indicates if the device reports an
under-voltage warning (1) or not (0).
What: /sys/class/regulator/.../over_current_warn
Date: April 2022
KernelVersion: 5.18
Contact: Zev Weiss <zev@bewilderbeest.net>
Description:
Some regulator directories will contain a field called
over_current_warn. This indicates if the device reports an
over-current warning (1) or not (0).
What: /sys/class/regulator/.../over_voltage_warn
Date: April 2022
KernelVersion: 5.18
Contact: Zev Weiss <zev@bewilderbeest.net>
Description:
Some regulator directories will contain a field called
over_voltage_warn. This indicates if the device reports an
over-voltage warning (1) or not (0).
What: /sys/class/regulator/.../over_temp_warn
Date: April 2022
KernelVersion: 5.18
Contact: Zev Weiss <zev@bewilderbeest.net>
Description:
Some regulator directories will contain a field called
over_temp_warn. This indicates if the device reports an
over-temperature warning (1) or not (0).

View file

@ -203,7 +203,7 @@ Description:
- for generic ACPI: should be "Fan", "Processor" or "LCD"
- for memory controller device on intel_menlow platform:
should be "Memory controller".
should be "Memory controller".
RO, Required

View file

@ -0,0 +1,42 @@
What: /sys/devices/.../physical_location
Date: March 2022
Contact: Won Chung <wonchung@google.com>
Description:
This directory contains information on physical location of
the device connection point with respect to the system's
housing.
What: /sys/devices/.../physical_location/panel
Date: March 2022
Contact: Won Chung <wonchung@google.com>
Description:
Describes which panel surface of the systems housing the
device connection point resides on.
What: /sys/devices/.../physical_location/vertical_position
Date: March 2022
Contact: Won Chung <wonchung@google.com>
Description:
Describes vertical position of the device connection point on
the panel surface.
What: /sys/devices/.../physical_location/horizontal_position
Date: March 2022
Contact: Won Chung <wonchung@google.com>
Description:
Describes horizontal position of the device connection point on
the panel surface.
What: /sys/devices/.../physical_location/dock
Date: March 2022
Contact: Won Chung <wonchung@google.com>
Description:
"Yes" if the device connection point resides in a docking
station or a port replicator. "No" otherwise.
What: /sys/devices/.../physical_location/lid
Date: March 2022
Contact: Won Chung <wonchung@google.com>
Description:
"Yes" if the device connection point resides on the lid of
laptop system. "No" otherwise.

View file

@ -73,6 +73,7 @@ What: /sys/devices/system/cpu/cpuX/topology/core_id
/sys/devices/system/cpu/cpuX/topology/physical_package_id
/sys/devices/system/cpu/cpuX/topology/thread_siblings
/sys/devices/system/cpu/cpuX/topology/thread_siblings_list
/sys/devices/system/cpu/cpuX/topology/ppin
Date: December 2008
Contact: Linux kernel mailing list <linux-kernel@vger.kernel.org>
Description: CPU topology files that describe a logical CPU's relationship
@ -103,6 +104,11 @@ Description: CPU topology files that describe a logical CPU's relationship
thread_siblings_list: human-readable list of cpuX's hardware
threads within the same core as cpuX
ppin: human-readable Protected Processor Identification
Number of the socket the cpu# belongs to. There should be
one per physical_package_id. File is readable only to
admin.
See Documentation/admin-guide/cputopology.rst for more information.
@ -520,6 +526,7 @@ What: /sys/devices/system/cpu/vulnerabilities
/sys/devices/system/cpu/vulnerabilities/srbds
/sys/devices/system/cpu/vulnerabilities/tsx_async_abort
/sys/devices/system/cpu/vulnerabilities/itlb_multihit
/sys/devices/system/cpu/vulnerabilities/mmio_stale_data
Date: January 2018
Contact: Linux kernel mailing list <linux-kernel@vger.kernel.org>
Description: Information about CPU vulnerabilities
@ -662,6 +669,7 @@ Description: Preferred MTE tag checking mode
================ ==============================================
"sync" Prefer synchronous mode
"asymm" Prefer asymmetric mode
"async" Prefer asynchronous mode
================ ==============================================

View file

@ -26,6 +26,6 @@ Description: Read/write the current state of DDR Backup Mode, which controls
DDR Backup Mode must be explicitly enabled by the user,
to invoke step 1.
See also Documentation/devicetree/bindings/mfd/bd9571mwv.txt.
See also Documentation/devicetree/bindings/mfd/rohm,bd9571mwv.yaml.
Users: User space applications for embedded boards equipped with a
BD9571MWV PMIC.

View file

@ -0,0 +1,87 @@
What: /sys/bus/pci/devices/<BDF>/fused_part
Date: June 2022
KernelVersion: 5.19
Contact: mario.limonciello@amd.com
Description:
The /sys/bus/pci/devices/<BDF>/fused_part file reports
whether the CPU or APU has been fused to prevent tampering.
0: Not fused
1: Fused
What: /sys/bus/pci/devices/<BDF>/debug_lock_on
Date: June 2022
KernelVersion: 5.19
Contact: mario.limonciello@amd.com
Description:
The /sys/bus/pci/devices/<BDF>/debug_lock_on reports
whether the AMD CPU or APU has been unlocked for debugging.
Possible values:
0: Not locked
1: Locked
What: /sys/bus/pci/devices/<BDF>/tsme_status
Date: June 2022
KernelVersion: 5.19
Contact: mario.limonciello@amd.com
Description:
The /sys/bus/pci/devices/<BDF>/tsme_status file reports
the status of transparent secure memory encryption on AMD systems.
Possible values:
0: Not active
1: Active
What: /sys/bus/pci/devices/<BDF>/anti_rollback_status
Date: June 2022
KernelVersion: 5.19
Contact: mario.limonciello@amd.com
Description:
The /sys/bus/pci/devices/<BDF>/anti_rollback_status file reports
whether the PSP is enforcing rollback protection.
Possible values:
0: Not enforcing
1: Enforcing
What: /sys/bus/pci/devices/<BDF>/rpmc_production_enabled
Date: June 2022
KernelVersion: 5.19
Contact: mario.limonciello@amd.com
Description:
The /sys/bus/pci/devices/<BDF>/rpmc_production_enabled file reports
whether Replay Protected Monotonic Counter support has been enabled.
Possible values:
0: Not enabled
1: Enabled
What: /sys/bus/pci/devices/<BDF>/rpmc_spirom_available
Date: June 2022
KernelVersion: 5.19
Contact: mario.limonciello@amd.com
Description:
The /sys/bus/pci/devices/<BDF>/rpmc_spirom_available file reports
whether an Replay Protected Monotonic Counter supported SPI is installed
on the system.
Possible values:
0: Not present
1: Present
What: /sys/bus/pci/devices/<BDF>/hsp_tpm_available
Date: June 2022
KernelVersion: 5.19
Contact: mario.limonciello@amd.com
Description:
The /sys/bus/pci/devices/<BDF>/hsp_tpm_available file reports
whether the HSP TPM has been activated.
Possible values:
0: Not activated or present
1: Activated
What: /sys/bus/pci/devices/<BDF>/rom_armor_enforced
Date: June 2022
KernelVersion: 5.19
Contact: mario.limonciello@amd.com
Description:
The /sys/bus/pci/devices/<BDF>/rom_armor_enforced file reports
whether RomArmor SPI protection is enforced.
Possible values:
0: Not enforced
1: Enforced

View file

@ -0,0 +1,137 @@
What: /sys/bus/platform/devices/GGL0001:*/BINF.2
Date: May 2022
KernelVersion: 5.19
Description:
Returns active EC firmware of current boot (boolean).
== ===============================
0 Read only (recovery) firmware.
1 Rewritable firmware.
== ===============================
What: /sys/bus/platform/devices/GGL0001:*/BINF.3
Date: May 2022
KernelVersion: 5.19
Description:
Returns main firmware type for current boot (integer).
== =====================================
0 Recovery.
1 Normal.
2 Developer.
3 Netboot (factory installation only).
== =====================================
What: /sys/bus/platform/devices/GGL0001:*/CHSW
Date: May 2022
KernelVersion: 5.19
Description:
Returns switch position for Chrome OS specific hardware
switches when the firmware is booted (integer).
==== ===========================================
0 No changes.
2 Recovery button was pressed.
4 Recovery button was pressed (EC firmware).
32 Developer switch was enabled.
512 Firmware write protection was disabled.
==== ===========================================
What: /sys/bus/platform/devices/GGL0001:*/FMAP
Date: May 2022
KernelVersion: 5.19
Description:
Returns physical memory address of the start of the main
processor firmware flashmap.
What: /sys/bus/platform/devices/GGL0001:*/FRID
Date: May 2022
KernelVersion: 5.19
Description:
Returns firmware version for the read-only portion of the
main processor firmware.
What: /sys/bus/platform/devices/GGL0001:*/FWID
Date: May 2022
KernelVersion: 5.19
Description:
Returns firmware version for the rewritable portion of the
main processor firmware.
What: /sys/bus/platform/devices/GGL0001:*/GPIO.X/GPIO.0
Date: May 2022
KernelVersion: 5.19
Description:
Returns type of the GPIO signal for the Chrome OS specific
GPIO assignments (integer).
=========== ==================================
1 Recovery button.
2 Developer mode switch.
3 Firmware write protection switch.
256 to 511 Debug header GPIO 0 to GPIO 255.
=========== ==================================
What: /sys/bus/platform/devices/GGL0001:*/GPIO.X/GPIO.1
Date: May 2022
KernelVersion: 5.19
Description:
Returns signal attributes of the GPIO signal (integer bitfield).
== =======================
0 Signal is active low.
1 Signal is active high.
== =======================
What: /sys/bus/platform/devices/GGL0001:*/GPIO.X/GPIO.2
Date: May 2022
KernelVersion: 5.19
Description:
Returns the GPIO number on the specified GPIO
controller.
What: /sys/bus/platform/devices/GGL0001:*/GPIO.X/GPIO.3
Date: May 2022
KernelVersion: 5.19
Description:
Returns name of the GPIO controller.
What: /sys/bus/platform/devices/GGL0001:*/HWID
Date: May 2022
KernelVersion: 5.19
Description:
Returns hardware ID for the Chromebook.
What: /sys/bus/platform/devices/GGL0001:*/MECK
Date: May 2022
KernelVersion: 5.19
Description:
Returns the SHA-1 or SHA-256 hash that is read out of the
Management Engine extended registers during boot. The hash
is exported via ACPI so the OS can verify that the Management
Engine firmware has not changed. If Management Engine is not
present, or if the firmware was unable to read the extended registers, this buffer size can be zero.
What: /sys/bus/platform/devices/GGL0001:*/VBNV.0
Date: May 2022
KernelVersion: 5.19
Description:
Returns offset in CMOS bank 0 of the verified boot non-volatile
storage block, counting from the first writable CMOS byte
(that is, 'offset = 0' is the byte following the 14 bytes of
clock data).
What: /sys/bus/platform/devices/GGL0001:*/VBNV.1
Date: May 2022
KernelVersion: 5.19
Description:
Return the size in bytes of the verified boot non-volatile
storage block.
What: /sys/bus/platform/devices/GGL0001:*/VDAT
Date: May 2022
KernelVersion: 5.19
Description:
Returns the verified boot data block shared between the
firmware verification step and the kernel verification step
(binary).

View file

@ -0,0 +1,9 @@
What: /sys/bus/platform/drivers/eud/.../enable
Date: February 2022
Contact: Souradeep Chowdhury <quic_schowdhu@quicinc.com>
Description:
The Enable/Disable sysfs interface for Embedded
USB Debugger(EUD). This enables and disables the
EUD based on a 1 or a 0 value. By enabling EUD,
the user is able to activate the mini-usb hub of
EUD for debug and trace capabilities.

View file

@ -69,6 +69,12 @@ KernelVersion: 5.1
Contact: ogabbay@kernel.org
Description: Displays the device's version from the eFuse
What: /sys/class/habanalabs/hl<n>/fw_os_ver
Date: Dec 2021
KernelVersion: 5.18
Contact: ogabbay@kernel.org
Description: Version of the firmware OS running on the device's CPU
What: /sys/class/habanalabs/hl<n>/hard_reset
Date: Jan 2019
KernelVersion: 5.1
@ -115,7 +121,7 @@ What: /sys/class/habanalabs/hl<n>/infineon_ver
Date: Jan 2019
KernelVersion: 5.1
Contact: ogabbay@kernel.org
Description: Version of the Device's power supply F/W code
Description: Version of the Device's power supply F/W code. Relevant only to GOYA and GAUDI
What: /sys/class/habanalabs/hl<n>/max_power
Date: Jan 2019
@ -220,4 +226,10 @@ What: /sys/class/habanalabs/hl<n>/uboot_ver
Date: Jan 2019
KernelVersion: 5.1
Contact: ogabbay@kernel.org
Description: Version of the u-boot running on the device's CPU
Description: Version of the u-boot running on the device's CPU
What: /sys/class/habanalabs/hl<n>/vrm_ver
Date: Jan 2022
KernelVersion: not yet upstreamed
Contact: ogabbay@kernel.org
Description: Version of the Device's Voltage Regulator Monitor F/W code. N/A to GOYA and GAUDI

View file

@ -0,0 +1,79 @@
What: /sys/bus/auxiliary/devices/intel_vsec.sdsi.X
Date: Feb 2022
KernelVersion: 5.18
Contact: "David E. Box" <david.e.box@linux.intel.com>
Description:
This directory contains interface files for accessing Intel
Software Defined Silicon (SDSi) features on a CPU. X
represents the socket instance (though not the socket ID).
The socket ID is determined by reading the registers file
and decoding it per the specification.
Some files communicate with SDSi hardware through a mailbox.
Should the operation fail, one of the following error codes
may be returned:
========== =====
Error Code Cause
========== =====
EIO General mailbox failure. Log may indicate cause.
EBUSY Mailbox is owned by another agent.
EPERM SDSI capability is not enabled in hardware.
EPROTO Failure in mailbox protocol detected by driver.
See log for details.
EOVERFLOW For provision commands, the size of the data
exceeds what may be written.
ESPIPE Seeking is not allowed.
ETIMEDOUT Failure to complete mailbox transaction in time.
========== =====
What: /sys/bus/auxiliary/devices/intel_vsec.sdsi.X/guid
Date: Feb 2022
KernelVersion: 5.18
Contact: "David E. Box" <david.e.box@linux.intel.com>
Description:
(RO) The GUID for the registers file. The GUID identifies
the layout of the registers file in this directory.
Information about the register layouts for a particular GUID
is available at http://github.com/intel/intel-sdsi
What: /sys/bus/auxiliary/devices/intel_vsec.sdsi.X/registers
Date: Feb 2022
KernelVersion: 5.18
Contact: "David E. Box" <david.e.box@linux.intel.com>
Description:
(RO) Contains information needed by applications to provision
a CPU and monitor status information. The layout of this file
is determined by the GUID in this directory. Information about
the layout for a particular GUID is available at
http://github.com/intel/intel-sdsi
What: /sys/bus/auxiliary/devices/intel_vsec.sdsi.X/provision_akc
Date: Feb 2022
KernelVersion: 5.18
Contact: "David E. Box" <david.e.box@linux.intel.com>
Description:
(WO) Used to write an Authentication Key Certificate (AKC) to
the SDSi NVRAM for the CPU. The AKC is used to authenticate a
Capability Activation Payload. Mailbox command.
What: /sys/bus/auxiliary/devices/intel_vsec.sdsi.X/provision_cap
Date: Feb 2022
KernelVersion: 5.18
Contact: "David E. Box" <david.e.box@linux.intel.com>
Description:
(WO) Used to write a Capability Activation Payload (CAP) to the
SDSi NVRAM for the CPU. CAPs are used to activate a given CPU
feature. A CAP is validated by SDSi hardware using a previously
provisioned AKC file. Upon successful authentication, the CPU
configuration is updated. A cold reboot is required to fully
activate the feature. Mailbox command.
What: /sys/bus/auxiliary/devices/intel_vsec.sdsi.X/state_certificate
Date: Feb 2022
KernelVersion: 5.18
Contact: "David E. Box" <david.e.box@linux.intel.com>
Description:
(RO) Used to read back the current State Certificate for the CPU
from SDSi hardware. The State Certificate contains information
about the current licenses on the CPU. Mailbox command.

View file

@ -1518,7 +1518,7 @@ Description: This entry shows the number of reads that cannot be changed to
The file is read only.
What: /sys/class/scsi_device/*/device/hpb_stats/rb_noti_cnt
What: /sys/class/scsi_device/*/device/hpb_stats/rcmd_noti_cnt
Date: June 2021
Contact: Daejun Park <daejun7.park@samsung.com>
Description: This entry shows the number of response UPIUs that has
@ -1526,19 +1526,23 @@ Description: This entry shows the number of response UPIUs that has
The file is read only.
What: /sys/class/scsi_device/*/device/hpb_stats/rb_active_cnt
What: /sys/class/scsi_device/*/device/hpb_stats/rcmd_active_cnt
Date: June 2021
Contact: Daejun Park <daejun7.park@samsung.com>
Description: This entry shows the number of active sub-regions recommended by
response UPIUs.
Description: For the HPB device control mode, this entry shows the number of
active sub-regions recommended by response UPIUs. For the HPB host control
mode, this entry shows the number of active sub-regions recommended by the
HPB host control mode heuristic algorithm.
The file is read only.
What: /sys/class/scsi_device/*/device/hpb_stats/rb_inactive_cnt
What: /sys/class/scsi_device/*/device/hpb_stats/rcmd_inactive_cnt
Date: June 2021
Contact: Daejun Park <daejun7.park@samsung.com>
Description: This entry shows the number of inactive regions recommended by
response UPIUs.
Description: For the HPB device control mode, this entry shows the number of
inactive regions recommended by response UPIUs. For the HPB host control
mode, this entry shows the number of inactive regions recommended by the
HPB host control mode heuristic algorithm.
The file is read only.

View file

@ -29,7 +29,7 @@ Description:
What: /sys/module/xen_blkback/parameters/buffer_squeeze_duration_ms
Date: December 2019
KernelVersion: 5.6
Contact: SeongJae Park <sj@kernel.org>
Contact: Maximilian Heyne <mheyne@amazon.de>
Description:
When memory pressure is reported to blkback this option
controls the duration in milliseconds that blkback will not
@ -39,7 +39,7 @@ Description:
What: /sys/module/xen_blkback/parameters/feature_persistent
Date: September 2020
KernelVersion: 5.10
Contact: SeongJae Park <sj@kernel.org>
Contact: Maximilian Heyne <mheyne@amazon.de>
Description:
Whether to enable the persistent grants feature or not. Note
that this option only takes effect on newly created backends.

View file

@ -12,7 +12,7 @@ Description:
What: /sys/module/xen_blkfront/parameters/feature_persistent
Date: September 2020
KernelVersion: 5.10
Contact: SeongJae Park <sj@kernel.org>
Contact: Maximilian Heyne <mheyne@amazon.de>
Description:
Whether to enable the persistent grants feature or not. Note
that this option only takes effect on newly created frontends.

View file

@ -0,0 +1,29 @@
What: /sys/firmware/papr/energy_scale_info
Date: February 2022
Contact: Linux for PowerPC mailing list <linuxppc-dev@ozlabs.org>
Description: Directory hosting a set of platform attributes like
energy/frequency on Linux running as a PAPR guest.
Each file in a directory contains a platform
attribute hierarchy pertaining to performance/
energy-savings mode and processor frequency.
What: /sys/firmware/papr/energy_scale_info/<id>
Date: February 2022
Contact: Linux for PowerPC mailing list <linuxppc-dev@ozlabs.org>
Description: Energy, frequency attributes directory for POWERVM servers
What: /sys/firmware/papr/energy_scale_info/<id>/desc
Date: February 2022
Contact: Linux for PowerPC mailing list <linuxppc-dev@ozlabs.org>
Description: String description of the energy attribute of <id>
What: /sys/firmware/papr/energy_scale_info/<id>/value
Date: February 2022
Contact: Linux for PowerPC mailing list <linuxppc-dev@ozlabs.org>
Description: Numeric value of the energy attribute of <id>
What: /sys/firmware/papr/energy_scale_info/<id>/value_desc
Date: February 2022
Contact: Linux for PowerPC mailing list <linuxppc-dev@ozlabs.org>
Description: String value of the energy attribute of <id>

View file

@ -9,8 +9,9 @@ Description: Shows all enabled kernel features.
What: /sys/fs/erofs/<disk>/sync_decompress
Date: November 2021
Contact: "Huang Jianan" <huangjianan@oppo.com>
Description: Control strategy of sync decompression
Description: Control strategy of sync decompression:
- 0 (default, auto): enable for readpage, and enable for
readahead on atomic contexts only,
readahead on atomic contexts only.
- 1 (force on): enable for readpage and readahead.
- 2 (force off): disable for all situations.

View file

@ -55,8 +55,9 @@ Description: Controls the in-place-update policy.
0x04 F2FS_IPU_UTIL
0x08 F2FS_IPU_SSR_UTIL
0x10 F2FS_IPU_FSYNC
0x20 F2FS_IPU_ASYNC,
0x20 F2FS_IPU_ASYNC
0x40 F2FS_IPU_NOCACHE
0x80 F2FS_IPU_HONOR_OPU_WRITE
==== =================
Refer segment.h for details.
@ -98,6 +99,33 @@ Description: Controls the issue rate of discard commands that consist of small
checkpoint is triggered, and issued during the checkpoint.
By default, it is disabled with 0.
What: /sys/fs/f2fs/<disk>/max_discard_request
Date: December 2021
Contact: "Konstantin Vyshetsky" <vkon@google.com>
Description: Controls the number of discards a thread will issue at a time.
Higher number will allow the discard thread to finish its work
faster, at the cost of higher latency for incomming I/O.
What: /sys/fs/f2fs/<disk>/min_discard_issue_time
Date: December 2021
Contact: "Konstantin Vyshetsky" <vkon@google.com>
Description: Controls the interval the discard thread will wait between
issuing discard requests when there are discards to be issued and
no I/O aware interruptions occur.
What: /sys/fs/f2fs/<disk>/mid_discard_issue_time
Date: December 2021
Contact: "Konstantin Vyshetsky" <vkon@google.com>
Description: Controls the interval the discard thread will wait between
issuing discard requests when there are discards to be issued and
an I/O aware interruption occurs.
What: /sys/fs/f2fs/<disk>/max_discard_issue_time
Date: December 2021
Contact: "Konstantin Vyshetsky" <vkon@google.com>
Description: Controls the interval the discard thread will wait when there are
no discard operations to be issued.
What: /sys/fs/f2fs/<disk>/discard_granularity
Date: July 2017
Contact: "Chao Yu" <yuchao0@huawei.com>
@ -269,11 +297,16 @@ Description: Shows current reserved blocks in system, it may be temporarily
What: /sys/fs/f2fs/<disk>/gc_urgent
Date: August 2017
Contact: "Jaegeuk Kim" <jaegeuk@kernel.org>
Description: Do background GC aggressively when set. When gc_urgent = 1,
background thread starts to do GC by given gc_urgent_sleep_time
interval. When gc_urgent = 2, F2FS will lower the bar of
checking idle in order to process outstanding discard commands
and GC a little bit aggressively. It is set to 0 by default.
Description: Do background GC aggressively when set. Set to 0 by default.
gc urgent high(1): does GC forcibly in a period of given
gc_urgent_sleep_time and ignores I/O idling check. uses greedy
GC approach and turns SSR mode on.
gc urgent low(2): lowers the bar of checking I/O idling in
order to process outstanding discard commands and GC a
little bit aggressively. uses cost benefit GC approach.
gc urgent mid(3): does GC forcibly in a period of given
gc_urgent_sleep_time and executes a mid level of I/O idling check.
uses cost benefit GC approach.
What: /sys/fs/f2fs/<disk>/gc_urgent_sleep_time
Date: August 2017
@ -430,6 +463,7 @@ Description: Show status of f2fs superblock in real time.
0x800 SBI_QUOTA_SKIP_FLUSH skip flushing quota in current CP
0x1000 SBI_QUOTA_NEED_REPAIR quota file may be corrupted
0x2000 SBI_IS_RESIZEFS resizefs is in process
0x4000 SBI_IS_FREEZING freefs is in process
====== ===================== =================================
What: /sys/fs/f2fs/<disk>/ckpt_thread_ioprio
@ -503,7 +537,7 @@ Date: July 2021
Contact: "Daeho Jeong" <daehojeong@google.com>
Description: Show how many segments have been reclaimed by GC during a specific
GC mode (0: GC normal, 1: GC idle CB, 2: GC idle greedy,
3: GC idle AT, 4: GC urgent high, 5: GC urgent low)
3: GC idle AT, 4: GC urgent high, 5: GC urgent low 6: GC urgent mid)
You can re-initialize this value to "0".
What: /sys/fs/f2fs/<disk>/gc_segment_mode
@ -540,3 +574,9 @@ Contact: "Daeho Jeong" <daehojeong@google.com>
Description: You can set the trial count limit for GC urgent high mode with this value.
If GC thread gets to the limit, the mode will turn back to GC normal mode.
By default, the value is zero, which means there is no limit like before.
What: /sys/fs/f2fs/<disk>/max_roll_forward_node_blocks
Date: January 2022
Contact: "Jaegeuk Kim" <jaegeuk@kernel.org>
Description: Controls max # of node block writes to be used for roll forward
recovery. This can limit the roll forward recovery time.

View file

@ -0,0 +1,285 @@
what: /sys/kernel/mm/damon/
Date: Mar 2022
Contact: SeongJae Park <sj@kernel.org>
Description: Interface for Data Access MONitoring (DAMON). Contains files
for controlling DAMON. For more details on DAMON itself,
please refer to Documentation/admin-guide/mm/damon/index.rst.
What: /sys/kernel/mm/damon/admin/
Date: Mar 2022
Contact: SeongJae Park <sj@kernel.org>
Description: Interface for privileged users of DAMON. Contains files for
controlling DAMON that aimed to be used by privileged users.
What: /sys/kernel/mm/damon/admin/kdamonds/nr_kdamonds
Date: Mar 2022
Contact: SeongJae Park <sj@kernel.org>
Description: Writing a number 'N' to this file creates the number of
directories for controlling each DAMON worker thread (kdamond)
named '0' to 'N-1' under the kdamonds/ directory.
What: /sys/kernel/mm/damon/admin/kdamonds/<K>/state
Date: Mar 2022
Contact: SeongJae Park <sj@kernel.org>
Description: Writing 'on' or 'off' to this file makes the kdamond starts or
stops, respectively. Reading the file returns the keywords
based on the current status. Writing 'commit' to this file
makes the kdamond reads the user inputs in the sysfs files
except 'state' again. Writing 'update_schemes_stats' to the
file updates contents of schemes stats files of the kdamond.
What: /sys/kernel/mm/damon/admin/kdamonds/<K>/pid
Date: Mar 2022
Contact: SeongJae Park <sj@kernel.org>
Description: Reading this file returns the pid of the kdamond if it is
running.
What: /sys/kernel/mm/damon/admin/kdamonds/<K>/contexts/nr_contexts
Date: Mar 2022
Contact: SeongJae Park <sj@kernel.org>
Description: Writing a number 'N' to this file creates the number of
directories for controlling each DAMON context named '0' to
'N-1' under the contexts/ directory.
What: /sys/kernel/mm/damon/admin/kdamonds/<K>/contexts/<C>/avail_operations
Date: Apr 2022
Contact: SeongJae Park <sj@kernel.org>
Description: Reading this file returns the available monitoring operations
sets on the currently running kernel.
What: /sys/kernel/mm/damon/admin/kdamonds/<K>/contexts/<C>/operations
Date: Mar 2022
Contact: SeongJae Park <sj@kernel.org>
Description: Writing a keyword for a monitoring operations set ('vaddr' for
virtual address spaces monitoring, 'fvaddr' for fixed virtual
address ranges monitoring, and 'paddr' for the physical address
space monitoring) to this file makes the context to use the
operations set. Reading the file returns the keyword for the
operations set the context is set to use.
Note that only the operations sets that listed in
'avail_operations' file are valid inputs.
What: /sys/kernel/mm/damon/admin/kdamonds/<K>/contexts/<C>/monitoring_attrs/intervals/sample_us
Date: Mar 2022
Contact: SeongJae Park <sj@kernel.org>
Description: Writing a value to this file sets the sampling interval of the
DAMON context in microseconds as the value. Reading this file
returns the value.
What: /sys/kernel/mm/damon/admin/kdamonds/<K>/contexts/<C>/monitoring_attrs/intervals/aggr_us
Date: Mar 2022
Contact: SeongJae Park <sj@kernel.org>
Description: Writing a value to this file sets the aggregation interval of
the DAMON context in microseconds as the value. Reading this
file returns the value.
What: /sys/kernel/mm/damon/admin/kdamonds/<K>/contexts/<C>/monitoring_attrs/intervals/update_us
Date: Mar 2022
Contact: SeongJae Park <sj@kernel.org>
Description: Writing a value to this file sets the update interval of the
DAMON context in microseconds as the value. Reading this file
returns the value.
What: /sys/kernel/mm/damon/admin/kdamonds/<K>/contexts/<C>/monitoring_attrs/nr_regions/min
WDate: Mar 2022
Contact: SeongJae Park <sj@kernel.org>
Description: Writing a value to this file sets the minimum number of
monitoring regions of the DAMON context as the value. Reading
this file returns the value.
What: /sys/kernel/mm/damon/admin/kdamonds/<K>/contexts/<C>/monitoring_attrs/nr_regions/max
Date: Mar 2022
Contact: SeongJae Park <sj@kernel.org>
Description: Writing a value to this file sets the maximum number of
monitoring regions of the DAMON context as the value. Reading
this file returns the value.
What: /sys/kernel/mm/damon/admin/kdamonds/<K>/contexts/<C>/targets/nr_targets
Date: Mar 2022
Contact: SeongJae Park <sj@kernel.org>
Description: Writing a number 'N' to this file creates the number of
directories for controlling each DAMON target of the context
named '0' to 'N-1' under the contexts/ directory.
What: /sys/kernel/mm/damon/admin/kdamonds/<K>/contexts/<C>/targets/<T>/pid_target
Date: Mar 2022
Contact: SeongJae Park <sj@kernel.org>
Description: Writing to and reading from this file sets and gets the pid of
the target process if the context is for virtual address spaces
monitoring, respectively.
What: /sys/kernel/mm/damon/admin/kdamonds/<K>/contexts/<C>/targets/<T>/regions/nr_regions
Date: Mar 2022
Contact: SeongJae Park <sj@kernel.org>
Description: Writing a number 'N' to this file creates the number of
directories for setting each DAMON target memory region of the
context named '0' to 'N-1' under the regions/ directory. In
case of the virtual address space monitoring, DAMON
automatically sets the target memory region based on the target
processes' mappings.
What: /sys/kernel/mm/damon/admin/kdamonds/<K>/contexts/<C>/targets/<T>/regions/<R>/start
Date: Mar 2022
Contact: SeongJae Park <sj@kernel.org>
Description: Writing to and reading from this file sets and gets the start
address of the monitoring region.
What: /sys/kernel/mm/damon/admin/kdamonds/<K>/contexts/<C>/targets/<T>/regions/<R>/end
Date: Mar 2022
Contact: SeongJae Park <sj@kernel.org>
Description: Writing to and reading from this file sets and gets the end
address of the monitoring region.
What: /sys/kernel/mm/damon/admin/kdamonds/<K>/contexts/<C>/schemes/nr_schemes
Date: Mar 2022
Contact: SeongJae Park <sj@kernel.org>
Description: Writing a number 'N' to this file creates the number of
directories for controlling each DAMON-based operation scheme
of the context named '0' to 'N-1' under the schemes/ directory.
What: /sys/kernel/mm/damon/admin/kdamonds/<K>/contexts/<C>/schemes/<S>/action
Date: Mar 2022
Contact: SeongJae Park <sj@kernel.org>
Description: Writing to and reading from this file sets and gets the action
of the scheme.
What: /sys/kernel/mm/damon/admin/kdamonds/<K>/contexts/<C>/schemes/<S>/access_pattern/sz/min
Date: Mar 2022
Contact: SeongJae Park <sj@kernel.org>
Description: Writing to and reading from this file sets and gets the mimimum
size of the scheme's target regions in bytes.
What: /sys/kernel/mm/damon/admin/kdamonds/<K>/contexts/<C>/schemes/<S>/access_pattern/sz/max
Date: Mar 2022
Contact: SeongJae Park <sj@kernel.org>
Description: Writing to and reading from this file sets and gets the maximum
size of the scheme's target regions in bytes.
What: /sys/kernel/mm/damon/admin/kdamonds/<K>/contexts/<C>/schemes/<S>/access_pattern/nr_accesses/min
Date: Mar 2022
Contact: SeongJae Park <sj@kernel.org>
Description: Writing to and reading from this file sets and gets the manimum
'nr_accesses' of the scheme's target regions.
What: /sys/kernel/mm/damon/admin/kdamonds/<K>/contexts/<C>/schemes/<S>/access_pattern/nr_accesses/max
Date: Mar 2022
Contact: SeongJae Park <sj@kernel.org>
Description: Writing to and reading from this file sets and gets the maximum
'nr_accesses' of the scheme's target regions.
What: /sys/kernel/mm/damon/admin/kdamonds/<K>/contexts/<C>/schemes/<S>/access_pattern/age/min
Date: Mar 2022
Contact: SeongJae Park <sj@kernel.org>
Description: Writing to and reading from this file sets and gets the minimum
'age' of the scheme's target regions.
What: /sys/kernel/mm/damon/admin/kdamonds/<K>/contexts/<C>/schemes/<S>/access_pattern/age/max
Date: Mar 2022
Contact: SeongJae Park <sj@kernel.org>
Description: Writing to and reading from this file sets and gets the maximum
'age' of the scheme's target regions.
What: /sys/kernel/mm/damon/admin/kdamonds/<K>/contexts/<C>/schemes/<S>/quotas/ms
Date: Mar 2022
Contact: SeongJae Park <sj@kernel.org>
Description: Writing to and reading from this file sets and gets the time
quota of the scheme in milliseconds.
What: /sys/kernel/mm/damon/admin/kdamonds/<K>/contexts/<C>/schemes/<S>/quotas/bytes
Date: Mar 2022
Contact: SeongJae Park <sj@kernel.org>
Description: Writing to and reading from this file sets and gets the size
quota of the scheme in bytes.
What: /sys/kernel/mm/damon/admin/kdamonds/<K>/contexts/<C>/schemes/<S>/quotas/reset_interval_ms
Date: Mar 2022
Contact: SeongJae Park <sj@kernel.org>
Description: Writing to and reading from this file sets and gets the quotas
charge reset interval of the scheme in milliseconds.
What: /sys/kernel/mm/damon/admin/kdamonds/<K>/contexts/<C>/schemes/<S>/quotas/weights/sz_permil
Date: Mar 2022
Contact: SeongJae Park <sj@kernel.org>
Description: Writing to and reading from this file sets and gets the
under-quota limit regions prioritization weight for 'size' in
permil.
What: /sys/kernel/mm/damon/admin/kdamonds/<K>/contexts/<C>/schemes/<S>/quotas/weights/nr_accesses_permil
Date: Mar 2022
Contact: SeongJae Park <sj@kernel.org>
Description: Writing to and reading from this file sets and gets the
under-quota limit regions prioritization weight for
'nr_accesses' in permil.
What: /sys/kernel/mm/damon/admin/kdamonds/<K>/contexts/<C>/schemes/<S>/quotas/weights/age_permil
Date: Mar 2022
Contact: SeongJae Park <sj@kernel.org>
Description: Writing to and reading from this file sets and gets the
under-quota limit regions prioritization weight for 'age' in
permil.
What: /sys/kernel/mm/damon/admin/kdamonds/<K>/contexts/<C>/schemes/<S>/watermarks/metric
Date: Mar 2022
Contact: SeongJae Park <sj@kernel.org>
Description: Writing to and reading from this file sets and gets the metric
of the watermarks for the scheme. The writable/readable
keywords for this file are 'none' for disabling the watermarks
feature, or 'free_mem_rate' for the system's global free memory
rate in permil.
What: /sys/kernel/mm/damon/admin/kdamonds/<K>/contexts/<C>/schemes/<S>/watermarks/interval_us
Date: Mar 2022
Contact: SeongJae Park <sj@kernel.org>
Description: Writing to and reading from this file sets and gets the metric
check interval of the watermarks for the scheme in
microseconds.
What: /sys/kernel/mm/damon/admin/kdamonds/<K>/contexts/<C>/schemes/<S>/watermarks/high
Date: Mar 2022
Contact: SeongJae Park <sj@kernel.org>
Description: Writing to and reading from this file sets and gets the high
watermark of the scheme in permil.
What: /sys/kernel/mm/damon/admin/kdamonds/<K>/contexts/<C>/schemes/<S>/watermarks/mid
Date: Mar 2022
Contact: SeongJae Park <sj@kernel.org>
Description: Writing to and reading from this file sets and gets the mid
watermark of the scheme in permil.
What: /sys/kernel/mm/damon/admin/kdamonds/<K>/contexts/<C>/schemes/<S>/watermarks/low
Date: Mar 2022
Contact: SeongJae Park <sj@kernel.org>
Description: Writing to and reading from this file sets and gets the low
watermark of the scheme in permil.
What: /sys/kernel/mm/damon/admin/kdamonds/<K>/contexts/<C>/schemes/<S>/stats/nr_tried
Date: Mar 2022
Contact: SeongJae Park <sj@kernel.org>
Description: Reading this file returns the number of regions that the action
of the scheme has tried to be applied.
What: /sys/kernel/mm/damon/admin/kdamonds/<K>/contexts/<C>/schemes/<S>/stats/sz_tried
Date: Mar 2022
Contact: SeongJae Park <sj@kernel.org>
Description: Reading this file returns the total size of regions that the
action of the scheme has tried to be applied in bytes.
What: /sys/kernel/mm/damon/admin/kdamonds/<K>/contexts/<C>/schemes/<S>/stats/nr_applied
Date: Mar 2022
Contact: SeongJae Park <sj@kernel.org>
Description: Reading this file returns the number of regions that the action
of the scheme has successfully applied.
What: /sys/kernel/mm/damon/admin/kdamonds/<K>/contexts/<C>/schemes/<S>/stats/sz_applied
Date: Mar 2022
Contact: SeongJae Park <sj@kernel.org>
Description: Reading this file returns the total size of regions that the
action of the scheme has successfully applied in bytes.
What: /sys/kernel/mm/damon/admin/kdamonds/<K>/contexts/<C>/schemes/<S>/stats/qt_exceeds
Date: Mar 2022
Contact: SeongJae Park <sj@kernel.org>
Description: Reading this file returns the number of the exceed events of
the scheme's quotas.

View file

@ -53,38 +53,6 @@ Description:
(but some corrected errors might be still reported
in other ways)
What: /sys/devices/system/machinecheck/machinecheckX/tolerant
Contact: Andi Kleen <ak@linux.intel.com>
Date: Feb, 2007
Description:
The entries appear for each CPU, but they are truly shared
between all CPUs.
Tolerance level. When a machine check exception occurs for a
non corrected machine check the kernel can take different
actions.
Since machine check exceptions can happen any time it is
sometimes risky for the kernel to kill a process because it
defies normal kernel locking rules. The tolerance level
configures how hard the kernel tries to recover even at some
risk of deadlock. Higher tolerant values trade potentially
better uptime with the risk of a crash or even corruption
(for tolerant >= 3).
== ===========================================================
0 always panic on uncorrected errors, log corrected errors
1 panic or SIGBUS on uncorrected errors, log corrected errors
2 SIGBUS or log uncorrected errors, log corrected errors
3 never panic or SIGBUS, log all errors (for testing only)
== ===========================================================
Default: 1
Note this only makes a difference if the CPU allows recovery
from a machine check exception. Current x86 CPUs generally
do not.
What: /sys/devices/system/machinecheck/machinecheckX/trigger
Contact: Andi Kleen <ak@linux.intel.com>
Date: Feb, 2007

View file

@ -0,0 +1,39 @@
What: /sys/devices/virtual/misc/intel_ifs_<N>/run_test
Date: April 21 2022
KernelVersion: 5.19
Contact: "Jithu Joseph" <jithu.joseph@intel.com>
Description: Write <cpu#> to trigger IFS test for one online core.
Note that the test is per core. The cpu# can be
for any thread on the core. Running on one thread
completes the test for the core containing that thread.
Example: to test the core containing cpu5: echo 5 >
/sys/devices/platform/intel_ifs.<N>/run_test
What: /sys/devices/virtual/misc/intel_ifs_<N>/status
Date: April 21 2022
KernelVersion: 5.19
Contact: "Jithu Joseph" <jithu.joseph@intel.com>
Description: The status of the last test. It can be one of "pass", "fail"
or "untested".
What: /sys/devices/virtual/misc/intel_ifs_<N>/details
Date: April 21 2022
KernelVersion: 5.19
Contact: "Jithu Joseph" <jithu.joseph@intel.com>
Description: Additional information regarding the last test. The details file reports
the hex value of the SCAN_STATUS MSR. Note that the error_code field
may contain driver defined software code not defined in the Intel SDM.
What: /sys/devices/virtual/misc/intel_ifs_<N>/image_version
Date: April 21 2022
KernelVersion: 5.19
Contact: "Jithu Joseph" <jithu.joseph@intel.com>
Description: Version (hexadecimal) of loaded IFS binary image. If no scan image
is loaded reports "none".
What: /sys/devices/virtual/misc/intel_ifs_<N>/reload
Date: April 21 2022
KernelVersion: 5.19
Contact: "Jithu Joseph" <jithu.joseph@intel.com>
Description: Write "1" (or "y" or "Y") to reload the IFS image from
/lib/firmware/intel/ifs/ff-mm-ss.scan.

View file

@ -17,6 +17,7 @@ Date: October 2018
KernelVersion: 4.20
Contact: "Matan Ziv-Av <matan@svgalib.org>
Description:
Deprecated use /sys/class/power_supply/CMB0/charge_control_end_threshold
Maximal battery charge level. Accepted values are 80 or 100.
What: /sys/devices/platform/lg-laptop/fan_mode

View file

@ -37,8 +37,15 @@ Description: (RO) Set of available destinations (sinks) for a SMA
PPS2 signal is sent to the PPS2 selector
TS1 signal is sent to timestamper 1
TS2 signal is sent to timestamper 2
TS3 signal is sent to timestamper 3
TS4 signal is sent to timestamper 4
IRIG signal is sent to the IRIG-B module
DCF signal is sent to the DCF module
FREQ1 signal is sent to frequency counter 1
FREQ2 signal is sent to frequency counter 2
FREQ3 signal is sent to frequency counter 3
FREQ4 signal is sent to frequency counter 4
None signal input is disabled
===== ================================================
What: /sys/class/timecard/ocpN/available_sma_outputs
@ -50,10 +57,16 @@ Description: (RO) Set of available sources for a SMA output signal.
10Mhz output is from the 10Mhz reference clock
PHC output PPS is from the PHC clock
MAC output PPS is from the Miniature Atomic Clock
GNSS output PPS is from the GNSS module
GNSS1 output PPS is from the first GNSS module
GNSS2 output PPS is from the second GNSS module
IRIG output is from the PHC, in IRIG-B format
DCF output is from the PHC, in DCF format
GEN1 output is from frequency generator 1
GEN2 output is from frequency generator 2
GEN3 output is from frequency generator 3
GEN4 output is from frequency generator 4
GND output is GND
VCC output is VCC
===== ================================================
What: /sys/class/timecard/ocpN/clock_source
@ -63,6 +76,97 @@ Description: (RW) Contains the current synchronization source used by
the PHC. May be changed by writing one of the listed
values from the available_clock_sources attribute set.
What: /sys/class/timecard/ocpN/clock_status_drift
Date: March 2022
Contact: Jonathan Lemon <jonathan.lemon@gmail.com>
Description: (RO) Contains the current drift value used by the firmware
for internal disciplining of the atomic clock.
What: /sys/class/timecard/ocpN/clock_status_offset
Date: March 2022
Contact: Jonathan Lemon <jonathan.lemon@gmail.com>
Description: (RO) Contains the current offset value used by the firmware
for internal disciplining of the atomic clock.
What: /sys/class/timecard/ocpN/freqX
Date: March 2022
Contact: Jonathan Lemon <jonathan.lemon@gmail.com>
Description: (RO) Optional directory containing the sysfs nodes for
frequency counter <X>.
What: /sys/class/timecard/ocpN/freqX/frequency
Date: March 2022
Contact: Jonathan Lemon <jonathan.lemon@gmail.com>
Description: (RO) Contains the measured frequency over the specified
measurement period.
What: /sys/class/timecard/ocpN/freqX/seconds
Date: March 2022
Contact: Jonathan Lemon <jonathan.lemon@gmail.com>
Description: (RW) Specifies the number of seconds from 0-255 that the
frequency should be measured over. Write 0 to disable.
What: /sys/class/timecard/ocpN/genX
Date: March 2022
Contact: Jonathan Lemon <jonathan.lemon@gmail.com>
Description: (RO) Optional directory containing the sysfs nodes for
frequency generator <X>.
What: /sys/class/timecard/ocpN/genX/duty
Date: March 2022
Contact: Jonathan Lemon <jonathan.lemon@gmail.com>
Description: (RO) Specifies the signal duty cycle as a percentage from 1-99.
What: /sys/class/timecard/ocpN/genX/period
Date: March 2022
Contact: Jonathan Lemon <jonathan.lemon@gmail.com>
Description: (RO) Specifies the signal period in nanoseconds.
What: /sys/class/timecard/ocpN/genX/phase
Date: March 2022
Contact: Jonathan Lemon <jonathan.lemon@gmail.com>
Description: (RO) Specifies the signal phase offset in nanoseconds.
What: /sys/class/timecard/ocpN/genX/polarity
Date: March 2022
Contact: Jonathan Lemon <jonathan.lemon@gmail.com>
Description: (RO) Specifies the signal polarity, either 1 or 0.
What: /sys/class/timecard/ocpN/genX/running
Date: March 2022
Contact: Jonathan Lemon <jonathan.lemon@gmail.com>
Description: (RO) Either 0 or 1, showing if the signal generator is running.
What: /sys/class/timecard/ocpN/genX/start
Date: March 2022
Contact: Jonathan Lemon <jonathan.lemon@gmail.com>
Description: (RO) Shows the time in <sec>.<nsec> that the signal generator
started running.
What: /sys/class/timecard/ocpN/genX/signal
Date: March 2022
Contact: Jonathan Lemon <jonathan.lemon@gmail.com>
Description: (RW) Used to start the signal generator, and summarize
the current status.
The signal generator may be started by writing the signal
period, followed by the optional signal values. If the
optional values are not provided, they default to the current
settings, which may be obtained from the other sysfs nodes.
period [duty [phase [polarity]]]
echo 500000000 > signal # 1/2 second period
echo 1000000 40 100 > signal
echo 0 > signal # turn off generator
Period and phase are specified in nanoseconds. Duty cycle is
a percentage from 1-99. Polarity is 1 or 0.
Reading this node will return:
period duty phase polarity start_time
What: /sys/class/timecard/ocpN/gnss_sync
Date: September 2021
Contact: Jonathan Lemon <jonathan.lemon@gmail.com>
@ -126,6 +230,16 @@ Description: (RW) These attributes specify the direction of the signal
The 10Mhz reference clock input is currently only valid
on SMA1 and may not be combined with other destination sinks.
What: /sys/class/timecard/ocpN/tod_correction
Date: March 2022
Contact: Jonathan Lemon <jonathan.lemon@gmail.com>
Description: (RW) The incoming GNSS signal is in UTC time, and the NMEA
format messages do not provide a TAI offset. This sets the
correction value for the incoming time.
If UBX_LS is enabled, this should be 0, and the offset is
taken from the UBX-NAV-TIMELS message.
What: /sys/class/timecard/ocpN/ts_window_adjust
Date: September 2021
Contact: Jonathan Lemon <jonathan.lemon@gmail.com>

View file

@ -1,13 +0,0 @@
This is the full-colour version of the currently unofficial Linux logo
("currently unofficial" just means that there has been no paperwork and
that I have not really announced it yet). It was created by Larry Ewing,
and is freely usable as long as you acknowledge Larry as the original
artist.
Note that there are black-and-white versions of this available that
scale down to smaller sizes and are better for letterheads or whatever
you want to use it for: for the full range of logos take a look at
Larry's web-page:
https://www.isc.tamu.edu/~lewing/linux/

View file

@ -26,7 +26,7 @@ SPHINX_CONF = conf.py
PAPER =
BUILDDIR = $(obj)/output
PDFLATEX = xelatex
LATEXOPTS = -interaction=batchmode
LATEXOPTS = -interaction=batchmode -no-shell-escape
ifeq ($(KBUILD_VERBOSE),0)
SPHINXOPTS += "-q"

View file

@ -273,25 +273,25 @@ Set the DMA mask size
While all drivers should explicitly indicate the DMA capability
(e.g. 32 or 64 bit) of the PCI bus master, devices with more than
32-bit bus master capability for streaming data need the driver
to "register" this capability by calling pci_set_dma_mask() with
to "register" this capability by calling dma_set_mask() with
appropriate parameters. In general this allows more efficient DMA
on systems where System RAM exists above 4G _physical_ address.
Drivers for all PCI-X and PCIe compliant devices must call
pci_set_dma_mask() as they are 64-bit DMA devices.
dma_set_mask() as they are 64-bit DMA devices.
Similarly, drivers must also "register" this capability if the device
can directly address "consistent memory" in System RAM above 4G physical
address by calling pci_set_consistent_dma_mask().
can directly address "coherent memory" in System RAM above 4G physical
address by calling dma_set_coherent_mask().
Again, this includes drivers for all PCI-X and PCIe compliant devices.
Many 64-bit "PCI" devices (before PCI-X) and some PCI-X devices are
64-bit DMA capable for payload ("streaming") data but not control
("consistent") data.
("coherent") data.
Setup shared control data
-------------------------
Once the DMA masks are set, the driver can allocate "consistent" (a.k.a. shared)
Once the DMA masks are set, the driver can allocate "coherent" (a.k.a. shared)
memory. See Documentation/core-api/dma-api.rst for a full description of
the DMA APIs. This section is just a reminder that it needs to be done
before enabling DMA on the device.
@ -367,7 +367,7 @@ steps need to be performed:
- Disable the device from generating IRQs
- Release the IRQ (free_irq())
- Stop all DMA activity
- Release DMA buffers (both streaming and consistent)
- Release DMA buffers (both streaming and coherent)
- Unregister from other subsystems (e.g. scsi or netdev)
- Disable device from responding to MMIO/IO Port addresses
- Release MMIO/IO Port resource(s)
@ -420,7 +420,7 @@ Once DMA is stopped, clean up streaming DMA first.
I.e. unmap data buffers and return buffers to "upstream"
owners if there is one.
Then clean up "consistent" buffers which contain the control data.
Then clean up "coherent" buffers which contain the control data.
See Documentation/core-api/dma-api.rst for details on unmapping interfaces.

View file

@ -973,7 +973,7 @@ The ``->dynticks`` field counts the corresponding CPU's transitions to
and from either dyntick-idle or user mode, so that this counter has an
even value when the CPU is in dyntick-idle mode or user mode and an odd
value otherwise. The transitions to/from user mode need to be counted
for user mode adaptive-ticks support (see timers/NO_HZ.txt).
for user mode adaptive-ticks support (see Documentation/timers/no_hz.rst).
The ``->rcu_need_heavy_qs`` field is used to record the fact that the
RCU core code would really like to see a quiescent state from the

View file

@ -406,7 +406,7 @@ In earlier implementations, the task requesting the expedited grace
period also drove it to completion. This straightforward approach had
the disadvantage of needing to account for POSIX signals sent to user
tasks, so more recent implemementations use the Linux kernel's
`workqueues <https://www.kernel.org/doc/Documentation/core-api/workqueue.rst>`__.
workqueues (see Documentation/core-api/workqueue.rst).
The requesting task still does counter snapshotting and funnel-lock
processing, but the task reaching the top of the funnel lock does a

View file

@ -370,8 +370,8 @@ pointer fetched by rcu_dereference() may not be used outside of the
outermost RCU read-side critical section containing that
rcu_dereference(), unless protection of the corresponding data
element has been passed from RCU to some other synchronization
mechanism, most commonly locking or `reference
counting <https://www.kernel.org/doc/Documentation/RCU/rcuref.txt>`__.
mechanism, most commonly locking or reference counting
(see ../../rcuref.rst).
.. |high-quality implementation of C11 memory_order_consume [PDF]| replace:: high-quality implementation of C11 ``memory_order_consume`` [PDF]
.. _high-quality implementation of C11 memory_order_consume [PDF]: http://www.rdrop.com/users/paulmck/RCU/consume.2015.07.13a.pdf
@ -2654,6 +2654,38 @@ synchronize_rcu(), and rcu_barrier(), respectively. In
three APIs are therefore implemented by separate functions that check
for voluntary context switches.
Tasks Rude RCU
~~~~~~~~~~~~~~
Some forms of tracing need to wait for all preemption-disabled regions
of code running on any online CPU, including those executed when RCU is
not watching. This means that synchronize_rcu() is insufficient, and
Tasks Rude RCU must be used instead. This flavor of RCU does its work by
forcing a workqueue to be scheduled on each online CPU, hence the "Rude"
moniker. And this operation is considered to be quite rude by real-time
workloads that don't want their ``nohz_full`` CPUs receiving IPIs and
by battery-powered systems that don't want their idle CPUs to be awakened.
The tasks-rude-RCU API is also reader-marking-free and thus quite compact,
consisting of call_rcu_tasks_rude(), synchronize_rcu_tasks_rude(),
and rcu_barrier_tasks_rude().
Tasks Trace RCU
~~~~~~~~~~~~~~~
Some forms of tracing need to sleep in readers, but cannot tolerate
SRCU's read-side overhead, which includes a full memory barrier in both
srcu_read_lock() and srcu_read_unlock(). This need is handled by a
Tasks Trace RCU that uses scheduler locking and IPIs to synchronize with
readers. Real-time systems that cannot tolerate IPIs may build their
kernels with ``CONFIG_TASKS_TRACE_RCU_READ_MB=y``, which avoids the IPIs at
the expense of adding full memory barriers to the read-side primitives.
The tasks-trace-RCU API is also reasonably compact,
consisting of rcu_read_lock_trace(), rcu_read_unlock_trace(),
rcu_read_lock_trace_held(), call_rcu_tasks_trace(),
synchronize_rcu_tasks_trace(), and rcu_barrier_tasks_trace().
Possible Future Changes
-----------------------

View file

@ -33,8 +33,8 @@ Situation 1: Hash Tables
Hash tables are often implemented as an array, where each array entry
has a linked-list hash chain. Each hash chain can be protected by RCU
as described in the listRCU.txt document. This approach also applies
to other array-of-list situations, such as radix trees.
as described in listRCU.rst. This approach also applies to other
array-of-list situations, such as radix trees.
.. _static_arrays:

View file

@ -140,8 +140,7 @@ over a rather long period of time, but improvements are always welcome!
prevents destructive compiler optimizations. However,
with a bit of devious creativity, it is possible to
mishandle the return value from rcu_dereference().
Please see rcu_dereference.txt in this directory for
more information.
Please see rcu_dereference.rst for more information.
The rcu_dereference() primitive is used by the
various "_rcu()" list-traversal primitives, such
@ -151,7 +150,7 @@ over a rather long period of time, but improvements are always welcome!
primitives. This is particularly useful in code that
is common to readers and updaters. However, lockdep
will complain if you access rcu_dereference() outside
of an RCU read-side critical section. See lockdep.txt
of an RCU read-side critical section. See lockdep.rst
to learn what to do about this.
Of course, neither rcu_dereference() nor the "_rcu()"
@ -323,7 +322,7 @@ over a rather long period of time, but improvements are always welcome!
primitives when the update-side lock is held is that doing so
can be quite helpful in reducing code bloat when common code is
shared between readers and updaters. Additional primitives
are provided for this case, as discussed in lockdep.txt.
are provided for this case, as discussed in lockdep.rst.
One exception to this rule is when data is only ever added to
the linked data structure, and is never removed during any
@ -480,4 +479,4 @@ over a rather long period of time, but improvements are always welcome!
both rcu_barrier() and synchronize_rcu(), if necessary, using
something like workqueues to to execute them concurrently.
See rcubarrier.txt for more information.
See rcubarrier.rst for more information.

View file

@ -10,9 +10,8 @@ A "grace period" must elapse between the two parts, and this grace period
must be long enough that any readers accessing the item being deleted have
since dropped their references. For example, an RCU-protected deletion
from a linked list would first remove the item from the list, wait for
a grace period to elapse, then free the element. See the
:ref:`Documentation/RCU/listRCU.rst <list_rcu_doc>` for more information on
using RCU with linked lists.
a grace period to elapse, then free the element. See listRCU.rst for more
information on using RCU with linked lists.
Frequently Asked Questions
--------------------------
@ -50,7 +49,7 @@ Frequently Asked Questions
- If I am running on a uniprocessor kernel, which can only do one
thing at a time, why should I wait for a grace period?
See :ref:`Documentation/RCU/UP.rst <up_doc>` for more information.
See UP.rst for more information.
- How can I see where RCU is currently used in the Linux kernel?
@ -64,13 +63,13 @@ Frequently Asked Questions
- What guidelines should I follow when writing code that uses RCU?
See the checklist.txt file in this directory.
See checklist.rst.
- Why the name "RCU"?
"RCU" stands for "read-copy update".
:ref:`Documentation/RCU/listRCU.rst <list_rcu_doc>` has more information on where
this name came from, search for "read-copy update" to find it.
listRCU.rst has more information on where this name came from, search
for "read-copy update" to find it.
- I hear that RCU is patented? What is with that?

View file

@ -8,7 +8,7 @@ This section describes how to use hlist_nulls to
protect read-mostly linked lists and
objects using SLAB_TYPESAFE_BY_RCU allocations.
Please read the basics in Documentation/RCU/listRCU.rst
Please read the basics in listRCU.rst.
Using 'nulls'
=============

View file

@ -162,6 +162,26 @@ CONFIG_RCU_CPU_STALL_TIMEOUT
Stall-warning messages may be enabled and disabled completely via
/sys/module/rcupdate/parameters/rcu_cpu_stall_suppress.
CONFIG_RCU_EXP_CPU_STALL_TIMEOUT
--------------------------------
Same as the CONFIG_RCU_CPU_STALL_TIMEOUT parameter but only for
the expedited grace period. This parameter defines the period
of time that RCU will wait from the beginning of an expedited
grace period until it issues an RCU CPU stall warning. This time
period is normally 20 milliseconds on Android devices. A zero
value causes the CONFIG_RCU_CPU_STALL_TIMEOUT value to be used,
after conversion to milliseconds.
This configuration parameter may be changed at runtime via the
/sys/module/rcupdate/parameters/rcu_exp_cpu_stall_timeout, however
this parameter is checked only at the beginning of a cycle. If you
are in a current stall cycle, setting it to a new value will change
the timeout for the -next- stall.
Stall-warning messages may be enabled and disabled completely via
/sys/module/rcupdate/parameters/rcu_cpu_stall_suppress.
RCU_STALL_DELAY_DELTA
---------------------

View file

@ -224,7 +224,7 @@ synchronize_rcu()
be delayed. This property results in system resilience in face
of denial-of-service attacks. Code using call_rcu() should limit
update rate in order to gain this same sort of resilience. See
checklist.txt for some approaches to limiting the update rate.
checklist.rst for some approaches to limiting the update rate.
rcu_assign_pointer()
^^^^^^^^^^^^^^^^^^^^
@ -318,7 +318,7 @@ rcu_dereference()
must prohibit. The rcu_dereference_protected() variant takes
a lockdep expression to indicate which locks must be acquired
by the caller. If the indicated protection is not provided,
a lockdep splat is emitted. See Documentation/RCU/Design/Requirements/Requirements.rst
a lockdep splat is emitted. See Design/Requirements/Requirements.rst
and the API's code comments for more details and example usage.
.. [2] If the list_for_each_entry_rcu() instance might be used by
@ -399,8 +399,7 @@ for specialized uses, but are relatively uncommon.
This section shows a simple use of the core RCU API to protect a
global pointer to a dynamically allocated structure. More-typical
uses of RCU may be found in :ref:`listRCU.rst <list_rcu_doc>`,
:ref:`arrayRCU.rst <array_rcu_doc>`, and :ref:`NMI-RCU.rst <NMI_rcu_doc>`.
uses of RCU may be found in listRCU.rst, arrayRCU.rst, and NMI-RCU.rst.
::
struct foo {
@ -482,10 +481,9 @@ So, to sum up:
RCU read-side critical sections that might be referencing that
data item.
See checklist.txt for additional rules to follow when using RCU.
And again, more-typical uses of RCU may be found in :ref:`listRCU.rst
<list_rcu_doc>`, :ref:`arrayRCU.rst <array_rcu_doc>`, and :ref:`NMI-RCU.rst
<NMI_rcu_doc>`.
See checklist.rst for additional rules to follow when using RCU.
And again, more-typical uses of RCU may be found in listRCU.rst,
arrayRCU.rst, and NMI-RCU.rst.
.. _4_whatisRCU:
@ -579,7 +577,7 @@ to avoid having to write your own callback::
kfree_rcu(old_fp, rcu);
Again, see checklist.txt for additional rules governing the use of RCU.
Again, see checklist.rst for additional rules governing the use of RCU.
.. _5_whatisRCU:
@ -663,7 +661,7 @@ been able to write-acquire the lock otherwise. The smp_mb__after_spinlock()
promotes synchronize_rcu() to a full memory barrier in compliance with
the "Memory-Barrier Guarantees" listed in:
Documentation/RCU/Design/Requirements/Requirements.rst
Design/Requirements/Requirements.rst
It is possible to nest rcu_read_lock(), since reader-writer locks may
be recursively acquired. Note also that rcu_read_lock() is immune

View file

@ -15,6 +15,7 @@ c) swapping in pages
d) memory reclaim
e) thrashing page cache
f) direct compact
g) write-protect copy
and makes these statistics available to userspace through
the taskstats interface.
@ -48,7 +49,7 @@ this structure. See
for a description of the fields pertaining to delay accounting.
It will generally be in the form of counters returning the cumulative
delay seen for cpu, sync block I/O, swapin, memory reclaim, thrash page
cache, direct compact etc.
cache, direct compact, write-protect copy etc.
Taking the difference of two successive readings of a given
counter (say cpu_delay_total) for a task will give the delay
@ -117,6 +118,8 @@ Get sum of delays, since system boot, for all pids with tgid 5::
0 0 0ms
COMPACT count delay total delay average
0 0 0ms
WPCOPY count delay total delay average
0 0 0ms
Get IO accounting for pid 1, it works only with -p::

View file

@ -37,11 +37,7 @@ Pressure interface
Pressure information for each resource is exported through the
respective file in /proc/pressure/ -- cpu, memory, and io.
The format for CPU is as such::
some avg10=0.00 avg60=0.00 avg300=0.00 total=0
and for memory and IO::
The format is as such::
some avg10=0.00 avg60=0.00 avg300=0.00 total=0
full avg10=0.00 avg60=0.00 avg300=0.00 total=0
@ -58,6 +54,9 @@ situation from a state where some tasks are stalled but the CPU is
still doing productive work. As such, time spent in this subset of the
stall state is tracked separately and exported in the "full" averages.
CPU full is undefined at the system level, but has been reported
since 5.13, so it is set to zero for backward compatibility.
The ratios (in %) are tracked as recent trends over ten, sixty, and
three hundred second windows, which gives insight into short term events
as well as medium and long term trends. The total absolute stall time

View file

@ -60,3 +60,31 @@ For example::
When a given field is not populated or its value provided by the platform
firmware is invalid, the "not-defined" string is shown instead of the value.
ACPI Fan Fine Grain Control
=============================
When _FIF object specifies support for fine grain control, then fan speed
can be set from 0 to 100% with the recommended minimum "step size" via
_FSL object. User can adjust fan speed using thermal sysfs cooling device.
Here use can look at fan performance states for a reference speed (speed_rpm)
and set it by changing cooling device cur_state. If the fine grain control
is supported then user can also adjust to some other speeds which are
not defined in the performance states.
The support of fine grain control is presented via sysfs attribute
"fine_grain_control". If fine grain control is present, this attribute
will show "1" otherwise "0".
This sysfs attribute is presented in the same directory as performance states.
ACPI Fan Performance Feedback
=============================
The optional _FST object provides status information for the fan device.
This includes field to provide current fan speed in revolutions per minute
at which the fan is rotating.
This speed is presented in the sysfs using the attribute "fan_speed_rpm",
in the same directory as performance states.

View file

@ -1,8 +1,8 @@
.. SPDX-License-Identifier: GPL-2.0
===========================
The Linux RapidIO Subsystem
===========================
=============
Block Devices
=============
.. toctree::
:maxdepth: 1

View file

@ -315,8 +315,8 @@ To use the feature, admin should set up backing device via::
echo /dev/sda5 > /sys/block/zramX/backing_dev
before disksize setting. It supports only partition at this moment.
If admin wants to use incompressible page writeback, they could do via::
before disksize setting. It supports only partitions at this moment.
If admin wants to use incompressible page writeback, they could do it via::
echo huge > /sys/block/zramX/writeback
@ -341,9 +341,14 @@ Admin can request writeback of those idle pages at right timing via::
echo idle > /sys/block/zramX/writeback
With the command, zram writeback idle pages from memory to the storage.
With the command, zram will writeback idle pages from memory to the storage.
If admin want to write a specific page in zram device to backing device,
Additionally, if a user choose to writeback only huge and idle pages
this can be accomplished with::
echo huge_idle > /sys/block/zramX/writeback
If an admin wants to write a specific page in zram device to the backing device,
they could write a page index into the interface.
echo "page_index=1251" > /sys/block/zramX/writeback
@ -354,7 +359,7 @@ to guarantee storage health for entire product life.
To overcome the concern, zram supports "writeback_limit" feature.
The "writeback_limit_enable"'s default value is 0 so that it doesn't limit
any writeback. IOW, if admin wants to apply writeback budget, he should
any writeback. IOW, if admin wants to apply writeback budget, they should
enable writeback_limit_enable via::
$ echo 1 > /sys/block/zramX/writeback_limit_enable
@ -365,7 +370,7 @@ until admin sets the budget via /sys/block/zramX/writeback_limit.
(If admin doesn't enable writeback_limit_enable, writeback_limit's value
assigned via /sys/block/zramX/writeback_limit is meaningless.)
If admin want to limit writeback as per-day 400M, he could do it
If admin wants to limit writeback as per-day 400M, they could do it
like below::
$ MB_SHIFT=20
@ -375,16 +380,16 @@ like below::
$ echo 1 > /sys/block/zram0/writeback_limit_enable
If admins want to allow further write again once the budget is exhausted,
he could do it like below::
they could do it like below::
$ echo $((400<<MB_SHIFT>>4K_SHIFT)) > \
/sys/block/zram0/writeback_limit
If admin wants to see remaining writeback budget since last set::
If an admin wants to see the remaining writeback budget since last set::
$ cat /sys/block/zramX/writeback_limit
If admin want to disable writeback limit, he could do::
If an admin wants to disable writeback limit, they could do::
$ echo 0 > /sys/block/zramX/writeback_limit_enable
@ -393,7 +398,7 @@ system reboot, echo 1 > /sys/block/zramX/reset) so keeping how many of
writeback happened until you reset the zram to allocate extra writeback
budget in next setting is user's job.
If admin wants to measure writeback count in a certain period, he could
If admin wants to measure writeback count in a certain period, they could
know it via /sys/block/zram0/bd_stat's 3rd column.
memory tracking

View file

@ -158,9 +158,15 @@ Each key-value pair is shown in each line with following style::
Boot Kernel With a Boot Config
==============================
Since the boot configuration file is loaded with initrd, it will be added
to the end of the initrd (initramfs) image file with padding, size,
checksum and 12-byte magic word as below.
There are two options to boot the kernel with bootconfig: attaching the
bootconfig to the initrd image or embedding it in the kernel itself.
Attaching a Boot Config to Initrd
---------------------------------
Since the boot configuration file is loaded with initrd by default,
it will be added to the end of the initrd (initramfs) image file with
padding, size, checksum and 12-byte magic word as below.
[initrd][bootconfig][padding][size(le32)][checksum(le32)][#BOOTCONFIG\n]
@ -196,6 +202,25 @@ To remove the config from the image, you can use -d option as below::
Then add "bootconfig" on the normal kernel command line to tell the
kernel to look for the bootconfig at the end of the initrd file.
Embedding a Boot Config into Kernel
-----------------------------------
If you can not use initrd, you can also embed the bootconfig file in the
kernel by Kconfig options. In this case, you need to recompile the kernel
with the following configs::
CONFIG_BOOT_CONFIG_EMBED=y
CONFIG_BOOT_CONFIG_EMBED_FILE="/PATH/TO/BOOTCONFIG/FILE"
``CONFIG_BOOT_CONFIG_EMBED_FILE`` requires an absolute path or a relative
path to the bootconfig file from source tree or object tree.
The kernel will embed it as the default bootconfig.
Just as when attaching the bootconfig to the initrd, you need ``bootconfig``
option on the kernel command line to enable the embedded bootconfig.
Note that even if you set this option, you can override the embedded
bootconfig by another bootconfig which attached to the initrd.
Kernel parameters via Boot Config
=================================

View file

@ -64,6 +64,7 @@ Brief summary of control files.
threads
cgroup.procs show list of processes
cgroup.event_control an interface for event_fd()
This knob is not available on CONFIG_PREEMPT_RT systems.
memory.usage_in_bytes show current usage for memory
(See 5.5 for details)
memory.memsw.usage_in_bytes show current usage for memory+Swap
@ -75,6 +76,7 @@ Brief summary of control files.
memory.max_usage_in_bytes show max memory usage recorded
memory.memsw.max_usage_in_bytes show max memory+Swap usage recorded
memory.soft_limit_in_bytes set/show soft limit of memory usage
This knob is not available on CONFIG_PREEMPT_RT systems.
memory.stat show various statistics
memory.use_hierarchy set/show hierarchical account enabled
This knob is deprecated and shouldn't be

View file

@ -1208,6 +1208,34 @@ PAGE_SIZE multiple when read back.
high limit is used and monitored properly, this limit's
utility is limited to providing the final safety net.
memory.reclaim
A write-only nested-keyed file which exists for all cgroups.
This is a simple interface to trigger memory reclaim in the
target cgroup.
This file accepts a single key, the number of bytes to reclaim.
No nested keys are currently supported.
Example::
echo "1G" > memory.reclaim
The interface can be later extended with nested keys to
configure the reclaim behavior. For example, specify the
type of memory to reclaim from (anon, file, ..).
Please note that the kernel can over or under reclaim from
the target cgroup. If less bytes are reclaimed than the
specified amount, -EAGAIN is returned.
memory.peak
A read-only single value file which exists on non-root
cgroups.
The max memory usage recorded for the cgroup and its
descendants since the creation of the cgroup.
memory.oom.group
A read-write single value file which exists on non-root
cgroups. The default value is "0".
@ -1301,6 +1329,11 @@ PAGE_SIZE multiple when read back.
Amount of memory used to cache filesystem data,
including tmpfs and shared memory.
kernel (npn)
Amount of total kernel memory, including
(kernel_stack, pagetables, percpu, vmalloc, slab) in
addition to other kernel memory use cases.
kernel_stack
Amount of memory allocated to kernel stacks.
@ -1321,6 +1354,12 @@ PAGE_SIZE multiple when read back.
Amount of cached filesystem data that is swap-backed,
such as tmpfs, shm segments, shared anonymous mmap()s
zswap
Amount of memory consumed by the zswap compression backend.
zswapped
Amount of application memory swapped out to zswap.
file_mapped
Amount of cached filesystem data mapped with mmap()
@ -1511,6 +1550,21 @@ PAGE_SIZE multiple when read back.
higher than the limit for an extended period of time. This
reduces the impact on the workload and memory management.
memory.zswap.current
A read-only single value file which exists on non-root
cgroups.
The total amount of memory consumed by the zswap compression
backend.
memory.zswap.max
A read-write single value file which exists on non-root
cgroups. The default is "max".
Zswap usage hard limit. If a cgroup's zswap pool reaches this
limit, it will refuse to take any more stores before existing
entries fault back in or are written out to disk.
memory.pressure
A read-only nested-keyed file.
@ -1876,7 +1930,7 @@ IO Latency Interface Files
io.latency
This takes a similar format as the other controllers.
"MAJOR:MINOR target=<target time in microseconds"
"MAJOR:MINOR target=<target time in microseconds>"
io.stat
If the controller is enabled you will see extra stats in io.stat in

View file

@ -1933,7 +1933,7 @@
...
255= /dev/umem/d15p15 15th partition of 16th board.
117 char COSA/SRP synchronous serial card
117 char [REMOVED] COSA/SRP synchronous serial card
0 = /dev/cosa0c0 1st board, 1st channel
1 = /dev/cosa0c1 1st board, 2nd channel
...

View file

@ -17,3 +17,4 @@ are configurable at compile, boot or run time.
special-register-buffer-data-sampling.rst
core-scheduling.rst
l1d_flush.rst
processor_mmio_stale_data.rst

View file

@ -0,0 +1,246 @@
=========================================
Processor MMIO Stale Data Vulnerabilities
=========================================
Processor MMIO Stale Data Vulnerabilities are a class of memory-mapped I/O
(MMIO) vulnerabilities that can expose data. The sequences of operations for
exposing data range from simple to very complex. Because most of the
vulnerabilities require the attacker to have access to MMIO, many environments
are not affected. System environments using virtualization where MMIO access is
provided to untrusted guests may need mitigation. These vulnerabilities are
not transient execution attacks. However, these vulnerabilities may propagate
stale data into core fill buffers where the data can subsequently be inferred
by an unmitigated transient execution attack. Mitigation for these
vulnerabilities includes a combination of microcode update and software
changes, depending on the platform and usage model. Some of these mitigations
are similar to those used to mitigate Microarchitectural Data Sampling (MDS) or
those used to mitigate Special Register Buffer Data Sampling (SRBDS).
Data Propagators
================
Propagators are operations that result in stale data being copied or moved from
one microarchitectural buffer or register to another. Processor MMIO Stale Data
Vulnerabilities are operations that may result in stale data being directly
read into an architectural, software-visible state or sampled from a buffer or
register.
Fill Buffer Stale Data Propagator (FBSDP)
-----------------------------------------
Stale data may propagate from fill buffers (FB) into the non-coherent portion
of the uncore on some non-coherent writes. Fill buffer propagation by itself
does not make stale data architecturally visible. Stale data must be propagated
to a location where it is subject to reading or sampling.
Sideband Stale Data Propagator (SSDP)
-------------------------------------
The sideband stale data propagator (SSDP) is limited to the client (including
Intel Xeon server E3) uncore implementation. The sideband response buffer is
shared by all client cores. For non-coherent reads that go to sideband
destinations, the uncore logic returns 64 bytes of data to the core, including
both requested data and unrequested stale data, from a transaction buffer and
the sideband response buffer. As a result, stale data from the sideband
response and transaction buffers may now reside in a core fill buffer.
Primary Stale Data Propagator (PSDP)
------------------------------------
The primary stale data propagator (PSDP) is limited to the client (including
Intel Xeon server E3) uncore implementation. Similar to the sideband response
buffer, the primary response buffer is shared by all client cores. For some
processors, MMIO primary reads will return 64 bytes of data to the core fill
buffer including both requested data and unrequested stale data. This is
similar to the sideband stale data propagator.
Vulnerabilities
===============
Device Register Partial Write (DRPW) (CVE-2022-21166)
-----------------------------------------------------
Some endpoint MMIO registers incorrectly handle writes that are smaller than
the register size. Instead of aborting the write or only copying the correct
subset of bytes (for example, 2 bytes for a 2-byte write), more bytes than
specified by the write transaction may be written to the register. On
processors affected by FBSDP, this may expose stale data from the fill buffers
of the core that created the write transaction.
Shared Buffers Data Sampling (SBDS) (CVE-2022-21125)
----------------------------------------------------
After propagators may have moved data around the uncore and copied stale data
into client core fill buffers, processors affected by MFBDS can leak data from
the fill buffer. It is limited to the client (including Intel Xeon server E3)
uncore implementation.
Shared Buffers Data Read (SBDR) (CVE-2022-21123)
------------------------------------------------
It is similar to Shared Buffer Data Sampling (SBDS) except that the data is
directly read into the architectural software-visible state. It is limited to
the client (including Intel Xeon server E3) uncore implementation.
Affected Processors
===================
Not all the CPUs are affected by all the variants. For instance, most
processors for the server market (excluding Intel Xeon E3 processors) are
impacted by only Device Register Partial Write (DRPW).
Below is the list of affected Intel processors [#f1]_:
=================== ============ =========
Common name Family_Model Steppings
=================== ============ =========
HASWELL_X 06_3FH 2,4
SKYLAKE_L 06_4EH 3
BROADWELL_X 06_4FH All
SKYLAKE_X 06_55H 3,4,6,7,11
BROADWELL_D 06_56H 3,4,5
SKYLAKE 06_5EH 3
ICELAKE_X 06_6AH 4,5,6
ICELAKE_D 06_6CH 1
ICELAKE_L 06_7EH 5
ATOM_TREMONT_D 06_86H All
LAKEFIELD 06_8AH 1
KABYLAKE_L 06_8EH 9 to 12
ATOM_TREMONT 06_96H 1
ATOM_TREMONT_L 06_9CH 0
KABYLAKE 06_9EH 9 to 13
COMETLAKE 06_A5H 2,3,5
COMETLAKE_L 06_A6H 0,1
ROCKETLAKE 06_A7H 1
=================== ============ =========
If a CPU is in the affected processor list, but not affected by a variant, it
is indicated by new bits in MSR IA32_ARCH_CAPABILITIES. As described in a later
section, mitigation largely remains the same for all the variants, i.e. to
clear the CPU fill buffers via VERW instruction.
New bits in MSRs
================
Newer processors and microcode update on existing affected processors added new
bits to IA32_ARCH_CAPABILITIES MSR. These bits can be used to enumerate
specific variants of Processor MMIO Stale Data vulnerabilities and mitigation
capability.
MSR IA32_ARCH_CAPABILITIES
--------------------------
Bit 13 - SBDR_SSDP_NO - When set, processor is not affected by either the
Shared Buffers Data Read (SBDR) vulnerability or the sideband stale
data propagator (SSDP).
Bit 14 - FBSDP_NO - When set, processor is not affected by the Fill Buffer
Stale Data Propagator (FBSDP).
Bit 15 - PSDP_NO - When set, processor is not affected by Primary Stale Data
Propagator (PSDP).
Bit 17 - FB_CLEAR - When set, VERW instruction will overwrite CPU fill buffer
values as part of MD_CLEAR operations. Processors that do not
enumerate MDS_NO (meaning they are affected by MDS) but that do
enumerate support for both L1D_FLUSH and MD_CLEAR implicitly enumerate
FB_CLEAR as part of their MD_CLEAR support.
Bit 18 - FB_CLEAR_CTRL - Processor supports read and write to MSR
IA32_MCU_OPT_CTRL[FB_CLEAR_DIS]. On such processors, the FB_CLEAR_DIS
bit can be set to cause the VERW instruction to not perform the
FB_CLEAR action. Not all processors that support FB_CLEAR will support
FB_CLEAR_CTRL.
MSR IA32_MCU_OPT_CTRL
---------------------
Bit 3 - FB_CLEAR_DIS - When set, VERW instruction does not perform the FB_CLEAR
action. This may be useful to reduce the performance impact of FB_CLEAR in
cases where system software deems it warranted (for example, when performance
is more critical, or the untrusted software has no MMIO access). Note that
FB_CLEAR_DIS has no impact on enumeration (for example, it does not change
FB_CLEAR or MD_CLEAR enumeration) and it may not be supported on all processors
that enumerate FB_CLEAR.
Mitigation
==========
Like MDS, all variants of Processor MMIO Stale Data vulnerabilities have the
same mitigation strategy to force the CPU to clear the affected buffers before
an attacker can extract the secrets.
This is achieved by using the otherwise unused and obsolete VERW instruction in
combination with a microcode update. The microcode clears the affected CPU
buffers when the VERW instruction is executed.
Kernel reuses the MDS function to invoke the buffer clearing:
mds_clear_cpu_buffers()
On MDS affected CPUs, the kernel already invokes CPU buffer clear on
kernel/userspace, hypervisor/guest and C-state (idle) transitions. No
additional mitigation is needed on such CPUs.
For CPUs not affected by MDS or TAA, mitigation is needed only for the attacker
with MMIO capability. Therefore, VERW is not required for kernel/userspace. For
virtualization case, VERW is only needed at VMENTER for a guest with MMIO
capability.
Mitigation points
-----------------
Return to user space
^^^^^^^^^^^^^^^^^^^^
Same mitigation as MDS when affected by MDS/TAA, otherwise no mitigation
needed.
C-State transition
^^^^^^^^^^^^^^^^^^
Control register writes by CPU during C-state transition can propagate data
from fill buffer to uncore buffers. Execute VERW before C-state transition to
clear CPU fill buffers.
Guest entry point
^^^^^^^^^^^^^^^^^
Same mitigation as MDS when processor is also affected by MDS/TAA, otherwise
execute VERW at VMENTER only for MMIO capable guests. On CPUs not affected by
MDS/TAA, guest without MMIO access cannot extract secrets using Processor MMIO
Stale Data vulnerabilities, so there is no need to execute VERW for such guests.
Mitigation control on the kernel command line
---------------------------------------------
The kernel command line allows to control the Processor MMIO Stale Data
mitigations at boot time with the option "mmio_stale_data=". The valid
arguments for this option are:
========== =================================================================
full If the CPU is vulnerable, enable mitigation; CPU buffer clearing
on exit to userspace and when entering a VM. Idle transitions are
protected as well. It does not automatically disable SMT.
full,nosmt Same as full, with SMT disabled on vulnerable CPUs. This is the
complete mitigation.
off Disables mitigation completely.
========== =================================================================
If the CPU is affected and mmio_stale_data=off is not supplied on the kernel
command line, then the kernel selects the appropriate mitigation.
Mitigation status information
-----------------------------
The Linux kernel provides a sysfs interface to enumerate the current
vulnerability status of the system: whether the system is vulnerable, and
which mitigations are active. The relevant sysfs file is:
/sys/devices/system/cpu/vulnerabilities/mmio_stale_data
The possible values in this file are:
.. list-table::
* - 'Not affected'
- The processor is not vulnerable
* - 'Vulnerable'
- The processor is vulnerable, but no mitigation enabled
* - 'Vulnerable: Clear CPU buffers attempted, no microcode'
- The processor is vulnerable, but microcode is not updated. The
mitigation is enabled on a best effort basis.
* - 'Mitigation: Clear CPU buffers'
- The processor is vulnerable and the CPU buffer clearing mitigation is
enabled.
If the processor is vulnerable then the following information is appended to
the above information:
======================== ===========================================
'SMT vulnerable' SMT is enabled
'SMT disabled' SMT is disabled
'SMT Host state unknown' Kernel runs in a VM, Host SMT state unknown
======================== ===========================================
References
----------
.. [#f1] Affected Processors
https://www.intel.com/content/www/us/en/developer/topic-technology/software-security-guidance/processors-affected-consolidated-product-cpu-model.html

View file

@ -35,6 +35,7 @@ problems and bugs in particular.
:maxdepth: 1
reporting-issues
reporting-regressions
security-bugs
bug-hunting
bug-bisect

View file

@ -76,7 +76,7 @@ Field 3 -- # of sectors read (unsigned long)
Field 4 -- # of milliseconds spent reading (unsigned int)
This is the total number of milliseconds spent by all reads (as
measured from __make_request() to end_that_request_last()).
measured from blk_mq_alloc_request() to __blk_mq_end_request()).
Field 5 -- # of writes completed (unsigned long)
This is the total number of writes completed successfully.
@ -89,7 +89,7 @@ Field 7 -- # of sectors written (unsigned long)
Field 8 -- # of milliseconds spent writing (unsigned int)
This is the total number of milliseconds spent by all writes (as
measured from __make_request() to end_that_request_last()).
measured from blk_mq_alloc_request() to __blk_mq_end_request()).
Field 9 -- # of I/Os currently in progress (unsigned int)
The only field that should go to zero. Incremented as requests are
@ -120,7 +120,7 @@ Field 14 -- # of sectors discarded (unsigned long)
Field 15 -- # of milliseconds spent discarding (unsigned int)
This is the total number of milliseconds spent by all discards (as
measured from __make_request() to end_that_request_last()).
measured from blk_mq_alloc_request() to __blk_mq_end_request()).
Field 16 -- # of flush requests completed
This is the total number of flush requests completed successfully.

View file

@ -146,9 +146,9 @@ System kernel config options
CONFIG_SYSFS=y
Note that "sysfs file system support" might not appear in the "Pseudo
filesystems" menu if "Configure standard kernel features (for small
systems)" is not enabled in "General Setup." In this case, check the
.config file itself to ensure that sysfs is turned on, as follows::
filesystems" menu if "Configure standard kernel features (expert users)"
is not enabled in "General Setup." In this case, check the .config file
itself to ensure that sysfs is turned on, as follows::
grep 'CONFIG_SYSFS' .config
@ -533,6 +533,10 @@ the following command::
cp /proc/vmcore <dump-file>
or use scp to write out the dump file between hosts on a network, e.g::
scp /proc/vmcore remote_username@remote_ip:<dump-file>
You can also use makedumpfile utility to write out the dump file
with specified options to filter out unwanted contents, e.g::

View file

@ -494,6 +494,14 @@ architecture which is used to lookup the page-tables for the Virtual
addresses in the higher VA range (refer to ARMv8 ARM document for
more details).
MODULES_VADDR|MODULES_END|VMALLOC_START|VMALLOC_END|VMEMMAP_START|VMEMMAP_END
-----------------------------------------------------------------------------
Used to get the correct ranges:
MODULES_VADDR ~ MODULES_END-1 : Kernel module space.
VMALLOC_START ~ VMALLOC_END-1 : vmalloc() / ioremap() space.
VMEMMAP_START ~ VMEMMAP_END-1 : vmemmap region, used for struct page array.
arm
===

View file

@ -99,6 +99,7 @@ parameter is applicable::
ALSA ALSA sound support is enabled.
APIC APIC support is enabled.
APM Advanced Power Management support is enabled.
APPARMOR AppArmor support is enabled.
ARM ARM architecture is enabled.
ARM64 ARM64 architecture is enabled.
AX25 Appropriate AX.25 support is enabled.
@ -108,15 +109,15 @@ parameter is applicable::
DYNAMIC_DEBUG Build in debug messages and enable them at runtime
EDD BIOS Enhanced Disk Drive Services (EDD) is enabled
EFI EFI Partitioning (GPT) is enabled
EIDE EIDE/ATAPI support is enabled.
EVM Extended Verification Module
FB The frame buffer device is enabled.
FTRACE Function tracing enabled.
GCOV GCOV profiling is enabled.
HIBERNATION HIBERNATION is enabled.
HW Appropriate hardware is enabled.
HYPER_V HYPERV support is enabled.
IA-64 IA-64 architecture is enabled.
IMA Integrity measurement architecture is enabled.
IOSCHED More than one I/O scheduler is enabled.
IP_PNP IP DHCP, BOOTP, or RARP is enabled.
IPV6 IPv6 support is enabled.
ISAPNP ISA PnP code is enabled.
@ -140,7 +141,6 @@ parameter is applicable::
NUMA NUMA support is enabled.
NFS Appropriate NFS support is enabled.
OF Devicetree is enabled.
OSS OSS sound support is enabled.
PV_OPS A paravirtualized kernel is enabled.
PARIDE The ParIDE (parallel port IDE) subsystem is enabled.
PARISC The PA-RISC architecture is enabled.
@ -160,7 +160,6 @@ parameter is applicable::
the Documentation/scsi/ sub-directory.
SECURITY Different security models are enabled.
SELINUX SELinux support is enabled.
APPARMOR AppArmor support is enabled.
SERIAL Serial support is enabled.
SH SuperH architecture is enabled.
SMP The kernel is an SMP kernel.
@ -168,7 +167,6 @@ parameter is applicable::
SWSUSP Software suspend (hibernation) is enabled.
SUSPEND System suspend states are enabled.
TPM TPM drivers are enabled.
TS Appropriate touchscreen support is enabled.
UMS USB Mass Storage support is enabled.
USB USB support is enabled.
USBHID USB Human Interface Device support is enabled.
@ -177,7 +175,6 @@ parameter is applicable::
VGA The VGA console has been enabled.
VT Virtual terminal support is enabled.
WDT Watchdog support is enabled.
XT IBM PC/XT MFM hard disk support is enabled.
X86-32 X86-32, aka i386 architecture is enabled.
X86-64 X86-64 architecture is enabled.
More X86-64 boot options can be found in
@ -211,7 +208,7 @@ The number of kernel parameters is not limited, but the length of the
complete command line (parameters including spaces etc.) is limited to
a fixed number of characters. This limit depends on the architecture
and is between 256 and 4096 characters. It is defined in the file
./include/asm/setup.h as COMMAND_LINE_SIZE.
./include/uapi/asm-generic/setup.h as COMMAND_LINE_SIZE.
Finally, the [KMG] suffix is commonly described after a number of kernel
parameter values. These 'K', 'M', and 'G' letters represent the _binary_

File diff suppressed because it is too large Load diff

View file

@ -38,7 +38,7 @@ FN lock.
Battery care limit
------------------
Writing 80/100 to /sys/devices/platform/lg-laptop/battery_care_limit
Writing 80/100 to /sys/class/power_supply/CMB0/charge_control_end_threshold
sets the maximum capacity to charge the battery. Limiting the charge
reduces battery capacity loss over time.

View file

@ -14,7 +14,7 @@ data from LCD controller (FIMD) through the SoC internal writeback data
path. There are multiple FIMC instances in the SoCs (up to 4), having
slightly different capabilities, like pixel alignment constraints, rotator
availability, LCD writeback support, etc. The driver is located at
drivers/media/platform/exynos4-is directory.
drivers/media/platform/samsung/exynos4-is directory.
Supported SoCs
--------------

View file

@ -284,7 +284,7 @@ tda9887 TDA 9885/6/7 analog IF demodulator
tea5761 TEA 5761 radio tuner
tea5767 TEA 5767 radio tuner
tua9001 Infineon TUA9001 silicon tuner
tuner-xc2028 XCeive xc2028/xc3028 tuners
xc2028 XCeive xc2028/xc3028 tuners
xc4000 Xceive XC4000 silicon tuner
xc5000 Xceive XC5000 silicon tuner
============ ==================================================

View file

@ -33,7 +33,7 @@ reference manual [#f1]_.
Entities
--------
imx7-mipi-csi2
imx-mipi-csi2
--------------
This is the MIPI CSI-2 receiver entity. It has one sink pad to receive the pixel

View file

@ -17,7 +17,7 @@ Introduction
------------
This file documents the Texas Instruments OMAP 3 Image Signal Processor (ISP)
driver located under drivers/media/platform/omap3isp. The original driver was
driver located under drivers/media/platform/ti/omap3isp. The original driver was
written by Texas Instruments but since that it has been rewritten (twice) at
Nokia.

View file

@ -25,7 +25,7 @@ As of Revision AB, the ISS is described in detail in section 8.
This driver is supporting **only** the CSI2-A/B interfaces for now.
It makes use of the Media Controller framework [#f2]_, and inherited most of the
code from OMAP3 ISP driver (found under drivers/media/platform/omap3isp/\*),
code from OMAP3 ISP driver (found under drivers/media/platform/ti/omap3isp/\*),
except that it doesn't need an IOMMU now for ISS buffers memory mapping.
Supports usage of MMAP buffers only (for now).

View file

@ -9,14 +9,14 @@ digraph board {
n00000003:port0 -> n00000008:port0 [style=bold]
n00000003:port0 -> n0000000f [style=bold]
n00000005 [label="{{<port0> 0} | Debayer A\n/dev/v4l-subdev2 | {<port1> 1}}", shape=Mrecord, style=filled, fillcolor=green]
n00000005:port1 -> n00000017:port0
n00000005:port1 -> n00000015:port0
n00000008 [label="{{<port0> 0} | Debayer B\n/dev/v4l-subdev3 | {<port1> 1}}", shape=Mrecord, style=filled, fillcolor=green]
n00000008:port1 -> n00000017:port0 [style=dashed]
n00000008:port1 -> n00000015:port0 [style=dashed]
n0000000b [label="Raw Capture 0\n/dev/video0", shape=box, style=filled, fillcolor=yellow]
n0000000f [label="Raw Capture 1\n/dev/video1", shape=box, style=filled, fillcolor=yellow]
n00000013 [label="RGB/YUV Input\n/dev/video2", shape=box, style=filled, fillcolor=yellow]
n00000013 -> n00000017:port0 [style=dashed]
n00000017 [label="{{<port0> 0} | Scaler\n/dev/v4l-subdev4 | {<port1> 1}}", shape=Mrecord, style=filled, fillcolor=green]
n00000017:port1 -> n0000001a [style=bold]
n0000001a [label="RGB/YUV Capture\n/dev/video3", shape=box, style=filled, fillcolor=yellow]
n00000013 [label="{{} | RGB/YUV Input\n/dev/v4l-subdev4 | {<port0> 0}}", shape=Mrecord, style=filled, fillcolor=green]
n00000013:port0 -> n00000015:port0 [style=dashed]
n00000015 [label="{{<port0> 0} | Scaler\n/dev/v4l-subdev5 | {<port1> 1}}", shape=Mrecord, style=filled, fillcolor=green]
n00000015:port1 -> n00000018 [style=bold]
n00000018 [label="RGB/YUV Capture\n/dev/video2", shape=box, style=filled, fillcolor=yellow]
}

View file

@ -76,3 +76,16 @@ vimc-capture:
* 1 Pad sink
* 1 Pad source
Module options
--------------
Vimc has a module parameter to configure the driver.
* ``allocator=<unsigned int>``
memory allocator selection, default is 0. It specifies the way buffers
will be allocated.
- 0: vmalloc
- 1: dma-contig

View file

@ -66,6 +66,17 @@ Setting it as ``N`` disables DAMON_RECLAIM. Note that DAMON_RECLAIM could do
no real monitoring and reclamation due to the watermarks-based activation
condition. Refer to below descriptions for the watermarks parameter for this.
commit_inputs
-------------
Make DAMON_RECLAIM reads the input parameters again, except ``enabled``.
Input parameters that updated while DAMON_RECLAIM is running are not applied
by default. Once this parameter is set as ``Y``, DAMON_RECLAIM reads values
of parametrs except ``enabled`` again. Once the re-reading is done, this
parameter is set as ``N``. If invalid parameters are found while the
re-reading, DAMON_RECLAIM will be disabled.
min_age
-------

View file

@ -4,7 +4,7 @@
Detailed Usages
===============
DAMON provides below three interfaces for different users.
DAMON provides below interfaces for different users.
- *DAMON user space tool.*
`This <https://github.com/awslabs/damo>`_ is for privileged people such as
@ -14,17 +14,21 @@ DAMON provides below three interfaces for different users.
virtual and physical address spaces monitoring. For more detail, please
refer to its `usage document
<https://github.com/awslabs/damo/blob/next/USAGE.md>`_.
- *debugfs interface.*
:ref:`This <debugfs_interface>` is for privileged user space programmers who
- *sysfs interface.*
:ref:`This <sysfs_interface>` is for privileged user space programmers who
want more optimized use of DAMON. Using this, users can use DAMONs major
features by reading from and writing to special debugfs files. Therefore,
you can write and use your personalized DAMON debugfs wrapper programs that
reads/writes the debugfs files instead of you. The `DAMON user space tool
features by reading from and writing to special sysfs files. Therefore,
you can write and use your personalized DAMON sysfs wrapper programs that
reads/writes the sysfs files instead of you. The `DAMON user space tool
<https://github.com/awslabs/damo>`_ is one example of such programs. It
supports both virtual and physical address spaces monitoring. Note that this
interface provides only simple :ref:`statistics <damos_stats>` for the
monitoring results. For detailed monitoring results, DAMON provides a
:ref:`tracepoint <tracepoint>`.
- *debugfs interface.*
:ref:`This <debugfs_interface>` is almost identical to :ref:`sysfs interface
<sysfs_interface>`. This will be removed after next LTS kernel is released,
so users should move to the :ref:`sysfs interface <sysfs_interface>`.
- *Kernel Space Programming Interface.*
:doc:`This </vm/damon/api>` is for kernel space programmers. Using this,
users can utilize every feature of DAMON most flexibly and efficiently by
@ -32,6 +36,355 @@ DAMON provides below three interfaces for different users.
DAMON for various address spaces. For detail, please refer to the interface
:doc:`document </vm/damon/api>`.
.. _sysfs_interface:
sysfs Interface
===============
DAMON sysfs interface is built when ``CONFIG_DAMON_SYSFS`` is defined. It
creates multiple directories and files under its sysfs directory,
``<sysfs>/kernel/mm/damon/``. You can control DAMON by writing to and reading
from the files under the directory.
For a short example, users can monitor the virtual address space of a given
workload as below. ::
# cd /sys/kernel/mm/damon/admin/
# echo 1 > kdamonds/nr && echo 1 > kdamonds/0/contexts/nr
# echo vaddr > kdamonds/0/contexts/0/operations
# echo 1 > kdamonds/0/contexts/0/targets/nr
# echo $(pidof <workload>) > kdamonds/0/contexts/0/targets/0/pid
# echo on > kdamonds/0/state
Files Hierarchy
---------------
The files hierarchy of DAMON sysfs interface is shown below. In the below
figure, parents-children relations are represented with indentations, each
directory is having ``/`` suffix, and files in each directory are separated by
comma (","). ::
/sys/kernel/mm/damon/admin
│ kdamonds/nr_kdamonds
│ │ 0/state,pid
│ │ │ contexts/nr_contexts
│ │ │ │ 0/avail_operations,operations
│ │ │ │ │ monitoring_attrs/
│ │ │ │ │ │ intervals/sample_us,aggr_us,update_us
│ │ │ │ │ │ nr_regions/min,max
│ │ │ │ │ targets/nr_targets
│ │ │ │ │ │ 0/pid_target
│ │ │ │ │ │ │ regions/nr_regions
│ │ │ │ │ │ │ │ 0/start,end
│ │ │ │ │ │ │ │ ...
│ │ │ │ │ │ ...
│ │ │ │ │ schemes/nr_schemes
│ │ │ │ │ │ 0/action
│ │ │ │ │ │ │ access_pattern/
│ │ │ │ │ │ │ │ sz/min,max
│ │ │ │ │ │ │ │ nr_accesses/min,max
│ │ │ │ │ │ │ │ age/min,max
│ │ │ │ │ │ │ quotas/ms,bytes,reset_interval_ms
│ │ │ │ │ │ │ │ weights/sz_permil,nr_accesses_permil,age_permil
│ │ │ │ │ │ │ watermarks/metric,interval_us,high,mid,low
│ │ │ │ │ │ │ stats/nr_tried,sz_tried,nr_applied,sz_applied,qt_exceeds
│ │ │ │ │ │ ...
│ │ │ │ ...
│ │ ...
Root
----
The root of the DAMON sysfs interface is ``<sysfs>/kernel/mm/damon/``, and it
has one directory named ``admin``. The directory contains the files for
privileged user space programs' control of DAMON. User space tools or deamons
having the root permission could use this directory.
kdamonds/
---------
The monitoring-related information including request specifications and results
are called DAMON context. DAMON executes each context with a kernel thread
called kdamond, and multiple kdamonds could run in parallel.
Under the ``admin`` directory, one directory, ``kdamonds``, which has files for
controlling the kdamonds exist. In the beginning, this directory has only one
file, ``nr_kdamonds``. Writing a number (``N``) to the file creates the number
of child directories named ``0`` to ``N-1``. Each directory represents each
kdamond.
kdamonds/<N>/
-------------
In each kdamond directory, two files (``state`` and ``pid``) and one directory
(``contexts``) exist.
Reading ``state`` returns ``on`` if the kdamond is currently running, or
``off`` if it is not running. Writing ``on`` or ``off`` makes the kdamond be
in the state. Writing ``commit`` to the ``state`` file makes kdamond reads the
user inputs in the sysfs files except ``state`` file again. Writing
``update_schemes_stats`` to ``state`` file updates the contents of stats files
for each DAMON-based operation scheme of the kdamond. For details of the
stats, please refer to :ref:`stats section <sysfs_schemes_stats>`.
If the state is ``on``, reading ``pid`` shows the pid of the kdamond thread.
``contexts`` directory contains files for controlling the monitoring contexts
that this kdamond will execute.
kdamonds/<N>/contexts/
----------------------
In the beginning, this directory has only one file, ``nr_contexts``. Writing a
number (``N``) to the file creates the number of child directories named as
``0`` to ``N-1``. Each directory represents each monitoring context. At the
moment, only one context per kdamond is supported, so only ``0`` or ``1`` can
be written to the file.
contexts/<N>/
-------------
In each context directory, two files (``avail_operations`` and ``operations``)
and three directories (``monitoring_attrs``, ``targets``, and ``schemes``)
exist.
DAMON supports multiple types of monitoring operations, including those for
virtual address space and the physical address space. You can get the list of
available monitoring operations set on the currently running kernel by reading
``avail_operations`` file. Based on the kernel configuration, the file will
list some or all of below keywords.
- vaddr: Monitor virtual address spaces of specific processes
- fvaddr: Monitor fixed virtual address ranges
- paddr: Monitor the physical address space of the system
Please refer to :ref:`regions sysfs directory <sysfs_regions>` for detailed
differences between the operations sets in terms of the monitoring target
regions.
You can set and get what type of monitoring operations DAMON will use for the
context by writing one of the keywords listed in ``avail_operations`` file and
reading from the ``operations`` file.
contexts/<N>/monitoring_attrs/
------------------------------
Files for specifying attributes of the monitoring including required quality
and efficiency of the monitoring are in ``monitoring_attrs`` directory.
Specifically, two directories, ``intervals`` and ``nr_regions`` exist in this
directory.
Under ``intervals`` directory, three files for DAMON's sampling interval
(``sample_us``), aggregation interval (``aggr_us``), and update interval
(``update_us``) exist. You can set and get the values in micro-seconds by
writing to and reading from the files.
Under ``nr_regions`` directory, two files for the lower-bound and upper-bound
of DAMON's monitoring regions (``min`` and ``max``, respectively), which
controls the monitoring overhead, exist. You can set and get the values by
writing to and rading from the files.
For more details about the intervals and monitoring regions range, please refer
to the Design document (:doc:`/vm/damon/design`).
contexts/<N>/targets/
---------------------
In the beginning, this directory has only one file, ``nr_targets``. Writing a
number (``N``) to the file creates the number of child directories named ``0``
to ``N-1``. Each directory represents each monitoring target.
targets/<N>/
------------
In each target directory, one file (``pid_target``) and one directory
(``regions``) exist.
If you wrote ``vaddr`` to the ``contexts/<N>/operations``, each target should
be a process. You can specify the process to DAMON by writing the pid of the
process to the ``pid_target`` file.
.. _sysfs_regions:
targets/<N>/regions
-------------------
When ``vaddr`` monitoring operations set is being used (``vaddr`` is written to
the ``contexts/<N>/operations`` file), DAMON automatically sets and updates the
monitoring target regions so that entire memory mappings of target processes
can be covered. However, users could want to set the initial monitoring region
to specific address ranges.
In contrast, DAMON do not automatically sets and updates the monitoring target
regions when ``fvaddr`` or ``paddr`` monitoring operations sets are being used
(``fvaddr`` or ``paddr`` have written to the ``contexts/<N>/operations``).
Therefore, users should set the monitoring target regions by themselves in the
cases.
For such cases, users can explicitly set the initial monitoring target regions
as they want, by writing proper values to the files under this directory.
In the beginning, this directory has only one file, ``nr_regions``. Writing a
number (``N``) to the file creates the number of child directories named ``0``
to ``N-1``. Each directory represents each initial monitoring target region.
regions/<N>/
------------
In each region directory, you will find two files (``start`` and ``end``). You
can set and get the start and end addresses of the initial monitoring target
region by writing to and reading from the files, respectively.
contexts/<N>/schemes/
---------------------
For usual DAMON-based data access aware memory management optimizations, users
would normally want the system to apply a memory management action to a memory
region of a specific access pattern. DAMON receives such formalized operation
schemes from the user and applies those to the target memory regions. Users
can get and set the schemes by reading from and writing to files under this
directory.
In the beginning, this directory has only one file, ``nr_schemes``. Writing a
number (``N``) to the file creates the number of child directories named ``0``
to ``N-1``. Each directory represents each DAMON-based operation scheme.
schemes/<N>/
------------
In each scheme directory, four directories (``access_pattern``, ``quotas``,
``watermarks``, and ``stats``) and one file (``action``) exist.
The ``action`` file is for setting and getting what action you want to apply to
memory regions having specific access pattern of the interest. The keywords
that can be written to and read from the file and their meaning are as below.
- ``willneed``: Call ``madvise()`` for the region with ``MADV_WILLNEED``
- ``cold``: Call ``madvise()`` for the region with ``MADV_COLD``
- ``pageout``: Call ``madvise()`` for the region with ``MADV_PAGEOUT``
- ``hugepage``: Call ``madvise()`` for the region with ``MADV_HUGEPAGE``
- ``nohugepage``: Call ``madvise()`` for the region with ``MADV_NOHUGEPAGE``
- ``stat``: Do nothing but count the statistics
schemes/<N>/access_pattern/
---------------------------
The target access pattern of each DAMON-based operation scheme is constructed
with three ranges including the size of the region in bytes, number of
monitored accesses per aggregate interval, and number of aggregated intervals
for the age of the region.
Under the ``access_pattern`` directory, three directories (``sz``,
``nr_accesses``, and ``age``) each having two files (``min`` and ``max``)
exist. You can set and get the access pattern for the given scheme by writing
to and reading from the ``min`` and ``max`` files under ``sz``,
``nr_accesses``, and ``age`` directories, respectively.
schemes/<N>/quotas/
-------------------
Optimal ``target access pattern`` for each ``action`` is workload dependent, so
not easy to find. Worse yet, setting a scheme of some action too aggressive
can cause severe overhead. To avoid such overhead, users can limit time and
size quota for each scheme. In detail, users can ask DAMON to try to use only
up to specific time (``time quota``) for applying the action, and to apply the
action to only up to specific amount (``size quota``) of memory regions having
the target access pattern within a given time interval (``reset interval``).
When the quota limit is expected to be exceeded, DAMON prioritizes found memory
regions of the ``target access pattern`` based on their size, access frequency,
and age. For personalized prioritization, users can set the weights for the
three properties.
Under ``quotas`` directory, three files (``ms``, ``bytes``,
``reset_interval_ms``) and one directory (``weights``) having three files
(``sz_permil``, ``nr_accesses_permil``, and ``age_permil``) in it exist.
You can set the ``time quota`` in milliseconds, ``size quota`` in bytes, and
``reset interval`` in milliseconds by writing the values to the three files,
respectively. You can also set the prioritization weights for size, access
frequency, and age in per-thousand unit by writing the values to the three
files under the ``weights`` directory.
schemes/<N>/watermarks/
-----------------------
To allow easy activation and deactivation of each scheme based on system
status, DAMON provides a feature called watermarks. The feature receives five
values called ``metric``, ``interval``, ``high``, ``mid``, and ``low``. The
``metric`` is the system metric such as free memory ratio that can be measured.
If the metric value of the system is higher than the value in ``high`` or lower
than ``low`` at the memoent, the scheme is deactivated. If the value is lower
than ``mid``, the scheme is activated.
Under the watermarks directory, five files (``metric``, ``interval_us``,
``high``, ``mid``, and ``low``) for setting each value exist. You can set and
get the five values by writing to the files, respectively.
Keywords and meanings of those that can be written to the ``metric`` file are
as below.
- none: Ignore the watermarks
- free_mem_rate: System's free memory rate (per thousand)
The ``interval`` should written in microseconds unit.
.. _sysfs_schemes_stats:
schemes/<N>/stats/
------------------
DAMON counts the total number and bytes of regions that each scheme is tried to
be applied, the two numbers for the regions that each scheme is successfully
applied, and the total number of the quota limit exceeds. This statistics can
be used for online analysis or tuning of the schemes.
The statistics can be retrieved by reading the files under ``stats`` directory
(``nr_tried``, ``sz_tried``, ``nr_applied``, ``sz_applied``, and
``qt_exceeds``), respectively. The files are not updated in real time, so you
should ask DAMON sysfs interface to updte the content of the files for the
stats by writing a special keyword, ``update_schemes_stats`` to the relevant
``kdamonds/<N>/state`` file.
Example
~~~~~~~
Below commands applies a scheme saying "If a memory region of size in [4KiB,
8KiB] is showing accesses per aggregate interval in [0, 5] for aggregate
interval in [10, 20], page out the region. For the paging out, use only up to
10ms per second, and also don't page out more than 1GiB per second. Under the
limitation, page out memory regions having longer age first. Also, check the
free memory rate of the system every 5 seconds, start the monitoring and paging
out when the free memory rate becomes lower than 50%, but stop it if the free
memory rate becomes larger than 60%, or lower than 30%". ::
# cd <sysfs>/kernel/mm/damon/admin
# # populate directories
# echo 1 > kdamonds/nr_kdamonds; echo 1 > kdamonds/0/contexts/nr_contexts;
# echo 1 > kdamonds/0/contexts/0/schemes/nr_schemes
# cd kdamonds/0/contexts/0/schemes/0
# # set the basic access pattern and the action
# echo 4096 > access_patterns/sz/min
# echo 8192 > access_patterns/sz/max
# echo 0 > access_patterns/nr_accesses/min
# echo 5 > access_patterns/nr_accesses/max
# echo 10 > access_patterns/age/min
# echo 20 > access_patterns/age/max
# echo pageout > action
# # set quotas
# echo 10 > quotas/ms
# echo $((1024*1024*1024)) > quotas/bytes
# echo 1000 > quotas/reset_interval_ms
# # set watermark
# echo free_mem_rate > watermarks/metric
# echo 5000000 > watermarks/interval_us
# echo 600 > watermarks/high
# echo 500 > watermarks/mid
# echo 300 > watermarks/low
Please note that it's highly recommended to use user space tools like `damo
<https://github.com/awslabs/damo>`_ rather than manually reading and writing
the files as above. Above is only for an example.
.. _debugfs_interface:
@ -47,7 +400,7 @@ Attributes
----------
Users can get and set the ``sampling interval``, ``aggregation interval``,
``regions update interval``, and min/max number of monitoring target regions by
``update interval``, and min/max number of monitoring target regions by
reading from and writing to the ``attrs`` file. To know about the monitoring
attributes in detail, please refer to the :doc:`/vm/damon/design`. For
example, below commands set those values to 5 ms, 100 ms, 1,000 ms, 10 and
@ -108,24 +461,28 @@ In such cases, users can explicitly set the initial monitoring target regions
as they want, by writing proper values to the ``init_regions`` file. Each line
of the input should represent one region in below form.::
<target id> <start address> <end address>
<target idx> <start address> <end address>
The ``target id`` should already in ``target_ids`` file, and the regions should
be passed in address order. For example, below commands will set a couple of
address ranges, ``1-100`` and ``100-200`` as the initial monitoring target
region of process 42, and another couple of address ranges, ``20-40`` and
``50-100`` as that of process 4242.::
The ``target idx`` should be the index of the target in ``target_ids`` file,
starting from ``0``, and the regions should be passed in address order. For
example, below commands will set a couple of address ranges, ``1-100`` and
``100-200`` as the initial monitoring target region of pid 42, which is the
first one (index ``0``) in ``target_ids``, and another couple of address
ranges, ``20-40`` and ``50-100`` as that of pid 4242, which is the second one
(index ``1``) in ``target_ids``.::
# cd <debugfs>/damon
# echo "42 1 100
42 100 200
4242 20 40
4242 50 100" > init_regions
# cat target_ids
42 4242
# echo "0 1 100
0 100 200
1 20 40
1 50 100" > init_regions
Note that this sets the initial monitoring target regions only. In case of
virtual memory monitoring, DAMON will automatically updates the boundary of the
regions after one ``regions update interval``. Therefore, users should set the
``regions update interval`` large enough in this case, if they don't want the
regions after one ``update interval``. Therefore, users should set the
``update interval`` large enough in this case, if they don't want the
update.

View file

@ -164,7 +164,7 @@ default_hugepagesz
will all result in 256 2M huge pages being allocated. Valid default
huge page size is architecture dependent.
hugetlb_free_vmemmap
When CONFIG_HUGETLB_PAGE_FREE_VMEMMAP is set, this enables freeing
When CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP is set, this enables optimizing
unused vmemmap pages associated with each HugeTLB page.
When multiple huge page sizes are supported, ``/proc/sys/vm/nr_hugepages``

View file

@ -184,6 +184,24 @@ The maximum possible ``pages_sharing/pages_shared`` ratio is limited by the
``max_page_sharing`` tunable. To increase the ratio ``max_page_sharing`` must
be increased accordingly.
Monitoring KSM events
=====================
There are some counters in /proc/vmstat that may be used to monitor KSM events.
KSM might help save memory, it's a tradeoff by may suffering delay on KSM COW
or on swapping in copy. Those events could help users evaluate whether or how
to use KSM. For example, if cow_ksm increases too fast, user may decrease the
range of madvise(, , MADV_MERGEABLE).
cow_ksm
is incremented every time a KSM page triggers copy on write (COW)
when users try to write to a KSM page, we have to make a copy.
ksm_swpin_copy
is incremented every time a KSM page is copied when swapping in
note that KSM page might be copied when swapping in because do_swap_page()
cannot do all the locking needed to reconstitute a cross-anon_vma KSM page.
--
Izik Eidus,
Hugh Dickins, 17 Nov 2009

View file

@ -130,9 +130,25 @@ attribute, e.g.::
echo 1 > /sys/module/zswap/parameters/same_filled_pages_enabled
When zswap same-filled page identification is disabled at runtime, it will stop
checking for the same-value filled pages during store operation. However, the
existing pages which are marked as same-value filled pages remain stored
unchanged in zswap until they are either loaded or invalidated.
checking for the same-value filled pages during store operation.
In other words, every page will be then considered non-same-value filled.
However, the existing pages which are marked as same-value filled pages remain
stored unchanged in zswap until they are either loaded or invalidated.
In some circumstances it might be advantageous to make use of just the zswap
ability to efficiently store same-filled pages without enabling the whole
compressed page storage.
In this case the handling of non-same-value pages by zswap (enabled by default)
can be disabled by setting the ``non_same_filled_pages_enabled`` attribute
to 0, e.g. ``zswap.non_same_filled_pages_enabled=0``.
It can also be enabled and disabled at runtime using the sysfs
``non_same_filled_pages_enabled`` attribute, e.g.::
echo 1 > /sys/module/zswap/parameters/non_same_filled_pages_enabled
Disabling both ``zswap.same_filled_pages_enabled`` and
``zswap.non_same_filled_pages_enabled`` effectively disables accepting any new
pages by zswap.
To prevent zswap from shrinking pool when zswap is full and there's a high
pressure on swap (this will result in flipping pages in and out zswap pool

View file

@ -36,10 +36,9 @@ administrative requirements that require particular behavior that does not
work well as part of an nfs_client_id4 string.
The nfs.nfs4_unique_id boot parameter specifies a unique string that can be
used instead of a system's node name when an NFS client identifies itself to
a server. Thus, if the system's node name is not unique, or it changes, its
nfs.nfs4_unique_id stays the same, preventing collision with other clients
or loss of state during NFS reboot recovery or transparent state migration.
used together with a system's node name when an NFS client identifies itself to
a server. Thus, if the system's node name is not unique, its
nfs.nfs4_unique_id can help prevent collisions with other clients.
The nfs.nfs4_unique_id string is typically a UUID, though it can contain
anything that is believed to be unique across all NFS clients. An
@ -53,8 +52,12 @@ outstanding NFSv4 state has expired, to prevent loss of NFSv4 state.
This string can be stored in an NFS client's grub.conf, or it can be provided
via a net boot facility such as PXE. It may also be specified as an nfs.ko
module parameter. Specifying a uniquifier string is not support for NFS
clients running in containers.
module parameter.
This uniquifier string will be the same for all NFS clients running in
containers unless it is overridden by a value written to
/sys/fs/nfs/net/nfs_client/identifier which will be local to the network
namespace of the process which writes.
The DNS resolver

Some files were not shown because too many files have changed in this diff Show more