 299b4eaa30
			
		
	
	
	299b4eaa30
	
	
	
		
			
			N_POSSIBLE doesn't means there is memory...and force_empty can visit invalid node which have no pgdat. To visit all valid nodes, N_HIGH_MEMORY should be used. Reported-by: Li Zefan <lizf@cn.fujitsu.com> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Tested-by: Li Zefan <lizf@cn.fujitsu.com> Cc: Balbir Singh <balbir@linux.vnet.ibm.com> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			2340 lines
		
	
	
	
		
			57 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2340 lines
		
	
	
	
		
			57 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /* memcontrol.c - Memory Controller
 | |
|  *
 | |
|  * Copyright IBM Corporation, 2007
 | |
|  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 | |
|  *
 | |
|  * Copyright 2007 OpenVZ SWsoft Inc
 | |
|  * Author: Pavel Emelianov <xemul@openvz.org>
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  */
 | |
| 
 | |
| #include <linux/res_counter.h>
 | |
| #include <linux/memcontrol.h>
 | |
| #include <linux/cgroup.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/smp.h>
 | |
| #include <linux/page-flags.h>
 | |
| #include <linux/backing-dev.h>
 | |
| #include <linux/bit_spinlock.h>
 | |
| #include <linux/rcupdate.h>
 | |
| #include <linux/mutex.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/mm_inline.h>
 | |
| #include <linux/page_cgroup.h>
 | |
| #include "internal.h"
 | |
| 
 | |
| #include <asm/uaccess.h>
 | |
| 
 | |
| struct cgroup_subsys mem_cgroup_subsys __read_mostly;
 | |
| #define MEM_CGROUP_RECLAIM_RETRIES	5
 | |
| 
 | |
| #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
 | |
| /* Turned on only when memory cgroup is enabled && really_do_swap_account = 0 */
 | |
| int do_swap_account __read_mostly;
 | |
| static int really_do_swap_account __initdata = 1; /* for remember boot option*/
 | |
| #else
 | |
| #define do_swap_account		(0)
 | |
| #endif
 | |
| 
 | |
| static DEFINE_MUTEX(memcg_tasklist);	/* can be hold under cgroup_mutex */
 | |
| 
 | |
| /*
 | |
|  * Statistics for memory cgroup.
 | |
|  */
 | |
| enum mem_cgroup_stat_index {
 | |
| 	/*
 | |
| 	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
 | |
| 	 */
 | |
| 	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
 | |
| 	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as rss */
 | |
| 	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
 | |
| 	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
 | |
| 
 | |
| 	MEM_CGROUP_STAT_NSTATS,
 | |
| };
 | |
| 
 | |
| struct mem_cgroup_stat_cpu {
 | |
| 	s64 count[MEM_CGROUP_STAT_NSTATS];
 | |
| } ____cacheline_aligned_in_smp;
 | |
| 
 | |
| struct mem_cgroup_stat {
 | |
| 	struct mem_cgroup_stat_cpu cpustat[0];
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * For accounting under irq disable, no need for increment preempt count.
 | |
|  */
 | |
| static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
 | |
| 		enum mem_cgroup_stat_index idx, int val)
 | |
| {
 | |
| 	stat->count[idx] += val;
 | |
| }
 | |
| 
 | |
| static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
 | |
| 		enum mem_cgroup_stat_index idx)
 | |
| {
 | |
| 	int cpu;
 | |
| 	s64 ret = 0;
 | |
| 	for_each_possible_cpu(cpu)
 | |
| 		ret += stat->cpustat[cpu].count[idx];
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * per-zone information in memory controller.
 | |
|  */
 | |
| struct mem_cgroup_per_zone {
 | |
| 	/*
 | |
| 	 * spin_lock to protect the per cgroup LRU
 | |
| 	 */
 | |
| 	struct list_head	lists[NR_LRU_LISTS];
 | |
| 	unsigned long		count[NR_LRU_LISTS];
 | |
| 
 | |
| 	struct zone_reclaim_stat reclaim_stat;
 | |
| };
 | |
| /* Macro for accessing counter */
 | |
| #define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])
 | |
| 
 | |
| struct mem_cgroup_per_node {
 | |
| 	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
 | |
| };
 | |
| 
 | |
| struct mem_cgroup_lru_info {
 | |
| 	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * The memory controller data structure. The memory controller controls both
 | |
|  * page cache and RSS per cgroup. We would eventually like to provide
 | |
|  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 | |
|  * to help the administrator determine what knobs to tune.
 | |
|  *
 | |
|  * TODO: Add a water mark for the memory controller. Reclaim will begin when
 | |
|  * we hit the water mark. May be even add a low water mark, such that
 | |
|  * no reclaim occurs from a cgroup at it's low water mark, this is
 | |
|  * a feature that will be implemented much later in the future.
 | |
|  */
 | |
| struct mem_cgroup {
 | |
| 	struct cgroup_subsys_state css;
 | |
| 	/*
 | |
| 	 * the counter to account for memory usage
 | |
| 	 */
 | |
| 	struct res_counter res;
 | |
| 	/*
 | |
| 	 * the counter to account for mem+swap usage.
 | |
| 	 */
 | |
| 	struct res_counter memsw;
 | |
| 	/*
 | |
| 	 * Per cgroup active and inactive list, similar to the
 | |
| 	 * per zone LRU lists.
 | |
| 	 */
 | |
| 	struct mem_cgroup_lru_info info;
 | |
| 
 | |
| 	/*
 | |
| 	  protect against reclaim related member.
 | |
| 	*/
 | |
| 	spinlock_t reclaim_param_lock;
 | |
| 
 | |
| 	int	prev_priority;	/* for recording reclaim priority */
 | |
| 
 | |
| 	/*
 | |
| 	 * While reclaiming in a hiearchy, we cache the last child we
 | |
| 	 * reclaimed from. Protected by hierarchy_mutex
 | |
| 	 */
 | |
| 	struct mem_cgroup *last_scanned_child;
 | |
| 	/*
 | |
| 	 * Should the accounting and control be hierarchical, per subtree?
 | |
| 	 */
 | |
| 	bool use_hierarchy;
 | |
| 	unsigned long	last_oom_jiffies;
 | |
| 	atomic_t	refcnt;
 | |
| 
 | |
| 	unsigned int	swappiness;
 | |
| 
 | |
| 	/*
 | |
| 	 * statistics. This must be placed at the end of memcg.
 | |
| 	 */
 | |
| 	struct mem_cgroup_stat stat;
 | |
| };
 | |
| 
 | |
| enum charge_type {
 | |
| 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
 | |
| 	MEM_CGROUP_CHARGE_TYPE_MAPPED,
 | |
| 	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
 | |
| 	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
 | |
| 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
 | |
| 	NR_CHARGE_TYPE,
 | |
| };
 | |
| 
 | |
| /* only for here (for easy reading.) */
 | |
| #define PCGF_CACHE	(1UL << PCG_CACHE)
 | |
| #define PCGF_USED	(1UL << PCG_USED)
 | |
| #define PCGF_LOCK	(1UL << PCG_LOCK)
 | |
| static const unsigned long
 | |
| pcg_default_flags[NR_CHARGE_TYPE] = {
 | |
| 	PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* File Cache */
 | |
| 	PCGF_USED | PCGF_LOCK, /* Anon */
 | |
| 	PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* Shmem */
 | |
| 	0, /* FORCE */
 | |
| };
 | |
| 
 | |
| /* for encoding cft->private value on file */
 | |
| #define _MEM			(0)
 | |
| #define _MEMSWAP		(1)
 | |
| #define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
 | |
| #define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
 | |
| #define MEMFILE_ATTR(val)	((val) & 0xffff)
 | |
| 
 | |
| static void mem_cgroup_get(struct mem_cgroup *mem);
 | |
| static void mem_cgroup_put(struct mem_cgroup *mem);
 | |
| static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
 | |
| 
 | |
| static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
 | |
| 					 struct page_cgroup *pc,
 | |
| 					 bool charge)
 | |
| {
 | |
| 	int val = (charge)? 1 : -1;
 | |
| 	struct mem_cgroup_stat *stat = &mem->stat;
 | |
| 	struct mem_cgroup_stat_cpu *cpustat;
 | |
| 	int cpu = get_cpu();
 | |
| 
 | |
| 	cpustat = &stat->cpustat[cpu];
 | |
| 	if (PageCgroupCache(pc))
 | |
| 		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
 | |
| 	else
 | |
| 		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
 | |
| 
 | |
| 	if (charge)
 | |
| 		__mem_cgroup_stat_add_safe(cpustat,
 | |
| 				MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
 | |
| 	else
 | |
| 		__mem_cgroup_stat_add_safe(cpustat,
 | |
| 				MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
 | |
| 	put_cpu();
 | |
| }
 | |
| 
 | |
| static struct mem_cgroup_per_zone *
 | |
| mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
 | |
| {
 | |
| 	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
 | |
| }
 | |
| 
 | |
| static struct mem_cgroup_per_zone *
 | |
| page_cgroup_zoneinfo(struct page_cgroup *pc)
 | |
| {
 | |
| 	struct mem_cgroup *mem = pc->mem_cgroup;
 | |
| 	int nid = page_cgroup_nid(pc);
 | |
| 	int zid = page_cgroup_zid(pc);
 | |
| 
 | |
| 	if (!mem)
 | |
| 		return NULL;
 | |
| 
 | |
| 	return mem_cgroup_zoneinfo(mem, nid, zid);
 | |
| }
 | |
| 
 | |
| static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
 | |
| 					enum lru_list idx)
 | |
| {
 | |
| 	int nid, zid;
 | |
| 	struct mem_cgroup_per_zone *mz;
 | |
| 	u64 total = 0;
 | |
| 
 | |
| 	for_each_online_node(nid)
 | |
| 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
 | |
| 			mz = mem_cgroup_zoneinfo(mem, nid, zid);
 | |
| 			total += MEM_CGROUP_ZSTAT(mz, idx);
 | |
| 		}
 | |
| 	return total;
 | |
| }
 | |
| 
 | |
| static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
 | |
| {
 | |
| 	return container_of(cgroup_subsys_state(cont,
 | |
| 				mem_cgroup_subsys_id), struct mem_cgroup,
 | |
| 				css);
 | |
| }
 | |
| 
 | |
| struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
 | |
| {
 | |
| 	/*
 | |
| 	 * mm_update_next_owner() may clear mm->owner to NULL
 | |
| 	 * if it races with swapoff, page migration, etc.
 | |
| 	 * So this can be called with p == NULL.
 | |
| 	 */
 | |
| 	if (unlikely(!p))
 | |
| 		return NULL;
 | |
| 
 | |
| 	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
 | |
| 				struct mem_cgroup, css);
 | |
| }
 | |
| 
 | |
| static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
 | |
| {
 | |
| 	struct mem_cgroup *mem = NULL;
 | |
| 	/*
 | |
| 	 * Because we have no locks, mm->owner's may be being moved to other
 | |
| 	 * cgroup. We use css_tryget() here even if this looks
 | |
| 	 * pessimistic (rather than adding locks here).
 | |
| 	 */
 | |
| 	rcu_read_lock();
 | |
| 	do {
 | |
| 		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
 | |
| 		if (unlikely(!mem))
 | |
| 			break;
 | |
| 	} while (!css_tryget(&mem->css));
 | |
| 	rcu_read_unlock();
 | |
| 	return mem;
 | |
| }
 | |
| 
 | |
| static bool mem_cgroup_is_obsolete(struct mem_cgroup *mem)
 | |
| {
 | |
| 	if (!mem)
 | |
| 		return true;
 | |
| 	return css_is_removed(&mem->css);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Following LRU functions are allowed to be used without PCG_LOCK.
 | |
|  * Operations are called by routine of global LRU independently from memcg.
 | |
|  * What we have to take care of here is validness of pc->mem_cgroup.
 | |
|  *
 | |
|  * Changes to pc->mem_cgroup happens when
 | |
|  * 1. charge
 | |
|  * 2. moving account
 | |
|  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 | |
|  * It is added to LRU before charge.
 | |
|  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 | |
|  * When moving account, the page is not on LRU. It's isolated.
 | |
|  */
 | |
| 
 | |
| void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
 | |
| {
 | |
| 	struct page_cgroup *pc;
 | |
| 	struct mem_cgroup *mem;
 | |
| 	struct mem_cgroup_per_zone *mz;
 | |
| 
 | |
| 	if (mem_cgroup_disabled())
 | |
| 		return;
 | |
| 	pc = lookup_page_cgroup(page);
 | |
| 	/* can happen while we handle swapcache. */
 | |
| 	if (list_empty(&pc->lru) || !pc->mem_cgroup)
 | |
| 		return;
 | |
| 	/*
 | |
| 	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
 | |
| 	 * removed from global LRU.
 | |
| 	 */
 | |
| 	mz = page_cgroup_zoneinfo(pc);
 | |
| 	mem = pc->mem_cgroup;
 | |
| 	MEM_CGROUP_ZSTAT(mz, lru) -= 1;
 | |
| 	list_del_init(&pc->lru);
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| void mem_cgroup_del_lru(struct page *page)
 | |
| {
 | |
| 	mem_cgroup_del_lru_list(page, page_lru(page));
 | |
| }
 | |
| 
 | |
| void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
 | |
| {
 | |
| 	struct mem_cgroup_per_zone *mz;
 | |
| 	struct page_cgroup *pc;
 | |
| 
 | |
| 	if (mem_cgroup_disabled())
 | |
| 		return;
 | |
| 
 | |
| 	pc = lookup_page_cgroup(page);
 | |
| 	/*
 | |
| 	 * Used bit is set without atomic ops but after smp_wmb().
 | |
| 	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
 | |
| 	 */
 | |
| 	smp_rmb();
 | |
| 	/* unused page is not rotated. */
 | |
| 	if (!PageCgroupUsed(pc))
 | |
| 		return;
 | |
| 	mz = page_cgroup_zoneinfo(pc);
 | |
| 	list_move(&pc->lru, &mz->lists[lru]);
 | |
| }
 | |
| 
 | |
| void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
 | |
| {
 | |
| 	struct page_cgroup *pc;
 | |
| 	struct mem_cgroup_per_zone *mz;
 | |
| 
 | |
| 	if (mem_cgroup_disabled())
 | |
| 		return;
 | |
| 	pc = lookup_page_cgroup(page);
 | |
| 	/*
 | |
| 	 * Used bit is set without atomic ops but after smp_wmb().
 | |
| 	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
 | |
| 	 */
 | |
| 	smp_rmb();
 | |
| 	if (!PageCgroupUsed(pc))
 | |
| 		return;
 | |
| 
 | |
| 	mz = page_cgroup_zoneinfo(pc);
 | |
| 	MEM_CGROUP_ZSTAT(mz, lru) += 1;
 | |
| 	list_add(&pc->lru, &mz->lists[lru]);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
 | |
|  * lru because the page may.be reused after it's fully uncharged (because of
 | |
|  * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
 | |
|  * it again. This function is only used to charge SwapCache. It's done under
 | |
|  * lock_page and expected that zone->lru_lock is never held.
 | |
|  */
 | |
| static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct zone *zone = page_zone(page);
 | |
| 	struct page_cgroup *pc = lookup_page_cgroup(page);
 | |
| 
 | |
| 	spin_lock_irqsave(&zone->lru_lock, flags);
 | |
| 	/*
 | |
| 	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
 | |
| 	 * is guarded by lock_page() because the page is SwapCache.
 | |
| 	 */
 | |
| 	if (!PageCgroupUsed(pc))
 | |
| 		mem_cgroup_del_lru_list(page, page_lru(page));
 | |
| 	spin_unlock_irqrestore(&zone->lru_lock, flags);
 | |
| }
 | |
| 
 | |
| static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct zone *zone = page_zone(page);
 | |
| 	struct page_cgroup *pc = lookup_page_cgroup(page);
 | |
| 
 | |
| 	spin_lock_irqsave(&zone->lru_lock, flags);
 | |
| 	/* link when the page is linked to LRU but page_cgroup isn't */
 | |
| 	if (PageLRU(page) && list_empty(&pc->lru))
 | |
| 		mem_cgroup_add_lru_list(page, page_lru(page));
 | |
| 	spin_unlock_irqrestore(&zone->lru_lock, flags);
 | |
| }
 | |
| 
 | |
| 
 | |
| void mem_cgroup_move_lists(struct page *page,
 | |
| 			   enum lru_list from, enum lru_list to)
 | |
| {
 | |
| 	if (mem_cgroup_disabled())
 | |
| 		return;
 | |
| 	mem_cgroup_del_lru_list(page, from);
 | |
| 	mem_cgroup_add_lru_list(page, to);
 | |
| }
 | |
| 
 | |
| int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	task_lock(task);
 | |
| 	ret = task->mm && mm_match_cgroup(task->mm, mem);
 | |
| 	task_unlock(task);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Calculate mapped_ratio under memory controller. This will be used in
 | |
|  * vmscan.c for deteremining we have to reclaim mapped pages.
 | |
|  */
 | |
| int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
 | |
| {
 | |
| 	long total, rss;
 | |
| 
 | |
| 	/*
 | |
| 	 * usage is recorded in bytes. But, here, we assume the number of
 | |
| 	 * physical pages can be represented by "long" on any arch.
 | |
| 	 */
 | |
| 	total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
 | |
| 	rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
 | |
| 	return (int)((rss * 100L) / total);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * prev_priority control...this will be used in memory reclaim path.
 | |
|  */
 | |
| int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
 | |
| {
 | |
| 	int prev_priority;
 | |
| 
 | |
| 	spin_lock(&mem->reclaim_param_lock);
 | |
| 	prev_priority = mem->prev_priority;
 | |
| 	spin_unlock(&mem->reclaim_param_lock);
 | |
| 
 | |
| 	return prev_priority;
 | |
| }
 | |
| 
 | |
| void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
 | |
| {
 | |
| 	spin_lock(&mem->reclaim_param_lock);
 | |
| 	if (priority < mem->prev_priority)
 | |
| 		mem->prev_priority = priority;
 | |
| 	spin_unlock(&mem->reclaim_param_lock);
 | |
| }
 | |
| 
 | |
| void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
 | |
| {
 | |
| 	spin_lock(&mem->reclaim_param_lock);
 | |
| 	mem->prev_priority = priority;
 | |
| 	spin_unlock(&mem->reclaim_param_lock);
 | |
| }
 | |
| 
 | |
| static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
 | |
| {
 | |
| 	unsigned long active;
 | |
| 	unsigned long inactive;
 | |
| 	unsigned long gb;
 | |
| 	unsigned long inactive_ratio;
 | |
| 
 | |
| 	inactive = mem_cgroup_get_all_zonestat(memcg, LRU_INACTIVE_ANON);
 | |
| 	active = mem_cgroup_get_all_zonestat(memcg, LRU_ACTIVE_ANON);
 | |
| 
 | |
| 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
 | |
| 	if (gb)
 | |
| 		inactive_ratio = int_sqrt(10 * gb);
 | |
| 	else
 | |
| 		inactive_ratio = 1;
 | |
| 
 | |
| 	if (present_pages) {
 | |
| 		present_pages[0] = inactive;
 | |
| 		present_pages[1] = active;
 | |
| 	}
 | |
| 
 | |
| 	return inactive_ratio;
 | |
| }
 | |
| 
 | |
| int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	unsigned long active;
 | |
| 	unsigned long inactive;
 | |
| 	unsigned long present_pages[2];
 | |
| 	unsigned long inactive_ratio;
 | |
| 
 | |
| 	inactive_ratio = calc_inactive_ratio(memcg, present_pages);
 | |
| 
 | |
| 	inactive = present_pages[0];
 | |
| 	active = present_pages[1];
 | |
| 
 | |
| 	if (inactive * inactive_ratio < active)
 | |
| 		return 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
 | |
| 				       struct zone *zone,
 | |
| 				       enum lru_list lru)
 | |
| {
 | |
| 	int nid = zone->zone_pgdat->node_id;
 | |
| 	int zid = zone_idx(zone);
 | |
| 	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
 | |
| 
 | |
| 	return MEM_CGROUP_ZSTAT(mz, lru);
 | |
| }
 | |
| 
 | |
| struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
 | |
| 						      struct zone *zone)
 | |
| {
 | |
| 	int nid = zone->zone_pgdat->node_id;
 | |
| 	int zid = zone_idx(zone);
 | |
| 	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
 | |
| 
 | |
| 	return &mz->reclaim_stat;
 | |
| }
 | |
| 
 | |
| struct zone_reclaim_stat *
 | |
| mem_cgroup_get_reclaim_stat_from_page(struct page *page)
 | |
| {
 | |
| 	struct page_cgroup *pc;
 | |
| 	struct mem_cgroup_per_zone *mz;
 | |
| 
 | |
| 	if (mem_cgroup_disabled())
 | |
| 		return NULL;
 | |
| 
 | |
| 	pc = lookup_page_cgroup(page);
 | |
| 	/*
 | |
| 	 * Used bit is set without atomic ops but after smp_wmb().
 | |
| 	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
 | |
| 	 */
 | |
| 	smp_rmb();
 | |
| 	if (!PageCgroupUsed(pc))
 | |
| 		return NULL;
 | |
| 
 | |
| 	mz = page_cgroup_zoneinfo(pc);
 | |
| 	if (!mz)
 | |
| 		return NULL;
 | |
| 
 | |
| 	return &mz->reclaim_stat;
 | |
| }
 | |
| 
 | |
| unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
 | |
| 					struct list_head *dst,
 | |
| 					unsigned long *scanned, int order,
 | |
| 					int mode, struct zone *z,
 | |
| 					struct mem_cgroup *mem_cont,
 | |
| 					int active, int file)
 | |
| {
 | |
| 	unsigned long nr_taken = 0;
 | |
| 	struct page *page;
 | |
| 	unsigned long scan;
 | |
| 	LIST_HEAD(pc_list);
 | |
| 	struct list_head *src;
 | |
| 	struct page_cgroup *pc, *tmp;
 | |
| 	int nid = z->zone_pgdat->node_id;
 | |
| 	int zid = zone_idx(z);
 | |
| 	struct mem_cgroup_per_zone *mz;
 | |
| 	int lru = LRU_FILE * !!file + !!active;
 | |
| 
 | |
| 	BUG_ON(!mem_cont);
 | |
| 	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
 | |
| 	src = &mz->lists[lru];
 | |
| 
 | |
| 	scan = 0;
 | |
| 	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
 | |
| 		if (scan >= nr_to_scan)
 | |
| 			break;
 | |
| 
 | |
| 		page = pc->page;
 | |
| 		if (unlikely(!PageCgroupUsed(pc)))
 | |
| 			continue;
 | |
| 		if (unlikely(!PageLRU(page)))
 | |
| 			continue;
 | |
| 
 | |
| 		scan++;
 | |
| 		if (__isolate_lru_page(page, mode, file) == 0) {
 | |
| 			list_move(&page->lru, dst);
 | |
| 			nr_taken++;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	*scanned = scan;
 | |
| 	return nr_taken;
 | |
| }
 | |
| 
 | |
| #define mem_cgroup_from_res_counter(counter, member)	\
 | |
| 	container_of(counter, struct mem_cgroup, member)
 | |
| 
 | |
| /*
 | |
|  * This routine finds the DFS walk successor. This routine should be
 | |
|  * called with hierarchy_mutex held
 | |
|  */
 | |
| static struct mem_cgroup *
 | |
| __mem_cgroup_get_next_node(struct mem_cgroup *curr, struct mem_cgroup *root_mem)
 | |
| {
 | |
| 	struct cgroup *cgroup, *curr_cgroup, *root_cgroup;
 | |
| 
 | |
| 	curr_cgroup = curr->css.cgroup;
 | |
| 	root_cgroup = root_mem->css.cgroup;
 | |
| 
 | |
| 	if (!list_empty(&curr_cgroup->children)) {
 | |
| 		/*
 | |
| 		 * Walk down to children
 | |
| 		 */
 | |
| 		cgroup = list_entry(curr_cgroup->children.next,
 | |
| 						struct cgroup, sibling);
 | |
| 		curr = mem_cgroup_from_cont(cgroup);
 | |
| 		goto done;
 | |
| 	}
 | |
| 
 | |
| visit_parent:
 | |
| 	if (curr_cgroup == root_cgroup) {
 | |
| 		/* caller handles NULL case */
 | |
| 		curr = NULL;
 | |
| 		goto done;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Goto next sibling
 | |
| 	 */
 | |
| 	if (curr_cgroup->sibling.next != &curr_cgroup->parent->children) {
 | |
| 		cgroup = list_entry(curr_cgroup->sibling.next, struct cgroup,
 | |
| 						sibling);
 | |
| 		curr = mem_cgroup_from_cont(cgroup);
 | |
| 		goto done;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Go up to next parent and next parent's sibling if need be
 | |
| 	 */
 | |
| 	curr_cgroup = curr_cgroup->parent;
 | |
| 	goto visit_parent;
 | |
| 
 | |
| done:
 | |
| 	return curr;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Visit the first child (need not be the first child as per the ordering
 | |
|  * of the cgroup list, since we track last_scanned_child) of @mem and use
 | |
|  * that to reclaim free pages from.
 | |
|  */
 | |
| static struct mem_cgroup *
 | |
| mem_cgroup_get_next_node(struct mem_cgroup *root_mem)
 | |
| {
 | |
| 	struct cgroup *cgroup;
 | |
| 	struct mem_cgroup *orig, *next;
 | |
| 	bool obsolete;
 | |
| 
 | |
| 	/*
 | |
| 	 * Scan all children under the mem_cgroup mem
 | |
| 	 */
 | |
| 	mutex_lock(&mem_cgroup_subsys.hierarchy_mutex);
 | |
| 
 | |
| 	orig = root_mem->last_scanned_child;
 | |
| 	obsolete = mem_cgroup_is_obsolete(orig);
 | |
| 
 | |
| 	if (list_empty(&root_mem->css.cgroup->children)) {
 | |
| 		/*
 | |
| 		 * root_mem might have children before and last_scanned_child
 | |
| 		 * may point to one of them. We put it later.
 | |
| 		 */
 | |
| 		if (orig)
 | |
| 			VM_BUG_ON(!obsolete);
 | |
| 		next = NULL;
 | |
| 		goto done;
 | |
| 	}
 | |
| 
 | |
| 	if (!orig || obsolete) {
 | |
| 		cgroup = list_first_entry(&root_mem->css.cgroup->children,
 | |
| 				struct cgroup, sibling);
 | |
| 		next = mem_cgroup_from_cont(cgroup);
 | |
| 	} else
 | |
| 		next = __mem_cgroup_get_next_node(orig, root_mem);
 | |
| 
 | |
| done:
 | |
| 	if (next)
 | |
| 		mem_cgroup_get(next);
 | |
| 	root_mem->last_scanned_child = next;
 | |
| 	if (orig)
 | |
| 		mem_cgroup_put(orig);
 | |
| 	mutex_unlock(&mem_cgroup_subsys.hierarchy_mutex);
 | |
| 	return (next) ? next : root_mem;
 | |
| }
 | |
| 
 | |
| static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
 | |
| {
 | |
| 	if (do_swap_account) {
 | |
| 		if (res_counter_check_under_limit(&mem->res) &&
 | |
| 			res_counter_check_under_limit(&mem->memsw))
 | |
| 			return true;
 | |
| 	} else
 | |
| 		if (res_counter_check_under_limit(&mem->res))
 | |
| 			return true;
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static unsigned int get_swappiness(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	struct cgroup *cgrp = memcg->css.cgroup;
 | |
| 	unsigned int swappiness;
 | |
| 
 | |
| 	/* root ? */
 | |
| 	if (cgrp->parent == NULL)
 | |
| 		return vm_swappiness;
 | |
| 
 | |
| 	spin_lock(&memcg->reclaim_param_lock);
 | |
| 	swappiness = memcg->swappiness;
 | |
| 	spin_unlock(&memcg->reclaim_param_lock);
 | |
| 
 | |
| 	return swappiness;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Dance down the hierarchy if needed to reclaim memory. We remember the
 | |
|  * last child we reclaimed from, so that we don't end up penalizing
 | |
|  * one child extensively based on its position in the children list.
 | |
|  *
 | |
|  * root_mem is the original ancestor that we've been reclaim from.
 | |
|  */
 | |
| static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
 | |
| 						gfp_t gfp_mask, bool noswap)
 | |
| {
 | |
| 	struct mem_cgroup *next_mem;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Reclaim unconditionally and don't check for return value.
 | |
| 	 * We need to reclaim in the current group and down the tree.
 | |
| 	 * One might think about checking for children before reclaiming,
 | |
| 	 * but there might be left over accounting, even after children
 | |
| 	 * have left.
 | |
| 	 */
 | |
| 	ret += try_to_free_mem_cgroup_pages(root_mem, gfp_mask, noswap,
 | |
| 					   get_swappiness(root_mem));
 | |
| 	if (mem_cgroup_check_under_limit(root_mem))
 | |
| 		return 1;	/* indicate reclaim has succeeded */
 | |
| 	if (!root_mem->use_hierarchy)
 | |
| 		return ret;
 | |
| 
 | |
| 	next_mem = mem_cgroup_get_next_node(root_mem);
 | |
| 
 | |
| 	while (next_mem != root_mem) {
 | |
| 		if (mem_cgroup_is_obsolete(next_mem)) {
 | |
| 			next_mem = mem_cgroup_get_next_node(root_mem);
 | |
| 			continue;
 | |
| 		}
 | |
| 		ret += try_to_free_mem_cgroup_pages(next_mem, gfp_mask, noswap,
 | |
| 						   get_swappiness(next_mem));
 | |
| 		if (mem_cgroup_check_under_limit(root_mem))
 | |
| 			return 1;	/* indicate reclaim has succeeded */
 | |
| 		next_mem = mem_cgroup_get_next_node(root_mem);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| bool mem_cgroup_oom_called(struct task_struct *task)
 | |
| {
 | |
| 	bool ret = false;
 | |
| 	struct mem_cgroup *mem;
 | |
| 	struct mm_struct *mm;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	mm = task->mm;
 | |
| 	if (!mm)
 | |
| 		mm = &init_mm;
 | |
| 	mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
 | |
| 	if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
 | |
| 		ret = true;
 | |
| 	rcu_read_unlock();
 | |
| 	return ret;
 | |
| }
 | |
| /*
 | |
|  * Unlike exported interface, "oom" parameter is added. if oom==true,
 | |
|  * oom-killer can be invoked.
 | |
|  */
 | |
| static int __mem_cgroup_try_charge(struct mm_struct *mm,
 | |
| 			gfp_t gfp_mask, struct mem_cgroup **memcg,
 | |
| 			bool oom)
 | |
| {
 | |
| 	struct mem_cgroup *mem, *mem_over_limit;
 | |
| 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
 | |
| 	struct res_counter *fail_res;
 | |
| 
 | |
| 	if (unlikely(test_thread_flag(TIF_MEMDIE))) {
 | |
| 		/* Don't account this! */
 | |
| 		*memcg = NULL;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We always charge the cgroup the mm_struct belongs to.
 | |
| 	 * The mm_struct's mem_cgroup changes on task migration if the
 | |
| 	 * thread group leader migrates. It's possible that mm is not
 | |
| 	 * set, if so charge the init_mm (happens for pagecache usage).
 | |
| 	 */
 | |
| 	mem = *memcg;
 | |
| 	if (likely(!mem)) {
 | |
| 		mem = try_get_mem_cgroup_from_mm(mm);
 | |
| 		*memcg = mem;
 | |
| 	} else {
 | |
| 		css_get(&mem->css);
 | |
| 	}
 | |
| 	if (unlikely(!mem))
 | |
| 		return 0;
 | |
| 
 | |
| 	VM_BUG_ON(mem_cgroup_is_obsolete(mem));
 | |
| 
 | |
| 	while (1) {
 | |
| 		int ret;
 | |
| 		bool noswap = false;
 | |
| 
 | |
| 		ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res);
 | |
| 		if (likely(!ret)) {
 | |
| 			if (!do_swap_account)
 | |
| 				break;
 | |
| 			ret = res_counter_charge(&mem->memsw, PAGE_SIZE,
 | |
| 							&fail_res);
 | |
| 			if (likely(!ret))
 | |
| 				break;
 | |
| 			/* mem+swap counter fails */
 | |
| 			res_counter_uncharge(&mem->res, PAGE_SIZE);
 | |
| 			noswap = true;
 | |
| 			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
 | |
| 									memsw);
 | |
| 		} else
 | |
| 			/* mem counter fails */
 | |
| 			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
 | |
| 									res);
 | |
| 
 | |
| 		if (!(gfp_mask & __GFP_WAIT))
 | |
| 			goto nomem;
 | |
| 
 | |
| 		ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, gfp_mask,
 | |
| 							noswap);
 | |
| 		if (ret)
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * try_to_free_mem_cgroup_pages() might not give us a full
 | |
| 		 * picture of reclaim. Some pages are reclaimed and might be
 | |
| 		 * moved to swap cache or just unmapped from the cgroup.
 | |
| 		 * Check the limit again to see if the reclaim reduced the
 | |
| 		 * current usage of the cgroup before giving up
 | |
| 		 *
 | |
| 		 */
 | |
| 		if (mem_cgroup_check_under_limit(mem_over_limit))
 | |
| 			continue;
 | |
| 
 | |
| 		if (!nr_retries--) {
 | |
| 			if (oom) {
 | |
| 				mutex_lock(&memcg_tasklist);
 | |
| 				mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
 | |
| 				mutex_unlock(&memcg_tasklist);
 | |
| 				mem_over_limit->last_oom_jiffies = jiffies;
 | |
| 			}
 | |
| 			goto nomem;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| nomem:
 | |
| 	css_put(&mem->css);
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| static struct mem_cgroup *try_get_mem_cgroup_from_swapcache(struct page *page)
 | |
| {
 | |
| 	struct mem_cgroup *mem;
 | |
| 	swp_entry_t ent;
 | |
| 
 | |
| 	if (!PageSwapCache(page))
 | |
| 		return NULL;
 | |
| 
 | |
| 	ent.val = page_private(page);
 | |
| 	mem = lookup_swap_cgroup(ent);
 | |
| 	if (!mem)
 | |
| 		return NULL;
 | |
| 	if (!css_tryget(&mem->css))
 | |
| 		return NULL;
 | |
| 	return mem;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
 | |
|  * USED state. If already USED, uncharge and return.
 | |
|  */
 | |
| 
 | |
| static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
 | |
| 				     struct page_cgroup *pc,
 | |
| 				     enum charge_type ctype)
 | |
| {
 | |
| 	/* try_charge() can return NULL to *memcg, taking care of it. */
 | |
| 	if (!mem)
 | |
| 		return;
 | |
| 
 | |
| 	lock_page_cgroup(pc);
 | |
| 	if (unlikely(PageCgroupUsed(pc))) {
 | |
| 		unlock_page_cgroup(pc);
 | |
| 		res_counter_uncharge(&mem->res, PAGE_SIZE);
 | |
| 		if (do_swap_account)
 | |
| 			res_counter_uncharge(&mem->memsw, PAGE_SIZE);
 | |
| 		css_put(&mem->css);
 | |
| 		return;
 | |
| 	}
 | |
| 	pc->mem_cgroup = mem;
 | |
| 	smp_wmb();
 | |
| 	pc->flags = pcg_default_flags[ctype];
 | |
| 
 | |
| 	mem_cgroup_charge_statistics(mem, pc, true);
 | |
| 
 | |
| 	unlock_page_cgroup(pc);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * mem_cgroup_move_account - move account of the page
 | |
|  * @pc:	page_cgroup of the page.
 | |
|  * @from: mem_cgroup which the page is moved from.
 | |
|  * @to:	mem_cgroup which the page is moved to. @from != @to.
 | |
|  *
 | |
|  * The caller must confirm following.
 | |
|  * - page is not on LRU (isolate_page() is useful.)
 | |
|  *
 | |
|  * returns 0 at success,
 | |
|  * returns -EBUSY when lock is busy or "pc" is unstable.
 | |
|  *
 | |
|  * This function does "uncharge" from old cgroup but doesn't do "charge" to
 | |
|  * new cgroup. It should be done by a caller.
 | |
|  */
 | |
| 
 | |
| static int mem_cgroup_move_account(struct page_cgroup *pc,
 | |
| 	struct mem_cgroup *from, struct mem_cgroup *to)
 | |
| {
 | |
| 	struct mem_cgroup_per_zone *from_mz, *to_mz;
 | |
| 	int nid, zid;
 | |
| 	int ret = -EBUSY;
 | |
| 
 | |
| 	VM_BUG_ON(from == to);
 | |
| 	VM_BUG_ON(PageLRU(pc->page));
 | |
| 
 | |
| 	nid = page_cgroup_nid(pc);
 | |
| 	zid = page_cgroup_zid(pc);
 | |
| 	from_mz =  mem_cgroup_zoneinfo(from, nid, zid);
 | |
| 	to_mz =  mem_cgroup_zoneinfo(to, nid, zid);
 | |
| 
 | |
| 	if (!trylock_page_cgroup(pc))
 | |
| 		return ret;
 | |
| 
 | |
| 	if (!PageCgroupUsed(pc))
 | |
| 		goto out;
 | |
| 
 | |
| 	if (pc->mem_cgroup != from)
 | |
| 		goto out;
 | |
| 
 | |
| 	res_counter_uncharge(&from->res, PAGE_SIZE);
 | |
| 	mem_cgroup_charge_statistics(from, pc, false);
 | |
| 	if (do_swap_account)
 | |
| 		res_counter_uncharge(&from->memsw, PAGE_SIZE);
 | |
| 	css_put(&from->css);
 | |
| 
 | |
| 	css_get(&to->css);
 | |
| 	pc->mem_cgroup = to;
 | |
| 	mem_cgroup_charge_statistics(to, pc, true);
 | |
| 	ret = 0;
 | |
| out:
 | |
| 	unlock_page_cgroup(pc);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * move charges to its parent.
 | |
|  */
 | |
| 
 | |
| static int mem_cgroup_move_parent(struct page_cgroup *pc,
 | |
| 				  struct mem_cgroup *child,
 | |
| 				  gfp_t gfp_mask)
 | |
| {
 | |
| 	struct page *page = pc->page;
 | |
| 	struct cgroup *cg = child->css.cgroup;
 | |
| 	struct cgroup *pcg = cg->parent;
 | |
| 	struct mem_cgroup *parent;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Is ROOT ? */
 | |
| 	if (!pcg)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 
 | |
| 	parent = mem_cgroup_from_cont(pcg);
 | |
| 
 | |
| 
 | |
| 	ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
 | |
| 	if (ret || !parent)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (!get_page_unless_zero(page)) {
 | |
| 		ret = -EBUSY;
 | |
| 		goto uncharge;
 | |
| 	}
 | |
| 
 | |
| 	ret = isolate_lru_page(page);
 | |
| 
 | |
| 	if (ret)
 | |
| 		goto cancel;
 | |
| 
 | |
| 	ret = mem_cgroup_move_account(pc, child, parent);
 | |
| 
 | |
| 	putback_lru_page(page);
 | |
| 	if (!ret) {
 | |
| 		put_page(page);
 | |
| 		/* drop extra refcnt by try_charge() */
 | |
| 		css_put(&parent->css);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| cancel:
 | |
| 	put_page(page);
 | |
| uncharge:
 | |
| 	/* drop extra refcnt by try_charge() */
 | |
| 	css_put(&parent->css);
 | |
| 	/* uncharge if move fails */
 | |
| 	res_counter_uncharge(&parent->res, PAGE_SIZE);
 | |
| 	if (do_swap_account)
 | |
| 		res_counter_uncharge(&parent->memsw, PAGE_SIZE);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Charge the memory controller for page usage.
 | |
|  * Return
 | |
|  * 0 if the charge was successful
 | |
|  * < 0 if the cgroup is over its limit
 | |
|  */
 | |
| static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
 | |
| 				gfp_t gfp_mask, enum charge_type ctype,
 | |
| 				struct mem_cgroup *memcg)
 | |
| {
 | |
| 	struct mem_cgroup *mem;
 | |
| 	struct page_cgroup *pc;
 | |
| 	int ret;
 | |
| 
 | |
| 	pc = lookup_page_cgroup(page);
 | |
| 	/* can happen at boot */
 | |
| 	if (unlikely(!pc))
 | |
| 		return 0;
 | |
| 	prefetchw(pc);
 | |
| 
 | |
| 	mem = memcg;
 | |
| 	ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
 | |
| 	if (ret || !mem)
 | |
| 		return ret;
 | |
| 
 | |
| 	__mem_cgroup_commit_charge(mem, pc, ctype);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int mem_cgroup_newpage_charge(struct page *page,
 | |
| 			      struct mm_struct *mm, gfp_t gfp_mask)
 | |
| {
 | |
| 	if (mem_cgroup_disabled())
 | |
| 		return 0;
 | |
| 	if (PageCompound(page))
 | |
| 		return 0;
 | |
| 	/*
 | |
| 	 * If already mapped, we don't have to account.
 | |
| 	 * If page cache, page->mapping has address_space.
 | |
| 	 * But page->mapping may have out-of-use anon_vma pointer,
 | |
| 	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
 | |
| 	 * is NULL.
 | |
|   	 */
 | |
| 	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
 | |
| 		return 0;
 | |
| 	if (unlikely(!mm))
 | |
| 		mm = &init_mm;
 | |
| 	return mem_cgroup_charge_common(page, mm, gfp_mask,
 | |
| 				MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
 | |
| }
 | |
| 
 | |
| int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
 | |
| 				gfp_t gfp_mask)
 | |
| {
 | |
| 	struct mem_cgroup *mem = NULL;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (mem_cgroup_disabled())
 | |
| 		return 0;
 | |
| 	if (PageCompound(page))
 | |
| 		return 0;
 | |
| 	/*
 | |
| 	 * Corner case handling. This is called from add_to_page_cache()
 | |
| 	 * in usual. But some FS (shmem) precharges this page before calling it
 | |
| 	 * and call add_to_page_cache() with GFP_NOWAIT.
 | |
| 	 *
 | |
| 	 * For GFP_NOWAIT case, the page may be pre-charged before calling
 | |
| 	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
 | |
| 	 * charge twice. (It works but has to pay a bit larger cost.)
 | |
| 	 * And when the page is SwapCache, it should take swap information
 | |
| 	 * into account. This is under lock_page() now.
 | |
| 	 */
 | |
| 	if (!(gfp_mask & __GFP_WAIT)) {
 | |
| 		struct page_cgroup *pc;
 | |
| 
 | |
| 
 | |
| 		pc = lookup_page_cgroup(page);
 | |
| 		if (!pc)
 | |
| 			return 0;
 | |
| 		lock_page_cgroup(pc);
 | |
| 		if (PageCgroupUsed(pc)) {
 | |
| 			unlock_page_cgroup(pc);
 | |
| 			return 0;
 | |
| 		}
 | |
| 		unlock_page_cgroup(pc);
 | |
| 	}
 | |
| 
 | |
| 	if (do_swap_account && PageSwapCache(page)) {
 | |
| 		mem = try_get_mem_cgroup_from_swapcache(page);
 | |
| 		if (mem)
 | |
| 			mm = NULL;
 | |
| 		  else
 | |
| 			mem = NULL;
 | |
| 		/* SwapCache may be still linked to LRU now. */
 | |
| 		mem_cgroup_lru_del_before_commit_swapcache(page);
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(!mm && !mem))
 | |
| 		mm = &init_mm;
 | |
| 
 | |
| 	if (page_is_file_cache(page))
 | |
| 		return mem_cgroup_charge_common(page, mm, gfp_mask,
 | |
| 				MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
 | |
| 
 | |
| 	ret = mem_cgroup_charge_common(page, mm, gfp_mask,
 | |
| 				MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
 | |
| 	if (mem)
 | |
| 		css_put(&mem->css);
 | |
| 	if (PageSwapCache(page))
 | |
| 		mem_cgroup_lru_add_after_commit_swapcache(page);
 | |
| 
 | |
| 	if (do_swap_account && !ret && PageSwapCache(page)) {
 | |
| 		swp_entry_t ent = {.val = page_private(page)};
 | |
| 		/* avoid double counting */
 | |
| 		mem = swap_cgroup_record(ent, NULL);
 | |
| 		if (mem) {
 | |
| 			res_counter_uncharge(&mem->memsw, PAGE_SIZE);
 | |
| 			mem_cgroup_put(mem);
 | |
| 		}
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * While swap-in, try_charge -> commit or cancel, the page is locked.
 | |
|  * And when try_charge() successfully returns, one refcnt to memcg without
 | |
|  * struct page_cgroup is aquired. This refcnt will be cumsumed by
 | |
|  * "commit()" or removed by "cancel()"
 | |
|  */
 | |
| int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
 | |
| 				 struct page *page,
 | |
| 				 gfp_t mask, struct mem_cgroup **ptr)
 | |
| {
 | |
| 	struct mem_cgroup *mem;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (mem_cgroup_disabled())
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!do_swap_account)
 | |
| 		goto charge_cur_mm;
 | |
| 	/*
 | |
| 	 * A racing thread's fault, or swapoff, may have already updated
 | |
| 	 * the pte, and even removed page from swap cache: return success
 | |
| 	 * to go on to do_swap_page()'s pte_same() test, which should fail.
 | |
| 	 */
 | |
| 	if (!PageSwapCache(page))
 | |
| 		return 0;
 | |
| 	mem = try_get_mem_cgroup_from_swapcache(page);
 | |
| 	if (!mem)
 | |
| 		goto charge_cur_mm;
 | |
| 	*ptr = mem;
 | |
| 	ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
 | |
| 	/* drop extra refcnt from tryget */
 | |
| 	css_put(&mem->css);
 | |
| 	return ret;
 | |
| charge_cur_mm:
 | |
| 	if (unlikely(!mm))
 | |
| 		mm = &init_mm;
 | |
| 	return __mem_cgroup_try_charge(mm, mask, ptr, true);
 | |
| }
 | |
| 
 | |
| void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
 | |
| {
 | |
| 	struct page_cgroup *pc;
 | |
| 
 | |
| 	if (mem_cgroup_disabled())
 | |
| 		return;
 | |
| 	if (!ptr)
 | |
| 		return;
 | |
| 	pc = lookup_page_cgroup(page);
 | |
| 	mem_cgroup_lru_del_before_commit_swapcache(page);
 | |
| 	__mem_cgroup_commit_charge(ptr, pc, MEM_CGROUP_CHARGE_TYPE_MAPPED);
 | |
| 	mem_cgroup_lru_add_after_commit_swapcache(page);
 | |
| 	/*
 | |
| 	 * Now swap is on-memory. This means this page may be
 | |
| 	 * counted both as mem and swap....double count.
 | |
| 	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
 | |
| 	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
 | |
| 	 * may call delete_from_swap_cache() before reach here.
 | |
| 	 */
 | |
| 	if (do_swap_account && PageSwapCache(page)) {
 | |
| 		swp_entry_t ent = {.val = page_private(page)};
 | |
| 		struct mem_cgroup *memcg;
 | |
| 		memcg = swap_cgroup_record(ent, NULL);
 | |
| 		if (memcg) {
 | |
| 			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
 | |
| 			mem_cgroup_put(memcg);
 | |
| 		}
 | |
| 
 | |
| 	}
 | |
| 	/* add this page(page_cgroup) to the LRU we want. */
 | |
| 
 | |
| }
 | |
| 
 | |
| void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
 | |
| {
 | |
| 	if (mem_cgroup_disabled())
 | |
| 		return;
 | |
| 	if (!mem)
 | |
| 		return;
 | |
| 	res_counter_uncharge(&mem->res, PAGE_SIZE);
 | |
| 	if (do_swap_account)
 | |
| 		res_counter_uncharge(&mem->memsw, PAGE_SIZE);
 | |
| 	css_put(&mem->css);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * uncharge if !page_mapped(page)
 | |
|  */
 | |
| static struct mem_cgroup *
 | |
| __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
 | |
| {
 | |
| 	struct page_cgroup *pc;
 | |
| 	struct mem_cgroup *mem = NULL;
 | |
| 	struct mem_cgroup_per_zone *mz;
 | |
| 
 | |
| 	if (mem_cgroup_disabled())
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (PageSwapCache(page))
 | |
| 		return NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check if our page_cgroup is valid
 | |
| 	 */
 | |
| 	pc = lookup_page_cgroup(page);
 | |
| 	if (unlikely(!pc || !PageCgroupUsed(pc)))
 | |
| 		return NULL;
 | |
| 
 | |
| 	lock_page_cgroup(pc);
 | |
| 
 | |
| 	mem = pc->mem_cgroup;
 | |
| 
 | |
| 	if (!PageCgroupUsed(pc))
 | |
| 		goto unlock_out;
 | |
| 
 | |
| 	switch (ctype) {
 | |
| 	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
 | |
| 		if (page_mapped(page))
 | |
| 			goto unlock_out;
 | |
| 		break;
 | |
| 	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
 | |
| 		if (!PageAnon(page)) {	/* Shared memory */
 | |
| 			if (page->mapping && !page_is_file_cache(page))
 | |
| 				goto unlock_out;
 | |
| 		} else if (page_mapped(page)) /* Anon */
 | |
| 				goto unlock_out;
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	res_counter_uncharge(&mem->res, PAGE_SIZE);
 | |
| 	if (do_swap_account && (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT))
 | |
| 		res_counter_uncharge(&mem->memsw, PAGE_SIZE);
 | |
| 
 | |
| 	mem_cgroup_charge_statistics(mem, pc, false);
 | |
| 	ClearPageCgroupUsed(pc);
 | |
| 	/*
 | |
| 	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
 | |
| 	 * freed from LRU. This is safe because uncharged page is expected not
 | |
| 	 * to be reused (freed soon). Exception is SwapCache, it's handled by
 | |
| 	 * special functions.
 | |
| 	 */
 | |
| 
 | |
| 	mz = page_cgroup_zoneinfo(pc);
 | |
| 	unlock_page_cgroup(pc);
 | |
| 
 | |
| 	/* at swapout, this memcg will be accessed to record to swap */
 | |
| 	if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
 | |
| 		css_put(&mem->css);
 | |
| 
 | |
| 	return mem;
 | |
| 
 | |
| unlock_out:
 | |
| 	unlock_page_cgroup(pc);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| void mem_cgroup_uncharge_page(struct page *page)
 | |
| {
 | |
| 	/* early check. */
 | |
| 	if (page_mapped(page))
 | |
| 		return;
 | |
| 	if (page->mapping && !PageAnon(page))
 | |
| 		return;
 | |
| 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
 | |
| }
 | |
| 
 | |
| void mem_cgroup_uncharge_cache_page(struct page *page)
 | |
| {
 | |
| 	VM_BUG_ON(page_mapped(page));
 | |
| 	VM_BUG_ON(page->mapping);
 | |
| 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * called from __delete_from_swap_cache() and drop "page" account.
 | |
|  * memcg information is recorded to swap_cgroup of "ent"
 | |
|  */
 | |
| void mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent)
 | |
| {
 | |
| 	struct mem_cgroup *memcg;
 | |
| 
 | |
| 	memcg = __mem_cgroup_uncharge_common(page,
 | |
| 					MEM_CGROUP_CHARGE_TYPE_SWAPOUT);
 | |
| 	/* record memcg information */
 | |
| 	if (do_swap_account && memcg) {
 | |
| 		swap_cgroup_record(ent, memcg);
 | |
| 		mem_cgroup_get(memcg);
 | |
| 	}
 | |
| 	if (memcg)
 | |
| 		css_put(&memcg->css);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
 | |
| /*
 | |
|  * called from swap_entry_free(). remove record in swap_cgroup and
 | |
|  * uncharge "memsw" account.
 | |
|  */
 | |
| void mem_cgroup_uncharge_swap(swp_entry_t ent)
 | |
| {
 | |
| 	struct mem_cgroup *memcg;
 | |
| 
 | |
| 	if (!do_swap_account)
 | |
| 		return;
 | |
| 
 | |
| 	memcg = swap_cgroup_record(ent, NULL);
 | |
| 	if (memcg) {
 | |
| 		res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
 | |
| 		mem_cgroup_put(memcg);
 | |
| 	}
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 | |
|  * page belongs to.
 | |
|  */
 | |
| int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
 | |
| {
 | |
| 	struct page_cgroup *pc;
 | |
| 	struct mem_cgroup *mem = NULL;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (mem_cgroup_disabled())
 | |
| 		return 0;
 | |
| 
 | |
| 	pc = lookup_page_cgroup(page);
 | |
| 	lock_page_cgroup(pc);
 | |
| 	if (PageCgroupUsed(pc)) {
 | |
| 		mem = pc->mem_cgroup;
 | |
| 		css_get(&mem->css);
 | |
| 	}
 | |
| 	unlock_page_cgroup(pc);
 | |
| 
 | |
| 	if (mem) {
 | |
| 		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
 | |
| 		css_put(&mem->css);
 | |
| 	}
 | |
| 	*ptr = mem;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* remove redundant charge if migration failed*/
 | |
| void mem_cgroup_end_migration(struct mem_cgroup *mem,
 | |
| 		struct page *oldpage, struct page *newpage)
 | |
| {
 | |
| 	struct page *target, *unused;
 | |
| 	struct page_cgroup *pc;
 | |
| 	enum charge_type ctype;
 | |
| 
 | |
| 	if (!mem)
 | |
| 		return;
 | |
| 
 | |
| 	/* at migration success, oldpage->mapping is NULL. */
 | |
| 	if (oldpage->mapping) {
 | |
| 		target = oldpage;
 | |
| 		unused = NULL;
 | |
| 	} else {
 | |
| 		target = newpage;
 | |
| 		unused = oldpage;
 | |
| 	}
 | |
| 
 | |
| 	if (PageAnon(target))
 | |
| 		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
 | |
| 	else if (page_is_file_cache(target))
 | |
| 		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
 | |
| 	else
 | |
| 		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
 | |
| 
 | |
| 	/* unused page is not on radix-tree now. */
 | |
| 	if (unused)
 | |
| 		__mem_cgroup_uncharge_common(unused, ctype);
 | |
| 
 | |
| 	pc = lookup_page_cgroup(target);
 | |
| 	/*
 | |
| 	 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
 | |
| 	 * So, double-counting is effectively avoided.
 | |
| 	 */
 | |
| 	__mem_cgroup_commit_charge(mem, pc, ctype);
 | |
| 
 | |
| 	/*
 | |
| 	 * Both of oldpage and newpage are still under lock_page().
 | |
| 	 * Then, we don't have to care about race in radix-tree.
 | |
| 	 * But we have to be careful that this page is unmapped or not.
 | |
| 	 *
 | |
| 	 * There is a case for !page_mapped(). At the start of
 | |
| 	 * migration, oldpage was mapped. But now, it's zapped.
 | |
| 	 * But we know *target* page is not freed/reused under us.
 | |
| 	 * mem_cgroup_uncharge_page() does all necessary checks.
 | |
| 	 */
 | |
| 	if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
 | |
| 		mem_cgroup_uncharge_page(target);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * A call to try to shrink memory usage under specified resource controller.
 | |
|  * This is typically used for page reclaiming for shmem for reducing side
 | |
|  * effect of page allocation from shmem, which is used by some mem_cgroup.
 | |
|  */
 | |
| int mem_cgroup_shrink_usage(struct page *page,
 | |
| 			    struct mm_struct *mm,
 | |
| 			    gfp_t gfp_mask)
 | |
| {
 | |
| 	struct mem_cgroup *mem = NULL;
 | |
| 	int progress = 0;
 | |
| 	int retry = MEM_CGROUP_RECLAIM_RETRIES;
 | |
| 
 | |
| 	if (mem_cgroup_disabled())
 | |
| 		return 0;
 | |
| 	if (page)
 | |
| 		mem = try_get_mem_cgroup_from_swapcache(page);
 | |
| 	if (!mem && mm)
 | |
| 		mem = try_get_mem_cgroup_from_mm(mm);
 | |
| 	if (unlikely(!mem))
 | |
| 		return 0;
 | |
| 
 | |
| 	do {
 | |
| 		progress = mem_cgroup_hierarchical_reclaim(mem, gfp_mask, true);
 | |
| 		progress += mem_cgroup_check_under_limit(mem);
 | |
| 	} while (!progress && --retry);
 | |
| 
 | |
| 	css_put(&mem->css);
 | |
| 	if (!retry)
 | |
| 		return -ENOMEM;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static DEFINE_MUTEX(set_limit_mutex);
 | |
| 
 | |
| static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
 | |
| 				unsigned long long val)
 | |
| {
 | |
| 
 | |
| 	int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
 | |
| 	int progress;
 | |
| 	u64 memswlimit;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	while (retry_count) {
 | |
| 		if (signal_pending(current)) {
 | |
| 			ret = -EINTR;
 | |
| 			break;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * Rather than hide all in some function, I do this in
 | |
| 		 * open coded manner. You see what this really does.
 | |
| 		 * We have to guarantee mem->res.limit < mem->memsw.limit.
 | |
| 		 */
 | |
| 		mutex_lock(&set_limit_mutex);
 | |
| 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
 | |
| 		if (memswlimit < val) {
 | |
| 			ret = -EINVAL;
 | |
| 			mutex_unlock(&set_limit_mutex);
 | |
| 			break;
 | |
| 		}
 | |
| 		ret = res_counter_set_limit(&memcg->res, val);
 | |
| 		mutex_unlock(&set_limit_mutex);
 | |
| 
 | |
| 		if (!ret)
 | |
| 			break;
 | |
| 
 | |
| 		progress = mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL,
 | |
| 							   false);
 | |
|   		if (!progress)			retry_count--;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
 | |
| 				unsigned long long val)
 | |
| {
 | |
| 	int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
 | |
| 	u64 memlimit, oldusage, curusage;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!do_swap_account)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	while (retry_count) {
 | |
| 		if (signal_pending(current)) {
 | |
| 			ret = -EINTR;
 | |
| 			break;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * Rather than hide all in some function, I do this in
 | |
| 		 * open coded manner. You see what this really does.
 | |
| 		 * We have to guarantee mem->res.limit < mem->memsw.limit.
 | |
| 		 */
 | |
| 		mutex_lock(&set_limit_mutex);
 | |
| 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
 | |
| 		if (memlimit > val) {
 | |
| 			ret = -EINVAL;
 | |
| 			mutex_unlock(&set_limit_mutex);
 | |
| 			break;
 | |
| 		}
 | |
| 		ret = res_counter_set_limit(&memcg->memsw, val);
 | |
| 		mutex_unlock(&set_limit_mutex);
 | |
| 
 | |
| 		if (!ret)
 | |
| 			break;
 | |
| 
 | |
| 		oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
 | |
| 		mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL, true);
 | |
| 		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
 | |
| 		if (curusage >= oldusage)
 | |
| 			retry_count--;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This routine traverse page_cgroup in given list and drop them all.
 | |
|  * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 | |
|  */
 | |
| static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
 | |
| 				int node, int zid, enum lru_list lru)
 | |
| {
 | |
| 	struct zone *zone;
 | |
| 	struct mem_cgroup_per_zone *mz;
 | |
| 	struct page_cgroup *pc, *busy;
 | |
| 	unsigned long flags, loop;
 | |
| 	struct list_head *list;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	zone = &NODE_DATA(node)->node_zones[zid];
 | |
| 	mz = mem_cgroup_zoneinfo(mem, node, zid);
 | |
| 	list = &mz->lists[lru];
 | |
| 
 | |
| 	loop = MEM_CGROUP_ZSTAT(mz, lru);
 | |
| 	/* give some margin against EBUSY etc...*/
 | |
| 	loop += 256;
 | |
| 	busy = NULL;
 | |
| 	while (loop--) {
 | |
| 		ret = 0;
 | |
| 		spin_lock_irqsave(&zone->lru_lock, flags);
 | |
| 		if (list_empty(list)) {
 | |
| 			spin_unlock_irqrestore(&zone->lru_lock, flags);
 | |
| 			break;
 | |
| 		}
 | |
| 		pc = list_entry(list->prev, struct page_cgroup, lru);
 | |
| 		if (busy == pc) {
 | |
| 			list_move(&pc->lru, list);
 | |
| 			busy = 0;
 | |
| 			spin_unlock_irqrestore(&zone->lru_lock, flags);
 | |
| 			continue;
 | |
| 		}
 | |
| 		spin_unlock_irqrestore(&zone->lru_lock, flags);
 | |
| 
 | |
| 		ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
 | |
| 		if (ret == -ENOMEM)
 | |
| 			break;
 | |
| 
 | |
| 		if (ret == -EBUSY || ret == -EINVAL) {
 | |
| 			/* found lock contention or "pc" is obsolete. */
 | |
| 			busy = pc;
 | |
| 			cond_resched();
 | |
| 		} else
 | |
| 			busy = NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (!ret && !list_empty(list))
 | |
| 		return -EBUSY;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * make mem_cgroup's charge to be 0 if there is no task.
 | |
|  * This enables deleting this mem_cgroup.
 | |
|  */
 | |
| static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
 | |
| {
 | |
| 	int ret;
 | |
| 	int node, zid, shrink;
 | |
| 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
 | |
| 	struct cgroup *cgrp = mem->css.cgroup;
 | |
| 
 | |
| 	css_get(&mem->css);
 | |
| 
 | |
| 	shrink = 0;
 | |
| 	/* should free all ? */
 | |
| 	if (free_all)
 | |
| 		goto try_to_free;
 | |
| move_account:
 | |
| 	while (mem->res.usage > 0) {
 | |
| 		ret = -EBUSY;
 | |
| 		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
 | |
| 			goto out;
 | |
| 		ret = -EINTR;
 | |
| 		if (signal_pending(current))
 | |
| 			goto out;
 | |
| 		/* This is for making all *used* pages to be on LRU. */
 | |
| 		lru_add_drain_all();
 | |
| 		ret = 0;
 | |
| 		for_each_node_state(node, N_HIGH_MEMORY) {
 | |
| 			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
 | |
| 				enum lru_list l;
 | |
| 				for_each_lru(l) {
 | |
| 					ret = mem_cgroup_force_empty_list(mem,
 | |
| 							node, zid, l);
 | |
| 					if (ret)
 | |
| 						break;
 | |
| 				}
 | |
| 			}
 | |
| 			if (ret)
 | |
| 				break;
 | |
| 		}
 | |
| 		/* it seems parent cgroup doesn't have enough mem */
 | |
| 		if (ret == -ENOMEM)
 | |
| 			goto try_to_free;
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 	ret = 0;
 | |
| out:
 | |
| 	css_put(&mem->css);
 | |
| 	return ret;
 | |
| 
 | |
| try_to_free:
 | |
| 	/* returns EBUSY if there is a task or if we come here twice. */
 | |
| 	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
 | |
| 		ret = -EBUSY;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	/* we call try-to-free pages for make this cgroup empty */
 | |
| 	lru_add_drain_all();
 | |
| 	/* try to free all pages in this cgroup */
 | |
| 	shrink = 1;
 | |
| 	while (nr_retries && mem->res.usage > 0) {
 | |
| 		int progress;
 | |
| 
 | |
| 		if (signal_pending(current)) {
 | |
| 			ret = -EINTR;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
 | |
| 						false, get_swappiness(mem));
 | |
| 		if (!progress) {
 | |
| 			nr_retries--;
 | |
| 			/* maybe some writeback is necessary */
 | |
| 			congestion_wait(WRITE, HZ/10);
 | |
| 		}
 | |
| 
 | |
| 	}
 | |
| 	lru_add_drain();
 | |
| 	/* try move_account...there may be some *locked* pages. */
 | |
| 	if (mem->res.usage)
 | |
| 		goto move_account;
 | |
| 	ret = 0;
 | |
| 	goto out;
 | |
| }
 | |
| 
 | |
| int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
 | |
| {
 | |
| 	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
 | |
| }
 | |
| 
 | |
| 
 | |
| static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
 | |
| {
 | |
| 	return mem_cgroup_from_cont(cont)->use_hierarchy;
 | |
| }
 | |
| 
 | |
| static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
 | |
| 					u64 val)
 | |
| {
 | |
| 	int retval = 0;
 | |
| 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
 | |
| 	struct cgroup *parent = cont->parent;
 | |
| 	struct mem_cgroup *parent_mem = NULL;
 | |
| 
 | |
| 	if (parent)
 | |
| 		parent_mem = mem_cgroup_from_cont(parent);
 | |
| 
 | |
| 	cgroup_lock();
 | |
| 	/*
 | |
| 	 * If parent's use_hiearchy is set, we can't make any modifications
 | |
| 	 * in the child subtrees. If it is unset, then the change can
 | |
| 	 * occur, provided the current cgroup has no children.
 | |
| 	 *
 | |
| 	 * For the root cgroup, parent_mem is NULL, we allow value to be
 | |
| 	 * set if there are no children.
 | |
| 	 */
 | |
| 	if ((!parent_mem || !parent_mem->use_hierarchy) &&
 | |
| 				(val == 1 || val == 0)) {
 | |
| 		if (list_empty(&cont->children))
 | |
| 			mem->use_hierarchy = val;
 | |
| 		else
 | |
| 			retval = -EBUSY;
 | |
| 	} else
 | |
| 		retval = -EINVAL;
 | |
| 	cgroup_unlock();
 | |
| 
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
 | |
| {
 | |
| 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
 | |
| 	u64 val = 0;
 | |
| 	int type, name;
 | |
| 
 | |
| 	type = MEMFILE_TYPE(cft->private);
 | |
| 	name = MEMFILE_ATTR(cft->private);
 | |
| 	switch (type) {
 | |
| 	case _MEM:
 | |
| 		val = res_counter_read_u64(&mem->res, name);
 | |
| 		break;
 | |
| 	case _MEMSWAP:
 | |
| 		if (do_swap_account)
 | |
| 			val = res_counter_read_u64(&mem->memsw, name);
 | |
| 		break;
 | |
| 	default:
 | |
| 		BUG();
 | |
| 		break;
 | |
| 	}
 | |
| 	return val;
 | |
| }
 | |
| /*
 | |
|  * The user of this function is...
 | |
|  * RES_LIMIT.
 | |
|  */
 | |
| static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
 | |
| 			    const char *buffer)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
 | |
| 	int type, name;
 | |
| 	unsigned long long val;
 | |
| 	int ret;
 | |
| 
 | |
| 	type = MEMFILE_TYPE(cft->private);
 | |
| 	name = MEMFILE_ATTR(cft->private);
 | |
| 	switch (name) {
 | |
| 	case RES_LIMIT:
 | |
| 		/* This function does all necessary parse...reuse it */
 | |
| 		ret = res_counter_memparse_write_strategy(buffer, &val);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 		if (type == _MEM)
 | |
| 			ret = mem_cgroup_resize_limit(memcg, val);
 | |
| 		else
 | |
| 			ret = mem_cgroup_resize_memsw_limit(memcg, val);
 | |
| 		break;
 | |
| 	default:
 | |
| 		ret = -EINVAL; /* should be BUG() ? */
 | |
| 		break;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
 | |
| 		unsigned long long *mem_limit, unsigned long long *memsw_limit)
 | |
| {
 | |
| 	struct cgroup *cgroup;
 | |
| 	unsigned long long min_limit, min_memsw_limit, tmp;
 | |
| 
 | |
| 	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
 | |
| 	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
 | |
| 	cgroup = memcg->css.cgroup;
 | |
| 	if (!memcg->use_hierarchy)
 | |
| 		goto out;
 | |
| 
 | |
| 	while (cgroup->parent) {
 | |
| 		cgroup = cgroup->parent;
 | |
| 		memcg = mem_cgroup_from_cont(cgroup);
 | |
| 		if (!memcg->use_hierarchy)
 | |
| 			break;
 | |
| 		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
 | |
| 		min_limit = min(min_limit, tmp);
 | |
| 		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
 | |
| 		min_memsw_limit = min(min_memsw_limit, tmp);
 | |
| 	}
 | |
| out:
 | |
| 	*mem_limit = min_limit;
 | |
| 	*memsw_limit = min_memsw_limit;
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
 | |
| {
 | |
| 	struct mem_cgroup *mem;
 | |
| 	int type, name;
 | |
| 
 | |
| 	mem = mem_cgroup_from_cont(cont);
 | |
| 	type = MEMFILE_TYPE(event);
 | |
| 	name = MEMFILE_ATTR(event);
 | |
| 	switch (name) {
 | |
| 	case RES_MAX_USAGE:
 | |
| 		if (type == _MEM)
 | |
| 			res_counter_reset_max(&mem->res);
 | |
| 		else
 | |
| 			res_counter_reset_max(&mem->memsw);
 | |
| 		break;
 | |
| 	case RES_FAILCNT:
 | |
| 		if (type == _MEM)
 | |
| 			res_counter_reset_failcnt(&mem->res);
 | |
| 		else
 | |
| 			res_counter_reset_failcnt(&mem->memsw);
 | |
| 		break;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct mem_cgroup_stat_desc {
 | |
| 	const char *msg;
 | |
| 	u64 unit;
 | |
| } mem_cgroup_stat_desc[] = {
 | |
| 	[MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
 | |
| 	[MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
 | |
| 	[MEM_CGROUP_STAT_PGPGIN_COUNT] = {"pgpgin", 1, },
 | |
| 	[MEM_CGROUP_STAT_PGPGOUT_COUNT] = {"pgpgout", 1, },
 | |
| };
 | |
| 
 | |
| static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
 | |
| 				 struct cgroup_map_cb *cb)
 | |
| {
 | |
| 	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
 | |
| 	struct mem_cgroup_stat *stat = &mem_cont->stat;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
 | |
| 		s64 val;
 | |
| 
 | |
| 		val = mem_cgroup_read_stat(stat, i);
 | |
| 		val *= mem_cgroup_stat_desc[i].unit;
 | |
| 		cb->fill(cb, mem_cgroup_stat_desc[i].msg, val);
 | |
| 	}
 | |
| 	/* showing # of active pages */
 | |
| 	{
 | |
| 		unsigned long active_anon, inactive_anon;
 | |
| 		unsigned long active_file, inactive_file;
 | |
| 		unsigned long unevictable;
 | |
| 
 | |
| 		inactive_anon = mem_cgroup_get_all_zonestat(mem_cont,
 | |
| 						LRU_INACTIVE_ANON);
 | |
| 		active_anon = mem_cgroup_get_all_zonestat(mem_cont,
 | |
| 						LRU_ACTIVE_ANON);
 | |
| 		inactive_file = mem_cgroup_get_all_zonestat(mem_cont,
 | |
| 						LRU_INACTIVE_FILE);
 | |
| 		active_file = mem_cgroup_get_all_zonestat(mem_cont,
 | |
| 						LRU_ACTIVE_FILE);
 | |
| 		unevictable = mem_cgroup_get_all_zonestat(mem_cont,
 | |
| 							LRU_UNEVICTABLE);
 | |
| 
 | |
| 		cb->fill(cb, "active_anon", (active_anon) * PAGE_SIZE);
 | |
| 		cb->fill(cb, "inactive_anon", (inactive_anon) * PAGE_SIZE);
 | |
| 		cb->fill(cb, "active_file", (active_file) * PAGE_SIZE);
 | |
| 		cb->fill(cb, "inactive_file", (inactive_file) * PAGE_SIZE);
 | |
| 		cb->fill(cb, "unevictable", unevictable * PAGE_SIZE);
 | |
| 
 | |
| 	}
 | |
| 	{
 | |
| 		unsigned long long limit, memsw_limit;
 | |
| 		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
 | |
| 		cb->fill(cb, "hierarchical_memory_limit", limit);
 | |
| 		if (do_swap_account)
 | |
| 			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_VM
 | |
| 	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
 | |
| 
 | |
| 	{
 | |
| 		int nid, zid;
 | |
| 		struct mem_cgroup_per_zone *mz;
 | |
| 		unsigned long recent_rotated[2] = {0, 0};
 | |
| 		unsigned long recent_scanned[2] = {0, 0};
 | |
| 
 | |
| 		for_each_online_node(nid)
 | |
| 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
 | |
| 				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
 | |
| 
 | |
| 				recent_rotated[0] +=
 | |
| 					mz->reclaim_stat.recent_rotated[0];
 | |
| 				recent_rotated[1] +=
 | |
| 					mz->reclaim_stat.recent_rotated[1];
 | |
| 				recent_scanned[0] +=
 | |
| 					mz->reclaim_stat.recent_scanned[0];
 | |
| 				recent_scanned[1] +=
 | |
| 					mz->reclaim_stat.recent_scanned[1];
 | |
| 			}
 | |
| 		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
 | |
| 		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
 | |
| 		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
 | |
| 		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
 | |
| 
 | |
| 	return get_swappiness(memcg);
 | |
| }
 | |
| 
 | |
| static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
 | |
| 				       u64 val)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
 | |
| 	struct mem_cgroup *parent;
 | |
| 
 | |
| 	if (val > 100)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (cgrp->parent == NULL)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	parent = mem_cgroup_from_cont(cgrp->parent);
 | |
| 
 | |
| 	cgroup_lock();
 | |
| 
 | |
| 	/* If under hierarchy, only empty-root can set this value */
 | |
| 	if ((parent->use_hierarchy) ||
 | |
| 	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
 | |
| 		cgroup_unlock();
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&memcg->reclaim_param_lock);
 | |
| 	memcg->swappiness = val;
 | |
| 	spin_unlock(&memcg->reclaim_param_lock);
 | |
| 
 | |
| 	cgroup_unlock();
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static struct cftype mem_cgroup_files[] = {
 | |
| 	{
 | |
| 		.name = "usage_in_bytes",
 | |
| 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
 | |
| 		.read_u64 = mem_cgroup_read,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "max_usage_in_bytes",
 | |
| 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
 | |
| 		.trigger = mem_cgroup_reset,
 | |
| 		.read_u64 = mem_cgroup_read,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "limit_in_bytes",
 | |
| 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
 | |
| 		.write_string = mem_cgroup_write,
 | |
| 		.read_u64 = mem_cgroup_read,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "failcnt",
 | |
| 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
 | |
| 		.trigger = mem_cgroup_reset,
 | |
| 		.read_u64 = mem_cgroup_read,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "stat",
 | |
| 		.read_map = mem_control_stat_show,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "force_empty",
 | |
| 		.trigger = mem_cgroup_force_empty_write,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "use_hierarchy",
 | |
| 		.write_u64 = mem_cgroup_hierarchy_write,
 | |
| 		.read_u64 = mem_cgroup_hierarchy_read,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "swappiness",
 | |
| 		.read_u64 = mem_cgroup_swappiness_read,
 | |
| 		.write_u64 = mem_cgroup_swappiness_write,
 | |
| 	},
 | |
| };
 | |
| 
 | |
| #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
 | |
| static struct cftype memsw_cgroup_files[] = {
 | |
| 	{
 | |
| 		.name = "memsw.usage_in_bytes",
 | |
| 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
 | |
| 		.read_u64 = mem_cgroup_read,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "memsw.max_usage_in_bytes",
 | |
| 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
 | |
| 		.trigger = mem_cgroup_reset,
 | |
| 		.read_u64 = mem_cgroup_read,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "memsw.limit_in_bytes",
 | |
| 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
 | |
| 		.write_string = mem_cgroup_write,
 | |
| 		.read_u64 = mem_cgroup_read,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "memsw.failcnt",
 | |
| 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
 | |
| 		.trigger = mem_cgroup_reset,
 | |
| 		.read_u64 = mem_cgroup_read,
 | |
| 	},
 | |
| };
 | |
| 
 | |
| static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
 | |
| {
 | |
| 	if (!do_swap_account)
 | |
| 		return 0;
 | |
| 	return cgroup_add_files(cont, ss, memsw_cgroup_files,
 | |
| 				ARRAY_SIZE(memsw_cgroup_files));
 | |
| };
 | |
| #else
 | |
| static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
 | |
| {
 | |
| 	struct mem_cgroup_per_node *pn;
 | |
| 	struct mem_cgroup_per_zone *mz;
 | |
| 	enum lru_list l;
 | |
| 	int zone, tmp = node;
 | |
| 	/*
 | |
| 	 * This routine is called against possible nodes.
 | |
| 	 * But it's BUG to call kmalloc() against offline node.
 | |
| 	 *
 | |
| 	 * TODO: this routine can waste much memory for nodes which will
 | |
| 	 *       never be onlined. It's better to use memory hotplug callback
 | |
| 	 *       function.
 | |
| 	 */
 | |
| 	if (!node_state(node, N_NORMAL_MEMORY))
 | |
| 		tmp = -1;
 | |
| 	pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
 | |
| 	if (!pn)
 | |
| 		return 1;
 | |
| 
 | |
| 	mem->info.nodeinfo[node] = pn;
 | |
| 	memset(pn, 0, sizeof(*pn));
 | |
| 
 | |
| 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
 | |
| 		mz = &pn->zoneinfo[zone];
 | |
| 		for_each_lru(l)
 | |
| 			INIT_LIST_HEAD(&mz->lists[l]);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
 | |
| {
 | |
| 	kfree(mem->info.nodeinfo[node]);
 | |
| }
 | |
| 
 | |
| static int mem_cgroup_size(void)
 | |
| {
 | |
| 	int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
 | |
| 	return sizeof(struct mem_cgroup) + cpustat_size;
 | |
| }
 | |
| 
 | |
| static struct mem_cgroup *mem_cgroup_alloc(void)
 | |
| {
 | |
| 	struct mem_cgroup *mem;
 | |
| 	int size = mem_cgroup_size();
 | |
| 
 | |
| 	if (size < PAGE_SIZE)
 | |
| 		mem = kmalloc(size, GFP_KERNEL);
 | |
| 	else
 | |
| 		mem = vmalloc(size);
 | |
| 
 | |
| 	if (mem)
 | |
| 		memset(mem, 0, size);
 | |
| 	return mem;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * At destroying mem_cgroup, references from swap_cgroup can remain.
 | |
|  * (scanning all at force_empty is too costly...)
 | |
|  *
 | |
|  * Instead of clearing all references at force_empty, we remember
 | |
|  * the number of reference from swap_cgroup and free mem_cgroup when
 | |
|  * it goes down to 0.
 | |
|  *
 | |
|  * Removal of cgroup itself succeeds regardless of refs from swap.
 | |
|  */
 | |
| 
 | |
| static void __mem_cgroup_free(struct mem_cgroup *mem)
 | |
| {
 | |
| 	int node;
 | |
| 
 | |
| 	for_each_node_state(node, N_POSSIBLE)
 | |
| 		free_mem_cgroup_per_zone_info(mem, node);
 | |
| 
 | |
| 	if (mem_cgroup_size() < PAGE_SIZE)
 | |
| 		kfree(mem);
 | |
| 	else
 | |
| 		vfree(mem);
 | |
| }
 | |
| 
 | |
| static void mem_cgroup_get(struct mem_cgroup *mem)
 | |
| {
 | |
| 	atomic_inc(&mem->refcnt);
 | |
| }
 | |
| 
 | |
| static void mem_cgroup_put(struct mem_cgroup *mem)
 | |
| {
 | |
| 	if (atomic_dec_and_test(&mem->refcnt)) {
 | |
| 		struct mem_cgroup *parent = parent_mem_cgroup(mem);
 | |
| 		__mem_cgroup_free(mem);
 | |
| 		if (parent)
 | |
| 			mem_cgroup_put(parent);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 | |
|  */
 | |
| static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
 | |
| {
 | |
| 	if (!mem->res.parent)
 | |
| 		return NULL;
 | |
| 	return mem_cgroup_from_res_counter(mem->res.parent, res);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
 | |
| static void __init enable_swap_cgroup(void)
 | |
| {
 | |
| 	if (!mem_cgroup_disabled() && really_do_swap_account)
 | |
| 		do_swap_account = 1;
 | |
| }
 | |
| #else
 | |
| static void __init enable_swap_cgroup(void)
 | |
| {
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static struct cgroup_subsys_state * __ref
 | |
| mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
 | |
| {
 | |
| 	struct mem_cgroup *mem, *parent;
 | |
| 	int node;
 | |
| 
 | |
| 	mem = mem_cgroup_alloc();
 | |
| 	if (!mem)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	for_each_node_state(node, N_POSSIBLE)
 | |
| 		if (alloc_mem_cgroup_per_zone_info(mem, node))
 | |
| 			goto free_out;
 | |
| 	/* root ? */
 | |
| 	if (cont->parent == NULL) {
 | |
| 		enable_swap_cgroup();
 | |
| 		parent = NULL;
 | |
| 	} else {
 | |
| 		parent = mem_cgroup_from_cont(cont->parent);
 | |
| 		mem->use_hierarchy = parent->use_hierarchy;
 | |
| 	}
 | |
| 
 | |
| 	if (parent && parent->use_hierarchy) {
 | |
| 		res_counter_init(&mem->res, &parent->res);
 | |
| 		res_counter_init(&mem->memsw, &parent->memsw);
 | |
| 		/*
 | |
| 		 * We increment refcnt of the parent to ensure that we can
 | |
| 		 * safely access it on res_counter_charge/uncharge.
 | |
| 		 * This refcnt will be decremented when freeing this
 | |
| 		 * mem_cgroup(see mem_cgroup_put).
 | |
| 		 */
 | |
| 		mem_cgroup_get(parent);
 | |
| 	} else {
 | |
| 		res_counter_init(&mem->res, NULL);
 | |
| 		res_counter_init(&mem->memsw, NULL);
 | |
| 	}
 | |
| 	mem->last_scanned_child = NULL;
 | |
| 	spin_lock_init(&mem->reclaim_param_lock);
 | |
| 
 | |
| 	if (parent)
 | |
| 		mem->swappiness = get_swappiness(parent);
 | |
| 	atomic_set(&mem->refcnt, 1);
 | |
| 	return &mem->css;
 | |
| free_out:
 | |
| 	__mem_cgroup_free(mem);
 | |
| 	return ERR_PTR(-ENOMEM);
 | |
| }
 | |
| 
 | |
| static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
 | |
| 					struct cgroup *cont)
 | |
| {
 | |
| 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
 | |
| 	mem_cgroup_force_empty(mem, false);
 | |
| }
 | |
| 
 | |
| static void mem_cgroup_destroy(struct cgroup_subsys *ss,
 | |
| 				struct cgroup *cont)
 | |
| {
 | |
| 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
 | |
| 	struct mem_cgroup *last_scanned_child = mem->last_scanned_child;
 | |
| 
 | |
| 	if (last_scanned_child) {
 | |
| 		VM_BUG_ON(!mem_cgroup_is_obsolete(last_scanned_child));
 | |
| 		mem_cgroup_put(last_scanned_child);
 | |
| 	}
 | |
| 	mem_cgroup_put(mem);
 | |
| }
 | |
| 
 | |
| static int mem_cgroup_populate(struct cgroup_subsys *ss,
 | |
| 				struct cgroup *cont)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
 | |
| 				ARRAY_SIZE(mem_cgroup_files));
 | |
| 
 | |
| 	if (!ret)
 | |
| 		ret = register_memsw_files(cont, ss);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void mem_cgroup_move_task(struct cgroup_subsys *ss,
 | |
| 				struct cgroup *cont,
 | |
| 				struct cgroup *old_cont,
 | |
| 				struct task_struct *p)
 | |
| {
 | |
| 	mutex_lock(&memcg_tasklist);
 | |
| 	/*
 | |
| 	 * FIXME: It's better to move charges of this process from old
 | |
| 	 * memcg to new memcg. But it's just on TODO-List now.
 | |
| 	 */
 | |
| 	mutex_unlock(&memcg_tasklist);
 | |
| }
 | |
| 
 | |
| struct cgroup_subsys mem_cgroup_subsys = {
 | |
| 	.name = "memory",
 | |
| 	.subsys_id = mem_cgroup_subsys_id,
 | |
| 	.create = mem_cgroup_create,
 | |
| 	.pre_destroy = mem_cgroup_pre_destroy,
 | |
| 	.destroy = mem_cgroup_destroy,
 | |
| 	.populate = mem_cgroup_populate,
 | |
| 	.attach = mem_cgroup_move_task,
 | |
| 	.early_init = 0,
 | |
| };
 | |
| 
 | |
| #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
 | |
| 
 | |
| static int __init disable_swap_account(char *s)
 | |
| {
 | |
| 	really_do_swap_account = 0;
 | |
| 	return 1;
 | |
| }
 | |
| __setup("noswapaccount", disable_swap_account);
 | |
| #endif
 |