 f275411440
			
		
	
	
	f275411440
	
	
	
		
			
			Commit ec22ba8e ("ext4: disable merging of uninitialized extents")
ensured that if either extent under consideration is uninit, we
decline to merge, and ext4_can_extents_be_merged() returns false.
So there is no need for the caller to then test whether the
extent under consideration is unitialized; if it were, we
wouldn't have gotten that far.
The comments were also inaccurate; ext4_can_extents_be_merged()
no longer XORs the states, it fails if *either* is uninit.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Reviewed-by: Zheng Liu <wenqing.lz@taobao.com>
		
	
			
		
			
				
	
	
		
			4855 lines
		
	
	
	
		
			133 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			4855 lines
		
	
	
	
		
			133 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
 | |
|  * Written by Alex Tomas <alex@clusterfs.com>
 | |
|  *
 | |
|  * Architecture independence:
 | |
|  *   Copyright (c) 2005, Bull S.A.
 | |
|  *   Written by Pierre Peiffer <pierre.peiffer@bull.net>
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License version 2 as
 | |
|  * published by the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public Licens
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Extents support for EXT4
 | |
|  *
 | |
|  * TODO:
 | |
|  *   - ext4*_error() should be used in some situations
 | |
|  *   - analyze all BUG()/BUG_ON(), use -EIO where appropriate
 | |
|  *   - smart tree reduction
 | |
|  */
 | |
| 
 | |
| #include <linux/fs.h>
 | |
| #include <linux/time.h>
 | |
| #include <linux/jbd2.h>
 | |
| #include <linux/highuid.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/quotaops.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/falloc.h>
 | |
| #include <asm/uaccess.h>
 | |
| #include <linux/fiemap.h>
 | |
| #include "ext4_jbd2.h"
 | |
| #include "ext4_extents.h"
 | |
| #include "xattr.h"
 | |
| 
 | |
| #include <trace/events/ext4.h>
 | |
| 
 | |
| /*
 | |
|  * used by extent splitting.
 | |
|  */
 | |
| #define EXT4_EXT_MAY_ZEROOUT	0x1  /* safe to zeroout if split fails \
 | |
| 					due to ENOSPC */
 | |
| #define EXT4_EXT_MARK_UNINIT1	0x2  /* mark first half uninitialized */
 | |
| #define EXT4_EXT_MARK_UNINIT2	0x4  /* mark second half uninitialized */
 | |
| 
 | |
| #define EXT4_EXT_DATA_VALID1	0x8  /* first half contains valid data */
 | |
| #define EXT4_EXT_DATA_VALID2	0x10 /* second half contains valid data */
 | |
| 
 | |
| static __le32 ext4_extent_block_csum(struct inode *inode,
 | |
| 				     struct ext4_extent_header *eh)
 | |
| {
 | |
| 	struct ext4_inode_info *ei = EXT4_I(inode);
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 | |
| 	__u32 csum;
 | |
| 
 | |
| 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh,
 | |
| 			   EXT4_EXTENT_TAIL_OFFSET(eh));
 | |
| 	return cpu_to_le32(csum);
 | |
| }
 | |
| 
 | |
| static int ext4_extent_block_csum_verify(struct inode *inode,
 | |
| 					 struct ext4_extent_header *eh)
 | |
| {
 | |
| 	struct ext4_extent_tail *et;
 | |
| 
 | |
| 	if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
 | |
| 		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
 | |
| 		return 1;
 | |
| 
 | |
| 	et = find_ext4_extent_tail(eh);
 | |
| 	if (et->et_checksum != ext4_extent_block_csum(inode, eh))
 | |
| 		return 0;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static void ext4_extent_block_csum_set(struct inode *inode,
 | |
| 				       struct ext4_extent_header *eh)
 | |
| {
 | |
| 	struct ext4_extent_tail *et;
 | |
| 
 | |
| 	if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
 | |
| 		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
 | |
| 		return;
 | |
| 
 | |
| 	et = find_ext4_extent_tail(eh);
 | |
| 	et->et_checksum = ext4_extent_block_csum(inode, eh);
 | |
| }
 | |
| 
 | |
| static int ext4_split_extent(handle_t *handle,
 | |
| 				struct inode *inode,
 | |
| 				struct ext4_ext_path *path,
 | |
| 				struct ext4_map_blocks *map,
 | |
| 				int split_flag,
 | |
| 				int flags);
 | |
| 
 | |
| static int ext4_split_extent_at(handle_t *handle,
 | |
| 			     struct inode *inode,
 | |
| 			     struct ext4_ext_path *path,
 | |
| 			     ext4_lblk_t split,
 | |
| 			     int split_flag,
 | |
| 			     int flags);
 | |
| 
 | |
| static int ext4_find_delayed_extent(struct inode *inode,
 | |
| 				    struct extent_status *newes);
 | |
| 
 | |
| static int ext4_ext_truncate_extend_restart(handle_t *handle,
 | |
| 					    struct inode *inode,
 | |
| 					    int needed)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	if (!ext4_handle_valid(handle))
 | |
| 		return 0;
 | |
| 	if (handle->h_buffer_credits > needed)
 | |
| 		return 0;
 | |
| 	err = ext4_journal_extend(handle, needed);
 | |
| 	if (err <= 0)
 | |
| 		return err;
 | |
| 	err = ext4_truncate_restart_trans(handle, inode, needed);
 | |
| 	if (err == 0)
 | |
| 		err = -EAGAIN;
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * could return:
 | |
|  *  - EROFS
 | |
|  *  - ENOMEM
 | |
|  */
 | |
| static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
 | |
| 				struct ext4_ext_path *path)
 | |
| {
 | |
| 	if (path->p_bh) {
 | |
| 		/* path points to block */
 | |
| 		return ext4_journal_get_write_access(handle, path->p_bh);
 | |
| 	}
 | |
| 	/* path points to leaf/index in inode body */
 | |
| 	/* we use in-core data, no need to protect them */
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * could return:
 | |
|  *  - EROFS
 | |
|  *  - ENOMEM
 | |
|  *  - EIO
 | |
|  */
 | |
| int __ext4_ext_dirty(const char *where, unsigned int line, handle_t *handle,
 | |
| 		     struct inode *inode, struct ext4_ext_path *path)
 | |
| {
 | |
| 	int err;
 | |
| 	if (path->p_bh) {
 | |
| 		ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh));
 | |
| 		/* path points to block */
 | |
| 		err = __ext4_handle_dirty_metadata(where, line, handle,
 | |
| 						   inode, path->p_bh);
 | |
| 	} else {
 | |
| 		/* path points to leaf/index in inode body */
 | |
| 		err = ext4_mark_inode_dirty(handle, inode);
 | |
| 	}
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
 | |
| 			      struct ext4_ext_path *path,
 | |
| 			      ext4_lblk_t block)
 | |
| {
 | |
| 	if (path) {
 | |
| 		int depth = path->p_depth;
 | |
| 		struct ext4_extent *ex;
 | |
| 
 | |
| 		/*
 | |
| 		 * Try to predict block placement assuming that we are
 | |
| 		 * filling in a file which will eventually be
 | |
| 		 * non-sparse --- i.e., in the case of libbfd writing
 | |
| 		 * an ELF object sections out-of-order but in a way
 | |
| 		 * the eventually results in a contiguous object or
 | |
| 		 * executable file, or some database extending a table
 | |
| 		 * space file.  However, this is actually somewhat
 | |
| 		 * non-ideal if we are writing a sparse file such as
 | |
| 		 * qemu or KVM writing a raw image file that is going
 | |
| 		 * to stay fairly sparse, since it will end up
 | |
| 		 * fragmenting the file system's free space.  Maybe we
 | |
| 		 * should have some hueristics or some way to allow
 | |
| 		 * userspace to pass a hint to file system,
 | |
| 		 * especially if the latter case turns out to be
 | |
| 		 * common.
 | |
| 		 */
 | |
| 		ex = path[depth].p_ext;
 | |
| 		if (ex) {
 | |
| 			ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
 | |
| 			ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
 | |
| 
 | |
| 			if (block > ext_block)
 | |
| 				return ext_pblk + (block - ext_block);
 | |
| 			else
 | |
| 				return ext_pblk - (ext_block - block);
 | |
| 		}
 | |
| 
 | |
| 		/* it looks like index is empty;
 | |
| 		 * try to find starting block from index itself */
 | |
| 		if (path[depth].p_bh)
 | |
| 			return path[depth].p_bh->b_blocknr;
 | |
| 	}
 | |
| 
 | |
| 	/* OK. use inode's group */
 | |
| 	return ext4_inode_to_goal_block(inode);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocation for a meta data block
 | |
|  */
 | |
| static ext4_fsblk_t
 | |
| ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
 | |
| 			struct ext4_ext_path *path,
 | |
| 			struct ext4_extent *ex, int *err, unsigned int flags)
 | |
| {
 | |
| 	ext4_fsblk_t goal, newblock;
 | |
| 
 | |
| 	goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
 | |
| 	newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
 | |
| 					NULL, err);
 | |
| 	return newblock;
 | |
| }
 | |
| 
 | |
| static inline int ext4_ext_space_block(struct inode *inode, int check)
 | |
| {
 | |
| 	int size;
 | |
| 
 | |
| 	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
 | |
| 			/ sizeof(struct ext4_extent);
 | |
| #ifdef AGGRESSIVE_TEST
 | |
| 	if (!check && size > 6)
 | |
| 		size = 6;
 | |
| #endif
 | |
| 	return size;
 | |
| }
 | |
| 
 | |
| static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
 | |
| {
 | |
| 	int size;
 | |
| 
 | |
| 	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
 | |
| 			/ sizeof(struct ext4_extent_idx);
 | |
| #ifdef AGGRESSIVE_TEST
 | |
| 	if (!check && size > 5)
 | |
| 		size = 5;
 | |
| #endif
 | |
| 	return size;
 | |
| }
 | |
| 
 | |
| static inline int ext4_ext_space_root(struct inode *inode, int check)
 | |
| {
 | |
| 	int size;
 | |
| 
 | |
| 	size = sizeof(EXT4_I(inode)->i_data);
 | |
| 	size -= sizeof(struct ext4_extent_header);
 | |
| 	size /= sizeof(struct ext4_extent);
 | |
| #ifdef AGGRESSIVE_TEST
 | |
| 	if (!check && size > 3)
 | |
| 		size = 3;
 | |
| #endif
 | |
| 	return size;
 | |
| }
 | |
| 
 | |
| static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
 | |
| {
 | |
| 	int size;
 | |
| 
 | |
| 	size = sizeof(EXT4_I(inode)->i_data);
 | |
| 	size -= sizeof(struct ext4_extent_header);
 | |
| 	size /= sizeof(struct ext4_extent_idx);
 | |
| #ifdef AGGRESSIVE_TEST
 | |
| 	if (!check && size > 4)
 | |
| 		size = 4;
 | |
| #endif
 | |
| 	return size;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Calculate the number of metadata blocks needed
 | |
|  * to allocate @blocks
 | |
|  * Worse case is one block per extent
 | |
|  */
 | |
| int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
 | |
| {
 | |
| 	struct ext4_inode_info *ei = EXT4_I(inode);
 | |
| 	int idxs;
 | |
| 
 | |
| 	idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
 | |
| 		/ sizeof(struct ext4_extent_idx));
 | |
| 
 | |
| 	/*
 | |
| 	 * If the new delayed allocation block is contiguous with the
 | |
| 	 * previous da block, it can share index blocks with the
 | |
| 	 * previous block, so we only need to allocate a new index
 | |
| 	 * block every idxs leaf blocks.  At ldxs**2 blocks, we need
 | |
| 	 * an additional index block, and at ldxs**3 blocks, yet
 | |
| 	 * another index blocks.
 | |
| 	 */
 | |
| 	if (ei->i_da_metadata_calc_len &&
 | |
| 	    ei->i_da_metadata_calc_last_lblock+1 == lblock) {
 | |
| 		int num = 0;
 | |
| 
 | |
| 		if ((ei->i_da_metadata_calc_len % idxs) == 0)
 | |
| 			num++;
 | |
| 		if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
 | |
| 			num++;
 | |
| 		if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
 | |
| 			num++;
 | |
| 			ei->i_da_metadata_calc_len = 0;
 | |
| 		} else
 | |
| 			ei->i_da_metadata_calc_len++;
 | |
| 		ei->i_da_metadata_calc_last_lblock++;
 | |
| 		return num;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * In the worst case we need a new set of index blocks at
 | |
| 	 * every level of the inode's extent tree.
 | |
| 	 */
 | |
| 	ei->i_da_metadata_calc_len = 1;
 | |
| 	ei->i_da_metadata_calc_last_lblock = lblock;
 | |
| 	return ext_depth(inode) + 1;
 | |
| }
 | |
| 
 | |
| static int
 | |
| ext4_ext_max_entries(struct inode *inode, int depth)
 | |
| {
 | |
| 	int max;
 | |
| 
 | |
| 	if (depth == ext_depth(inode)) {
 | |
| 		if (depth == 0)
 | |
| 			max = ext4_ext_space_root(inode, 1);
 | |
| 		else
 | |
| 			max = ext4_ext_space_root_idx(inode, 1);
 | |
| 	} else {
 | |
| 		if (depth == 0)
 | |
| 			max = ext4_ext_space_block(inode, 1);
 | |
| 		else
 | |
| 			max = ext4_ext_space_block_idx(inode, 1);
 | |
| 	}
 | |
| 
 | |
| 	return max;
 | |
| }
 | |
| 
 | |
| static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
 | |
| {
 | |
| 	ext4_fsblk_t block = ext4_ext_pblock(ext);
 | |
| 	int len = ext4_ext_get_actual_len(ext);
 | |
| 
 | |
| 	if (len == 0)
 | |
| 		return 0;
 | |
| 	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
 | |
| }
 | |
| 
 | |
| static int ext4_valid_extent_idx(struct inode *inode,
 | |
| 				struct ext4_extent_idx *ext_idx)
 | |
| {
 | |
| 	ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
 | |
| 
 | |
| 	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
 | |
| }
 | |
| 
 | |
| static int ext4_valid_extent_entries(struct inode *inode,
 | |
| 				struct ext4_extent_header *eh,
 | |
| 				int depth)
 | |
| {
 | |
| 	unsigned short entries;
 | |
| 	if (eh->eh_entries == 0)
 | |
| 		return 1;
 | |
| 
 | |
| 	entries = le16_to_cpu(eh->eh_entries);
 | |
| 
 | |
| 	if (depth == 0) {
 | |
| 		/* leaf entries */
 | |
| 		struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
 | |
| 		while (entries) {
 | |
| 			if (!ext4_valid_extent(inode, ext))
 | |
| 				return 0;
 | |
| 			ext++;
 | |
| 			entries--;
 | |
| 		}
 | |
| 	} else {
 | |
| 		struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
 | |
| 		while (entries) {
 | |
| 			if (!ext4_valid_extent_idx(inode, ext_idx))
 | |
| 				return 0;
 | |
| 			ext_idx++;
 | |
| 			entries--;
 | |
| 		}
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int __ext4_ext_check(const char *function, unsigned int line,
 | |
| 			    struct inode *inode, struct ext4_extent_header *eh,
 | |
| 			    int depth, ext4_fsblk_t pblk)
 | |
| {
 | |
| 	const char *error_msg;
 | |
| 	int max = 0;
 | |
| 
 | |
| 	if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
 | |
| 		error_msg = "invalid magic";
 | |
| 		goto corrupted;
 | |
| 	}
 | |
| 	if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
 | |
| 		error_msg = "unexpected eh_depth";
 | |
| 		goto corrupted;
 | |
| 	}
 | |
| 	if (unlikely(eh->eh_max == 0)) {
 | |
| 		error_msg = "invalid eh_max";
 | |
| 		goto corrupted;
 | |
| 	}
 | |
| 	max = ext4_ext_max_entries(inode, depth);
 | |
| 	if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
 | |
| 		error_msg = "too large eh_max";
 | |
| 		goto corrupted;
 | |
| 	}
 | |
| 	if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
 | |
| 		error_msg = "invalid eh_entries";
 | |
| 		goto corrupted;
 | |
| 	}
 | |
| 	if (!ext4_valid_extent_entries(inode, eh, depth)) {
 | |
| 		error_msg = "invalid extent entries";
 | |
| 		goto corrupted;
 | |
| 	}
 | |
| 	/* Verify checksum on non-root extent tree nodes */
 | |
| 	if (ext_depth(inode) != depth &&
 | |
| 	    !ext4_extent_block_csum_verify(inode, eh)) {
 | |
| 		error_msg = "extent tree corrupted";
 | |
| 		goto corrupted;
 | |
| 	}
 | |
| 	return 0;
 | |
| 
 | |
| corrupted:
 | |
| 	ext4_error_inode(inode, function, line, 0,
 | |
| 			 "pblk %llu bad header/extent: %s - magic %x, "
 | |
| 			 "entries %u, max %u(%u), depth %u(%u)",
 | |
| 			 (unsigned long long) pblk, error_msg,
 | |
| 			 le16_to_cpu(eh->eh_magic),
 | |
| 			 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
 | |
| 			 max, le16_to_cpu(eh->eh_depth), depth);
 | |
| 	return -EIO;
 | |
| }
 | |
| 
 | |
| #define ext4_ext_check(inode, eh, depth, pblk)			\
 | |
| 	__ext4_ext_check(__func__, __LINE__, (inode), (eh), (depth), (pblk))
 | |
| 
 | |
| int ext4_ext_check_inode(struct inode *inode)
 | |
| {
 | |
| 	return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode), 0);
 | |
| }
 | |
| 
 | |
| static struct buffer_head *
 | |
| __read_extent_tree_block(const char *function, unsigned int line,
 | |
| 			 struct inode *inode, ext4_fsblk_t pblk, int depth,
 | |
| 			 int flags)
 | |
| {
 | |
| 	struct buffer_head		*bh;
 | |
| 	int				err;
 | |
| 
 | |
| 	bh = sb_getblk(inode->i_sb, pblk);
 | |
| 	if (unlikely(!bh))
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	if (!bh_uptodate_or_lock(bh)) {
 | |
| 		trace_ext4_ext_load_extent(inode, pblk, _RET_IP_);
 | |
| 		err = bh_submit_read(bh);
 | |
| 		if (err < 0)
 | |
| 			goto errout;
 | |
| 	}
 | |
| 	if (buffer_verified(bh) && !(flags & EXT4_EX_FORCE_CACHE))
 | |
| 		return bh;
 | |
| 	err = __ext4_ext_check(function, line, inode,
 | |
| 			       ext_block_hdr(bh), depth, pblk);
 | |
| 	if (err)
 | |
| 		goto errout;
 | |
| 	set_buffer_verified(bh);
 | |
| 	/*
 | |
| 	 * If this is a leaf block, cache all of its entries
 | |
| 	 */
 | |
| 	if (!(flags & EXT4_EX_NOCACHE) && depth == 0) {
 | |
| 		struct ext4_extent_header *eh = ext_block_hdr(bh);
 | |
| 		struct ext4_extent *ex = EXT_FIRST_EXTENT(eh);
 | |
| 		ext4_lblk_t prev = 0;
 | |
| 		int i;
 | |
| 
 | |
| 		for (i = le16_to_cpu(eh->eh_entries); i > 0; i--, ex++) {
 | |
| 			unsigned int status = EXTENT_STATUS_WRITTEN;
 | |
| 			ext4_lblk_t lblk = le32_to_cpu(ex->ee_block);
 | |
| 			int len = ext4_ext_get_actual_len(ex);
 | |
| 
 | |
| 			if (prev && (prev != lblk))
 | |
| 				ext4_es_cache_extent(inode, prev,
 | |
| 						     lblk - prev, ~0,
 | |
| 						     EXTENT_STATUS_HOLE);
 | |
| 
 | |
| 			if (ext4_ext_is_uninitialized(ex))
 | |
| 				status = EXTENT_STATUS_UNWRITTEN;
 | |
| 			ext4_es_cache_extent(inode, lblk, len,
 | |
| 					     ext4_ext_pblock(ex), status);
 | |
| 			prev = lblk + len;
 | |
| 		}
 | |
| 	}
 | |
| 	return bh;
 | |
| errout:
 | |
| 	put_bh(bh);
 | |
| 	return ERR_PTR(err);
 | |
| 
 | |
| }
 | |
| 
 | |
| #define read_extent_tree_block(inode, pblk, depth, flags)		\
 | |
| 	__read_extent_tree_block(__func__, __LINE__, (inode), (pblk),   \
 | |
| 				 (depth), (flags))
 | |
| 
 | |
| /*
 | |
|  * This function is called to cache a file's extent information in the
 | |
|  * extent status tree
 | |
|  */
 | |
| int ext4_ext_precache(struct inode *inode)
 | |
| {
 | |
| 	struct ext4_inode_info *ei = EXT4_I(inode);
 | |
| 	struct ext4_ext_path *path = NULL;
 | |
| 	struct buffer_head *bh;
 | |
| 	int i = 0, depth, ret = 0;
 | |
| 
 | |
| 	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
 | |
| 		return 0;	/* not an extent-mapped inode */
 | |
| 
 | |
| 	down_read(&ei->i_data_sem);
 | |
| 	depth = ext_depth(inode);
 | |
| 
 | |
| 	path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
 | |
| 		       GFP_NOFS);
 | |
| 	if (path == NULL) {
 | |
| 		up_read(&ei->i_data_sem);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	/* Don't cache anything if there are no external extent blocks */
 | |
| 	if (depth == 0)
 | |
| 		goto out;
 | |
| 	path[0].p_hdr = ext_inode_hdr(inode);
 | |
| 	ret = ext4_ext_check(inode, path[0].p_hdr, depth, 0);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 	path[0].p_idx = EXT_FIRST_INDEX(path[0].p_hdr);
 | |
| 	while (i >= 0) {
 | |
| 		/*
 | |
| 		 * If this is a leaf block or we've reached the end of
 | |
| 		 * the index block, go up
 | |
| 		 */
 | |
| 		if ((i == depth) ||
 | |
| 		    path[i].p_idx > EXT_LAST_INDEX(path[i].p_hdr)) {
 | |
| 			brelse(path[i].p_bh);
 | |
| 			path[i].p_bh = NULL;
 | |
| 			i--;
 | |
| 			continue;
 | |
| 		}
 | |
| 		bh = read_extent_tree_block(inode,
 | |
| 					    ext4_idx_pblock(path[i].p_idx++),
 | |
| 					    depth - i - 1,
 | |
| 					    EXT4_EX_FORCE_CACHE);
 | |
| 		if (IS_ERR(bh)) {
 | |
| 			ret = PTR_ERR(bh);
 | |
| 			break;
 | |
| 		}
 | |
| 		i++;
 | |
| 		path[i].p_bh = bh;
 | |
| 		path[i].p_hdr = ext_block_hdr(bh);
 | |
| 		path[i].p_idx = EXT_FIRST_INDEX(path[i].p_hdr);
 | |
| 	}
 | |
| 	ext4_set_inode_state(inode, EXT4_STATE_EXT_PRECACHED);
 | |
| out:
 | |
| 	up_read(&ei->i_data_sem);
 | |
| 	ext4_ext_drop_refs(path);
 | |
| 	kfree(path);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #ifdef EXT_DEBUG
 | |
| static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
 | |
| {
 | |
| 	int k, l = path->p_depth;
 | |
| 
 | |
| 	ext_debug("path:");
 | |
| 	for (k = 0; k <= l; k++, path++) {
 | |
| 		if (path->p_idx) {
 | |
| 		  ext_debug("  %d->%llu", le32_to_cpu(path->p_idx->ei_block),
 | |
| 			    ext4_idx_pblock(path->p_idx));
 | |
| 		} else if (path->p_ext) {
 | |
| 			ext_debug("  %d:[%d]%d:%llu ",
 | |
| 				  le32_to_cpu(path->p_ext->ee_block),
 | |
| 				  ext4_ext_is_uninitialized(path->p_ext),
 | |
| 				  ext4_ext_get_actual_len(path->p_ext),
 | |
| 				  ext4_ext_pblock(path->p_ext));
 | |
| 		} else
 | |
| 			ext_debug("  []");
 | |
| 	}
 | |
| 	ext_debug("\n");
 | |
| }
 | |
| 
 | |
| static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
 | |
| {
 | |
| 	int depth = ext_depth(inode);
 | |
| 	struct ext4_extent_header *eh;
 | |
| 	struct ext4_extent *ex;
 | |
| 	int i;
 | |
| 
 | |
| 	if (!path)
 | |
| 		return;
 | |
| 
 | |
| 	eh = path[depth].p_hdr;
 | |
| 	ex = EXT_FIRST_EXTENT(eh);
 | |
| 
 | |
| 	ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
 | |
| 
 | |
| 	for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
 | |
| 		ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
 | |
| 			  ext4_ext_is_uninitialized(ex),
 | |
| 			  ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
 | |
| 	}
 | |
| 	ext_debug("\n");
 | |
| }
 | |
| 
 | |
| static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
 | |
| 			ext4_fsblk_t newblock, int level)
 | |
| {
 | |
| 	int depth = ext_depth(inode);
 | |
| 	struct ext4_extent *ex;
 | |
| 
 | |
| 	if (depth != level) {
 | |
| 		struct ext4_extent_idx *idx;
 | |
| 		idx = path[level].p_idx;
 | |
| 		while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
 | |
| 			ext_debug("%d: move %d:%llu in new index %llu\n", level,
 | |
| 					le32_to_cpu(idx->ei_block),
 | |
| 					ext4_idx_pblock(idx),
 | |
| 					newblock);
 | |
| 			idx++;
 | |
| 		}
 | |
| 
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	ex = path[depth].p_ext;
 | |
| 	while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
 | |
| 		ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
 | |
| 				le32_to_cpu(ex->ee_block),
 | |
| 				ext4_ext_pblock(ex),
 | |
| 				ext4_ext_is_uninitialized(ex),
 | |
| 				ext4_ext_get_actual_len(ex),
 | |
| 				newblock);
 | |
| 		ex++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #else
 | |
| #define ext4_ext_show_path(inode, path)
 | |
| #define ext4_ext_show_leaf(inode, path)
 | |
| #define ext4_ext_show_move(inode, path, newblock, level)
 | |
| #endif
 | |
| 
 | |
| void ext4_ext_drop_refs(struct ext4_ext_path *path)
 | |
| {
 | |
| 	int depth = path->p_depth;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i <= depth; i++, path++)
 | |
| 		if (path->p_bh) {
 | |
| 			brelse(path->p_bh);
 | |
| 			path->p_bh = NULL;
 | |
| 		}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ext4_ext_binsearch_idx:
 | |
|  * binary search for the closest index of the given block
 | |
|  * the header must be checked before calling this
 | |
|  */
 | |
| static void
 | |
| ext4_ext_binsearch_idx(struct inode *inode,
 | |
| 			struct ext4_ext_path *path, ext4_lblk_t block)
 | |
| {
 | |
| 	struct ext4_extent_header *eh = path->p_hdr;
 | |
| 	struct ext4_extent_idx *r, *l, *m;
 | |
| 
 | |
| 
 | |
| 	ext_debug("binsearch for %u(idx):  ", block);
 | |
| 
 | |
| 	l = EXT_FIRST_INDEX(eh) + 1;
 | |
| 	r = EXT_LAST_INDEX(eh);
 | |
| 	while (l <= r) {
 | |
| 		m = l + (r - l) / 2;
 | |
| 		if (block < le32_to_cpu(m->ei_block))
 | |
| 			r = m - 1;
 | |
| 		else
 | |
| 			l = m + 1;
 | |
| 		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
 | |
| 				m, le32_to_cpu(m->ei_block),
 | |
| 				r, le32_to_cpu(r->ei_block));
 | |
| 	}
 | |
| 
 | |
| 	path->p_idx = l - 1;
 | |
| 	ext_debug("  -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block),
 | |
| 		  ext4_idx_pblock(path->p_idx));
 | |
| 
 | |
| #ifdef CHECK_BINSEARCH
 | |
| 	{
 | |
| 		struct ext4_extent_idx *chix, *ix;
 | |
| 		int k;
 | |
| 
 | |
| 		chix = ix = EXT_FIRST_INDEX(eh);
 | |
| 		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
 | |
| 		  if (k != 0 &&
 | |
| 		      le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
 | |
| 				printk(KERN_DEBUG "k=%d, ix=0x%p, "
 | |
| 				       "first=0x%p\n", k,
 | |
| 				       ix, EXT_FIRST_INDEX(eh));
 | |
| 				printk(KERN_DEBUG "%u <= %u\n",
 | |
| 				       le32_to_cpu(ix->ei_block),
 | |
| 				       le32_to_cpu(ix[-1].ei_block));
 | |
| 			}
 | |
| 			BUG_ON(k && le32_to_cpu(ix->ei_block)
 | |
| 					   <= le32_to_cpu(ix[-1].ei_block));
 | |
| 			if (block < le32_to_cpu(ix->ei_block))
 | |
| 				break;
 | |
| 			chix = ix;
 | |
| 		}
 | |
| 		BUG_ON(chix != path->p_idx);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ext4_ext_binsearch:
 | |
|  * binary search for closest extent of the given block
 | |
|  * the header must be checked before calling this
 | |
|  */
 | |
| static void
 | |
| ext4_ext_binsearch(struct inode *inode,
 | |
| 		struct ext4_ext_path *path, ext4_lblk_t block)
 | |
| {
 | |
| 	struct ext4_extent_header *eh = path->p_hdr;
 | |
| 	struct ext4_extent *r, *l, *m;
 | |
| 
 | |
| 	if (eh->eh_entries == 0) {
 | |
| 		/*
 | |
| 		 * this leaf is empty:
 | |
| 		 * we get such a leaf in split/add case
 | |
| 		 */
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	ext_debug("binsearch for %u:  ", block);
 | |
| 
 | |
| 	l = EXT_FIRST_EXTENT(eh) + 1;
 | |
| 	r = EXT_LAST_EXTENT(eh);
 | |
| 
 | |
| 	while (l <= r) {
 | |
| 		m = l + (r - l) / 2;
 | |
| 		if (block < le32_to_cpu(m->ee_block))
 | |
| 			r = m - 1;
 | |
| 		else
 | |
| 			l = m + 1;
 | |
| 		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
 | |
| 				m, le32_to_cpu(m->ee_block),
 | |
| 				r, le32_to_cpu(r->ee_block));
 | |
| 	}
 | |
| 
 | |
| 	path->p_ext = l - 1;
 | |
| 	ext_debug("  -> %d:%llu:[%d]%d ",
 | |
| 			le32_to_cpu(path->p_ext->ee_block),
 | |
| 			ext4_ext_pblock(path->p_ext),
 | |
| 			ext4_ext_is_uninitialized(path->p_ext),
 | |
| 			ext4_ext_get_actual_len(path->p_ext));
 | |
| 
 | |
| #ifdef CHECK_BINSEARCH
 | |
| 	{
 | |
| 		struct ext4_extent *chex, *ex;
 | |
| 		int k;
 | |
| 
 | |
| 		chex = ex = EXT_FIRST_EXTENT(eh);
 | |
| 		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
 | |
| 			BUG_ON(k && le32_to_cpu(ex->ee_block)
 | |
| 					  <= le32_to_cpu(ex[-1].ee_block));
 | |
| 			if (block < le32_to_cpu(ex->ee_block))
 | |
| 				break;
 | |
| 			chex = ex;
 | |
| 		}
 | |
| 		BUG_ON(chex != path->p_ext);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| }
 | |
| 
 | |
| int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
 | |
| {
 | |
| 	struct ext4_extent_header *eh;
 | |
| 
 | |
| 	eh = ext_inode_hdr(inode);
 | |
| 	eh->eh_depth = 0;
 | |
| 	eh->eh_entries = 0;
 | |
| 	eh->eh_magic = EXT4_EXT_MAGIC;
 | |
| 	eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
 | |
| 	ext4_mark_inode_dirty(handle, inode);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| struct ext4_ext_path *
 | |
| ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
 | |
| 		     struct ext4_ext_path *path, int flags)
 | |
| {
 | |
| 	struct ext4_extent_header *eh;
 | |
| 	struct buffer_head *bh;
 | |
| 	short int depth, i, ppos = 0, alloc = 0;
 | |
| 	int ret;
 | |
| 
 | |
| 	eh = ext_inode_hdr(inode);
 | |
| 	depth = ext_depth(inode);
 | |
| 
 | |
| 	/* account possible depth increase */
 | |
| 	if (!path) {
 | |
| 		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
 | |
| 				GFP_NOFS);
 | |
| 		if (!path)
 | |
| 			return ERR_PTR(-ENOMEM);
 | |
| 		alloc = 1;
 | |
| 	}
 | |
| 	path[0].p_hdr = eh;
 | |
| 	path[0].p_bh = NULL;
 | |
| 
 | |
| 	i = depth;
 | |
| 	/* walk through the tree */
 | |
| 	while (i) {
 | |
| 		ext_debug("depth %d: num %d, max %d\n",
 | |
| 			  ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
 | |
| 
 | |
| 		ext4_ext_binsearch_idx(inode, path + ppos, block);
 | |
| 		path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
 | |
| 		path[ppos].p_depth = i;
 | |
| 		path[ppos].p_ext = NULL;
 | |
| 
 | |
| 		bh = read_extent_tree_block(inode, path[ppos].p_block, --i,
 | |
| 					    flags);
 | |
| 		if (IS_ERR(bh)) {
 | |
| 			ret = PTR_ERR(bh);
 | |
| 			goto err;
 | |
| 		}
 | |
| 
 | |
| 		eh = ext_block_hdr(bh);
 | |
| 		ppos++;
 | |
| 		if (unlikely(ppos > depth)) {
 | |
| 			put_bh(bh);
 | |
| 			EXT4_ERROR_INODE(inode,
 | |
| 					 "ppos %d > depth %d", ppos, depth);
 | |
| 			ret = -EIO;
 | |
| 			goto err;
 | |
| 		}
 | |
| 		path[ppos].p_bh = bh;
 | |
| 		path[ppos].p_hdr = eh;
 | |
| 	}
 | |
| 
 | |
| 	path[ppos].p_depth = i;
 | |
| 	path[ppos].p_ext = NULL;
 | |
| 	path[ppos].p_idx = NULL;
 | |
| 
 | |
| 	/* find extent */
 | |
| 	ext4_ext_binsearch(inode, path + ppos, block);
 | |
| 	/* if not an empty leaf */
 | |
| 	if (path[ppos].p_ext)
 | |
| 		path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
 | |
| 
 | |
| 	ext4_ext_show_path(inode, path);
 | |
| 
 | |
| 	return path;
 | |
| 
 | |
| err:
 | |
| 	ext4_ext_drop_refs(path);
 | |
| 	if (alloc)
 | |
| 		kfree(path);
 | |
| 	return ERR_PTR(ret);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ext4_ext_insert_index:
 | |
|  * insert new index [@logical;@ptr] into the block at @curp;
 | |
|  * check where to insert: before @curp or after @curp
 | |
|  */
 | |
| static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
 | |
| 				 struct ext4_ext_path *curp,
 | |
| 				 int logical, ext4_fsblk_t ptr)
 | |
| {
 | |
| 	struct ext4_extent_idx *ix;
 | |
| 	int len, err;
 | |
| 
 | |
| 	err = ext4_ext_get_access(handle, inode, curp);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
 | |
| 		EXT4_ERROR_INODE(inode,
 | |
| 				 "logical %d == ei_block %d!",
 | |
| 				 logical, le32_to_cpu(curp->p_idx->ei_block));
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
 | |
| 			     >= le16_to_cpu(curp->p_hdr->eh_max))) {
 | |
| 		EXT4_ERROR_INODE(inode,
 | |
| 				 "eh_entries %d >= eh_max %d!",
 | |
| 				 le16_to_cpu(curp->p_hdr->eh_entries),
 | |
| 				 le16_to_cpu(curp->p_hdr->eh_max));
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
 | |
| 		/* insert after */
 | |
| 		ext_debug("insert new index %d after: %llu\n", logical, ptr);
 | |
| 		ix = curp->p_idx + 1;
 | |
| 	} else {
 | |
| 		/* insert before */
 | |
| 		ext_debug("insert new index %d before: %llu\n", logical, ptr);
 | |
| 		ix = curp->p_idx;
 | |
| 	}
 | |
| 
 | |
| 	len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
 | |
| 	BUG_ON(len < 0);
 | |
| 	if (len > 0) {
 | |
| 		ext_debug("insert new index %d: "
 | |
| 				"move %d indices from 0x%p to 0x%p\n",
 | |
| 				logical, len, ix, ix + 1);
 | |
| 		memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
 | |
| 		EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	ix->ei_block = cpu_to_le32(logical);
 | |
| 	ext4_idx_store_pblock(ix, ptr);
 | |
| 	le16_add_cpu(&curp->p_hdr->eh_entries, 1);
 | |
| 
 | |
| 	if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
 | |
| 		EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	err = ext4_ext_dirty(handle, inode, curp);
 | |
| 	ext4_std_error(inode->i_sb, err);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ext4_ext_split:
 | |
|  * inserts new subtree into the path, using free index entry
 | |
|  * at depth @at:
 | |
|  * - allocates all needed blocks (new leaf and all intermediate index blocks)
 | |
|  * - makes decision where to split
 | |
|  * - moves remaining extents and index entries (right to the split point)
 | |
|  *   into the newly allocated blocks
 | |
|  * - initializes subtree
 | |
|  */
 | |
| static int ext4_ext_split(handle_t *handle, struct inode *inode,
 | |
| 			  unsigned int flags,
 | |
| 			  struct ext4_ext_path *path,
 | |
| 			  struct ext4_extent *newext, int at)
 | |
| {
 | |
| 	struct buffer_head *bh = NULL;
 | |
| 	int depth = ext_depth(inode);
 | |
| 	struct ext4_extent_header *neh;
 | |
| 	struct ext4_extent_idx *fidx;
 | |
| 	int i = at, k, m, a;
 | |
| 	ext4_fsblk_t newblock, oldblock;
 | |
| 	__le32 border;
 | |
| 	ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
 | |
| 	int err = 0;
 | |
| 
 | |
| 	/* make decision: where to split? */
 | |
| 	/* FIXME: now decision is simplest: at current extent */
 | |
| 
 | |
| 	/* if current leaf will be split, then we should use
 | |
| 	 * border from split point */
 | |
| 	if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
 | |
| 		EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 	if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
 | |
| 		border = path[depth].p_ext[1].ee_block;
 | |
| 		ext_debug("leaf will be split."
 | |
| 				" next leaf starts at %d\n",
 | |
| 				  le32_to_cpu(border));
 | |
| 	} else {
 | |
| 		border = newext->ee_block;
 | |
| 		ext_debug("leaf will be added."
 | |
| 				" next leaf starts at %d\n",
 | |
| 				le32_to_cpu(border));
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If error occurs, then we break processing
 | |
| 	 * and mark filesystem read-only. index won't
 | |
| 	 * be inserted and tree will be in consistent
 | |
| 	 * state. Next mount will repair buffers too.
 | |
| 	 */
 | |
| 
 | |
| 	/*
 | |
| 	 * Get array to track all allocated blocks.
 | |
| 	 * We need this to handle errors and free blocks
 | |
| 	 * upon them.
 | |
| 	 */
 | |
| 	ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
 | |
| 	if (!ablocks)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/* allocate all needed blocks */
 | |
| 	ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
 | |
| 	for (a = 0; a < depth - at; a++) {
 | |
| 		newblock = ext4_ext_new_meta_block(handle, inode, path,
 | |
| 						   newext, &err, flags);
 | |
| 		if (newblock == 0)
 | |
| 			goto cleanup;
 | |
| 		ablocks[a] = newblock;
 | |
| 	}
 | |
| 
 | |
| 	/* initialize new leaf */
 | |
| 	newblock = ablocks[--a];
 | |
| 	if (unlikely(newblock == 0)) {
 | |
| 		EXT4_ERROR_INODE(inode, "newblock == 0!");
 | |
| 		err = -EIO;
 | |
| 		goto cleanup;
 | |
| 	}
 | |
| 	bh = sb_getblk(inode->i_sb, newblock);
 | |
| 	if (unlikely(!bh)) {
 | |
| 		err = -ENOMEM;
 | |
| 		goto cleanup;
 | |
| 	}
 | |
| 	lock_buffer(bh);
 | |
| 
 | |
| 	err = ext4_journal_get_create_access(handle, bh);
 | |
| 	if (err)
 | |
| 		goto cleanup;
 | |
| 
 | |
| 	neh = ext_block_hdr(bh);
 | |
| 	neh->eh_entries = 0;
 | |
| 	neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
 | |
| 	neh->eh_magic = EXT4_EXT_MAGIC;
 | |
| 	neh->eh_depth = 0;
 | |
| 
 | |
| 	/* move remainder of path[depth] to the new leaf */
 | |
| 	if (unlikely(path[depth].p_hdr->eh_entries !=
 | |
| 		     path[depth].p_hdr->eh_max)) {
 | |
| 		EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
 | |
| 				 path[depth].p_hdr->eh_entries,
 | |
| 				 path[depth].p_hdr->eh_max);
 | |
| 		err = -EIO;
 | |
| 		goto cleanup;
 | |
| 	}
 | |
| 	/* start copy from next extent */
 | |
| 	m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
 | |
| 	ext4_ext_show_move(inode, path, newblock, depth);
 | |
| 	if (m) {
 | |
| 		struct ext4_extent *ex;
 | |
| 		ex = EXT_FIRST_EXTENT(neh);
 | |
| 		memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
 | |
| 		le16_add_cpu(&neh->eh_entries, m);
 | |
| 	}
 | |
| 
 | |
| 	ext4_extent_block_csum_set(inode, neh);
 | |
| 	set_buffer_uptodate(bh);
 | |
| 	unlock_buffer(bh);
 | |
| 
 | |
| 	err = ext4_handle_dirty_metadata(handle, inode, bh);
 | |
| 	if (err)
 | |
| 		goto cleanup;
 | |
| 	brelse(bh);
 | |
| 	bh = NULL;
 | |
| 
 | |
| 	/* correct old leaf */
 | |
| 	if (m) {
 | |
| 		err = ext4_ext_get_access(handle, inode, path + depth);
 | |
| 		if (err)
 | |
| 			goto cleanup;
 | |
| 		le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
 | |
| 		err = ext4_ext_dirty(handle, inode, path + depth);
 | |
| 		if (err)
 | |
| 			goto cleanup;
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	/* create intermediate indexes */
 | |
| 	k = depth - at - 1;
 | |
| 	if (unlikely(k < 0)) {
 | |
| 		EXT4_ERROR_INODE(inode, "k %d < 0!", k);
 | |
| 		err = -EIO;
 | |
| 		goto cleanup;
 | |
| 	}
 | |
| 	if (k)
 | |
| 		ext_debug("create %d intermediate indices\n", k);
 | |
| 	/* insert new index into current index block */
 | |
| 	/* current depth stored in i var */
 | |
| 	i = depth - 1;
 | |
| 	while (k--) {
 | |
| 		oldblock = newblock;
 | |
| 		newblock = ablocks[--a];
 | |
| 		bh = sb_getblk(inode->i_sb, newblock);
 | |
| 		if (unlikely(!bh)) {
 | |
| 			err = -ENOMEM;
 | |
| 			goto cleanup;
 | |
| 		}
 | |
| 		lock_buffer(bh);
 | |
| 
 | |
| 		err = ext4_journal_get_create_access(handle, bh);
 | |
| 		if (err)
 | |
| 			goto cleanup;
 | |
| 
 | |
| 		neh = ext_block_hdr(bh);
 | |
| 		neh->eh_entries = cpu_to_le16(1);
 | |
| 		neh->eh_magic = EXT4_EXT_MAGIC;
 | |
| 		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
 | |
| 		neh->eh_depth = cpu_to_le16(depth - i);
 | |
| 		fidx = EXT_FIRST_INDEX(neh);
 | |
| 		fidx->ei_block = border;
 | |
| 		ext4_idx_store_pblock(fidx, oldblock);
 | |
| 
 | |
| 		ext_debug("int.index at %d (block %llu): %u -> %llu\n",
 | |
| 				i, newblock, le32_to_cpu(border), oldblock);
 | |
| 
 | |
| 		/* move remainder of path[i] to the new index block */
 | |
| 		if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
 | |
| 					EXT_LAST_INDEX(path[i].p_hdr))) {
 | |
| 			EXT4_ERROR_INODE(inode,
 | |
| 					 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
 | |
| 					 le32_to_cpu(path[i].p_ext->ee_block));
 | |
| 			err = -EIO;
 | |
| 			goto cleanup;
 | |
| 		}
 | |
| 		/* start copy indexes */
 | |
| 		m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
 | |
| 		ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
 | |
| 				EXT_MAX_INDEX(path[i].p_hdr));
 | |
| 		ext4_ext_show_move(inode, path, newblock, i);
 | |
| 		if (m) {
 | |
| 			memmove(++fidx, path[i].p_idx,
 | |
| 				sizeof(struct ext4_extent_idx) * m);
 | |
| 			le16_add_cpu(&neh->eh_entries, m);
 | |
| 		}
 | |
| 		ext4_extent_block_csum_set(inode, neh);
 | |
| 		set_buffer_uptodate(bh);
 | |
| 		unlock_buffer(bh);
 | |
| 
 | |
| 		err = ext4_handle_dirty_metadata(handle, inode, bh);
 | |
| 		if (err)
 | |
| 			goto cleanup;
 | |
| 		brelse(bh);
 | |
| 		bh = NULL;
 | |
| 
 | |
| 		/* correct old index */
 | |
| 		if (m) {
 | |
| 			err = ext4_ext_get_access(handle, inode, path + i);
 | |
| 			if (err)
 | |
| 				goto cleanup;
 | |
| 			le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
 | |
| 			err = ext4_ext_dirty(handle, inode, path + i);
 | |
| 			if (err)
 | |
| 				goto cleanup;
 | |
| 		}
 | |
| 
 | |
| 		i--;
 | |
| 	}
 | |
| 
 | |
| 	/* insert new index */
 | |
| 	err = ext4_ext_insert_index(handle, inode, path + at,
 | |
| 				    le32_to_cpu(border), newblock);
 | |
| 
 | |
| cleanup:
 | |
| 	if (bh) {
 | |
| 		if (buffer_locked(bh))
 | |
| 			unlock_buffer(bh);
 | |
| 		brelse(bh);
 | |
| 	}
 | |
| 
 | |
| 	if (err) {
 | |
| 		/* free all allocated blocks in error case */
 | |
| 		for (i = 0; i < depth; i++) {
 | |
| 			if (!ablocks[i])
 | |
| 				continue;
 | |
| 			ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
 | |
| 					 EXT4_FREE_BLOCKS_METADATA);
 | |
| 		}
 | |
| 	}
 | |
| 	kfree(ablocks);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ext4_ext_grow_indepth:
 | |
|  * implements tree growing procedure:
 | |
|  * - allocates new block
 | |
|  * - moves top-level data (index block or leaf) into the new block
 | |
|  * - initializes new top-level, creating index that points to the
 | |
|  *   just created block
 | |
|  */
 | |
| static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
 | |
| 				 unsigned int flags,
 | |
| 				 struct ext4_extent *newext)
 | |
| {
 | |
| 	struct ext4_extent_header *neh;
 | |
| 	struct buffer_head *bh;
 | |
| 	ext4_fsblk_t newblock;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	newblock = ext4_ext_new_meta_block(handle, inode, NULL,
 | |
| 		newext, &err, flags);
 | |
| 	if (newblock == 0)
 | |
| 		return err;
 | |
| 
 | |
| 	bh = sb_getblk(inode->i_sb, newblock);
 | |
| 	if (unlikely(!bh))
 | |
| 		return -ENOMEM;
 | |
| 	lock_buffer(bh);
 | |
| 
 | |
| 	err = ext4_journal_get_create_access(handle, bh);
 | |
| 	if (err) {
 | |
| 		unlock_buffer(bh);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* move top-level index/leaf into new block */
 | |
| 	memmove(bh->b_data, EXT4_I(inode)->i_data,
 | |
| 		sizeof(EXT4_I(inode)->i_data));
 | |
| 
 | |
| 	/* set size of new block */
 | |
| 	neh = ext_block_hdr(bh);
 | |
| 	/* old root could have indexes or leaves
 | |
| 	 * so calculate e_max right way */
 | |
| 	if (ext_depth(inode))
 | |
| 		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
 | |
| 	else
 | |
| 		neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
 | |
| 	neh->eh_magic = EXT4_EXT_MAGIC;
 | |
| 	ext4_extent_block_csum_set(inode, neh);
 | |
| 	set_buffer_uptodate(bh);
 | |
| 	unlock_buffer(bh);
 | |
| 
 | |
| 	err = ext4_handle_dirty_metadata(handle, inode, bh);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* Update top-level index: num,max,pointer */
 | |
| 	neh = ext_inode_hdr(inode);
 | |
| 	neh->eh_entries = cpu_to_le16(1);
 | |
| 	ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
 | |
| 	if (neh->eh_depth == 0) {
 | |
| 		/* Root extent block becomes index block */
 | |
| 		neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
 | |
| 		EXT_FIRST_INDEX(neh)->ei_block =
 | |
| 			EXT_FIRST_EXTENT(neh)->ee_block;
 | |
| 	}
 | |
| 	ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
 | |
| 		  le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
 | |
| 		  le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
 | |
| 		  ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
 | |
| 
 | |
| 	le16_add_cpu(&neh->eh_depth, 1);
 | |
| 	ext4_mark_inode_dirty(handle, inode);
 | |
| out:
 | |
| 	brelse(bh);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ext4_ext_create_new_leaf:
 | |
|  * finds empty index and adds new leaf.
 | |
|  * if no free index is found, then it requests in-depth growing.
 | |
|  */
 | |
| static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
 | |
| 				    unsigned int mb_flags,
 | |
| 				    unsigned int gb_flags,
 | |
| 				    struct ext4_ext_path *path,
 | |
| 				    struct ext4_extent *newext)
 | |
| {
 | |
| 	struct ext4_ext_path *curp;
 | |
| 	int depth, i, err = 0;
 | |
| 
 | |
| repeat:
 | |
| 	i = depth = ext_depth(inode);
 | |
| 
 | |
| 	/* walk up to the tree and look for free index entry */
 | |
| 	curp = path + depth;
 | |
| 	while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
 | |
| 		i--;
 | |
| 		curp--;
 | |
| 	}
 | |
| 
 | |
| 	/* we use already allocated block for index block,
 | |
| 	 * so subsequent data blocks should be contiguous */
 | |
| 	if (EXT_HAS_FREE_INDEX(curp)) {
 | |
| 		/* if we found index with free entry, then use that
 | |
| 		 * entry: create all needed subtree and add new leaf */
 | |
| 		err = ext4_ext_split(handle, inode, mb_flags, path, newext, i);
 | |
| 		if (err)
 | |
| 			goto out;
 | |
| 
 | |
| 		/* refill path */
 | |
| 		ext4_ext_drop_refs(path);
 | |
| 		path = ext4_ext_find_extent(inode,
 | |
| 				    (ext4_lblk_t)le32_to_cpu(newext->ee_block),
 | |
| 				    path, gb_flags);
 | |
| 		if (IS_ERR(path))
 | |
| 			err = PTR_ERR(path);
 | |
| 	} else {
 | |
| 		/* tree is full, time to grow in depth */
 | |
| 		err = ext4_ext_grow_indepth(handle, inode, mb_flags, newext);
 | |
| 		if (err)
 | |
| 			goto out;
 | |
| 
 | |
| 		/* refill path */
 | |
| 		ext4_ext_drop_refs(path);
 | |
| 		path = ext4_ext_find_extent(inode,
 | |
| 				   (ext4_lblk_t)le32_to_cpu(newext->ee_block),
 | |
| 				    path, gb_flags);
 | |
| 		if (IS_ERR(path)) {
 | |
| 			err = PTR_ERR(path);
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * only first (depth 0 -> 1) produces free space;
 | |
| 		 * in all other cases we have to split the grown tree
 | |
| 		 */
 | |
| 		depth = ext_depth(inode);
 | |
| 		if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
 | |
| 			/* now we need to split */
 | |
| 			goto repeat;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * search the closest allocated block to the left for *logical
 | |
|  * and returns it at @logical + it's physical address at @phys
 | |
|  * if *logical is the smallest allocated block, the function
 | |
|  * returns 0 at @phys
 | |
|  * return value contains 0 (success) or error code
 | |
|  */
 | |
| static int ext4_ext_search_left(struct inode *inode,
 | |
| 				struct ext4_ext_path *path,
 | |
| 				ext4_lblk_t *logical, ext4_fsblk_t *phys)
 | |
| {
 | |
| 	struct ext4_extent_idx *ix;
 | |
| 	struct ext4_extent *ex;
 | |
| 	int depth, ee_len;
 | |
| 
 | |
| 	if (unlikely(path == NULL)) {
 | |
| 		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 	depth = path->p_depth;
 | |
| 	*phys = 0;
 | |
| 
 | |
| 	if (depth == 0 && path->p_ext == NULL)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* usually extent in the path covers blocks smaller
 | |
| 	 * then *logical, but it can be that extent is the
 | |
| 	 * first one in the file */
 | |
| 
 | |
| 	ex = path[depth].p_ext;
 | |
| 	ee_len = ext4_ext_get_actual_len(ex);
 | |
| 	if (*logical < le32_to_cpu(ex->ee_block)) {
 | |
| 		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
 | |
| 			EXT4_ERROR_INODE(inode,
 | |
| 					 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
 | |
| 					 *logical, le32_to_cpu(ex->ee_block));
 | |
| 			return -EIO;
 | |
| 		}
 | |
| 		while (--depth >= 0) {
 | |
| 			ix = path[depth].p_idx;
 | |
| 			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
 | |
| 				EXT4_ERROR_INODE(inode,
 | |
| 				  "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
 | |
| 				  ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
 | |
| 				  EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
 | |
| 		le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
 | |
| 				  depth);
 | |
| 				return -EIO;
 | |
| 			}
 | |
| 		}
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
 | |
| 		EXT4_ERROR_INODE(inode,
 | |
| 				 "logical %d < ee_block %d + ee_len %d!",
 | |
| 				 *logical, le32_to_cpu(ex->ee_block), ee_len);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	*logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
 | |
| 	*phys = ext4_ext_pblock(ex) + ee_len - 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * search the closest allocated block to the right for *logical
 | |
|  * and returns it at @logical + it's physical address at @phys
 | |
|  * if *logical is the largest allocated block, the function
 | |
|  * returns 0 at @phys
 | |
|  * return value contains 0 (success) or error code
 | |
|  */
 | |
| static int ext4_ext_search_right(struct inode *inode,
 | |
| 				 struct ext4_ext_path *path,
 | |
| 				 ext4_lblk_t *logical, ext4_fsblk_t *phys,
 | |
| 				 struct ext4_extent **ret_ex)
 | |
| {
 | |
| 	struct buffer_head *bh = NULL;
 | |
| 	struct ext4_extent_header *eh;
 | |
| 	struct ext4_extent_idx *ix;
 | |
| 	struct ext4_extent *ex;
 | |
| 	ext4_fsblk_t block;
 | |
| 	int depth;	/* Note, NOT eh_depth; depth from top of tree */
 | |
| 	int ee_len;
 | |
| 
 | |
| 	if (unlikely(path == NULL)) {
 | |
| 		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 	depth = path->p_depth;
 | |
| 	*phys = 0;
 | |
| 
 | |
| 	if (depth == 0 && path->p_ext == NULL)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* usually extent in the path covers blocks smaller
 | |
| 	 * then *logical, but it can be that extent is the
 | |
| 	 * first one in the file */
 | |
| 
 | |
| 	ex = path[depth].p_ext;
 | |
| 	ee_len = ext4_ext_get_actual_len(ex);
 | |
| 	if (*logical < le32_to_cpu(ex->ee_block)) {
 | |
| 		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
 | |
| 			EXT4_ERROR_INODE(inode,
 | |
| 					 "first_extent(path[%d].p_hdr) != ex",
 | |
| 					 depth);
 | |
| 			return -EIO;
 | |
| 		}
 | |
| 		while (--depth >= 0) {
 | |
| 			ix = path[depth].p_idx;
 | |
| 			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
 | |
| 				EXT4_ERROR_INODE(inode,
 | |
| 						 "ix != EXT_FIRST_INDEX *logical %d!",
 | |
| 						 *logical);
 | |
| 				return -EIO;
 | |
| 			}
 | |
| 		}
 | |
| 		goto found_extent;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
 | |
| 		EXT4_ERROR_INODE(inode,
 | |
| 				 "logical %d < ee_block %d + ee_len %d!",
 | |
| 				 *logical, le32_to_cpu(ex->ee_block), ee_len);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
 | |
| 		/* next allocated block in this leaf */
 | |
| 		ex++;
 | |
| 		goto found_extent;
 | |
| 	}
 | |
| 
 | |
| 	/* go up and search for index to the right */
 | |
| 	while (--depth >= 0) {
 | |
| 		ix = path[depth].p_idx;
 | |
| 		if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
 | |
| 			goto got_index;
 | |
| 	}
 | |
| 
 | |
| 	/* we've gone up to the root and found no index to the right */
 | |
| 	return 0;
 | |
| 
 | |
| got_index:
 | |
| 	/* we've found index to the right, let's
 | |
| 	 * follow it and find the closest allocated
 | |
| 	 * block to the right */
 | |
| 	ix++;
 | |
| 	block = ext4_idx_pblock(ix);
 | |
| 	while (++depth < path->p_depth) {
 | |
| 		/* subtract from p_depth to get proper eh_depth */
 | |
| 		bh = read_extent_tree_block(inode, block,
 | |
| 					    path->p_depth - depth, 0);
 | |
| 		if (IS_ERR(bh))
 | |
| 			return PTR_ERR(bh);
 | |
| 		eh = ext_block_hdr(bh);
 | |
| 		ix = EXT_FIRST_INDEX(eh);
 | |
| 		block = ext4_idx_pblock(ix);
 | |
| 		put_bh(bh);
 | |
| 	}
 | |
| 
 | |
| 	bh = read_extent_tree_block(inode, block, path->p_depth - depth, 0);
 | |
| 	if (IS_ERR(bh))
 | |
| 		return PTR_ERR(bh);
 | |
| 	eh = ext_block_hdr(bh);
 | |
| 	ex = EXT_FIRST_EXTENT(eh);
 | |
| found_extent:
 | |
| 	*logical = le32_to_cpu(ex->ee_block);
 | |
| 	*phys = ext4_ext_pblock(ex);
 | |
| 	*ret_ex = ex;
 | |
| 	if (bh)
 | |
| 		put_bh(bh);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ext4_ext_next_allocated_block:
 | |
|  * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
 | |
|  * NOTE: it considers block number from index entry as
 | |
|  * allocated block. Thus, index entries have to be consistent
 | |
|  * with leaves.
 | |
|  */
 | |
| static ext4_lblk_t
 | |
| ext4_ext_next_allocated_block(struct ext4_ext_path *path)
 | |
| {
 | |
| 	int depth;
 | |
| 
 | |
| 	BUG_ON(path == NULL);
 | |
| 	depth = path->p_depth;
 | |
| 
 | |
| 	if (depth == 0 && path->p_ext == NULL)
 | |
| 		return EXT_MAX_BLOCKS;
 | |
| 
 | |
| 	while (depth >= 0) {
 | |
| 		if (depth == path->p_depth) {
 | |
| 			/* leaf */
 | |
| 			if (path[depth].p_ext &&
 | |
| 				path[depth].p_ext !=
 | |
| 					EXT_LAST_EXTENT(path[depth].p_hdr))
 | |
| 			  return le32_to_cpu(path[depth].p_ext[1].ee_block);
 | |
| 		} else {
 | |
| 			/* index */
 | |
| 			if (path[depth].p_idx !=
 | |
| 					EXT_LAST_INDEX(path[depth].p_hdr))
 | |
| 			  return le32_to_cpu(path[depth].p_idx[1].ei_block);
 | |
| 		}
 | |
| 		depth--;
 | |
| 	}
 | |
| 
 | |
| 	return EXT_MAX_BLOCKS;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ext4_ext_next_leaf_block:
 | |
|  * returns first allocated block from next leaf or EXT_MAX_BLOCKS
 | |
|  */
 | |
| static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
 | |
| {
 | |
| 	int depth;
 | |
| 
 | |
| 	BUG_ON(path == NULL);
 | |
| 	depth = path->p_depth;
 | |
| 
 | |
| 	/* zero-tree has no leaf blocks at all */
 | |
| 	if (depth == 0)
 | |
| 		return EXT_MAX_BLOCKS;
 | |
| 
 | |
| 	/* go to index block */
 | |
| 	depth--;
 | |
| 
 | |
| 	while (depth >= 0) {
 | |
| 		if (path[depth].p_idx !=
 | |
| 				EXT_LAST_INDEX(path[depth].p_hdr))
 | |
| 			return (ext4_lblk_t)
 | |
| 				le32_to_cpu(path[depth].p_idx[1].ei_block);
 | |
| 		depth--;
 | |
| 	}
 | |
| 
 | |
| 	return EXT_MAX_BLOCKS;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ext4_ext_correct_indexes:
 | |
|  * if leaf gets modified and modified extent is first in the leaf,
 | |
|  * then we have to correct all indexes above.
 | |
|  * TODO: do we need to correct tree in all cases?
 | |
|  */
 | |
| static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
 | |
| 				struct ext4_ext_path *path)
 | |
| {
 | |
| 	struct ext4_extent_header *eh;
 | |
| 	int depth = ext_depth(inode);
 | |
| 	struct ext4_extent *ex;
 | |
| 	__le32 border;
 | |
| 	int k, err = 0;
 | |
| 
 | |
| 	eh = path[depth].p_hdr;
 | |
| 	ex = path[depth].p_ext;
 | |
| 
 | |
| 	if (unlikely(ex == NULL || eh == NULL)) {
 | |
| 		EXT4_ERROR_INODE(inode,
 | |
| 				 "ex %p == NULL or eh %p == NULL", ex, eh);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	if (depth == 0) {
 | |
| 		/* there is no tree at all */
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (ex != EXT_FIRST_EXTENT(eh)) {
 | |
| 		/* we correct tree if first leaf got modified only */
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * TODO: we need correction if border is smaller than current one
 | |
| 	 */
 | |
| 	k = depth - 1;
 | |
| 	border = path[depth].p_ext->ee_block;
 | |
| 	err = ext4_ext_get_access(handle, inode, path + k);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 	path[k].p_idx->ei_block = border;
 | |
| 	err = ext4_ext_dirty(handle, inode, path + k);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	while (k--) {
 | |
| 		/* change all left-side indexes */
 | |
| 		if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
 | |
| 			break;
 | |
| 		err = ext4_ext_get_access(handle, inode, path + k);
 | |
| 		if (err)
 | |
| 			break;
 | |
| 		path[k].p_idx->ei_block = border;
 | |
| 		err = ext4_ext_dirty(handle, inode, path + k);
 | |
| 		if (err)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| int
 | |
| ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
 | |
| 				struct ext4_extent *ex2)
 | |
| {
 | |
| 	unsigned short ext1_ee_len, ext2_ee_len;
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure that both extents are initialized. We don't merge
 | |
| 	 * uninitialized extents so that we can be sure that end_io code has
 | |
| 	 * the extent that was written properly split out and conversion to
 | |
| 	 * initialized is trivial.
 | |
| 	 */
 | |
| 	if (ext4_ext_is_uninitialized(ex1) || ext4_ext_is_uninitialized(ex2))
 | |
| 		return 0;
 | |
| 
 | |
| 	ext1_ee_len = ext4_ext_get_actual_len(ex1);
 | |
| 	ext2_ee_len = ext4_ext_get_actual_len(ex2);
 | |
| 
 | |
| 	if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
 | |
| 			le32_to_cpu(ex2->ee_block))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * To allow future support for preallocated extents to be added
 | |
| 	 * as an RO_COMPAT feature, refuse to merge to extents if
 | |
| 	 * this can result in the top bit of ee_len being set.
 | |
| 	 */
 | |
| 	if (ext1_ee_len + ext2_ee_len > EXT_INIT_MAX_LEN)
 | |
| 		return 0;
 | |
| #ifdef AGGRESSIVE_TEST
 | |
| 	if (ext1_ee_len >= 4)
 | |
| 		return 0;
 | |
| #endif
 | |
| 
 | |
| 	if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function tries to merge the "ex" extent to the next extent in the tree.
 | |
|  * It always tries to merge towards right. If you want to merge towards
 | |
|  * left, pass "ex - 1" as argument instead of "ex".
 | |
|  * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
 | |
|  * 1 if they got merged.
 | |
|  */
 | |
| static int ext4_ext_try_to_merge_right(struct inode *inode,
 | |
| 				 struct ext4_ext_path *path,
 | |
| 				 struct ext4_extent *ex)
 | |
| {
 | |
| 	struct ext4_extent_header *eh;
 | |
| 	unsigned int depth, len;
 | |
| 	int merge_done = 0;
 | |
| 
 | |
| 	depth = ext_depth(inode);
 | |
| 	BUG_ON(path[depth].p_hdr == NULL);
 | |
| 	eh = path[depth].p_hdr;
 | |
| 
 | |
| 	while (ex < EXT_LAST_EXTENT(eh)) {
 | |
| 		if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
 | |
| 			break;
 | |
| 		/* merge with next extent! */
 | |
| 		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
 | |
| 				+ ext4_ext_get_actual_len(ex + 1));
 | |
| 
 | |
| 		if (ex + 1 < EXT_LAST_EXTENT(eh)) {
 | |
| 			len = (EXT_LAST_EXTENT(eh) - ex - 1)
 | |
| 				* sizeof(struct ext4_extent);
 | |
| 			memmove(ex + 1, ex + 2, len);
 | |
| 		}
 | |
| 		le16_add_cpu(&eh->eh_entries, -1);
 | |
| 		merge_done = 1;
 | |
| 		WARN_ON(eh->eh_entries == 0);
 | |
| 		if (!eh->eh_entries)
 | |
| 			EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
 | |
| 	}
 | |
| 
 | |
| 	return merge_done;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function does a very simple check to see if we can collapse
 | |
|  * an extent tree with a single extent tree leaf block into the inode.
 | |
|  */
 | |
| static void ext4_ext_try_to_merge_up(handle_t *handle,
 | |
| 				     struct inode *inode,
 | |
| 				     struct ext4_ext_path *path)
 | |
| {
 | |
| 	size_t s;
 | |
| 	unsigned max_root = ext4_ext_space_root(inode, 0);
 | |
| 	ext4_fsblk_t blk;
 | |
| 
 | |
| 	if ((path[0].p_depth != 1) ||
 | |
| 	    (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) ||
 | |
| 	    (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * We need to modify the block allocation bitmap and the block
 | |
| 	 * group descriptor to release the extent tree block.  If we
 | |
| 	 * can't get the journal credits, give up.
 | |
| 	 */
 | |
| 	if (ext4_journal_extend(handle, 2))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Copy the extent data up to the inode
 | |
| 	 */
 | |
| 	blk = ext4_idx_pblock(path[0].p_idx);
 | |
| 	s = le16_to_cpu(path[1].p_hdr->eh_entries) *
 | |
| 		sizeof(struct ext4_extent_idx);
 | |
| 	s += sizeof(struct ext4_extent_header);
 | |
| 
 | |
| 	memcpy(path[0].p_hdr, path[1].p_hdr, s);
 | |
| 	path[0].p_depth = 0;
 | |
| 	path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) +
 | |
| 		(path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr));
 | |
| 	path[0].p_hdr->eh_max = cpu_to_le16(max_root);
 | |
| 
 | |
| 	brelse(path[1].p_bh);
 | |
| 	ext4_free_blocks(handle, inode, NULL, blk, 1,
 | |
| 			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET |
 | |
| 			 EXT4_FREE_BLOCKS_RESERVE);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function tries to merge the @ex extent to neighbours in the tree.
 | |
|  * return 1 if merge left else 0.
 | |
|  */
 | |
| static void ext4_ext_try_to_merge(handle_t *handle,
 | |
| 				  struct inode *inode,
 | |
| 				  struct ext4_ext_path *path,
 | |
| 				  struct ext4_extent *ex) {
 | |
| 	struct ext4_extent_header *eh;
 | |
| 	unsigned int depth;
 | |
| 	int merge_done = 0;
 | |
| 
 | |
| 	depth = ext_depth(inode);
 | |
| 	BUG_ON(path[depth].p_hdr == NULL);
 | |
| 	eh = path[depth].p_hdr;
 | |
| 
 | |
| 	if (ex > EXT_FIRST_EXTENT(eh))
 | |
| 		merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
 | |
| 
 | |
| 	if (!merge_done)
 | |
| 		(void) ext4_ext_try_to_merge_right(inode, path, ex);
 | |
| 
 | |
| 	ext4_ext_try_to_merge_up(handle, inode, path);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * check if a portion of the "newext" extent overlaps with an
 | |
|  * existing extent.
 | |
|  *
 | |
|  * If there is an overlap discovered, it updates the length of the newext
 | |
|  * such that there will be no overlap, and then returns 1.
 | |
|  * If there is no overlap found, it returns 0.
 | |
|  */
 | |
| static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
 | |
| 					   struct inode *inode,
 | |
| 					   struct ext4_extent *newext,
 | |
| 					   struct ext4_ext_path *path)
 | |
| {
 | |
| 	ext4_lblk_t b1, b2;
 | |
| 	unsigned int depth, len1;
 | |
| 	unsigned int ret = 0;
 | |
| 
 | |
| 	b1 = le32_to_cpu(newext->ee_block);
 | |
| 	len1 = ext4_ext_get_actual_len(newext);
 | |
| 	depth = ext_depth(inode);
 | |
| 	if (!path[depth].p_ext)
 | |
| 		goto out;
 | |
| 	b2 = le32_to_cpu(path[depth].p_ext->ee_block);
 | |
| 	b2 &= ~(sbi->s_cluster_ratio - 1);
 | |
| 
 | |
| 	/*
 | |
| 	 * get the next allocated block if the extent in the path
 | |
| 	 * is before the requested block(s)
 | |
| 	 */
 | |
| 	if (b2 < b1) {
 | |
| 		b2 = ext4_ext_next_allocated_block(path);
 | |
| 		if (b2 == EXT_MAX_BLOCKS)
 | |
| 			goto out;
 | |
| 		b2 &= ~(sbi->s_cluster_ratio - 1);
 | |
| 	}
 | |
| 
 | |
| 	/* check for wrap through zero on extent logical start block*/
 | |
| 	if (b1 + len1 < b1) {
 | |
| 		len1 = EXT_MAX_BLOCKS - b1;
 | |
| 		newext->ee_len = cpu_to_le16(len1);
 | |
| 		ret = 1;
 | |
| 	}
 | |
| 
 | |
| 	/* check for overlap */
 | |
| 	if (b1 + len1 > b2) {
 | |
| 		newext->ee_len = cpu_to_le16(b2 - b1);
 | |
| 		ret = 1;
 | |
| 	}
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ext4_ext_insert_extent:
 | |
|  * tries to merge requsted extent into the existing extent or
 | |
|  * inserts requested extent as new one into the tree,
 | |
|  * creating new leaf in the no-space case.
 | |
|  */
 | |
| int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
 | |
| 				struct ext4_ext_path *path,
 | |
| 				struct ext4_extent *newext, int gb_flags)
 | |
| {
 | |
| 	struct ext4_extent_header *eh;
 | |
| 	struct ext4_extent *ex, *fex;
 | |
| 	struct ext4_extent *nearex; /* nearest extent */
 | |
| 	struct ext4_ext_path *npath = NULL;
 | |
| 	int depth, len, err;
 | |
| 	ext4_lblk_t next;
 | |
| 	int mb_flags = 0;
 | |
| 
 | |
| 	if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
 | |
| 		EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 	depth = ext_depth(inode);
 | |
| 	ex = path[depth].p_ext;
 | |
| 	eh = path[depth].p_hdr;
 | |
| 	if (unlikely(path[depth].p_hdr == NULL)) {
 | |
| 		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	/* try to insert block into found extent and return */
 | |
| 	if (ex && !(gb_flags & EXT4_GET_BLOCKS_PRE_IO)) {
 | |
| 
 | |
| 		/*
 | |
| 		 * Try to see whether we should rather test the extent on
 | |
| 		 * right from ex, or from the left of ex. This is because
 | |
| 		 * ext4_ext_find_extent() can return either extent on the
 | |
| 		 * left, or on the right from the searched position. This
 | |
| 		 * will make merging more effective.
 | |
| 		 */
 | |
| 		if (ex < EXT_LAST_EXTENT(eh) &&
 | |
| 		    (le32_to_cpu(ex->ee_block) +
 | |
| 		    ext4_ext_get_actual_len(ex) <
 | |
| 		    le32_to_cpu(newext->ee_block))) {
 | |
| 			ex += 1;
 | |
| 			goto prepend;
 | |
| 		} else if ((ex > EXT_FIRST_EXTENT(eh)) &&
 | |
| 			   (le32_to_cpu(newext->ee_block) +
 | |
| 			   ext4_ext_get_actual_len(newext) <
 | |
| 			   le32_to_cpu(ex->ee_block)))
 | |
| 			ex -= 1;
 | |
| 
 | |
| 		/* Try to append newex to the ex */
 | |
| 		if (ext4_can_extents_be_merged(inode, ex, newext)) {
 | |
| 			ext_debug("append [%d]%d block to %u:[%d]%d"
 | |
| 				  "(from %llu)\n",
 | |
| 				  ext4_ext_is_uninitialized(newext),
 | |
| 				  ext4_ext_get_actual_len(newext),
 | |
| 				  le32_to_cpu(ex->ee_block),
 | |
| 				  ext4_ext_is_uninitialized(ex),
 | |
| 				  ext4_ext_get_actual_len(ex),
 | |
| 				  ext4_ext_pblock(ex));
 | |
| 			err = ext4_ext_get_access(handle, inode,
 | |
| 						  path + depth);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 
 | |
| 			ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
 | |
| 					+ ext4_ext_get_actual_len(newext));
 | |
| 			eh = path[depth].p_hdr;
 | |
| 			nearex = ex;
 | |
| 			goto merge;
 | |
| 		}
 | |
| 
 | |
| prepend:
 | |
| 		/* Try to prepend newex to the ex */
 | |
| 		if (ext4_can_extents_be_merged(inode, newext, ex)) {
 | |
| 			ext_debug("prepend %u[%d]%d block to %u:[%d]%d"
 | |
| 				  "(from %llu)\n",
 | |
| 				  le32_to_cpu(newext->ee_block),
 | |
| 				  ext4_ext_is_uninitialized(newext),
 | |
| 				  ext4_ext_get_actual_len(newext),
 | |
| 				  le32_to_cpu(ex->ee_block),
 | |
| 				  ext4_ext_is_uninitialized(ex),
 | |
| 				  ext4_ext_get_actual_len(ex),
 | |
| 				  ext4_ext_pblock(ex));
 | |
| 			err = ext4_ext_get_access(handle, inode,
 | |
| 						  path + depth);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 
 | |
| 			ex->ee_block = newext->ee_block;
 | |
| 			ext4_ext_store_pblock(ex, ext4_ext_pblock(newext));
 | |
| 			ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
 | |
| 					+ ext4_ext_get_actual_len(newext));
 | |
| 			eh = path[depth].p_hdr;
 | |
| 			nearex = ex;
 | |
| 			goto merge;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	depth = ext_depth(inode);
 | |
| 	eh = path[depth].p_hdr;
 | |
| 	if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
 | |
| 		goto has_space;
 | |
| 
 | |
| 	/* probably next leaf has space for us? */
 | |
| 	fex = EXT_LAST_EXTENT(eh);
 | |
| 	next = EXT_MAX_BLOCKS;
 | |
| 	if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
 | |
| 		next = ext4_ext_next_leaf_block(path);
 | |
| 	if (next != EXT_MAX_BLOCKS) {
 | |
| 		ext_debug("next leaf block - %u\n", next);
 | |
| 		BUG_ON(npath != NULL);
 | |
| 		npath = ext4_ext_find_extent(inode, next, NULL, 0);
 | |
| 		if (IS_ERR(npath))
 | |
| 			return PTR_ERR(npath);
 | |
| 		BUG_ON(npath->p_depth != path->p_depth);
 | |
| 		eh = npath[depth].p_hdr;
 | |
| 		if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
 | |
| 			ext_debug("next leaf isn't full(%d)\n",
 | |
| 				  le16_to_cpu(eh->eh_entries));
 | |
| 			path = npath;
 | |
| 			goto has_space;
 | |
| 		}
 | |
| 		ext_debug("next leaf has no free space(%d,%d)\n",
 | |
| 			  le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * There is no free space in the found leaf.
 | |
| 	 * We're gonna add a new leaf in the tree.
 | |
| 	 */
 | |
| 	if (gb_flags & EXT4_GET_BLOCKS_METADATA_NOFAIL)
 | |
| 		mb_flags = EXT4_MB_USE_RESERVED;
 | |
| 	err = ext4_ext_create_new_leaf(handle, inode, mb_flags, gb_flags,
 | |
| 				       path, newext);
 | |
| 	if (err)
 | |
| 		goto cleanup;
 | |
| 	depth = ext_depth(inode);
 | |
| 	eh = path[depth].p_hdr;
 | |
| 
 | |
| has_space:
 | |
| 	nearex = path[depth].p_ext;
 | |
| 
 | |
| 	err = ext4_ext_get_access(handle, inode, path + depth);
 | |
| 	if (err)
 | |
| 		goto cleanup;
 | |
| 
 | |
| 	if (!nearex) {
 | |
| 		/* there is no extent in this leaf, create first one */
 | |
| 		ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
 | |
| 				le32_to_cpu(newext->ee_block),
 | |
| 				ext4_ext_pblock(newext),
 | |
| 				ext4_ext_is_uninitialized(newext),
 | |
| 				ext4_ext_get_actual_len(newext));
 | |
| 		nearex = EXT_FIRST_EXTENT(eh);
 | |
| 	} else {
 | |
| 		if (le32_to_cpu(newext->ee_block)
 | |
| 			   > le32_to_cpu(nearex->ee_block)) {
 | |
| 			/* Insert after */
 | |
| 			ext_debug("insert %u:%llu:[%d]%d before: "
 | |
| 					"nearest %p\n",
 | |
| 					le32_to_cpu(newext->ee_block),
 | |
| 					ext4_ext_pblock(newext),
 | |
| 					ext4_ext_is_uninitialized(newext),
 | |
| 					ext4_ext_get_actual_len(newext),
 | |
| 					nearex);
 | |
| 			nearex++;
 | |
| 		} else {
 | |
| 			/* Insert before */
 | |
| 			BUG_ON(newext->ee_block == nearex->ee_block);
 | |
| 			ext_debug("insert %u:%llu:[%d]%d after: "
 | |
| 					"nearest %p\n",
 | |
| 					le32_to_cpu(newext->ee_block),
 | |
| 					ext4_ext_pblock(newext),
 | |
| 					ext4_ext_is_uninitialized(newext),
 | |
| 					ext4_ext_get_actual_len(newext),
 | |
| 					nearex);
 | |
| 		}
 | |
| 		len = EXT_LAST_EXTENT(eh) - nearex + 1;
 | |
| 		if (len > 0) {
 | |
| 			ext_debug("insert %u:%llu:[%d]%d: "
 | |
| 					"move %d extents from 0x%p to 0x%p\n",
 | |
| 					le32_to_cpu(newext->ee_block),
 | |
| 					ext4_ext_pblock(newext),
 | |
| 					ext4_ext_is_uninitialized(newext),
 | |
| 					ext4_ext_get_actual_len(newext),
 | |
| 					len, nearex, nearex + 1);
 | |
| 			memmove(nearex + 1, nearex,
 | |
| 				len * sizeof(struct ext4_extent));
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	le16_add_cpu(&eh->eh_entries, 1);
 | |
| 	path[depth].p_ext = nearex;
 | |
| 	nearex->ee_block = newext->ee_block;
 | |
| 	ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
 | |
| 	nearex->ee_len = newext->ee_len;
 | |
| 
 | |
| merge:
 | |
| 	/* try to merge extents */
 | |
| 	if (!(gb_flags & EXT4_GET_BLOCKS_PRE_IO))
 | |
| 		ext4_ext_try_to_merge(handle, inode, path, nearex);
 | |
| 
 | |
| 
 | |
| 	/* time to correct all indexes above */
 | |
| 	err = ext4_ext_correct_indexes(handle, inode, path);
 | |
| 	if (err)
 | |
| 		goto cleanup;
 | |
| 
 | |
| 	err = ext4_ext_dirty(handle, inode, path + path->p_depth);
 | |
| 
 | |
| cleanup:
 | |
| 	if (npath) {
 | |
| 		ext4_ext_drop_refs(npath);
 | |
| 		kfree(npath);
 | |
| 	}
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int ext4_fill_fiemap_extents(struct inode *inode,
 | |
| 				    ext4_lblk_t block, ext4_lblk_t num,
 | |
| 				    struct fiemap_extent_info *fieinfo)
 | |
| {
 | |
| 	struct ext4_ext_path *path = NULL;
 | |
| 	struct ext4_extent *ex;
 | |
| 	struct extent_status es;
 | |
| 	ext4_lblk_t next, next_del, start = 0, end = 0;
 | |
| 	ext4_lblk_t last = block + num;
 | |
| 	int exists, depth = 0, err = 0;
 | |
| 	unsigned int flags = 0;
 | |
| 	unsigned char blksize_bits = inode->i_sb->s_blocksize_bits;
 | |
| 
 | |
| 	while (block < last && block != EXT_MAX_BLOCKS) {
 | |
| 		num = last - block;
 | |
| 		/* find extent for this block */
 | |
| 		down_read(&EXT4_I(inode)->i_data_sem);
 | |
| 
 | |
| 		if (path && ext_depth(inode) != depth) {
 | |
| 			/* depth was changed. we have to realloc path */
 | |
| 			kfree(path);
 | |
| 			path = NULL;
 | |
| 		}
 | |
| 
 | |
| 		path = ext4_ext_find_extent(inode, block, path, 0);
 | |
| 		if (IS_ERR(path)) {
 | |
| 			up_read(&EXT4_I(inode)->i_data_sem);
 | |
| 			err = PTR_ERR(path);
 | |
| 			path = NULL;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		depth = ext_depth(inode);
 | |
| 		if (unlikely(path[depth].p_hdr == NULL)) {
 | |
| 			up_read(&EXT4_I(inode)->i_data_sem);
 | |
| 			EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
 | |
| 			err = -EIO;
 | |
| 			break;
 | |
| 		}
 | |
| 		ex = path[depth].p_ext;
 | |
| 		next = ext4_ext_next_allocated_block(path);
 | |
| 		ext4_ext_drop_refs(path);
 | |
| 
 | |
| 		flags = 0;
 | |
| 		exists = 0;
 | |
| 		if (!ex) {
 | |
| 			/* there is no extent yet, so try to allocate
 | |
| 			 * all requested space */
 | |
| 			start = block;
 | |
| 			end = block + num;
 | |
| 		} else if (le32_to_cpu(ex->ee_block) > block) {
 | |
| 			/* need to allocate space before found extent */
 | |
| 			start = block;
 | |
| 			end = le32_to_cpu(ex->ee_block);
 | |
| 			if (block + num < end)
 | |
| 				end = block + num;
 | |
| 		} else if (block >= le32_to_cpu(ex->ee_block)
 | |
| 					+ ext4_ext_get_actual_len(ex)) {
 | |
| 			/* need to allocate space after found extent */
 | |
| 			start = block;
 | |
| 			end = block + num;
 | |
| 			if (end >= next)
 | |
| 				end = next;
 | |
| 		} else if (block >= le32_to_cpu(ex->ee_block)) {
 | |
| 			/*
 | |
| 			 * some part of requested space is covered
 | |
| 			 * by found extent
 | |
| 			 */
 | |
| 			start = block;
 | |
| 			end = le32_to_cpu(ex->ee_block)
 | |
| 				+ ext4_ext_get_actual_len(ex);
 | |
| 			if (block + num < end)
 | |
| 				end = block + num;
 | |
| 			exists = 1;
 | |
| 		} else {
 | |
| 			BUG();
 | |
| 		}
 | |
| 		BUG_ON(end <= start);
 | |
| 
 | |
| 		if (!exists) {
 | |
| 			es.es_lblk = start;
 | |
| 			es.es_len = end - start;
 | |
| 			es.es_pblk = 0;
 | |
| 		} else {
 | |
| 			es.es_lblk = le32_to_cpu(ex->ee_block);
 | |
| 			es.es_len = ext4_ext_get_actual_len(ex);
 | |
| 			es.es_pblk = ext4_ext_pblock(ex);
 | |
| 			if (ext4_ext_is_uninitialized(ex))
 | |
| 				flags |= FIEMAP_EXTENT_UNWRITTEN;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Find delayed extent and update es accordingly. We call
 | |
| 		 * it even in !exists case to find out whether es is the
 | |
| 		 * last existing extent or not.
 | |
| 		 */
 | |
| 		next_del = ext4_find_delayed_extent(inode, &es);
 | |
| 		if (!exists && next_del) {
 | |
| 			exists = 1;
 | |
| 			flags |= (FIEMAP_EXTENT_DELALLOC |
 | |
| 				  FIEMAP_EXTENT_UNKNOWN);
 | |
| 		}
 | |
| 		up_read(&EXT4_I(inode)->i_data_sem);
 | |
| 
 | |
| 		if (unlikely(es.es_len == 0)) {
 | |
| 			EXT4_ERROR_INODE(inode, "es.es_len == 0");
 | |
| 			err = -EIO;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * This is possible iff next == next_del == EXT_MAX_BLOCKS.
 | |
| 		 * we need to check next == EXT_MAX_BLOCKS because it is
 | |
| 		 * possible that an extent is with unwritten and delayed
 | |
| 		 * status due to when an extent is delayed allocated and
 | |
| 		 * is allocated by fallocate status tree will track both of
 | |
| 		 * them in a extent.
 | |
| 		 *
 | |
| 		 * So we could return a unwritten and delayed extent, and
 | |
| 		 * its block is equal to 'next'.
 | |
| 		 */
 | |
| 		if (next == next_del && next == EXT_MAX_BLOCKS) {
 | |
| 			flags |= FIEMAP_EXTENT_LAST;
 | |
| 			if (unlikely(next_del != EXT_MAX_BLOCKS ||
 | |
| 				     next != EXT_MAX_BLOCKS)) {
 | |
| 				EXT4_ERROR_INODE(inode,
 | |
| 						 "next extent == %u, next "
 | |
| 						 "delalloc extent = %u",
 | |
| 						 next, next_del);
 | |
| 				err = -EIO;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (exists) {
 | |
| 			err = fiemap_fill_next_extent(fieinfo,
 | |
| 				(__u64)es.es_lblk << blksize_bits,
 | |
| 				(__u64)es.es_pblk << blksize_bits,
 | |
| 				(__u64)es.es_len << blksize_bits,
 | |
| 				flags);
 | |
| 			if (err < 0)
 | |
| 				break;
 | |
| 			if (err == 1) {
 | |
| 				err = 0;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		block = es.es_lblk + es.es_len;
 | |
| 	}
 | |
| 
 | |
| 	if (path) {
 | |
| 		ext4_ext_drop_refs(path);
 | |
| 		kfree(path);
 | |
| 	}
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ext4_ext_put_gap_in_cache:
 | |
|  * calculate boundaries of the gap that the requested block fits into
 | |
|  * and cache this gap
 | |
|  */
 | |
| static void
 | |
| ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
 | |
| 				ext4_lblk_t block)
 | |
| {
 | |
| 	int depth = ext_depth(inode);
 | |
| 	unsigned long len = 0;
 | |
| 	ext4_lblk_t lblock = 0;
 | |
| 	struct ext4_extent *ex;
 | |
| 
 | |
| 	ex = path[depth].p_ext;
 | |
| 	if (ex == NULL) {
 | |
| 		/*
 | |
| 		 * there is no extent yet, so gap is [0;-] and we
 | |
| 		 * don't cache it
 | |
| 		 */
 | |
| 		ext_debug("cache gap(whole file):");
 | |
| 	} else if (block < le32_to_cpu(ex->ee_block)) {
 | |
| 		lblock = block;
 | |
| 		len = le32_to_cpu(ex->ee_block) - block;
 | |
| 		ext_debug("cache gap(before): %u [%u:%u]",
 | |
| 				block,
 | |
| 				le32_to_cpu(ex->ee_block),
 | |
| 				 ext4_ext_get_actual_len(ex));
 | |
| 		if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1))
 | |
| 			ext4_es_insert_extent(inode, lblock, len, ~0,
 | |
| 					      EXTENT_STATUS_HOLE);
 | |
| 	} else if (block >= le32_to_cpu(ex->ee_block)
 | |
| 			+ ext4_ext_get_actual_len(ex)) {
 | |
| 		ext4_lblk_t next;
 | |
| 		lblock = le32_to_cpu(ex->ee_block)
 | |
| 			+ ext4_ext_get_actual_len(ex);
 | |
| 
 | |
| 		next = ext4_ext_next_allocated_block(path);
 | |
| 		ext_debug("cache gap(after): [%u:%u] %u",
 | |
| 				le32_to_cpu(ex->ee_block),
 | |
| 				ext4_ext_get_actual_len(ex),
 | |
| 				block);
 | |
| 		BUG_ON(next == lblock);
 | |
| 		len = next - lblock;
 | |
| 		if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1))
 | |
| 			ext4_es_insert_extent(inode, lblock, len, ~0,
 | |
| 					      EXTENT_STATUS_HOLE);
 | |
| 	} else {
 | |
| 		BUG();
 | |
| 	}
 | |
| 
 | |
| 	ext_debug(" -> %u:%lu\n", lblock, len);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ext4_ext_rm_idx:
 | |
|  * removes index from the index block.
 | |
|  */
 | |
| static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
 | |
| 			struct ext4_ext_path *path, int depth)
 | |
| {
 | |
| 	int err;
 | |
| 	ext4_fsblk_t leaf;
 | |
| 
 | |
| 	/* free index block */
 | |
| 	depth--;
 | |
| 	path = path + depth;
 | |
| 	leaf = ext4_idx_pblock(path->p_idx);
 | |
| 	if (unlikely(path->p_hdr->eh_entries == 0)) {
 | |
| 		EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 	err = ext4_ext_get_access(handle, inode, path);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
 | |
| 		int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
 | |
| 		len *= sizeof(struct ext4_extent_idx);
 | |
| 		memmove(path->p_idx, path->p_idx + 1, len);
 | |
| 	}
 | |
| 
 | |
| 	le16_add_cpu(&path->p_hdr->eh_entries, -1);
 | |
| 	err = ext4_ext_dirty(handle, inode, path);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 	ext_debug("index is empty, remove it, free block %llu\n", leaf);
 | |
| 	trace_ext4_ext_rm_idx(inode, leaf);
 | |
| 
 | |
| 	ext4_free_blocks(handle, inode, NULL, leaf, 1,
 | |
| 			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
 | |
| 
 | |
| 	while (--depth >= 0) {
 | |
| 		if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr))
 | |
| 			break;
 | |
| 		path--;
 | |
| 		err = ext4_ext_get_access(handle, inode, path);
 | |
| 		if (err)
 | |
| 			break;
 | |
| 		path->p_idx->ei_block = (path+1)->p_idx->ei_block;
 | |
| 		err = ext4_ext_dirty(handle, inode, path);
 | |
| 		if (err)
 | |
| 			break;
 | |
| 	}
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ext4_ext_calc_credits_for_single_extent:
 | |
|  * This routine returns max. credits that needed to insert an extent
 | |
|  * to the extent tree.
 | |
|  * When pass the actual path, the caller should calculate credits
 | |
|  * under i_data_sem.
 | |
|  */
 | |
| int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
 | |
| 						struct ext4_ext_path *path)
 | |
| {
 | |
| 	if (path) {
 | |
| 		int depth = ext_depth(inode);
 | |
| 		int ret = 0;
 | |
| 
 | |
| 		/* probably there is space in leaf? */
 | |
| 		if (le16_to_cpu(path[depth].p_hdr->eh_entries)
 | |
| 				< le16_to_cpu(path[depth].p_hdr->eh_max)) {
 | |
| 
 | |
| 			/*
 | |
| 			 *  There are some space in the leaf tree, no
 | |
| 			 *  need to account for leaf block credit
 | |
| 			 *
 | |
| 			 *  bitmaps and block group descriptor blocks
 | |
| 			 *  and other metadata blocks still need to be
 | |
| 			 *  accounted.
 | |
| 			 */
 | |
| 			/* 1 bitmap, 1 block group descriptor */
 | |
| 			ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
 | |
| 			return ret;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return ext4_chunk_trans_blocks(inode, nrblocks);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * How many index/leaf blocks need to change/allocate to add @extents extents?
 | |
|  *
 | |
|  * If we add a single extent, then in the worse case, each tree level
 | |
|  * index/leaf need to be changed in case of the tree split.
 | |
|  *
 | |
|  * If more extents are inserted, they could cause the whole tree split more
 | |
|  * than once, but this is really rare.
 | |
|  */
 | |
| int ext4_ext_index_trans_blocks(struct inode *inode, int extents)
 | |
| {
 | |
| 	int index;
 | |
| 	int depth;
 | |
| 
 | |
| 	/* If we are converting the inline data, only one is needed here. */
 | |
| 	if (ext4_has_inline_data(inode))
 | |
| 		return 1;
 | |
| 
 | |
| 	depth = ext_depth(inode);
 | |
| 
 | |
| 	if (extents <= 1)
 | |
| 		index = depth * 2;
 | |
| 	else
 | |
| 		index = depth * 3;
 | |
| 
 | |
| 	return index;
 | |
| }
 | |
| 
 | |
| static inline int get_default_free_blocks_flags(struct inode *inode)
 | |
| {
 | |
| 	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
 | |
| 		return EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET;
 | |
| 	else if (ext4_should_journal_data(inode))
 | |
| 		return EXT4_FREE_BLOCKS_FORGET;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
 | |
| 			      struct ext4_extent *ex,
 | |
| 			      long long *partial_cluster,
 | |
| 			      ext4_lblk_t from, ext4_lblk_t to)
 | |
| {
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 | |
| 	unsigned short ee_len =  ext4_ext_get_actual_len(ex);
 | |
| 	ext4_fsblk_t pblk;
 | |
| 	int flags = get_default_free_blocks_flags(inode);
 | |
| 
 | |
| 	/*
 | |
| 	 * For bigalloc file systems, we never free a partial cluster
 | |
| 	 * at the beginning of the extent.  Instead, we make a note
 | |
| 	 * that we tried freeing the cluster, and check to see if we
 | |
| 	 * need to free it on a subsequent call to ext4_remove_blocks,
 | |
| 	 * or at the end of the ext4_truncate() operation.
 | |
| 	 */
 | |
| 	flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
 | |
| 
 | |
| 	trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster);
 | |
| 	/*
 | |
| 	 * If we have a partial cluster, and it's different from the
 | |
| 	 * cluster of the last block, we need to explicitly free the
 | |
| 	 * partial cluster here.
 | |
| 	 */
 | |
| 	pblk = ext4_ext_pblock(ex) + ee_len - 1;
 | |
| 	if ((*partial_cluster > 0) &&
 | |
| 	    (EXT4_B2C(sbi, pblk) != *partial_cluster)) {
 | |
| 		ext4_free_blocks(handle, inode, NULL,
 | |
| 				 EXT4_C2B(sbi, *partial_cluster),
 | |
| 				 sbi->s_cluster_ratio, flags);
 | |
| 		*partial_cluster = 0;
 | |
| 	}
 | |
| 
 | |
| #ifdef EXTENTS_STATS
 | |
| 	{
 | |
| 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 | |
| 		spin_lock(&sbi->s_ext_stats_lock);
 | |
| 		sbi->s_ext_blocks += ee_len;
 | |
| 		sbi->s_ext_extents++;
 | |
| 		if (ee_len < sbi->s_ext_min)
 | |
| 			sbi->s_ext_min = ee_len;
 | |
| 		if (ee_len > sbi->s_ext_max)
 | |
| 			sbi->s_ext_max = ee_len;
 | |
| 		if (ext_depth(inode) > sbi->s_depth_max)
 | |
| 			sbi->s_depth_max = ext_depth(inode);
 | |
| 		spin_unlock(&sbi->s_ext_stats_lock);
 | |
| 	}
 | |
| #endif
 | |
| 	if (from >= le32_to_cpu(ex->ee_block)
 | |
| 	    && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
 | |
| 		/* tail removal */
 | |
| 		ext4_lblk_t num;
 | |
| 		unsigned int unaligned;
 | |
| 
 | |
| 		num = le32_to_cpu(ex->ee_block) + ee_len - from;
 | |
| 		pblk = ext4_ext_pblock(ex) + ee_len - num;
 | |
| 		/*
 | |
| 		 * Usually we want to free partial cluster at the end of the
 | |
| 		 * extent, except for the situation when the cluster is still
 | |
| 		 * used by any other extent (partial_cluster is negative).
 | |
| 		 */
 | |
| 		if (*partial_cluster < 0 &&
 | |
| 		    -(*partial_cluster) == EXT4_B2C(sbi, pblk + num - 1))
 | |
| 			flags |= EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER;
 | |
| 
 | |
| 		ext_debug("free last %u blocks starting %llu partial %lld\n",
 | |
| 			  num, pblk, *partial_cluster);
 | |
| 		ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
 | |
| 		/*
 | |
| 		 * If the block range to be freed didn't start at the
 | |
| 		 * beginning of a cluster, and we removed the entire
 | |
| 		 * extent and the cluster is not used by any other extent,
 | |
| 		 * save the partial cluster here, since we might need to
 | |
| 		 * delete if we determine that the truncate operation has
 | |
| 		 * removed all of the blocks in the cluster.
 | |
| 		 *
 | |
| 		 * On the other hand, if we did not manage to free the whole
 | |
| 		 * extent, we have to mark the cluster as used (store negative
 | |
| 		 * cluster number in partial_cluster).
 | |
| 		 */
 | |
| 		unaligned = pblk & (sbi->s_cluster_ratio - 1);
 | |
| 		if (unaligned && (ee_len == num) &&
 | |
| 		    (*partial_cluster != -((long long)EXT4_B2C(sbi, pblk))))
 | |
| 			*partial_cluster = EXT4_B2C(sbi, pblk);
 | |
| 		else if (unaligned)
 | |
| 			*partial_cluster = -((long long)EXT4_B2C(sbi, pblk));
 | |
| 		else if (*partial_cluster > 0)
 | |
| 			*partial_cluster = 0;
 | |
| 	} else
 | |
| 		ext4_error(sbi->s_sb, "strange request: removal(2) "
 | |
| 			   "%u-%u from %u:%u\n",
 | |
| 			   from, to, le32_to_cpu(ex->ee_block), ee_len);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * ext4_ext_rm_leaf() Removes the extents associated with the
 | |
|  * blocks appearing between "start" and "end", and splits the extents
 | |
|  * if "start" and "end" appear in the same extent
 | |
|  *
 | |
|  * @handle: The journal handle
 | |
|  * @inode:  The files inode
 | |
|  * @path:   The path to the leaf
 | |
|  * @partial_cluster: The cluster which we'll have to free if all extents
 | |
|  *                   has been released from it. It gets negative in case
 | |
|  *                   that the cluster is still used.
 | |
|  * @start:  The first block to remove
 | |
|  * @end:   The last block to remove
 | |
|  */
 | |
| static int
 | |
| ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
 | |
| 		 struct ext4_ext_path *path,
 | |
| 		 long long *partial_cluster,
 | |
| 		 ext4_lblk_t start, ext4_lblk_t end)
 | |
| {
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 | |
| 	int err = 0, correct_index = 0;
 | |
| 	int depth = ext_depth(inode), credits;
 | |
| 	struct ext4_extent_header *eh;
 | |
| 	ext4_lblk_t a, b;
 | |
| 	unsigned num;
 | |
| 	ext4_lblk_t ex_ee_block;
 | |
| 	unsigned short ex_ee_len;
 | |
| 	unsigned uninitialized = 0;
 | |
| 	struct ext4_extent *ex;
 | |
| 	ext4_fsblk_t pblk;
 | |
| 
 | |
| 	/* the header must be checked already in ext4_ext_remove_space() */
 | |
| 	ext_debug("truncate since %u in leaf to %u\n", start, end);
 | |
| 	if (!path[depth].p_hdr)
 | |
| 		path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
 | |
| 	eh = path[depth].p_hdr;
 | |
| 	if (unlikely(path[depth].p_hdr == NULL)) {
 | |
| 		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 	/* find where to start removing */
 | |
| 	ex = path[depth].p_ext;
 | |
| 	if (!ex)
 | |
| 		ex = EXT_LAST_EXTENT(eh);
 | |
| 
 | |
| 	ex_ee_block = le32_to_cpu(ex->ee_block);
 | |
| 	ex_ee_len = ext4_ext_get_actual_len(ex);
 | |
| 
 | |
| 	trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster);
 | |
| 
 | |
| 	while (ex >= EXT_FIRST_EXTENT(eh) &&
 | |
| 			ex_ee_block + ex_ee_len > start) {
 | |
| 
 | |
| 		if (ext4_ext_is_uninitialized(ex))
 | |
| 			uninitialized = 1;
 | |
| 		else
 | |
| 			uninitialized = 0;
 | |
| 
 | |
| 		ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
 | |
| 			 uninitialized, ex_ee_len);
 | |
| 		path[depth].p_ext = ex;
 | |
| 
 | |
| 		a = ex_ee_block > start ? ex_ee_block : start;
 | |
| 		b = ex_ee_block+ex_ee_len - 1 < end ?
 | |
| 			ex_ee_block+ex_ee_len - 1 : end;
 | |
| 
 | |
| 		ext_debug("  border %u:%u\n", a, b);
 | |
| 
 | |
| 		/* If this extent is beyond the end of the hole, skip it */
 | |
| 		if (end < ex_ee_block) {
 | |
| 			/*
 | |
| 			 * We're going to skip this extent and move to another,
 | |
| 			 * so if this extent is not cluster aligned we have
 | |
| 			 * to mark the current cluster as used to avoid
 | |
| 			 * accidentally freeing it later on
 | |
| 			 */
 | |
| 			pblk = ext4_ext_pblock(ex);
 | |
| 			if (pblk & (sbi->s_cluster_ratio - 1))
 | |
| 				*partial_cluster =
 | |
| 					-((long long)EXT4_B2C(sbi, pblk));
 | |
| 			ex--;
 | |
| 			ex_ee_block = le32_to_cpu(ex->ee_block);
 | |
| 			ex_ee_len = ext4_ext_get_actual_len(ex);
 | |
| 			continue;
 | |
| 		} else if (b != ex_ee_block + ex_ee_len - 1) {
 | |
| 			EXT4_ERROR_INODE(inode,
 | |
| 					 "can not handle truncate %u:%u "
 | |
| 					 "on extent %u:%u",
 | |
| 					 start, end, ex_ee_block,
 | |
| 					 ex_ee_block + ex_ee_len - 1);
 | |
| 			err = -EIO;
 | |
| 			goto out;
 | |
| 		} else if (a != ex_ee_block) {
 | |
| 			/* remove tail of the extent */
 | |
| 			num = a - ex_ee_block;
 | |
| 		} else {
 | |
| 			/* remove whole extent: excellent! */
 | |
| 			num = 0;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * 3 for leaf, sb, and inode plus 2 (bmap and group
 | |
| 		 * descriptor) for each block group; assume two block
 | |
| 		 * groups plus ex_ee_len/blocks_per_block_group for
 | |
| 		 * the worst case
 | |
| 		 */
 | |
| 		credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
 | |
| 		if (ex == EXT_FIRST_EXTENT(eh)) {
 | |
| 			correct_index = 1;
 | |
| 			credits += (ext_depth(inode)) + 1;
 | |
| 		}
 | |
| 		credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
 | |
| 
 | |
| 		err = ext4_ext_truncate_extend_restart(handle, inode, credits);
 | |
| 		if (err)
 | |
| 			goto out;
 | |
| 
 | |
| 		err = ext4_ext_get_access(handle, inode, path + depth);
 | |
| 		if (err)
 | |
| 			goto out;
 | |
| 
 | |
| 		err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
 | |
| 					 a, b);
 | |
| 		if (err)
 | |
| 			goto out;
 | |
| 
 | |
| 		if (num == 0)
 | |
| 			/* this extent is removed; mark slot entirely unused */
 | |
| 			ext4_ext_store_pblock(ex, 0);
 | |
| 
 | |
| 		ex->ee_len = cpu_to_le16(num);
 | |
| 		/*
 | |
| 		 * Do not mark uninitialized if all the blocks in the
 | |
| 		 * extent have been removed.
 | |
| 		 */
 | |
| 		if (uninitialized && num)
 | |
| 			ext4_ext_mark_uninitialized(ex);
 | |
| 		/*
 | |
| 		 * If the extent was completely released,
 | |
| 		 * we need to remove it from the leaf
 | |
| 		 */
 | |
| 		if (num == 0) {
 | |
| 			if (end != EXT_MAX_BLOCKS - 1) {
 | |
| 				/*
 | |
| 				 * For hole punching, we need to scoot all the
 | |
| 				 * extents up when an extent is removed so that
 | |
| 				 * we dont have blank extents in the middle
 | |
| 				 */
 | |
| 				memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
 | |
| 					sizeof(struct ext4_extent));
 | |
| 
 | |
| 				/* Now get rid of the one at the end */
 | |
| 				memset(EXT_LAST_EXTENT(eh), 0,
 | |
| 					sizeof(struct ext4_extent));
 | |
| 			}
 | |
| 			le16_add_cpu(&eh->eh_entries, -1);
 | |
| 		} else if (*partial_cluster > 0)
 | |
| 			*partial_cluster = 0;
 | |
| 
 | |
| 		err = ext4_ext_dirty(handle, inode, path + depth);
 | |
| 		if (err)
 | |
| 			goto out;
 | |
| 
 | |
| 		ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num,
 | |
| 				ext4_ext_pblock(ex));
 | |
| 		ex--;
 | |
| 		ex_ee_block = le32_to_cpu(ex->ee_block);
 | |
| 		ex_ee_len = ext4_ext_get_actual_len(ex);
 | |
| 	}
 | |
| 
 | |
| 	if (correct_index && eh->eh_entries)
 | |
| 		err = ext4_ext_correct_indexes(handle, inode, path);
 | |
| 
 | |
| 	/*
 | |
| 	 * Free the partial cluster only if the current extent does not
 | |
| 	 * reference it. Otherwise we might free used cluster.
 | |
| 	 */
 | |
| 	if (*partial_cluster > 0 &&
 | |
| 	    (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) !=
 | |
| 	     *partial_cluster)) {
 | |
| 		int flags = get_default_free_blocks_flags(inode);
 | |
| 
 | |
| 		ext4_free_blocks(handle, inode, NULL,
 | |
| 				 EXT4_C2B(sbi, *partial_cluster),
 | |
| 				 sbi->s_cluster_ratio, flags);
 | |
| 		*partial_cluster = 0;
 | |
| 	}
 | |
| 
 | |
| 	/* if this leaf is free, then we should
 | |
| 	 * remove it from index block above */
 | |
| 	if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
 | |
| 		err = ext4_ext_rm_idx(handle, inode, path, depth);
 | |
| 
 | |
| out:
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ext4_ext_more_to_rm:
 | |
|  * returns 1 if current index has to be freed (even partial)
 | |
|  */
 | |
| static int
 | |
| ext4_ext_more_to_rm(struct ext4_ext_path *path)
 | |
| {
 | |
| 	BUG_ON(path->p_idx == NULL);
 | |
| 
 | |
| 	if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * if truncate on deeper level happened, it wasn't partial,
 | |
| 	 * so we have to consider current index for truncation
 | |
| 	 */
 | |
| 	if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
 | |
| 		return 0;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start,
 | |
| 			  ext4_lblk_t end)
 | |
| {
 | |
| 	struct super_block *sb = inode->i_sb;
 | |
| 	int depth = ext_depth(inode);
 | |
| 	struct ext4_ext_path *path = NULL;
 | |
| 	long long partial_cluster = 0;
 | |
| 	handle_t *handle;
 | |
| 	int i = 0, err = 0;
 | |
| 
 | |
| 	ext_debug("truncate since %u to %u\n", start, end);
 | |
| 
 | |
| 	/* probably first extent we're gonna free will be last in block */
 | |
| 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, depth + 1);
 | |
| 	if (IS_ERR(handle))
 | |
| 		return PTR_ERR(handle);
 | |
| 
 | |
| again:
 | |
| 	trace_ext4_ext_remove_space(inode, start, end, depth);
 | |
| 
 | |
| 	/*
 | |
| 	 * Check if we are removing extents inside the extent tree. If that
 | |
| 	 * is the case, we are going to punch a hole inside the extent tree
 | |
| 	 * so we have to check whether we need to split the extent covering
 | |
| 	 * the last block to remove so we can easily remove the part of it
 | |
| 	 * in ext4_ext_rm_leaf().
 | |
| 	 */
 | |
| 	if (end < EXT_MAX_BLOCKS - 1) {
 | |
| 		struct ext4_extent *ex;
 | |
| 		ext4_lblk_t ee_block;
 | |
| 
 | |
| 		/* find extent for this block */
 | |
| 		path = ext4_ext_find_extent(inode, end, NULL, EXT4_EX_NOCACHE);
 | |
| 		if (IS_ERR(path)) {
 | |
| 			ext4_journal_stop(handle);
 | |
| 			return PTR_ERR(path);
 | |
| 		}
 | |
| 		depth = ext_depth(inode);
 | |
| 		/* Leaf not may not exist only if inode has no blocks at all */
 | |
| 		ex = path[depth].p_ext;
 | |
| 		if (!ex) {
 | |
| 			if (depth) {
 | |
| 				EXT4_ERROR_INODE(inode,
 | |
| 						 "path[%d].p_hdr == NULL",
 | |
| 						 depth);
 | |
| 				err = -EIO;
 | |
| 			}
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		ee_block = le32_to_cpu(ex->ee_block);
 | |
| 
 | |
| 		/*
 | |
| 		 * See if the last block is inside the extent, if so split
 | |
| 		 * the extent at 'end' block so we can easily remove the
 | |
| 		 * tail of the first part of the split extent in
 | |
| 		 * ext4_ext_rm_leaf().
 | |
| 		 */
 | |
| 		if (end >= ee_block &&
 | |
| 		    end < ee_block + ext4_ext_get_actual_len(ex) - 1) {
 | |
| 			int split_flag = 0;
 | |
| 
 | |
| 			if (ext4_ext_is_uninitialized(ex))
 | |
| 				split_flag = EXT4_EXT_MARK_UNINIT1 |
 | |
| 					     EXT4_EXT_MARK_UNINIT2;
 | |
| 
 | |
| 			/*
 | |
| 			 * Split the extent in two so that 'end' is the last
 | |
| 			 * block in the first new extent. Also we should not
 | |
| 			 * fail removing space due to ENOSPC so try to use
 | |
| 			 * reserved block if that happens.
 | |
| 			 */
 | |
| 			err = ext4_split_extent_at(handle, inode, path,
 | |
| 					end + 1, split_flag,
 | |
| 					EXT4_EX_NOCACHE |
 | |
| 					EXT4_GET_BLOCKS_PRE_IO |
 | |
| 					EXT4_GET_BLOCKS_METADATA_NOFAIL);
 | |
| 
 | |
| 			if (err < 0)
 | |
| 				goto out;
 | |
| 		}
 | |
| 	}
 | |
| 	/*
 | |
| 	 * We start scanning from right side, freeing all the blocks
 | |
| 	 * after i_size and walking into the tree depth-wise.
 | |
| 	 */
 | |
| 	depth = ext_depth(inode);
 | |
| 	if (path) {
 | |
| 		int k = i = depth;
 | |
| 		while (--k > 0)
 | |
| 			path[k].p_block =
 | |
| 				le16_to_cpu(path[k].p_hdr->eh_entries)+1;
 | |
| 	} else {
 | |
| 		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
 | |
| 			       GFP_NOFS);
 | |
| 		if (path == NULL) {
 | |
| 			ext4_journal_stop(handle);
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 		path[0].p_depth = depth;
 | |
| 		path[0].p_hdr = ext_inode_hdr(inode);
 | |
| 		i = 0;
 | |
| 
 | |
| 		if (ext4_ext_check(inode, path[0].p_hdr, depth, 0)) {
 | |
| 			err = -EIO;
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 	err = 0;
 | |
| 
 | |
| 	while (i >= 0 && err == 0) {
 | |
| 		if (i == depth) {
 | |
| 			/* this is leaf block */
 | |
| 			err = ext4_ext_rm_leaf(handle, inode, path,
 | |
| 					       &partial_cluster, start,
 | |
| 					       end);
 | |
| 			/* root level has p_bh == NULL, brelse() eats this */
 | |
| 			brelse(path[i].p_bh);
 | |
| 			path[i].p_bh = NULL;
 | |
| 			i--;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* this is index block */
 | |
| 		if (!path[i].p_hdr) {
 | |
| 			ext_debug("initialize header\n");
 | |
| 			path[i].p_hdr = ext_block_hdr(path[i].p_bh);
 | |
| 		}
 | |
| 
 | |
| 		if (!path[i].p_idx) {
 | |
| 			/* this level hasn't been touched yet */
 | |
| 			path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
 | |
| 			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
 | |
| 			ext_debug("init index ptr: hdr 0x%p, num %d\n",
 | |
| 				  path[i].p_hdr,
 | |
| 				  le16_to_cpu(path[i].p_hdr->eh_entries));
 | |
| 		} else {
 | |
| 			/* we were already here, see at next index */
 | |
| 			path[i].p_idx--;
 | |
| 		}
 | |
| 
 | |
| 		ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
 | |
| 				i, EXT_FIRST_INDEX(path[i].p_hdr),
 | |
| 				path[i].p_idx);
 | |
| 		if (ext4_ext_more_to_rm(path + i)) {
 | |
| 			struct buffer_head *bh;
 | |
| 			/* go to the next level */
 | |
| 			ext_debug("move to level %d (block %llu)\n",
 | |
| 				  i + 1, ext4_idx_pblock(path[i].p_idx));
 | |
| 			memset(path + i + 1, 0, sizeof(*path));
 | |
| 			bh = read_extent_tree_block(inode,
 | |
| 				ext4_idx_pblock(path[i].p_idx), depth - i - 1,
 | |
| 				EXT4_EX_NOCACHE);
 | |
| 			if (IS_ERR(bh)) {
 | |
| 				/* should we reset i_size? */
 | |
| 				err = PTR_ERR(bh);
 | |
| 				break;
 | |
| 			}
 | |
| 			/* Yield here to deal with large extent trees.
 | |
| 			 * Should be a no-op if we did IO above. */
 | |
| 			cond_resched();
 | |
| 			if (WARN_ON(i + 1 > depth)) {
 | |
| 				err = -EIO;
 | |
| 				break;
 | |
| 			}
 | |
| 			path[i + 1].p_bh = bh;
 | |
| 
 | |
| 			/* save actual number of indexes since this
 | |
| 			 * number is changed at the next iteration */
 | |
| 			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
 | |
| 			i++;
 | |
| 		} else {
 | |
| 			/* we finished processing this index, go up */
 | |
| 			if (path[i].p_hdr->eh_entries == 0 && i > 0) {
 | |
| 				/* index is empty, remove it;
 | |
| 				 * handle must be already prepared by the
 | |
| 				 * truncatei_leaf() */
 | |
| 				err = ext4_ext_rm_idx(handle, inode, path, i);
 | |
| 			}
 | |
| 			/* root level has p_bh == NULL, brelse() eats this */
 | |
| 			brelse(path[i].p_bh);
 | |
| 			path[i].p_bh = NULL;
 | |
| 			i--;
 | |
| 			ext_debug("return to level %d\n", i);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	trace_ext4_ext_remove_space_done(inode, start, end, depth,
 | |
| 			partial_cluster, path->p_hdr->eh_entries);
 | |
| 
 | |
| 	/* If we still have something in the partial cluster and we have removed
 | |
| 	 * even the first extent, then we should free the blocks in the partial
 | |
| 	 * cluster as well. */
 | |
| 	if (partial_cluster > 0 && path->p_hdr->eh_entries == 0) {
 | |
| 		int flags = get_default_free_blocks_flags(inode);
 | |
| 
 | |
| 		ext4_free_blocks(handle, inode, NULL,
 | |
| 				 EXT4_C2B(EXT4_SB(sb), partial_cluster),
 | |
| 				 EXT4_SB(sb)->s_cluster_ratio, flags);
 | |
| 		partial_cluster = 0;
 | |
| 	}
 | |
| 
 | |
| 	/* TODO: flexible tree reduction should be here */
 | |
| 	if (path->p_hdr->eh_entries == 0) {
 | |
| 		/*
 | |
| 		 * truncate to zero freed all the tree,
 | |
| 		 * so we need to correct eh_depth
 | |
| 		 */
 | |
| 		err = ext4_ext_get_access(handle, inode, path);
 | |
| 		if (err == 0) {
 | |
| 			ext_inode_hdr(inode)->eh_depth = 0;
 | |
| 			ext_inode_hdr(inode)->eh_max =
 | |
| 				cpu_to_le16(ext4_ext_space_root(inode, 0));
 | |
| 			err = ext4_ext_dirty(handle, inode, path);
 | |
| 		}
 | |
| 	}
 | |
| out:
 | |
| 	ext4_ext_drop_refs(path);
 | |
| 	kfree(path);
 | |
| 	if (err == -EAGAIN) {
 | |
| 		path = NULL;
 | |
| 		goto again;
 | |
| 	}
 | |
| 	ext4_journal_stop(handle);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * called at mount time
 | |
|  */
 | |
| void ext4_ext_init(struct super_block *sb)
 | |
| {
 | |
| 	/*
 | |
| 	 * possible initialization would be here
 | |
| 	 */
 | |
| 
 | |
| 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
 | |
| #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
 | |
| 		printk(KERN_INFO "EXT4-fs: file extents enabled"
 | |
| #ifdef AGGRESSIVE_TEST
 | |
| 		       ", aggressive tests"
 | |
| #endif
 | |
| #ifdef CHECK_BINSEARCH
 | |
| 		       ", check binsearch"
 | |
| #endif
 | |
| #ifdef EXTENTS_STATS
 | |
| 		       ", stats"
 | |
| #endif
 | |
| 		       "\n");
 | |
| #endif
 | |
| #ifdef EXTENTS_STATS
 | |
| 		spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
 | |
| 		EXT4_SB(sb)->s_ext_min = 1 << 30;
 | |
| 		EXT4_SB(sb)->s_ext_max = 0;
 | |
| #endif
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * called at umount time
 | |
|  */
 | |
| void ext4_ext_release(struct super_block *sb)
 | |
| {
 | |
| 	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
 | |
| 		return;
 | |
| 
 | |
| #ifdef EXTENTS_STATS
 | |
| 	if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
 | |
| 		struct ext4_sb_info *sbi = EXT4_SB(sb);
 | |
| 		printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
 | |
| 			sbi->s_ext_blocks, sbi->s_ext_extents,
 | |
| 			sbi->s_ext_blocks / sbi->s_ext_extents);
 | |
| 		printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
 | |
| 			sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static int ext4_zeroout_es(struct inode *inode, struct ext4_extent *ex)
 | |
| {
 | |
| 	ext4_lblk_t  ee_block;
 | |
| 	ext4_fsblk_t ee_pblock;
 | |
| 	unsigned int ee_len;
 | |
| 
 | |
| 	ee_block  = le32_to_cpu(ex->ee_block);
 | |
| 	ee_len    = ext4_ext_get_actual_len(ex);
 | |
| 	ee_pblock = ext4_ext_pblock(ex);
 | |
| 
 | |
| 	if (ee_len == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	return ext4_es_insert_extent(inode, ee_block, ee_len, ee_pblock,
 | |
| 				     EXTENT_STATUS_WRITTEN);
 | |
| }
 | |
| 
 | |
| /* FIXME!! we need to try to merge to left or right after zero-out  */
 | |
| static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
 | |
| {
 | |
| 	ext4_fsblk_t ee_pblock;
 | |
| 	unsigned int ee_len;
 | |
| 	int ret;
 | |
| 
 | |
| 	ee_len    = ext4_ext_get_actual_len(ex);
 | |
| 	ee_pblock = ext4_ext_pblock(ex);
 | |
| 
 | |
| 	ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
 | |
| 	if (ret > 0)
 | |
| 		ret = 0;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ext4_split_extent_at() splits an extent at given block.
 | |
|  *
 | |
|  * @handle: the journal handle
 | |
|  * @inode: the file inode
 | |
|  * @path: the path to the extent
 | |
|  * @split: the logical block where the extent is splitted.
 | |
|  * @split_flags: indicates if the extent could be zeroout if split fails, and
 | |
|  *		 the states(init or uninit) of new extents.
 | |
|  * @flags: flags used to insert new extent to extent tree.
 | |
|  *
 | |
|  *
 | |
|  * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
 | |
|  * of which are deterimined by split_flag.
 | |
|  *
 | |
|  * There are two cases:
 | |
|  *  a> the extent are splitted into two extent.
 | |
|  *  b> split is not needed, and just mark the extent.
 | |
|  *
 | |
|  * return 0 on success.
 | |
|  */
 | |
| static int ext4_split_extent_at(handle_t *handle,
 | |
| 			     struct inode *inode,
 | |
| 			     struct ext4_ext_path *path,
 | |
| 			     ext4_lblk_t split,
 | |
| 			     int split_flag,
 | |
| 			     int flags)
 | |
| {
 | |
| 	ext4_fsblk_t newblock;
 | |
| 	ext4_lblk_t ee_block;
 | |
| 	struct ext4_extent *ex, newex, orig_ex, zero_ex;
 | |
| 	struct ext4_extent *ex2 = NULL;
 | |
| 	unsigned int ee_len, depth;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) ==
 | |
| 	       (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2));
 | |
| 
 | |
| 	ext_debug("ext4_split_extents_at: inode %lu, logical"
 | |
| 		"block %llu\n", inode->i_ino, (unsigned long long)split);
 | |
| 
 | |
| 	ext4_ext_show_leaf(inode, path);
 | |
| 
 | |
| 	depth = ext_depth(inode);
 | |
| 	ex = path[depth].p_ext;
 | |
| 	ee_block = le32_to_cpu(ex->ee_block);
 | |
| 	ee_len = ext4_ext_get_actual_len(ex);
 | |
| 	newblock = split - ee_block + ext4_ext_pblock(ex);
 | |
| 
 | |
| 	BUG_ON(split < ee_block || split >= (ee_block + ee_len));
 | |
| 	BUG_ON(!ext4_ext_is_uninitialized(ex) &&
 | |
| 	       split_flag & (EXT4_EXT_MAY_ZEROOUT |
 | |
| 			     EXT4_EXT_MARK_UNINIT1 |
 | |
| 			     EXT4_EXT_MARK_UNINIT2));
 | |
| 
 | |
| 	err = ext4_ext_get_access(handle, inode, path + depth);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (split == ee_block) {
 | |
| 		/*
 | |
| 		 * case b: block @split is the block that the extent begins with
 | |
| 		 * then we just change the state of the extent, and splitting
 | |
| 		 * is not needed.
 | |
| 		 */
 | |
| 		if (split_flag & EXT4_EXT_MARK_UNINIT2)
 | |
| 			ext4_ext_mark_uninitialized(ex);
 | |
| 		else
 | |
| 			ext4_ext_mark_initialized(ex);
 | |
| 
 | |
| 		if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
 | |
| 			ext4_ext_try_to_merge(handle, inode, path, ex);
 | |
| 
 | |
| 		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* case a */
 | |
| 	memcpy(&orig_ex, ex, sizeof(orig_ex));
 | |
| 	ex->ee_len = cpu_to_le16(split - ee_block);
 | |
| 	if (split_flag & EXT4_EXT_MARK_UNINIT1)
 | |
| 		ext4_ext_mark_uninitialized(ex);
 | |
| 
 | |
| 	/*
 | |
| 	 * path may lead to new leaf, not to original leaf any more
 | |
| 	 * after ext4_ext_insert_extent() returns,
 | |
| 	 */
 | |
| 	err = ext4_ext_dirty(handle, inode, path + depth);
 | |
| 	if (err)
 | |
| 		goto fix_extent_len;
 | |
| 
 | |
| 	ex2 = &newex;
 | |
| 	ex2->ee_block = cpu_to_le32(split);
 | |
| 	ex2->ee_len   = cpu_to_le16(ee_len - (split - ee_block));
 | |
| 	ext4_ext_store_pblock(ex2, newblock);
 | |
| 	if (split_flag & EXT4_EXT_MARK_UNINIT2)
 | |
| 		ext4_ext_mark_uninitialized(ex2);
 | |
| 
 | |
| 	err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
 | |
| 	if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
 | |
| 		if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) {
 | |
| 			if (split_flag & EXT4_EXT_DATA_VALID1) {
 | |
| 				err = ext4_ext_zeroout(inode, ex2);
 | |
| 				zero_ex.ee_block = ex2->ee_block;
 | |
| 				zero_ex.ee_len = cpu_to_le16(
 | |
| 						ext4_ext_get_actual_len(ex2));
 | |
| 				ext4_ext_store_pblock(&zero_ex,
 | |
| 						      ext4_ext_pblock(ex2));
 | |
| 			} else {
 | |
| 				err = ext4_ext_zeroout(inode, ex);
 | |
| 				zero_ex.ee_block = ex->ee_block;
 | |
| 				zero_ex.ee_len = cpu_to_le16(
 | |
| 						ext4_ext_get_actual_len(ex));
 | |
| 				ext4_ext_store_pblock(&zero_ex,
 | |
| 						      ext4_ext_pblock(ex));
 | |
| 			}
 | |
| 		} else {
 | |
| 			err = ext4_ext_zeroout(inode, &orig_ex);
 | |
| 			zero_ex.ee_block = orig_ex.ee_block;
 | |
| 			zero_ex.ee_len = cpu_to_le16(
 | |
| 						ext4_ext_get_actual_len(&orig_ex));
 | |
| 			ext4_ext_store_pblock(&zero_ex,
 | |
| 					      ext4_ext_pblock(&orig_ex));
 | |
| 		}
 | |
| 
 | |
| 		if (err)
 | |
| 			goto fix_extent_len;
 | |
| 		/* update the extent length and mark as initialized */
 | |
| 		ex->ee_len = cpu_to_le16(ee_len);
 | |
| 		ext4_ext_try_to_merge(handle, inode, path, ex);
 | |
| 		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
 | |
| 		if (err)
 | |
| 			goto fix_extent_len;
 | |
| 
 | |
| 		/* update extent status tree */
 | |
| 		err = ext4_zeroout_es(inode, &zero_ex);
 | |
| 
 | |
| 		goto out;
 | |
| 	} else if (err)
 | |
| 		goto fix_extent_len;
 | |
| 
 | |
| out:
 | |
| 	ext4_ext_show_leaf(inode, path);
 | |
| 	return err;
 | |
| 
 | |
| fix_extent_len:
 | |
| 	ex->ee_len = orig_ex.ee_len;
 | |
| 	ext4_ext_dirty(handle, inode, path + depth);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ext4_split_extents() splits an extent and mark extent which is covered
 | |
|  * by @map as split_flags indicates
 | |
|  *
 | |
|  * It may result in splitting the extent into multiple extents (up to three)
 | |
|  * There are three possibilities:
 | |
|  *   a> There is no split required
 | |
|  *   b> Splits in two extents: Split is happening at either end of the extent
 | |
|  *   c> Splits in three extents: Somone is splitting in middle of the extent
 | |
|  *
 | |
|  */
 | |
| static int ext4_split_extent(handle_t *handle,
 | |
| 			      struct inode *inode,
 | |
| 			      struct ext4_ext_path *path,
 | |
| 			      struct ext4_map_blocks *map,
 | |
| 			      int split_flag,
 | |
| 			      int flags)
 | |
| {
 | |
| 	ext4_lblk_t ee_block;
 | |
| 	struct ext4_extent *ex;
 | |
| 	unsigned int ee_len, depth;
 | |
| 	int err = 0;
 | |
| 	int uninitialized;
 | |
| 	int split_flag1, flags1;
 | |
| 	int allocated = map->m_len;
 | |
| 
 | |
| 	depth = ext_depth(inode);
 | |
| 	ex = path[depth].p_ext;
 | |
| 	ee_block = le32_to_cpu(ex->ee_block);
 | |
| 	ee_len = ext4_ext_get_actual_len(ex);
 | |
| 	uninitialized = ext4_ext_is_uninitialized(ex);
 | |
| 
 | |
| 	if (map->m_lblk + map->m_len < ee_block + ee_len) {
 | |
| 		split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT;
 | |
| 		flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
 | |
| 		if (uninitialized)
 | |
| 			split_flag1 |= EXT4_EXT_MARK_UNINIT1 |
 | |
| 				       EXT4_EXT_MARK_UNINIT2;
 | |
| 		if (split_flag & EXT4_EXT_DATA_VALID2)
 | |
| 			split_flag1 |= EXT4_EXT_DATA_VALID1;
 | |
| 		err = ext4_split_extent_at(handle, inode, path,
 | |
| 				map->m_lblk + map->m_len, split_flag1, flags1);
 | |
| 		if (err)
 | |
| 			goto out;
 | |
| 	} else {
 | |
| 		allocated = ee_len - (map->m_lblk - ee_block);
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Update path is required because previous ext4_split_extent_at() may
 | |
| 	 * result in split of original leaf or extent zeroout.
 | |
| 	 */
 | |
| 	ext4_ext_drop_refs(path);
 | |
| 	path = ext4_ext_find_extent(inode, map->m_lblk, path, 0);
 | |
| 	if (IS_ERR(path))
 | |
| 		return PTR_ERR(path);
 | |
| 	depth = ext_depth(inode);
 | |
| 	ex = path[depth].p_ext;
 | |
| 	uninitialized = ext4_ext_is_uninitialized(ex);
 | |
| 	split_flag1 = 0;
 | |
| 
 | |
| 	if (map->m_lblk >= ee_block) {
 | |
| 		split_flag1 = split_flag & EXT4_EXT_DATA_VALID2;
 | |
| 		if (uninitialized) {
 | |
| 			split_flag1 |= EXT4_EXT_MARK_UNINIT1;
 | |
| 			split_flag1 |= split_flag & (EXT4_EXT_MAY_ZEROOUT |
 | |
| 						     EXT4_EXT_MARK_UNINIT2);
 | |
| 		}
 | |
| 		err = ext4_split_extent_at(handle, inode, path,
 | |
| 				map->m_lblk, split_flag1, flags);
 | |
| 		if (err)
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	ext4_ext_show_leaf(inode, path);
 | |
| out:
 | |
| 	return err ? err : allocated;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function is called by ext4_ext_map_blocks() if someone tries to write
 | |
|  * to an uninitialized extent. It may result in splitting the uninitialized
 | |
|  * extent into multiple extents (up to three - one initialized and two
 | |
|  * uninitialized).
 | |
|  * There are three possibilities:
 | |
|  *   a> There is no split required: Entire extent should be initialized
 | |
|  *   b> Splits in two extents: Write is happening at either end of the extent
 | |
|  *   c> Splits in three extents: Somone is writing in middle of the extent
 | |
|  *
 | |
|  * Pre-conditions:
 | |
|  *  - The extent pointed to by 'path' is uninitialized.
 | |
|  *  - The extent pointed to by 'path' contains a superset
 | |
|  *    of the logical span [map->m_lblk, map->m_lblk + map->m_len).
 | |
|  *
 | |
|  * Post-conditions on success:
 | |
|  *  - the returned value is the number of blocks beyond map->l_lblk
 | |
|  *    that are allocated and initialized.
 | |
|  *    It is guaranteed to be >= map->m_len.
 | |
|  */
 | |
| static int ext4_ext_convert_to_initialized(handle_t *handle,
 | |
| 					   struct inode *inode,
 | |
| 					   struct ext4_map_blocks *map,
 | |
| 					   struct ext4_ext_path *path,
 | |
| 					   int flags)
 | |
| {
 | |
| 	struct ext4_sb_info *sbi;
 | |
| 	struct ext4_extent_header *eh;
 | |
| 	struct ext4_map_blocks split_map;
 | |
| 	struct ext4_extent zero_ex;
 | |
| 	struct ext4_extent *ex, *abut_ex;
 | |
| 	ext4_lblk_t ee_block, eof_block;
 | |
| 	unsigned int ee_len, depth, map_len = map->m_len;
 | |
| 	int allocated = 0, max_zeroout = 0;
 | |
| 	int err = 0;
 | |
| 	int split_flag = 0;
 | |
| 
 | |
| 	ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
 | |
| 		"block %llu, max_blocks %u\n", inode->i_ino,
 | |
| 		(unsigned long long)map->m_lblk, map_len);
 | |
| 
 | |
| 	sbi = EXT4_SB(inode->i_sb);
 | |
| 	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
 | |
| 		inode->i_sb->s_blocksize_bits;
 | |
| 	if (eof_block < map->m_lblk + map_len)
 | |
| 		eof_block = map->m_lblk + map_len;
 | |
| 
 | |
| 	depth = ext_depth(inode);
 | |
| 	eh = path[depth].p_hdr;
 | |
| 	ex = path[depth].p_ext;
 | |
| 	ee_block = le32_to_cpu(ex->ee_block);
 | |
| 	ee_len = ext4_ext_get_actual_len(ex);
 | |
| 	zero_ex.ee_len = 0;
 | |
| 
 | |
| 	trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
 | |
| 
 | |
| 	/* Pre-conditions */
 | |
| 	BUG_ON(!ext4_ext_is_uninitialized(ex));
 | |
| 	BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
 | |
| 
 | |
| 	/*
 | |
| 	 * Attempt to transfer newly initialized blocks from the currently
 | |
| 	 * uninitialized extent to its neighbor. This is much cheaper
 | |
| 	 * than an insertion followed by a merge as those involve costly
 | |
| 	 * memmove() calls. Transferring to the left is the common case in
 | |
| 	 * steady state for workloads doing fallocate(FALLOC_FL_KEEP_SIZE)
 | |
| 	 * followed by append writes.
 | |
| 	 *
 | |
| 	 * Limitations of the current logic:
 | |
| 	 *  - L1: we do not deal with writes covering the whole extent.
 | |
| 	 *    This would require removing the extent if the transfer
 | |
| 	 *    is possible.
 | |
| 	 *  - L2: we only attempt to merge with an extent stored in the
 | |
| 	 *    same extent tree node.
 | |
| 	 */
 | |
| 	if ((map->m_lblk == ee_block) &&
 | |
| 		/* See if we can merge left */
 | |
| 		(map_len < ee_len) &&		/*L1*/
 | |
| 		(ex > EXT_FIRST_EXTENT(eh))) {	/*L2*/
 | |
| 		ext4_lblk_t prev_lblk;
 | |
| 		ext4_fsblk_t prev_pblk, ee_pblk;
 | |
| 		unsigned int prev_len;
 | |
| 
 | |
| 		abut_ex = ex - 1;
 | |
| 		prev_lblk = le32_to_cpu(abut_ex->ee_block);
 | |
| 		prev_len = ext4_ext_get_actual_len(abut_ex);
 | |
| 		prev_pblk = ext4_ext_pblock(abut_ex);
 | |
| 		ee_pblk = ext4_ext_pblock(ex);
 | |
| 
 | |
| 		/*
 | |
| 		 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
 | |
| 		 * upon those conditions:
 | |
| 		 * - C1: abut_ex is initialized,
 | |
| 		 * - C2: abut_ex is logically abutting ex,
 | |
| 		 * - C3: abut_ex is physically abutting ex,
 | |
| 		 * - C4: abut_ex can receive the additional blocks without
 | |
| 		 *   overflowing the (initialized) length limit.
 | |
| 		 */
 | |
| 		if ((!ext4_ext_is_uninitialized(abut_ex)) &&		/*C1*/
 | |
| 			((prev_lblk + prev_len) == ee_block) &&		/*C2*/
 | |
| 			((prev_pblk + prev_len) == ee_pblk) &&		/*C3*/
 | |
| 			(prev_len < (EXT_INIT_MAX_LEN - map_len))) {	/*C4*/
 | |
| 			err = ext4_ext_get_access(handle, inode, path + depth);
 | |
| 			if (err)
 | |
| 				goto out;
 | |
| 
 | |
| 			trace_ext4_ext_convert_to_initialized_fastpath(inode,
 | |
| 				map, ex, abut_ex);
 | |
| 
 | |
| 			/* Shift the start of ex by 'map_len' blocks */
 | |
| 			ex->ee_block = cpu_to_le32(ee_block + map_len);
 | |
| 			ext4_ext_store_pblock(ex, ee_pblk + map_len);
 | |
| 			ex->ee_len = cpu_to_le16(ee_len - map_len);
 | |
| 			ext4_ext_mark_uninitialized(ex); /* Restore the flag */
 | |
| 
 | |
| 			/* Extend abut_ex by 'map_len' blocks */
 | |
| 			abut_ex->ee_len = cpu_to_le16(prev_len + map_len);
 | |
| 
 | |
| 			/* Result: number of initialized blocks past m_lblk */
 | |
| 			allocated = map_len;
 | |
| 		}
 | |
| 	} else if (((map->m_lblk + map_len) == (ee_block + ee_len)) &&
 | |
| 		   (map_len < ee_len) &&	/*L1*/
 | |
| 		   ex < EXT_LAST_EXTENT(eh)) {	/*L2*/
 | |
| 		/* See if we can merge right */
 | |
| 		ext4_lblk_t next_lblk;
 | |
| 		ext4_fsblk_t next_pblk, ee_pblk;
 | |
| 		unsigned int next_len;
 | |
| 
 | |
| 		abut_ex = ex + 1;
 | |
| 		next_lblk = le32_to_cpu(abut_ex->ee_block);
 | |
| 		next_len = ext4_ext_get_actual_len(abut_ex);
 | |
| 		next_pblk = ext4_ext_pblock(abut_ex);
 | |
| 		ee_pblk = ext4_ext_pblock(ex);
 | |
| 
 | |
| 		/*
 | |
| 		 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
 | |
| 		 * upon those conditions:
 | |
| 		 * - C1: abut_ex is initialized,
 | |
| 		 * - C2: abut_ex is logically abutting ex,
 | |
| 		 * - C3: abut_ex is physically abutting ex,
 | |
| 		 * - C4: abut_ex can receive the additional blocks without
 | |
| 		 *   overflowing the (initialized) length limit.
 | |
| 		 */
 | |
| 		if ((!ext4_ext_is_uninitialized(abut_ex)) &&		/*C1*/
 | |
| 		    ((map->m_lblk + map_len) == next_lblk) &&		/*C2*/
 | |
| 		    ((ee_pblk + ee_len) == next_pblk) &&		/*C3*/
 | |
| 		    (next_len < (EXT_INIT_MAX_LEN - map_len))) {	/*C4*/
 | |
| 			err = ext4_ext_get_access(handle, inode, path + depth);
 | |
| 			if (err)
 | |
| 				goto out;
 | |
| 
 | |
| 			trace_ext4_ext_convert_to_initialized_fastpath(inode,
 | |
| 				map, ex, abut_ex);
 | |
| 
 | |
| 			/* Shift the start of abut_ex by 'map_len' blocks */
 | |
| 			abut_ex->ee_block = cpu_to_le32(next_lblk - map_len);
 | |
| 			ext4_ext_store_pblock(abut_ex, next_pblk - map_len);
 | |
| 			ex->ee_len = cpu_to_le16(ee_len - map_len);
 | |
| 			ext4_ext_mark_uninitialized(ex); /* Restore the flag */
 | |
| 
 | |
| 			/* Extend abut_ex by 'map_len' blocks */
 | |
| 			abut_ex->ee_len = cpu_to_le16(next_len + map_len);
 | |
| 
 | |
| 			/* Result: number of initialized blocks past m_lblk */
 | |
| 			allocated = map_len;
 | |
| 		}
 | |
| 	}
 | |
| 	if (allocated) {
 | |
| 		/* Mark the block containing both extents as dirty */
 | |
| 		ext4_ext_dirty(handle, inode, path + depth);
 | |
| 
 | |
| 		/* Update path to point to the right extent */
 | |
| 		path[depth].p_ext = abut_ex;
 | |
| 		goto out;
 | |
| 	} else
 | |
| 		allocated = ee_len - (map->m_lblk - ee_block);
 | |
| 
 | |
| 	WARN_ON(map->m_lblk < ee_block);
 | |
| 	/*
 | |
| 	 * It is safe to convert extent to initialized via explicit
 | |
| 	 * zeroout only if extent is fully insde i_size or new_size.
 | |
| 	 */
 | |
| 	split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
 | |
| 
 | |
| 	if (EXT4_EXT_MAY_ZEROOUT & split_flag)
 | |
| 		max_zeroout = sbi->s_extent_max_zeroout_kb >>
 | |
| 			(inode->i_sb->s_blocksize_bits - 10);
 | |
| 
 | |
| 	/* If extent is less than s_max_zeroout_kb, zeroout directly */
 | |
| 	if (max_zeroout && (ee_len <= max_zeroout)) {
 | |
| 		err = ext4_ext_zeroout(inode, ex);
 | |
| 		if (err)
 | |
| 			goto out;
 | |
| 		zero_ex.ee_block = ex->ee_block;
 | |
| 		zero_ex.ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex));
 | |
| 		ext4_ext_store_pblock(&zero_ex, ext4_ext_pblock(ex));
 | |
| 
 | |
| 		err = ext4_ext_get_access(handle, inode, path + depth);
 | |
| 		if (err)
 | |
| 			goto out;
 | |
| 		ext4_ext_mark_initialized(ex);
 | |
| 		ext4_ext_try_to_merge(handle, inode, path, ex);
 | |
| 		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * four cases:
 | |
| 	 * 1. split the extent into three extents.
 | |
| 	 * 2. split the extent into two extents, zeroout the first half.
 | |
| 	 * 3. split the extent into two extents, zeroout the second half.
 | |
| 	 * 4. split the extent into two extents with out zeroout.
 | |
| 	 */
 | |
| 	split_map.m_lblk = map->m_lblk;
 | |
| 	split_map.m_len = map->m_len;
 | |
| 
 | |
| 	if (max_zeroout && (allocated > map->m_len)) {
 | |
| 		if (allocated <= max_zeroout) {
 | |
| 			/* case 3 */
 | |
| 			zero_ex.ee_block =
 | |
| 					 cpu_to_le32(map->m_lblk);
 | |
| 			zero_ex.ee_len = cpu_to_le16(allocated);
 | |
| 			ext4_ext_store_pblock(&zero_ex,
 | |
| 				ext4_ext_pblock(ex) + map->m_lblk - ee_block);
 | |
| 			err = ext4_ext_zeroout(inode, &zero_ex);
 | |
| 			if (err)
 | |
| 				goto out;
 | |
| 			split_map.m_lblk = map->m_lblk;
 | |
| 			split_map.m_len = allocated;
 | |
| 		} else if (map->m_lblk - ee_block + map->m_len < max_zeroout) {
 | |
| 			/* case 2 */
 | |
| 			if (map->m_lblk != ee_block) {
 | |
| 				zero_ex.ee_block = ex->ee_block;
 | |
| 				zero_ex.ee_len = cpu_to_le16(map->m_lblk -
 | |
| 							ee_block);
 | |
| 				ext4_ext_store_pblock(&zero_ex,
 | |
| 						      ext4_ext_pblock(ex));
 | |
| 				err = ext4_ext_zeroout(inode, &zero_ex);
 | |
| 				if (err)
 | |
| 					goto out;
 | |
| 			}
 | |
| 
 | |
| 			split_map.m_lblk = ee_block;
 | |
| 			split_map.m_len = map->m_lblk - ee_block + map->m_len;
 | |
| 			allocated = map->m_len;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	allocated = ext4_split_extent(handle, inode, path,
 | |
| 				      &split_map, split_flag, flags);
 | |
| 	if (allocated < 0)
 | |
| 		err = allocated;
 | |
| 
 | |
| out:
 | |
| 	/* If we have gotten a failure, don't zero out status tree */
 | |
| 	if (!err)
 | |
| 		err = ext4_zeroout_es(inode, &zero_ex);
 | |
| 	return err ? err : allocated;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function is called by ext4_ext_map_blocks() from
 | |
|  * ext4_get_blocks_dio_write() when DIO to write
 | |
|  * to an uninitialized extent.
 | |
|  *
 | |
|  * Writing to an uninitialized extent may result in splitting the uninitialized
 | |
|  * extent into multiple initialized/uninitialized extents (up to three)
 | |
|  * There are three possibilities:
 | |
|  *   a> There is no split required: Entire extent should be uninitialized
 | |
|  *   b> Splits in two extents: Write is happening at either end of the extent
 | |
|  *   c> Splits in three extents: Somone is writing in middle of the extent
 | |
|  *
 | |
|  * One of more index blocks maybe needed if the extent tree grow after
 | |
|  * the uninitialized extent split. To prevent ENOSPC occur at the IO
 | |
|  * complete, we need to split the uninitialized extent before DIO submit
 | |
|  * the IO. The uninitialized extent called at this time will be split
 | |
|  * into three uninitialized extent(at most). After IO complete, the part
 | |
|  * being filled will be convert to initialized by the end_io callback function
 | |
|  * via ext4_convert_unwritten_extents().
 | |
|  *
 | |
|  * Returns the size of uninitialized extent to be written on success.
 | |
|  */
 | |
| static int ext4_split_unwritten_extents(handle_t *handle,
 | |
| 					struct inode *inode,
 | |
| 					struct ext4_map_blocks *map,
 | |
| 					struct ext4_ext_path *path,
 | |
| 					int flags)
 | |
| {
 | |
| 	ext4_lblk_t eof_block;
 | |
| 	ext4_lblk_t ee_block;
 | |
| 	struct ext4_extent *ex;
 | |
| 	unsigned int ee_len;
 | |
| 	int split_flag = 0, depth;
 | |
| 
 | |
| 	ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
 | |
| 		"block %llu, max_blocks %u\n", inode->i_ino,
 | |
| 		(unsigned long long)map->m_lblk, map->m_len);
 | |
| 
 | |
| 	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
 | |
| 		inode->i_sb->s_blocksize_bits;
 | |
| 	if (eof_block < map->m_lblk + map->m_len)
 | |
| 		eof_block = map->m_lblk + map->m_len;
 | |
| 	/*
 | |
| 	 * It is safe to convert extent to initialized via explicit
 | |
| 	 * zeroout only if extent is fully insde i_size or new_size.
 | |
| 	 */
 | |
| 	depth = ext_depth(inode);
 | |
| 	ex = path[depth].p_ext;
 | |
| 	ee_block = le32_to_cpu(ex->ee_block);
 | |
| 	ee_len = ext4_ext_get_actual_len(ex);
 | |
| 
 | |
| 	split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
 | |
| 	split_flag |= EXT4_EXT_MARK_UNINIT2;
 | |
| 	if (flags & EXT4_GET_BLOCKS_CONVERT)
 | |
| 		split_flag |= EXT4_EXT_DATA_VALID2;
 | |
| 	flags |= EXT4_GET_BLOCKS_PRE_IO;
 | |
| 	return ext4_split_extent(handle, inode, path, map, split_flag, flags);
 | |
| }
 | |
| 
 | |
| static int ext4_convert_unwritten_extents_endio(handle_t *handle,
 | |
| 						struct inode *inode,
 | |
| 						struct ext4_map_blocks *map,
 | |
| 						struct ext4_ext_path *path)
 | |
| {
 | |
| 	struct ext4_extent *ex;
 | |
| 	ext4_lblk_t ee_block;
 | |
| 	unsigned int ee_len;
 | |
| 	int depth;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	depth = ext_depth(inode);
 | |
| 	ex = path[depth].p_ext;
 | |
| 	ee_block = le32_to_cpu(ex->ee_block);
 | |
| 	ee_len = ext4_ext_get_actual_len(ex);
 | |
| 
 | |
| 	ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
 | |
| 		"block %llu, max_blocks %u\n", inode->i_ino,
 | |
| 		  (unsigned long long)ee_block, ee_len);
 | |
| 
 | |
| 	/* If extent is larger than requested it is a clear sign that we still
 | |
| 	 * have some extent state machine issues left. So extent_split is still
 | |
| 	 * required.
 | |
| 	 * TODO: Once all related issues will be fixed this situation should be
 | |
| 	 * illegal.
 | |
| 	 */
 | |
| 	if (ee_block != map->m_lblk || ee_len > map->m_len) {
 | |
| #ifdef EXT4_DEBUG
 | |
| 		ext4_warning("Inode (%ld) finished: extent logical block %llu,"
 | |
| 			     " len %u; IO logical block %llu, len %u\n",
 | |
| 			     inode->i_ino, (unsigned long long)ee_block, ee_len,
 | |
| 			     (unsigned long long)map->m_lblk, map->m_len);
 | |
| #endif
 | |
| 		err = ext4_split_unwritten_extents(handle, inode, map, path,
 | |
| 						   EXT4_GET_BLOCKS_CONVERT);
 | |
| 		if (err < 0)
 | |
| 			goto out;
 | |
| 		ext4_ext_drop_refs(path);
 | |
| 		path = ext4_ext_find_extent(inode, map->m_lblk, path, 0);
 | |
| 		if (IS_ERR(path)) {
 | |
| 			err = PTR_ERR(path);
 | |
| 			goto out;
 | |
| 		}
 | |
| 		depth = ext_depth(inode);
 | |
| 		ex = path[depth].p_ext;
 | |
| 	}
 | |
| 
 | |
| 	err = ext4_ext_get_access(handle, inode, path + depth);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 	/* first mark the extent as initialized */
 | |
| 	ext4_ext_mark_initialized(ex);
 | |
| 
 | |
| 	/* note: ext4_ext_correct_indexes() isn't needed here because
 | |
| 	 * borders are not changed
 | |
| 	 */
 | |
| 	ext4_ext_try_to_merge(handle, inode, path, ex);
 | |
| 
 | |
| 	/* Mark modified extent as dirty */
 | |
| 	err = ext4_ext_dirty(handle, inode, path + path->p_depth);
 | |
| out:
 | |
| 	ext4_ext_show_leaf(inode, path);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void unmap_underlying_metadata_blocks(struct block_device *bdev,
 | |
| 			sector_t block, int count)
 | |
| {
 | |
| 	int i;
 | |
| 	for (i = 0; i < count; i++)
 | |
|                 unmap_underlying_metadata(bdev, block + i);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Handle EOFBLOCKS_FL flag, clearing it if necessary
 | |
|  */
 | |
| static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
 | |
| 			      ext4_lblk_t lblk,
 | |
| 			      struct ext4_ext_path *path,
 | |
| 			      unsigned int len)
 | |
| {
 | |
| 	int i, depth;
 | |
| 	struct ext4_extent_header *eh;
 | |
| 	struct ext4_extent *last_ex;
 | |
| 
 | |
| 	if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
 | |
| 		return 0;
 | |
| 
 | |
| 	depth = ext_depth(inode);
 | |
| 	eh = path[depth].p_hdr;
 | |
| 
 | |
| 	/*
 | |
| 	 * We're going to remove EOFBLOCKS_FL entirely in future so we
 | |
| 	 * do not care for this case anymore. Simply remove the flag
 | |
| 	 * if there are no extents.
 | |
| 	 */
 | |
| 	if (unlikely(!eh->eh_entries))
 | |
| 		goto out;
 | |
| 	last_ex = EXT_LAST_EXTENT(eh);
 | |
| 	/*
 | |
| 	 * We should clear the EOFBLOCKS_FL flag if we are writing the
 | |
| 	 * last block in the last extent in the file.  We test this by
 | |
| 	 * first checking to see if the caller to
 | |
| 	 * ext4_ext_get_blocks() was interested in the last block (or
 | |
| 	 * a block beyond the last block) in the current extent.  If
 | |
| 	 * this turns out to be false, we can bail out from this
 | |
| 	 * function immediately.
 | |
| 	 */
 | |
| 	if (lblk + len < le32_to_cpu(last_ex->ee_block) +
 | |
| 	    ext4_ext_get_actual_len(last_ex))
 | |
| 		return 0;
 | |
| 	/*
 | |
| 	 * If the caller does appear to be planning to write at or
 | |
| 	 * beyond the end of the current extent, we then test to see
 | |
| 	 * if the current extent is the last extent in the file, by
 | |
| 	 * checking to make sure it was reached via the rightmost node
 | |
| 	 * at each level of the tree.
 | |
| 	 */
 | |
| 	for (i = depth-1; i >= 0; i--)
 | |
| 		if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
 | |
| 			return 0;
 | |
| out:
 | |
| 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
 | |
| 	return ext4_mark_inode_dirty(handle, inode);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ext4_find_delalloc_range: find delayed allocated block in the given range.
 | |
|  *
 | |
|  * Return 1 if there is a delalloc block in the range, otherwise 0.
 | |
|  */
 | |
| int ext4_find_delalloc_range(struct inode *inode,
 | |
| 			     ext4_lblk_t lblk_start,
 | |
| 			     ext4_lblk_t lblk_end)
 | |
| {
 | |
| 	struct extent_status es;
 | |
| 
 | |
| 	ext4_es_find_delayed_extent_range(inode, lblk_start, lblk_end, &es);
 | |
| 	if (es.es_len == 0)
 | |
| 		return 0; /* there is no delay extent in this tree */
 | |
| 	else if (es.es_lblk <= lblk_start &&
 | |
| 		 lblk_start < es.es_lblk + es.es_len)
 | |
| 		return 1;
 | |
| 	else if (lblk_start <= es.es_lblk && es.es_lblk <= lblk_end)
 | |
| 		return 1;
 | |
| 	else
 | |
| 		return 0;
 | |
| }
 | |
| 
 | |
| int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk)
 | |
| {
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 | |
| 	ext4_lblk_t lblk_start, lblk_end;
 | |
| 	lblk_start = lblk & (~(sbi->s_cluster_ratio - 1));
 | |
| 	lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
 | |
| 
 | |
| 	return ext4_find_delalloc_range(inode, lblk_start, lblk_end);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Determines how many complete clusters (out of those specified by the 'map')
 | |
|  * are under delalloc and were reserved quota for.
 | |
|  * This function is called when we are writing out the blocks that were
 | |
|  * originally written with their allocation delayed, but then the space was
 | |
|  * allocated using fallocate() before the delayed allocation could be resolved.
 | |
|  * The cases to look for are:
 | |
|  * ('=' indicated delayed allocated blocks
 | |
|  *  '-' indicates non-delayed allocated blocks)
 | |
|  * (a) partial clusters towards beginning and/or end outside of allocated range
 | |
|  *     are not delalloc'ed.
 | |
|  *	Ex:
 | |
|  *	|----c---=|====c====|====c====|===-c----|
 | |
|  *	         |++++++ allocated ++++++|
 | |
|  *	==> 4 complete clusters in above example
 | |
|  *
 | |
|  * (b) partial cluster (outside of allocated range) towards either end is
 | |
|  *     marked for delayed allocation. In this case, we will exclude that
 | |
|  *     cluster.
 | |
|  *	Ex:
 | |
|  *	|----====c========|========c========|
 | |
|  *	     |++++++ allocated ++++++|
 | |
|  *	==> 1 complete clusters in above example
 | |
|  *
 | |
|  *	Ex:
 | |
|  *	|================c================|
 | |
|  *            |++++++ allocated ++++++|
 | |
|  *	==> 0 complete clusters in above example
 | |
|  *
 | |
|  * The ext4_da_update_reserve_space will be called only if we
 | |
|  * determine here that there were some "entire" clusters that span
 | |
|  * this 'allocated' range.
 | |
|  * In the non-bigalloc case, this function will just end up returning num_blks
 | |
|  * without ever calling ext4_find_delalloc_range.
 | |
|  */
 | |
| static unsigned int
 | |
| get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
 | |
| 			   unsigned int num_blks)
 | |
| {
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 | |
| 	ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
 | |
| 	ext4_lblk_t lblk_from, lblk_to, c_offset;
 | |
| 	unsigned int allocated_clusters = 0;
 | |
| 
 | |
| 	alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
 | |
| 	alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
 | |
| 
 | |
| 	/* max possible clusters for this allocation */
 | |
| 	allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
 | |
| 
 | |
| 	trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks);
 | |
| 
 | |
| 	/* Check towards left side */
 | |
| 	c_offset = lblk_start & (sbi->s_cluster_ratio - 1);
 | |
| 	if (c_offset) {
 | |
| 		lblk_from = lblk_start & (~(sbi->s_cluster_ratio - 1));
 | |
| 		lblk_to = lblk_from + c_offset - 1;
 | |
| 
 | |
| 		if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
 | |
| 			allocated_clusters--;
 | |
| 	}
 | |
| 
 | |
| 	/* Now check towards right. */
 | |
| 	c_offset = (lblk_start + num_blks) & (sbi->s_cluster_ratio - 1);
 | |
| 	if (allocated_clusters && c_offset) {
 | |
| 		lblk_from = lblk_start + num_blks;
 | |
| 		lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
 | |
| 
 | |
| 		if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
 | |
| 			allocated_clusters--;
 | |
| 	}
 | |
| 
 | |
| 	return allocated_clusters;
 | |
| }
 | |
| 
 | |
| static int
 | |
| ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
 | |
| 			struct ext4_map_blocks *map,
 | |
| 			struct ext4_ext_path *path, int flags,
 | |
| 			unsigned int allocated, ext4_fsblk_t newblock)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	int err = 0;
 | |
| 	ext4_io_end_t *io = ext4_inode_aio(inode);
 | |
| 
 | |
| 	ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical "
 | |
| 		  "block %llu, max_blocks %u, flags %x, allocated %u\n",
 | |
| 		  inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
 | |
| 		  flags, allocated);
 | |
| 	ext4_ext_show_leaf(inode, path);
 | |
| 
 | |
| 	/*
 | |
| 	 * When writing into uninitialized space, we should not fail to
 | |
| 	 * allocate metadata blocks for the new extent block if needed.
 | |
| 	 */
 | |
| 	flags |= EXT4_GET_BLOCKS_METADATA_NOFAIL;
 | |
| 
 | |
| 	trace_ext4_ext_handle_uninitialized_extents(inode, map, flags,
 | |
| 						    allocated, newblock);
 | |
| 
 | |
| 	/* get_block() before submit the IO, split the extent */
 | |
| 	if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
 | |
| 		ret = ext4_split_unwritten_extents(handle, inode, map,
 | |
| 						   path, flags);
 | |
| 		if (ret <= 0)
 | |
| 			goto out;
 | |
| 		/*
 | |
| 		 * Flag the inode(non aio case) or end_io struct (aio case)
 | |
| 		 * that this IO needs to conversion to written when IO is
 | |
| 		 * completed
 | |
| 		 */
 | |
| 		if (io)
 | |
| 			ext4_set_io_unwritten_flag(inode, io);
 | |
| 		else
 | |
| 			ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
 | |
| 		map->m_flags |= EXT4_MAP_UNWRITTEN;
 | |
| 		if (ext4_should_dioread_nolock(inode))
 | |
| 			map->m_flags |= EXT4_MAP_UNINIT;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	/* IO end_io complete, convert the filled extent to written */
 | |
| 	if ((flags & EXT4_GET_BLOCKS_CONVERT)) {
 | |
| 		ret = ext4_convert_unwritten_extents_endio(handle, inode, map,
 | |
| 							path);
 | |
| 		if (ret >= 0) {
 | |
| 			ext4_update_inode_fsync_trans(handle, inode, 1);
 | |
| 			err = check_eofblocks_fl(handle, inode, map->m_lblk,
 | |
| 						 path, map->m_len);
 | |
| 		} else
 | |
| 			err = ret;
 | |
| 		map->m_flags |= EXT4_MAP_MAPPED;
 | |
| 		if (allocated > map->m_len)
 | |
| 			allocated = map->m_len;
 | |
| 		map->m_len = allocated;
 | |
| 		goto out2;
 | |
| 	}
 | |
| 	/* buffered IO case */
 | |
| 	/*
 | |
| 	 * repeat fallocate creation request
 | |
| 	 * we already have an unwritten extent
 | |
| 	 */
 | |
| 	if (flags & EXT4_GET_BLOCKS_UNINIT_EXT) {
 | |
| 		map->m_flags |= EXT4_MAP_UNWRITTEN;
 | |
| 		goto map_out;
 | |
| 	}
 | |
| 
 | |
| 	/* buffered READ or buffered write_begin() lookup */
 | |
| 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
 | |
| 		/*
 | |
| 		 * We have blocks reserved already.  We
 | |
| 		 * return allocated blocks so that delalloc
 | |
| 		 * won't do block reservation for us.  But
 | |
| 		 * the buffer head will be unmapped so that
 | |
| 		 * a read from the block returns 0s.
 | |
| 		 */
 | |
| 		map->m_flags |= EXT4_MAP_UNWRITTEN;
 | |
| 		goto out1;
 | |
| 	}
 | |
| 
 | |
| 	/* buffered write, writepage time, convert*/
 | |
| 	ret = ext4_ext_convert_to_initialized(handle, inode, map, path, flags);
 | |
| 	if (ret >= 0)
 | |
| 		ext4_update_inode_fsync_trans(handle, inode, 1);
 | |
| out:
 | |
| 	if (ret <= 0) {
 | |
| 		err = ret;
 | |
| 		goto out2;
 | |
| 	} else
 | |
| 		allocated = ret;
 | |
| 	map->m_flags |= EXT4_MAP_NEW;
 | |
| 	/*
 | |
| 	 * if we allocated more blocks than requested
 | |
| 	 * we need to make sure we unmap the extra block
 | |
| 	 * allocated. The actual needed block will get
 | |
| 	 * unmapped later when we find the buffer_head marked
 | |
| 	 * new.
 | |
| 	 */
 | |
| 	if (allocated > map->m_len) {
 | |
| 		unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
 | |
| 					newblock + map->m_len,
 | |
| 					allocated - map->m_len);
 | |
| 		allocated = map->m_len;
 | |
| 	}
 | |
| 	map->m_len = allocated;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we have done fallocate with the offset that is already
 | |
| 	 * delayed allocated, we would have block reservation
 | |
| 	 * and quota reservation done in the delayed write path.
 | |
| 	 * But fallocate would have already updated quota and block
 | |
| 	 * count for this offset. So cancel these reservation
 | |
| 	 */
 | |
| 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
 | |
| 		unsigned int reserved_clusters;
 | |
| 		reserved_clusters = get_reserved_cluster_alloc(inode,
 | |
| 				map->m_lblk, map->m_len);
 | |
| 		if (reserved_clusters)
 | |
| 			ext4_da_update_reserve_space(inode,
 | |
| 						     reserved_clusters,
 | |
| 						     0);
 | |
| 	}
 | |
| 
 | |
| map_out:
 | |
| 	map->m_flags |= EXT4_MAP_MAPPED;
 | |
| 	if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) {
 | |
| 		err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
 | |
| 					 map->m_len);
 | |
| 		if (err < 0)
 | |
| 			goto out2;
 | |
| 	}
 | |
| out1:
 | |
| 	if (allocated > map->m_len)
 | |
| 		allocated = map->m_len;
 | |
| 	ext4_ext_show_leaf(inode, path);
 | |
| 	map->m_pblk = newblock;
 | |
| 	map->m_len = allocated;
 | |
| out2:
 | |
| 	if (path) {
 | |
| 		ext4_ext_drop_refs(path);
 | |
| 		kfree(path);
 | |
| 	}
 | |
| 	return err ? err : allocated;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * get_implied_cluster_alloc - check to see if the requested
 | |
|  * allocation (in the map structure) overlaps with a cluster already
 | |
|  * allocated in an extent.
 | |
|  *	@sb	The filesystem superblock structure
 | |
|  *	@map	The requested lblk->pblk mapping
 | |
|  *	@ex	The extent structure which might contain an implied
 | |
|  *			cluster allocation
 | |
|  *
 | |
|  * This function is called by ext4_ext_map_blocks() after we failed to
 | |
|  * find blocks that were already in the inode's extent tree.  Hence,
 | |
|  * we know that the beginning of the requested region cannot overlap
 | |
|  * the extent from the inode's extent tree.  There are three cases we
 | |
|  * want to catch.  The first is this case:
 | |
|  *
 | |
|  *		 |--- cluster # N--|
 | |
|  *    |--- extent ---|	|---- requested region ---|
 | |
|  *			|==========|
 | |
|  *
 | |
|  * The second case that we need to test for is this one:
 | |
|  *
 | |
|  *   |--------- cluster # N ----------------|
 | |
|  *	   |--- requested region --|   |------- extent ----|
 | |
|  *	   |=======================|
 | |
|  *
 | |
|  * The third case is when the requested region lies between two extents
 | |
|  * within the same cluster:
 | |
|  *          |------------- cluster # N-------------|
 | |
|  * |----- ex -----|                  |---- ex_right ----|
 | |
|  *                  |------ requested region ------|
 | |
|  *                  |================|
 | |
|  *
 | |
|  * In each of the above cases, we need to set the map->m_pblk and
 | |
|  * map->m_len so it corresponds to the return the extent labelled as
 | |
|  * "|====|" from cluster #N, since it is already in use for data in
 | |
|  * cluster EXT4_B2C(sbi, map->m_lblk).	We will then return 1 to
 | |
|  * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
 | |
|  * as a new "allocated" block region.  Otherwise, we will return 0 and
 | |
|  * ext4_ext_map_blocks() will then allocate one or more new clusters
 | |
|  * by calling ext4_mb_new_blocks().
 | |
|  */
 | |
| static int get_implied_cluster_alloc(struct super_block *sb,
 | |
| 				     struct ext4_map_blocks *map,
 | |
| 				     struct ext4_extent *ex,
 | |
| 				     struct ext4_ext_path *path)
 | |
| {
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(sb);
 | |
| 	ext4_lblk_t c_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
 | |
| 	ext4_lblk_t ex_cluster_start, ex_cluster_end;
 | |
| 	ext4_lblk_t rr_cluster_start;
 | |
| 	ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
 | |
| 	ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
 | |
| 	unsigned short ee_len = ext4_ext_get_actual_len(ex);
 | |
| 
 | |
| 	/* The extent passed in that we are trying to match */
 | |
| 	ex_cluster_start = EXT4_B2C(sbi, ee_block);
 | |
| 	ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
 | |
| 
 | |
| 	/* The requested region passed into ext4_map_blocks() */
 | |
| 	rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
 | |
| 
 | |
| 	if ((rr_cluster_start == ex_cluster_end) ||
 | |
| 	    (rr_cluster_start == ex_cluster_start)) {
 | |
| 		if (rr_cluster_start == ex_cluster_end)
 | |
| 			ee_start += ee_len - 1;
 | |
| 		map->m_pblk = (ee_start & ~(sbi->s_cluster_ratio - 1)) +
 | |
| 			c_offset;
 | |
| 		map->m_len = min(map->m_len,
 | |
| 				 (unsigned) sbi->s_cluster_ratio - c_offset);
 | |
| 		/*
 | |
| 		 * Check for and handle this case:
 | |
| 		 *
 | |
| 		 *   |--------- cluster # N-------------|
 | |
| 		 *		       |------- extent ----|
 | |
| 		 *	   |--- requested region ---|
 | |
| 		 *	   |===========|
 | |
| 		 */
 | |
| 
 | |
| 		if (map->m_lblk < ee_block)
 | |
| 			map->m_len = min(map->m_len, ee_block - map->m_lblk);
 | |
| 
 | |
| 		/*
 | |
| 		 * Check for the case where there is already another allocated
 | |
| 		 * block to the right of 'ex' but before the end of the cluster.
 | |
| 		 *
 | |
| 		 *          |------------- cluster # N-------------|
 | |
| 		 * |----- ex -----|                  |---- ex_right ----|
 | |
| 		 *                  |------ requested region ------|
 | |
| 		 *                  |================|
 | |
| 		 */
 | |
| 		if (map->m_lblk > ee_block) {
 | |
| 			ext4_lblk_t next = ext4_ext_next_allocated_block(path);
 | |
| 			map->m_len = min(map->m_len, next - map->m_lblk);
 | |
| 		}
 | |
| 
 | |
| 		trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Block allocation/map/preallocation routine for extents based files
 | |
|  *
 | |
|  *
 | |
|  * Need to be called with
 | |
|  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
 | |
|  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
 | |
|  *
 | |
|  * return > 0, number of of blocks already mapped/allocated
 | |
|  *          if create == 0 and these are pre-allocated blocks
 | |
|  *          	buffer head is unmapped
 | |
|  *          otherwise blocks are mapped
 | |
|  *
 | |
|  * return = 0, if plain look up failed (blocks have not been allocated)
 | |
|  *          buffer head is unmapped
 | |
|  *
 | |
|  * return < 0, error case.
 | |
|  */
 | |
| int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
 | |
| 			struct ext4_map_blocks *map, int flags)
 | |
| {
 | |
| 	struct ext4_ext_path *path = NULL;
 | |
| 	struct ext4_extent newex, *ex, *ex2;
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 | |
| 	ext4_fsblk_t newblock = 0;
 | |
| 	int free_on_err = 0, err = 0, depth;
 | |
| 	unsigned int allocated = 0, offset = 0;
 | |
| 	unsigned int allocated_clusters = 0;
 | |
| 	struct ext4_allocation_request ar;
 | |
| 	ext4_io_end_t *io = ext4_inode_aio(inode);
 | |
| 	ext4_lblk_t cluster_offset;
 | |
| 	int set_unwritten = 0;
 | |
| 
 | |
| 	ext_debug("blocks %u/%u requested for inode %lu\n",
 | |
| 		  map->m_lblk, map->m_len, inode->i_ino);
 | |
| 	trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
 | |
| 
 | |
| 	/* find extent for this block */
 | |
| 	path = ext4_ext_find_extent(inode, map->m_lblk, NULL, 0);
 | |
| 	if (IS_ERR(path)) {
 | |
| 		err = PTR_ERR(path);
 | |
| 		path = NULL;
 | |
| 		goto out2;
 | |
| 	}
 | |
| 
 | |
| 	depth = ext_depth(inode);
 | |
| 
 | |
| 	/*
 | |
| 	 * consistent leaf must not be empty;
 | |
| 	 * this situation is possible, though, _during_ tree modification;
 | |
| 	 * this is why assert can't be put in ext4_ext_find_extent()
 | |
| 	 */
 | |
| 	if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
 | |
| 		EXT4_ERROR_INODE(inode, "bad extent address "
 | |
| 				 "lblock: %lu, depth: %d pblock %lld",
 | |
| 				 (unsigned long) map->m_lblk, depth,
 | |
| 				 path[depth].p_block);
 | |
| 		err = -EIO;
 | |
| 		goto out2;
 | |
| 	}
 | |
| 
 | |
| 	ex = path[depth].p_ext;
 | |
| 	if (ex) {
 | |
| 		ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
 | |
| 		ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
 | |
| 		unsigned short ee_len;
 | |
| 
 | |
| 		/*
 | |
| 		 * Uninitialized extents are treated as holes, except that
 | |
| 		 * we split out initialized portions during a write.
 | |
| 		 */
 | |
| 		ee_len = ext4_ext_get_actual_len(ex);
 | |
| 
 | |
| 		trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
 | |
| 
 | |
| 		/* if found extent covers block, simply return it */
 | |
| 		if (in_range(map->m_lblk, ee_block, ee_len)) {
 | |
| 			newblock = map->m_lblk - ee_block + ee_start;
 | |
| 			/* number of remaining blocks in the extent */
 | |
| 			allocated = ee_len - (map->m_lblk - ee_block);
 | |
| 			ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
 | |
| 				  ee_block, ee_len, newblock);
 | |
| 
 | |
| 			if (!ext4_ext_is_uninitialized(ex))
 | |
| 				goto out;
 | |
| 
 | |
| 			allocated = ext4_ext_handle_uninitialized_extents(
 | |
| 				handle, inode, map, path, flags,
 | |
| 				allocated, newblock);
 | |
| 			goto out3;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if ((sbi->s_cluster_ratio > 1) &&
 | |
| 	    ext4_find_delalloc_cluster(inode, map->m_lblk))
 | |
| 		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
 | |
| 
 | |
| 	/*
 | |
| 	 * requested block isn't allocated yet;
 | |
| 	 * we couldn't try to create block if create flag is zero
 | |
| 	 */
 | |
| 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
 | |
| 		/*
 | |
| 		 * put just found gap into cache to speed up
 | |
| 		 * subsequent requests
 | |
| 		 */
 | |
| 		if ((flags & EXT4_GET_BLOCKS_NO_PUT_HOLE) == 0)
 | |
| 			ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
 | |
| 		goto out2;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Okay, we need to do block allocation.
 | |
| 	 */
 | |
| 	map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
 | |
| 	newex.ee_block = cpu_to_le32(map->m_lblk);
 | |
| 	cluster_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we are doing bigalloc, check to see if the extent returned
 | |
| 	 * by ext4_ext_find_extent() implies a cluster we can use.
 | |
| 	 */
 | |
| 	if (cluster_offset && ex &&
 | |
| 	    get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
 | |
| 		ar.len = allocated = map->m_len;
 | |
| 		newblock = map->m_pblk;
 | |
| 		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
 | |
| 		goto got_allocated_blocks;
 | |
| 	}
 | |
| 
 | |
| 	/* find neighbour allocated blocks */
 | |
| 	ar.lleft = map->m_lblk;
 | |
| 	err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
 | |
| 	if (err)
 | |
| 		goto out2;
 | |
| 	ar.lright = map->m_lblk;
 | |
| 	ex2 = NULL;
 | |
| 	err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
 | |
| 	if (err)
 | |
| 		goto out2;
 | |
| 
 | |
| 	/* Check if the extent after searching to the right implies a
 | |
| 	 * cluster we can use. */
 | |
| 	if ((sbi->s_cluster_ratio > 1) && ex2 &&
 | |
| 	    get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
 | |
| 		ar.len = allocated = map->m_len;
 | |
| 		newblock = map->m_pblk;
 | |
| 		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
 | |
| 		goto got_allocated_blocks;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * See if request is beyond maximum number of blocks we can have in
 | |
| 	 * a single extent. For an initialized extent this limit is
 | |
| 	 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
 | |
| 	 * EXT_UNINIT_MAX_LEN.
 | |
| 	 */
 | |
| 	if (map->m_len > EXT_INIT_MAX_LEN &&
 | |
| 	    !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
 | |
| 		map->m_len = EXT_INIT_MAX_LEN;
 | |
| 	else if (map->m_len > EXT_UNINIT_MAX_LEN &&
 | |
| 		 (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
 | |
| 		map->m_len = EXT_UNINIT_MAX_LEN;
 | |
| 
 | |
| 	/* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
 | |
| 	newex.ee_len = cpu_to_le16(map->m_len);
 | |
| 	err = ext4_ext_check_overlap(sbi, inode, &newex, path);
 | |
| 	if (err)
 | |
| 		allocated = ext4_ext_get_actual_len(&newex);
 | |
| 	else
 | |
| 		allocated = map->m_len;
 | |
| 
 | |
| 	/* allocate new block */
 | |
| 	ar.inode = inode;
 | |
| 	ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
 | |
| 	ar.logical = map->m_lblk;
 | |
| 	/*
 | |
| 	 * We calculate the offset from the beginning of the cluster
 | |
| 	 * for the logical block number, since when we allocate a
 | |
| 	 * physical cluster, the physical block should start at the
 | |
| 	 * same offset from the beginning of the cluster.  This is
 | |
| 	 * needed so that future calls to get_implied_cluster_alloc()
 | |
| 	 * work correctly.
 | |
| 	 */
 | |
| 	offset = map->m_lblk & (sbi->s_cluster_ratio - 1);
 | |
| 	ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
 | |
| 	ar.goal -= offset;
 | |
| 	ar.logical -= offset;
 | |
| 	if (S_ISREG(inode->i_mode))
 | |
| 		ar.flags = EXT4_MB_HINT_DATA;
 | |
| 	else
 | |
| 		/* disable in-core preallocation for non-regular files */
 | |
| 		ar.flags = 0;
 | |
| 	if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
 | |
| 		ar.flags |= EXT4_MB_HINT_NOPREALLOC;
 | |
| 	newblock = ext4_mb_new_blocks(handle, &ar, &err);
 | |
| 	if (!newblock)
 | |
| 		goto out2;
 | |
| 	ext_debug("allocate new block: goal %llu, found %llu/%u\n",
 | |
| 		  ar.goal, newblock, allocated);
 | |
| 	free_on_err = 1;
 | |
| 	allocated_clusters = ar.len;
 | |
| 	ar.len = EXT4_C2B(sbi, ar.len) - offset;
 | |
| 	if (ar.len > allocated)
 | |
| 		ar.len = allocated;
 | |
| 
 | |
| got_allocated_blocks:
 | |
| 	/* try to insert new extent into found leaf and return */
 | |
| 	ext4_ext_store_pblock(&newex, newblock + offset);
 | |
| 	newex.ee_len = cpu_to_le16(ar.len);
 | |
| 	/* Mark uninitialized */
 | |
| 	if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
 | |
| 		ext4_ext_mark_uninitialized(&newex);
 | |
| 		map->m_flags |= EXT4_MAP_UNWRITTEN;
 | |
| 		/*
 | |
| 		 * io_end structure was created for every IO write to an
 | |
| 		 * uninitialized extent. To avoid unnecessary conversion,
 | |
| 		 * here we flag the IO that really needs the conversion.
 | |
| 		 * For non asycn direct IO case, flag the inode state
 | |
| 		 * that we need to perform conversion when IO is done.
 | |
| 		 */
 | |
| 		if ((flags & EXT4_GET_BLOCKS_PRE_IO))
 | |
| 			set_unwritten = 1;
 | |
| 		if (ext4_should_dioread_nolock(inode))
 | |
| 			map->m_flags |= EXT4_MAP_UNINIT;
 | |
| 	}
 | |
| 
 | |
| 	err = 0;
 | |
| 	if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0)
 | |
| 		err = check_eofblocks_fl(handle, inode, map->m_lblk,
 | |
| 					 path, ar.len);
 | |
| 	if (!err)
 | |
| 		err = ext4_ext_insert_extent(handle, inode, path,
 | |
| 					     &newex, flags);
 | |
| 
 | |
| 	if (!err && set_unwritten) {
 | |
| 		if (io)
 | |
| 			ext4_set_io_unwritten_flag(inode, io);
 | |
| 		else
 | |
| 			ext4_set_inode_state(inode,
 | |
| 					     EXT4_STATE_DIO_UNWRITTEN);
 | |
| 	}
 | |
| 
 | |
| 	if (err && free_on_err) {
 | |
| 		int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
 | |
| 			EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
 | |
| 		/* free data blocks we just allocated */
 | |
| 		/* not a good idea to call discard here directly,
 | |
| 		 * but otherwise we'd need to call it every free() */
 | |
| 		ext4_discard_preallocations(inode);
 | |
| 		ext4_free_blocks(handle, inode, NULL, newblock,
 | |
| 				 EXT4_C2B(sbi, allocated_clusters), fb_flags);
 | |
| 		goto out2;
 | |
| 	}
 | |
| 
 | |
| 	/* previous routine could use block we allocated */
 | |
| 	newblock = ext4_ext_pblock(&newex);
 | |
| 	allocated = ext4_ext_get_actual_len(&newex);
 | |
| 	if (allocated > map->m_len)
 | |
| 		allocated = map->m_len;
 | |
| 	map->m_flags |= EXT4_MAP_NEW;
 | |
| 
 | |
| 	/*
 | |
| 	 * Update reserved blocks/metadata blocks after successful
 | |
| 	 * block allocation which had been deferred till now.
 | |
| 	 */
 | |
| 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
 | |
| 		unsigned int reserved_clusters;
 | |
| 		/*
 | |
| 		 * Check how many clusters we had reserved this allocated range
 | |
| 		 */
 | |
| 		reserved_clusters = get_reserved_cluster_alloc(inode,
 | |
| 						map->m_lblk, allocated);
 | |
| 		if (map->m_flags & EXT4_MAP_FROM_CLUSTER) {
 | |
| 			if (reserved_clusters) {
 | |
| 				/*
 | |
| 				 * We have clusters reserved for this range.
 | |
| 				 * But since we are not doing actual allocation
 | |
| 				 * and are simply using blocks from previously
 | |
| 				 * allocated cluster, we should release the
 | |
| 				 * reservation and not claim quota.
 | |
| 				 */
 | |
| 				ext4_da_update_reserve_space(inode,
 | |
| 						reserved_clusters, 0);
 | |
| 			}
 | |
| 		} else {
 | |
| 			BUG_ON(allocated_clusters < reserved_clusters);
 | |
| 			if (reserved_clusters < allocated_clusters) {
 | |
| 				struct ext4_inode_info *ei = EXT4_I(inode);
 | |
| 				int reservation = allocated_clusters -
 | |
| 						  reserved_clusters;
 | |
| 				/*
 | |
| 				 * It seems we claimed few clusters outside of
 | |
| 				 * the range of this allocation. We should give
 | |
| 				 * it back to the reservation pool. This can
 | |
| 				 * happen in the following case:
 | |
| 				 *
 | |
| 				 * * Suppose s_cluster_ratio is 4 (i.e., each
 | |
| 				 *   cluster has 4 blocks. Thus, the clusters
 | |
| 				 *   are [0-3],[4-7],[8-11]...
 | |
| 				 * * First comes delayed allocation write for
 | |
| 				 *   logical blocks 10 & 11. Since there were no
 | |
| 				 *   previous delayed allocated blocks in the
 | |
| 				 *   range [8-11], we would reserve 1 cluster
 | |
| 				 *   for this write.
 | |
| 				 * * Next comes write for logical blocks 3 to 8.
 | |
| 				 *   In this case, we will reserve 2 clusters
 | |
| 				 *   (for [0-3] and [4-7]; and not for [8-11] as
 | |
| 				 *   that range has a delayed allocated blocks.
 | |
| 				 *   Thus total reserved clusters now becomes 3.
 | |
| 				 * * Now, during the delayed allocation writeout
 | |
| 				 *   time, we will first write blocks [3-8] and
 | |
| 				 *   allocate 3 clusters for writing these
 | |
| 				 *   blocks. Also, we would claim all these
 | |
| 				 *   three clusters above.
 | |
| 				 * * Now when we come here to writeout the
 | |
| 				 *   blocks [10-11], we would expect to claim
 | |
| 				 *   the reservation of 1 cluster we had made
 | |
| 				 *   (and we would claim it since there are no
 | |
| 				 *   more delayed allocated blocks in the range
 | |
| 				 *   [8-11]. But our reserved cluster count had
 | |
| 				 *   already gone to 0.
 | |
| 				 *
 | |
| 				 *   Thus, at the step 4 above when we determine
 | |
| 				 *   that there are still some unwritten delayed
 | |
| 				 *   allocated blocks outside of our current
 | |
| 				 *   block range, we should increment the
 | |
| 				 *   reserved clusters count so that when the
 | |
| 				 *   remaining blocks finally gets written, we
 | |
| 				 *   could claim them.
 | |
| 				 */
 | |
| 				dquot_reserve_block(inode,
 | |
| 						EXT4_C2B(sbi, reservation));
 | |
| 				spin_lock(&ei->i_block_reservation_lock);
 | |
| 				ei->i_reserved_data_blocks += reservation;
 | |
| 				spin_unlock(&ei->i_block_reservation_lock);
 | |
| 			}
 | |
| 			/*
 | |
| 			 * We will claim quota for all newly allocated blocks.
 | |
| 			 * We're updating the reserved space *after* the
 | |
| 			 * correction above so we do not accidentally free
 | |
| 			 * all the metadata reservation because we might
 | |
| 			 * actually need it later on.
 | |
| 			 */
 | |
| 			ext4_da_update_reserve_space(inode, allocated_clusters,
 | |
| 							1);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Cache the extent and update transaction to commit on fdatasync only
 | |
| 	 * when it is _not_ an uninitialized extent.
 | |
| 	 */
 | |
| 	if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0)
 | |
| 		ext4_update_inode_fsync_trans(handle, inode, 1);
 | |
| 	else
 | |
| 		ext4_update_inode_fsync_trans(handle, inode, 0);
 | |
| out:
 | |
| 	if (allocated > map->m_len)
 | |
| 		allocated = map->m_len;
 | |
| 	ext4_ext_show_leaf(inode, path);
 | |
| 	map->m_flags |= EXT4_MAP_MAPPED;
 | |
| 	map->m_pblk = newblock;
 | |
| 	map->m_len = allocated;
 | |
| out2:
 | |
| 	if (path) {
 | |
| 		ext4_ext_drop_refs(path);
 | |
| 		kfree(path);
 | |
| 	}
 | |
| 
 | |
| out3:
 | |
| 	trace_ext4_ext_map_blocks_exit(inode, flags, map,
 | |
| 				       err ? err : allocated);
 | |
| 	ext4_es_lru_add(inode);
 | |
| 	return err ? err : allocated;
 | |
| }
 | |
| 
 | |
| void ext4_ext_truncate(handle_t *handle, struct inode *inode)
 | |
| {
 | |
| 	struct super_block *sb = inode->i_sb;
 | |
| 	ext4_lblk_t last_block;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * TODO: optimization is possible here.
 | |
| 	 * Probably we need not scan at all,
 | |
| 	 * because page truncation is enough.
 | |
| 	 */
 | |
| 
 | |
| 	/* we have to know where to truncate from in crash case */
 | |
| 	EXT4_I(inode)->i_disksize = inode->i_size;
 | |
| 	ext4_mark_inode_dirty(handle, inode);
 | |
| 
 | |
| 	last_block = (inode->i_size + sb->s_blocksize - 1)
 | |
| 			>> EXT4_BLOCK_SIZE_BITS(sb);
 | |
| retry:
 | |
| 	err = ext4_es_remove_extent(inode, last_block,
 | |
| 				    EXT_MAX_BLOCKS - last_block);
 | |
| 	if (err == -ENOMEM) {
 | |
| 		cond_resched();
 | |
| 		congestion_wait(BLK_RW_ASYNC, HZ/50);
 | |
| 		goto retry;
 | |
| 	}
 | |
| 	if (err) {
 | |
| 		ext4_std_error(inode->i_sb, err);
 | |
| 		return;
 | |
| 	}
 | |
| 	err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1);
 | |
| 	ext4_std_error(inode->i_sb, err);
 | |
| }
 | |
| 
 | |
| static void ext4_falloc_update_inode(struct inode *inode,
 | |
| 				int mode, loff_t new_size, int update_ctime)
 | |
| {
 | |
| 	struct timespec now;
 | |
| 
 | |
| 	if (update_ctime) {
 | |
| 		now = current_fs_time(inode->i_sb);
 | |
| 		if (!timespec_equal(&inode->i_ctime, &now))
 | |
| 			inode->i_ctime = now;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Update only when preallocation was requested beyond
 | |
| 	 * the file size.
 | |
| 	 */
 | |
| 	if (!(mode & FALLOC_FL_KEEP_SIZE)) {
 | |
| 		if (new_size > i_size_read(inode))
 | |
| 			i_size_write(inode, new_size);
 | |
| 		if (new_size > EXT4_I(inode)->i_disksize)
 | |
| 			ext4_update_i_disksize(inode, new_size);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Mark that we allocate beyond EOF so the subsequent truncate
 | |
| 		 * can proceed even if the new size is the same as i_size.
 | |
| 		 */
 | |
| 		if (new_size > i_size_read(inode))
 | |
| 			ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
 | |
| 	}
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * preallocate space for a file. This implements ext4's fallocate file
 | |
|  * operation, which gets called from sys_fallocate system call.
 | |
|  * For block-mapped files, posix_fallocate should fall back to the method
 | |
|  * of writing zeroes to the required new blocks (the same behavior which is
 | |
|  * expected for file systems which do not support fallocate() system call).
 | |
|  */
 | |
| long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
 | |
| {
 | |
| 	struct inode *inode = file_inode(file);
 | |
| 	handle_t *handle;
 | |
| 	loff_t new_size;
 | |
| 	unsigned int max_blocks;
 | |
| 	int ret = 0;
 | |
| 	int ret2 = 0;
 | |
| 	int retries = 0;
 | |
| 	int flags;
 | |
| 	struct ext4_map_blocks map;
 | |
| 	unsigned int credits, blkbits = inode->i_blkbits;
 | |
| 
 | |
| 	/* Return error if mode is not supported */
 | |
| 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
 | |
| 		return -EOPNOTSUPP;
 | |
| 
 | |
| 	if (mode & FALLOC_FL_PUNCH_HOLE)
 | |
| 		return ext4_punch_hole(inode, offset, len);
 | |
| 
 | |
| 	ret = ext4_convert_inline_data(inode);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * currently supporting (pre)allocate mode for extent-based
 | |
| 	 * files _only_
 | |
| 	 */
 | |
| 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
 | |
| 		return -EOPNOTSUPP;
 | |
| 
 | |
| 	trace_ext4_fallocate_enter(inode, offset, len, mode);
 | |
| 	map.m_lblk = offset >> blkbits;
 | |
| 	/*
 | |
| 	 * We can't just convert len to max_blocks because
 | |
| 	 * If blocksize = 4096 offset = 3072 and len = 2048
 | |
| 	 */
 | |
| 	max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
 | |
| 		- map.m_lblk;
 | |
| 	/*
 | |
| 	 * credits to insert 1 extent into extent tree
 | |
| 	 */
 | |
| 	credits = ext4_chunk_trans_blocks(inode, max_blocks);
 | |
| 	mutex_lock(&inode->i_mutex);
 | |
| 	ret = inode_newsize_ok(inode, (len + offset));
 | |
| 	if (ret) {
 | |
| 		mutex_unlock(&inode->i_mutex);
 | |
| 		trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
 | |
| 		return ret;
 | |
| 	}
 | |
| 	flags = EXT4_GET_BLOCKS_CREATE_UNINIT_EXT;
 | |
| 	if (mode & FALLOC_FL_KEEP_SIZE)
 | |
| 		flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
 | |
| 	/*
 | |
| 	 * Don't normalize the request if it can fit in one extent so
 | |
| 	 * that it doesn't get unnecessarily split into multiple
 | |
| 	 * extents.
 | |
| 	 */
 | |
| 	if (len <= EXT_UNINIT_MAX_LEN << blkbits)
 | |
| 		flags |= EXT4_GET_BLOCKS_NO_NORMALIZE;
 | |
| 
 | |
| retry:
 | |
| 	while (ret >= 0 && ret < max_blocks) {
 | |
| 		map.m_lblk = map.m_lblk + ret;
 | |
| 		map.m_len = max_blocks = max_blocks - ret;
 | |
| 		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
 | |
| 					    credits);
 | |
| 		if (IS_ERR(handle)) {
 | |
| 			ret = PTR_ERR(handle);
 | |
| 			break;
 | |
| 		}
 | |
| 		ret = ext4_map_blocks(handle, inode, &map, flags);
 | |
| 		if (ret <= 0) {
 | |
| #ifdef EXT4FS_DEBUG
 | |
| 			ext4_warning(inode->i_sb,
 | |
| 				     "inode #%lu: block %u: len %u: "
 | |
| 				     "ext4_ext_map_blocks returned %d",
 | |
| 				     inode->i_ino, map.m_lblk,
 | |
| 				     map.m_len, ret);
 | |
| #endif
 | |
| 			ext4_mark_inode_dirty(handle, inode);
 | |
| 			ret2 = ext4_journal_stop(handle);
 | |
| 			break;
 | |
| 		}
 | |
| 		if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
 | |
| 						blkbits) >> blkbits))
 | |
| 			new_size = offset + len;
 | |
| 		else
 | |
| 			new_size = ((loff_t) map.m_lblk + ret) << blkbits;
 | |
| 
 | |
| 		ext4_falloc_update_inode(inode, mode, new_size,
 | |
| 					 (map.m_flags & EXT4_MAP_NEW));
 | |
| 		ext4_mark_inode_dirty(handle, inode);
 | |
| 		if ((file->f_flags & O_SYNC) && ret >= max_blocks)
 | |
| 			ext4_handle_sync(handle);
 | |
| 		ret2 = ext4_journal_stop(handle);
 | |
| 		if (ret2)
 | |
| 			break;
 | |
| 	}
 | |
| 	if (ret == -ENOSPC &&
 | |
| 			ext4_should_retry_alloc(inode->i_sb, &retries)) {
 | |
| 		ret = 0;
 | |
| 		goto retry;
 | |
| 	}
 | |
| 	mutex_unlock(&inode->i_mutex);
 | |
| 	trace_ext4_fallocate_exit(inode, offset, max_blocks,
 | |
| 				ret > 0 ? ret2 : ret);
 | |
| 	return ret > 0 ? ret2 : ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function convert a range of blocks to written extents
 | |
|  * The caller of this function will pass the start offset and the size.
 | |
|  * all unwritten extents within this range will be converted to
 | |
|  * written extents.
 | |
|  *
 | |
|  * This function is called from the direct IO end io call back
 | |
|  * function, to convert the fallocated extents after IO is completed.
 | |
|  * Returns 0 on success.
 | |
|  */
 | |
| int ext4_convert_unwritten_extents(handle_t *handle, struct inode *inode,
 | |
| 				   loff_t offset, ssize_t len)
 | |
| {
 | |
| 	unsigned int max_blocks;
 | |
| 	int ret = 0;
 | |
| 	int ret2 = 0;
 | |
| 	struct ext4_map_blocks map;
 | |
| 	unsigned int credits, blkbits = inode->i_blkbits;
 | |
| 
 | |
| 	map.m_lblk = offset >> blkbits;
 | |
| 	/*
 | |
| 	 * We can't just convert len to max_blocks because
 | |
| 	 * If blocksize = 4096 offset = 3072 and len = 2048
 | |
| 	 */
 | |
| 	max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
 | |
| 		      map.m_lblk);
 | |
| 	/*
 | |
| 	 * This is somewhat ugly but the idea is clear: When transaction is
 | |
| 	 * reserved, everything goes into it. Otherwise we rather start several
 | |
| 	 * smaller transactions for conversion of each extent separately.
 | |
| 	 */
 | |
| 	if (handle) {
 | |
| 		handle = ext4_journal_start_reserved(handle,
 | |
| 						     EXT4_HT_EXT_CONVERT);
 | |
| 		if (IS_ERR(handle))
 | |
| 			return PTR_ERR(handle);
 | |
| 		credits = 0;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * credits to insert 1 extent into extent tree
 | |
| 		 */
 | |
| 		credits = ext4_chunk_trans_blocks(inode, max_blocks);
 | |
| 	}
 | |
| 	while (ret >= 0 && ret < max_blocks) {
 | |
| 		map.m_lblk += ret;
 | |
| 		map.m_len = (max_blocks -= ret);
 | |
| 		if (credits) {
 | |
| 			handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
 | |
| 						    credits);
 | |
| 			if (IS_ERR(handle)) {
 | |
| 				ret = PTR_ERR(handle);
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 		ret = ext4_map_blocks(handle, inode, &map,
 | |
| 				      EXT4_GET_BLOCKS_IO_CONVERT_EXT);
 | |
| 		if (ret <= 0)
 | |
| 			ext4_warning(inode->i_sb,
 | |
| 				     "inode #%lu: block %u: len %u: "
 | |
| 				     "ext4_ext_map_blocks returned %d",
 | |
| 				     inode->i_ino, map.m_lblk,
 | |
| 				     map.m_len, ret);
 | |
| 		ext4_mark_inode_dirty(handle, inode);
 | |
| 		if (credits)
 | |
| 			ret2 = ext4_journal_stop(handle);
 | |
| 		if (ret <= 0 || ret2)
 | |
| 			break;
 | |
| 	}
 | |
| 	if (!credits)
 | |
| 		ret2 = ext4_journal_stop(handle);
 | |
| 	return ret > 0 ? ret2 : ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If newes is not existing extent (newes->ec_pblk equals zero) find
 | |
|  * delayed extent at start of newes and update newes accordingly and
 | |
|  * return start of the next delayed extent.
 | |
|  *
 | |
|  * If newes is existing extent (newes->ec_pblk is not equal zero)
 | |
|  * return start of next delayed extent or EXT_MAX_BLOCKS if no delayed
 | |
|  * extent found. Leave newes unmodified.
 | |
|  */
 | |
| static int ext4_find_delayed_extent(struct inode *inode,
 | |
| 				    struct extent_status *newes)
 | |
| {
 | |
| 	struct extent_status es;
 | |
| 	ext4_lblk_t block, next_del;
 | |
| 
 | |
| 	if (newes->es_pblk == 0) {
 | |
| 		ext4_es_find_delayed_extent_range(inode, newes->es_lblk,
 | |
| 				newes->es_lblk + newes->es_len - 1, &es);
 | |
| 
 | |
| 		/*
 | |
| 		 * No extent in extent-tree contains block @newes->es_pblk,
 | |
| 		 * then the block may stay in 1)a hole or 2)delayed-extent.
 | |
| 		 */
 | |
| 		if (es.es_len == 0)
 | |
| 			/* A hole found. */
 | |
| 			return 0;
 | |
| 
 | |
| 		if (es.es_lblk > newes->es_lblk) {
 | |
| 			/* A hole found. */
 | |
| 			newes->es_len = min(es.es_lblk - newes->es_lblk,
 | |
| 					    newes->es_len);
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		newes->es_len = es.es_lblk + es.es_len - newes->es_lblk;
 | |
| 	}
 | |
| 
 | |
| 	block = newes->es_lblk + newes->es_len;
 | |
| 	ext4_es_find_delayed_extent_range(inode, block, EXT_MAX_BLOCKS, &es);
 | |
| 	if (es.es_len == 0)
 | |
| 		next_del = EXT_MAX_BLOCKS;
 | |
| 	else
 | |
| 		next_del = es.es_lblk;
 | |
| 
 | |
| 	return next_del;
 | |
| }
 | |
| /* fiemap flags we can handle specified here */
 | |
| #define EXT4_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
 | |
| 
 | |
| static int ext4_xattr_fiemap(struct inode *inode,
 | |
| 				struct fiemap_extent_info *fieinfo)
 | |
| {
 | |
| 	__u64 physical = 0;
 | |
| 	__u64 length;
 | |
| 	__u32 flags = FIEMAP_EXTENT_LAST;
 | |
| 	int blockbits = inode->i_sb->s_blocksize_bits;
 | |
| 	int error = 0;
 | |
| 
 | |
| 	/* in-inode? */
 | |
| 	if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
 | |
| 		struct ext4_iloc iloc;
 | |
| 		int offset;	/* offset of xattr in inode */
 | |
| 
 | |
| 		error = ext4_get_inode_loc(inode, &iloc);
 | |
| 		if (error)
 | |
| 			return error;
 | |
| 		physical = (__u64)iloc.bh->b_blocknr << blockbits;
 | |
| 		offset = EXT4_GOOD_OLD_INODE_SIZE +
 | |
| 				EXT4_I(inode)->i_extra_isize;
 | |
| 		physical += offset;
 | |
| 		length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
 | |
| 		flags |= FIEMAP_EXTENT_DATA_INLINE;
 | |
| 		brelse(iloc.bh);
 | |
| 	} else { /* external block */
 | |
| 		physical = (__u64)EXT4_I(inode)->i_file_acl << blockbits;
 | |
| 		length = inode->i_sb->s_blocksize;
 | |
| 	}
 | |
| 
 | |
| 	if (physical)
 | |
| 		error = fiemap_fill_next_extent(fieinfo, 0, physical,
 | |
| 						length, flags);
 | |
| 	return (error < 0 ? error : 0);
 | |
| }
 | |
| 
 | |
| int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
 | |
| 		__u64 start, __u64 len)
 | |
| {
 | |
| 	ext4_lblk_t start_blk;
 | |
| 	int error = 0;
 | |
| 
 | |
| 	if (ext4_has_inline_data(inode)) {
 | |
| 		int has_inline = 1;
 | |
| 
 | |
| 		error = ext4_inline_data_fiemap(inode, fieinfo, &has_inline);
 | |
| 
 | |
| 		if (has_inline)
 | |
| 			return error;
 | |
| 	}
 | |
| 
 | |
| 	if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
 | |
| 		error = ext4_ext_precache(inode);
 | |
| 		if (error)
 | |
| 			return error;
 | |
| 	}
 | |
| 
 | |
| 	/* fallback to generic here if not in extents fmt */
 | |
| 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
 | |
| 		return generic_block_fiemap(inode, fieinfo, start, len,
 | |
| 			ext4_get_block);
 | |
| 
 | |
| 	if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
 | |
| 		return -EBADR;
 | |
| 
 | |
| 	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
 | |
| 		error = ext4_xattr_fiemap(inode, fieinfo);
 | |
| 	} else {
 | |
| 		ext4_lblk_t len_blks;
 | |
| 		__u64 last_blk;
 | |
| 
 | |
| 		start_blk = start >> inode->i_sb->s_blocksize_bits;
 | |
| 		last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
 | |
| 		if (last_blk >= EXT_MAX_BLOCKS)
 | |
| 			last_blk = EXT_MAX_BLOCKS-1;
 | |
| 		len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
 | |
| 
 | |
| 		/*
 | |
| 		 * Walk the extent tree gathering extent information
 | |
| 		 * and pushing extents back to the user.
 | |
| 		 */
 | |
| 		error = ext4_fill_fiemap_extents(inode, start_blk,
 | |
| 						 len_blks, fieinfo);
 | |
| 	}
 | |
| 	ext4_es_lru_add(inode);
 | |
| 	return error;
 | |
| }
 |