 e7f3880cd9
			
		
	
	
	e7f3880cd9
	
	
	
		
			
			tty_perform_flush() can deadlock when called while holding
a line discipline reference. By definition, all ldisc drivers
hold a ldisc reference, so calls originating from ldisc drivers
must not block for a ldisc reference.
The deadlock can occur when:
  CPU 0                    |  CPU 1
                           |
tty_ldisc_ref(tty)         |
....                       | <line discipline halted>
tty_ldisc_ref_wait(tty)    |
                           |
CPU 0 cannot progess because it cannot obtain an ldisc reference
with the line discipline has been halted (thus no new references
are granted).
CPU 1 cannot progress because an outstanding ldisc reference
has not been released.
An in-tree call-tree audit of tty_perform_flush() [1] shows 5
ldisc drivers calling tty_perform_flush() indirectly via
n_tty_ioctl_helper() and 2 ldisc drivers calling directly.
A single tty driver safely uses the function.
[1]
Recursive usage:
/* These functions are line discipline ioctls and thus
 * recursive wrt line discipline references */
tty_perform_flush() - ./drivers/tty/tty_ioctl.c
    n_tty_ioctl_helper()
        hci_uart_tty_ioctl(default) - drivers/bluetooth/hci_ldisc.c (N_HCI)
        n_hdlc_tty_ioctl(default) - drivers/tty/n_hdlc.c (N_HDLC)
        gsmld_ioctl(default) - drivers/tty/n_gsm.c (N_GSM0710)
        n_tty_ioctl(default) - drivers/tty/n_tty.c (N_TTY)
        gigaset_tty_ioctl(default) - drivers/isdn/gigaset/ser-gigaset.c (N_GIGASET_M101)
    ppp_synctty_ioctl(TCFLSH) - drivers/net/ppp/pps_synctty.c
    ppp_asynctty_ioctl(TCFLSH) - drivers/net/ppp/ppp_async.c
Non-recursive use:
tty_perform_flush() - drivers/tty/tty_ioctl.c
    ipw_ioctl(TCFLSH) - drivers/tty/ipwireless/tty.c
       /* This function is a tty i/o ioctl method, which
        * is invoked by tty_ioctl() */
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
		
	
			
		
			
				
	
	
		
			1028 lines
		
	
	
	
		
			24 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1028 lines
		
	
	
	
		
			24 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * PPP async serial channel driver for Linux.
 | |
|  *
 | |
|  * Copyright 1999 Paul Mackerras.
 | |
|  *
 | |
|  *  This program is free software; you can redistribute it and/or
 | |
|  *  modify it under the terms of the GNU General Public License
 | |
|  *  as published by the Free Software Foundation; either version
 | |
|  *  2 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This driver provides the encapsulation and framing for sending
 | |
|  * and receiving PPP frames over async serial lines.  It relies on
 | |
|  * the generic PPP layer to give it frames to send and to process
 | |
|  * received frames.  It implements the PPP line discipline.
 | |
|  *
 | |
|  * Part of the code in this driver was inspired by the old async-only
 | |
|  * PPP driver, written by Michael Callahan and Al Longyear, and
 | |
|  * subsequently hacked by Paul Mackerras.
 | |
|  */
 | |
| 
 | |
| #include <linux/module.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/skbuff.h>
 | |
| #include <linux/tty.h>
 | |
| #include <linux/netdevice.h>
 | |
| #include <linux/poll.h>
 | |
| #include <linux/crc-ccitt.h>
 | |
| #include <linux/ppp_defs.h>
 | |
| #include <linux/ppp-ioctl.h>
 | |
| #include <linux/ppp_channel.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/jiffies.h>
 | |
| #include <linux/slab.h>
 | |
| #include <asm/unaligned.h>
 | |
| #include <asm/uaccess.h>
 | |
| #include <asm/string.h>
 | |
| 
 | |
| #define PPP_VERSION	"2.4.2"
 | |
| 
 | |
| #define OBUFSIZE	4096
 | |
| 
 | |
| /* Structure for storing local state. */
 | |
| struct asyncppp {
 | |
| 	struct tty_struct *tty;
 | |
| 	unsigned int	flags;
 | |
| 	unsigned int	state;
 | |
| 	unsigned int	rbits;
 | |
| 	int		mru;
 | |
| 	spinlock_t	xmit_lock;
 | |
| 	spinlock_t	recv_lock;
 | |
| 	unsigned long	xmit_flags;
 | |
| 	u32		xaccm[8];
 | |
| 	u32		raccm;
 | |
| 	unsigned int	bytes_sent;
 | |
| 	unsigned int	bytes_rcvd;
 | |
| 
 | |
| 	struct sk_buff	*tpkt;
 | |
| 	int		tpkt_pos;
 | |
| 	u16		tfcs;
 | |
| 	unsigned char	*optr;
 | |
| 	unsigned char	*olim;
 | |
| 	unsigned long	last_xmit;
 | |
| 
 | |
| 	struct sk_buff	*rpkt;
 | |
| 	int		lcp_fcs;
 | |
| 	struct sk_buff_head rqueue;
 | |
| 
 | |
| 	struct tasklet_struct tsk;
 | |
| 
 | |
| 	atomic_t	refcnt;
 | |
| 	struct semaphore dead_sem;
 | |
| 	struct ppp_channel chan;	/* interface to generic ppp layer */
 | |
| 	unsigned char	obuf[OBUFSIZE];
 | |
| };
 | |
| 
 | |
| /* Bit numbers in xmit_flags */
 | |
| #define XMIT_WAKEUP	0
 | |
| #define XMIT_FULL	1
 | |
| #define XMIT_BUSY	2
 | |
| 
 | |
| /* State bits */
 | |
| #define SC_TOSS		1
 | |
| #define SC_ESCAPE	2
 | |
| #define SC_PREV_ERROR	4
 | |
| 
 | |
| /* Bits in rbits */
 | |
| #define SC_RCV_BITS	(SC_RCV_B7_1|SC_RCV_B7_0|SC_RCV_ODDP|SC_RCV_EVNP)
 | |
| 
 | |
| static int flag_time = HZ;
 | |
| module_param(flag_time, int, 0);
 | |
| MODULE_PARM_DESC(flag_time, "ppp_async: interval between flagged packets (in clock ticks)");
 | |
| MODULE_LICENSE("GPL");
 | |
| MODULE_ALIAS_LDISC(N_PPP);
 | |
| 
 | |
| /*
 | |
|  * Prototypes.
 | |
|  */
 | |
| static int ppp_async_encode(struct asyncppp *ap);
 | |
| static int ppp_async_send(struct ppp_channel *chan, struct sk_buff *skb);
 | |
| static int ppp_async_push(struct asyncppp *ap);
 | |
| static void ppp_async_flush_output(struct asyncppp *ap);
 | |
| static void ppp_async_input(struct asyncppp *ap, const unsigned char *buf,
 | |
| 			    char *flags, int count);
 | |
| static int ppp_async_ioctl(struct ppp_channel *chan, unsigned int cmd,
 | |
| 			   unsigned long arg);
 | |
| static void ppp_async_process(unsigned long arg);
 | |
| 
 | |
| static void async_lcp_peek(struct asyncppp *ap, unsigned char *data,
 | |
| 			   int len, int inbound);
 | |
| 
 | |
| static const struct ppp_channel_ops async_ops = {
 | |
| 	.start_xmit = ppp_async_send,
 | |
| 	.ioctl      = ppp_async_ioctl,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Routines implementing the PPP line discipline.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * We have a potential race on dereferencing tty->disc_data,
 | |
|  * because the tty layer provides no locking at all - thus one
 | |
|  * cpu could be running ppp_asynctty_receive while another
 | |
|  * calls ppp_asynctty_close, which zeroes tty->disc_data and
 | |
|  * frees the memory that ppp_asynctty_receive is using.  The best
 | |
|  * way to fix this is to use a rwlock in the tty struct, but for now
 | |
|  * we use a single global rwlock for all ttys in ppp line discipline.
 | |
|  *
 | |
|  * FIXME: this is no longer true. The _close path for the ldisc is
 | |
|  * now guaranteed to be sane.
 | |
|  */
 | |
| static DEFINE_RWLOCK(disc_data_lock);
 | |
| 
 | |
| static struct asyncppp *ap_get(struct tty_struct *tty)
 | |
| {
 | |
| 	struct asyncppp *ap;
 | |
| 
 | |
| 	read_lock(&disc_data_lock);
 | |
| 	ap = tty->disc_data;
 | |
| 	if (ap != NULL)
 | |
| 		atomic_inc(&ap->refcnt);
 | |
| 	read_unlock(&disc_data_lock);
 | |
| 	return ap;
 | |
| }
 | |
| 
 | |
| static void ap_put(struct asyncppp *ap)
 | |
| {
 | |
| 	if (atomic_dec_and_test(&ap->refcnt))
 | |
| 		up(&ap->dead_sem);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called when a tty is put into PPP line discipline. Called in process
 | |
|  * context.
 | |
|  */
 | |
| static int
 | |
| ppp_asynctty_open(struct tty_struct *tty)
 | |
| {
 | |
| 	struct asyncppp *ap;
 | |
| 	int err;
 | |
| 	int speed;
 | |
| 
 | |
| 	if (tty->ops->write == NULL)
 | |
| 		return -EOPNOTSUPP;
 | |
| 
 | |
| 	err = -ENOMEM;
 | |
| 	ap = kzalloc(sizeof(*ap), GFP_KERNEL);
 | |
| 	if (!ap)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* initialize the asyncppp structure */
 | |
| 	ap->tty = tty;
 | |
| 	ap->mru = PPP_MRU;
 | |
| 	spin_lock_init(&ap->xmit_lock);
 | |
| 	spin_lock_init(&ap->recv_lock);
 | |
| 	ap->xaccm[0] = ~0U;
 | |
| 	ap->xaccm[3] = 0x60000000U;
 | |
| 	ap->raccm = ~0U;
 | |
| 	ap->optr = ap->obuf;
 | |
| 	ap->olim = ap->obuf;
 | |
| 	ap->lcp_fcs = -1;
 | |
| 
 | |
| 	skb_queue_head_init(&ap->rqueue);
 | |
| 	tasklet_init(&ap->tsk, ppp_async_process, (unsigned long) ap);
 | |
| 
 | |
| 	atomic_set(&ap->refcnt, 1);
 | |
| 	sema_init(&ap->dead_sem, 0);
 | |
| 
 | |
| 	ap->chan.private = ap;
 | |
| 	ap->chan.ops = &async_ops;
 | |
| 	ap->chan.mtu = PPP_MRU;
 | |
| 	speed = tty_get_baud_rate(tty);
 | |
| 	ap->chan.speed = speed;
 | |
| 	err = ppp_register_channel(&ap->chan);
 | |
| 	if (err)
 | |
| 		goto out_free;
 | |
| 
 | |
| 	tty->disc_data = ap;
 | |
| 	tty->receive_room = 65536;
 | |
| 	return 0;
 | |
| 
 | |
|  out_free:
 | |
| 	kfree(ap);
 | |
|  out:
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called when the tty is put into another line discipline
 | |
|  * or it hangs up.  We have to wait for any cpu currently
 | |
|  * executing in any of the other ppp_asynctty_* routines to
 | |
|  * finish before we can call ppp_unregister_channel and free
 | |
|  * the asyncppp struct.  This routine must be called from
 | |
|  * process context, not interrupt or softirq context.
 | |
|  */
 | |
| static void
 | |
| ppp_asynctty_close(struct tty_struct *tty)
 | |
| {
 | |
| 	struct asyncppp *ap;
 | |
| 
 | |
| 	write_lock_irq(&disc_data_lock);
 | |
| 	ap = tty->disc_data;
 | |
| 	tty->disc_data = NULL;
 | |
| 	write_unlock_irq(&disc_data_lock);
 | |
| 	if (!ap)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * We have now ensured that nobody can start using ap from now
 | |
| 	 * on, but we have to wait for all existing users to finish.
 | |
| 	 * Note that ppp_unregister_channel ensures that no calls to
 | |
| 	 * our channel ops (i.e. ppp_async_send/ioctl) are in progress
 | |
| 	 * by the time it returns.
 | |
| 	 */
 | |
| 	if (!atomic_dec_and_test(&ap->refcnt))
 | |
| 		down(&ap->dead_sem);
 | |
| 	tasklet_kill(&ap->tsk);
 | |
| 
 | |
| 	ppp_unregister_channel(&ap->chan);
 | |
| 	kfree_skb(ap->rpkt);
 | |
| 	skb_queue_purge(&ap->rqueue);
 | |
| 	kfree_skb(ap->tpkt);
 | |
| 	kfree(ap);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called on tty hangup in process context.
 | |
|  *
 | |
|  * Wait for I/O to driver to complete and unregister PPP channel.
 | |
|  * This is already done by the close routine, so just call that.
 | |
|  */
 | |
| static int ppp_asynctty_hangup(struct tty_struct *tty)
 | |
| {
 | |
| 	ppp_asynctty_close(tty);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Read does nothing - no data is ever available this way.
 | |
|  * Pppd reads and writes packets via /dev/ppp instead.
 | |
|  */
 | |
| static ssize_t
 | |
| ppp_asynctty_read(struct tty_struct *tty, struct file *file,
 | |
| 		  unsigned char __user *buf, size_t count)
 | |
| {
 | |
| 	return -EAGAIN;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Write on the tty does nothing, the packets all come in
 | |
|  * from the ppp generic stuff.
 | |
|  */
 | |
| static ssize_t
 | |
| ppp_asynctty_write(struct tty_struct *tty, struct file *file,
 | |
| 		   const unsigned char *buf, size_t count)
 | |
| {
 | |
| 	return -EAGAIN;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called in process context only. May be re-entered by multiple
 | |
|  * ioctl calling threads.
 | |
|  */
 | |
| 
 | |
| static int
 | |
| ppp_asynctty_ioctl(struct tty_struct *tty, struct file *file,
 | |
| 		   unsigned int cmd, unsigned long arg)
 | |
| {
 | |
| 	struct asyncppp *ap = ap_get(tty);
 | |
| 	int err, val;
 | |
| 	int __user *p = (int __user *)arg;
 | |
| 
 | |
| 	if (!ap)
 | |
| 		return -ENXIO;
 | |
| 	err = -EFAULT;
 | |
| 	switch (cmd) {
 | |
| 	case PPPIOCGCHAN:
 | |
| 		err = -EFAULT;
 | |
| 		if (put_user(ppp_channel_index(&ap->chan), p))
 | |
| 			break;
 | |
| 		err = 0;
 | |
| 		break;
 | |
| 
 | |
| 	case PPPIOCGUNIT:
 | |
| 		err = -EFAULT;
 | |
| 		if (put_user(ppp_unit_number(&ap->chan), p))
 | |
| 			break;
 | |
| 		err = 0;
 | |
| 		break;
 | |
| 
 | |
| 	case TCFLSH:
 | |
| 		/* flush our buffers and the serial port's buffer */
 | |
| 		if (arg == TCIOFLUSH || arg == TCOFLUSH)
 | |
| 			ppp_async_flush_output(ap);
 | |
| 		err = n_tty_ioctl_helper(tty, file, cmd, arg);
 | |
| 		break;
 | |
| 
 | |
| 	case FIONREAD:
 | |
| 		val = 0;
 | |
| 		if (put_user(val, p))
 | |
| 			break;
 | |
| 		err = 0;
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		/* Try the various mode ioctls */
 | |
| 		err = tty_mode_ioctl(tty, file, cmd, arg);
 | |
| 	}
 | |
| 
 | |
| 	ap_put(ap);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /* No kernel lock - fine */
 | |
| static unsigned int
 | |
| ppp_asynctty_poll(struct tty_struct *tty, struct file *file, poll_table *wait)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* May sleep, don't call from interrupt level or with interrupts disabled */
 | |
| static void
 | |
| ppp_asynctty_receive(struct tty_struct *tty, const unsigned char *buf,
 | |
| 		  char *cflags, int count)
 | |
| {
 | |
| 	struct asyncppp *ap = ap_get(tty);
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (!ap)
 | |
| 		return;
 | |
| 	spin_lock_irqsave(&ap->recv_lock, flags);
 | |
| 	ppp_async_input(ap, buf, cflags, count);
 | |
| 	spin_unlock_irqrestore(&ap->recv_lock, flags);
 | |
| 	if (!skb_queue_empty(&ap->rqueue))
 | |
| 		tasklet_schedule(&ap->tsk);
 | |
| 	ap_put(ap);
 | |
| 	tty_unthrottle(tty);
 | |
| }
 | |
| 
 | |
| static void
 | |
| ppp_asynctty_wakeup(struct tty_struct *tty)
 | |
| {
 | |
| 	struct asyncppp *ap = ap_get(tty);
 | |
| 
 | |
| 	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
 | |
| 	if (!ap)
 | |
| 		return;
 | |
| 	set_bit(XMIT_WAKEUP, &ap->xmit_flags);
 | |
| 	tasklet_schedule(&ap->tsk);
 | |
| 	ap_put(ap);
 | |
| }
 | |
| 
 | |
| 
 | |
| static struct tty_ldisc_ops ppp_ldisc = {
 | |
| 	.owner  = THIS_MODULE,
 | |
| 	.magic	= TTY_LDISC_MAGIC,
 | |
| 	.name	= "ppp",
 | |
| 	.open	= ppp_asynctty_open,
 | |
| 	.close	= ppp_asynctty_close,
 | |
| 	.hangup	= ppp_asynctty_hangup,
 | |
| 	.read	= ppp_asynctty_read,
 | |
| 	.write	= ppp_asynctty_write,
 | |
| 	.ioctl	= ppp_asynctty_ioctl,
 | |
| 	.poll	= ppp_asynctty_poll,
 | |
| 	.receive_buf = ppp_asynctty_receive,
 | |
| 	.write_wakeup = ppp_asynctty_wakeup,
 | |
| };
 | |
| 
 | |
| static int __init
 | |
| ppp_async_init(void)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	err = tty_register_ldisc(N_PPP, &ppp_ldisc);
 | |
| 	if (err != 0)
 | |
| 		printk(KERN_ERR "PPP_async: error %d registering line disc.\n",
 | |
| 		       err);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The following routines provide the PPP channel interface.
 | |
|  */
 | |
| static int
 | |
| ppp_async_ioctl(struct ppp_channel *chan, unsigned int cmd, unsigned long arg)
 | |
| {
 | |
| 	struct asyncppp *ap = chan->private;
 | |
| 	void __user *argp = (void __user *)arg;
 | |
| 	int __user *p = argp;
 | |
| 	int err, val;
 | |
| 	u32 accm[8];
 | |
| 
 | |
| 	err = -EFAULT;
 | |
| 	switch (cmd) {
 | |
| 	case PPPIOCGFLAGS:
 | |
| 		val = ap->flags | ap->rbits;
 | |
| 		if (put_user(val, p))
 | |
| 			break;
 | |
| 		err = 0;
 | |
| 		break;
 | |
| 	case PPPIOCSFLAGS:
 | |
| 		if (get_user(val, p))
 | |
| 			break;
 | |
| 		ap->flags = val & ~SC_RCV_BITS;
 | |
| 		spin_lock_irq(&ap->recv_lock);
 | |
| 		ap->rbits = val & SC_RCV_BITS;
 | |
| 		spin_unlock_irq(&ap->recv_lock);
 | |
| 		err = 0;
 | |
| 		break;
 | |
| 
 | |
| 	case PPPIOCGASYNCMAP:
 | |
| 		if (put_user(ap->xaccm[0], (u32 __user *)argp))
 | |
| 			break;
 | |
| 		err = 0;
 | |
| 		break;
 | |
| 	case PPPIOCSASYNCMAP:
 | |
| 		if (get_user(ap->xaccm[0], (u32 __user *)argp))
 | |
| 			break;
 | |
| 		err = 0;
 | |
| 		break;
 | |
| 
 | |
| 	case PPPIOCGRASYNCMAP:
 | |
| 		if (put_user(ap->raccm, (u32 __user *)argp))
 | |
| 			break;
 | |
| 		err = 0;
 | |
| 		break;
 | |
| 	case PPPIOCSRASYNCMAP:
 | |
| 		if (get_user(ap->raccm, (u32 __user *)argp))
 | |
| 			break;
 | |
| 		err = 0;
 | |
| 		break;
 | |
| 
 | |
| 	case PPPIOCGXASYNCMAP:
 | |
| 		if (copy_to_user(argp, ap->xaccm, sizeof(ap->xaccm)))
 | |
| 			break;
 | |
| 		err = 0;
 | |
| 		break;
 | |
| 	case PPPIOCSXASYNCMAP:
 | |
| 		if (copy_from_user(accm, argp, sizeof(accm)))
 | |
| 			break;
 | |
| 		accm[2] &= ~0x40000000U;	/* can't escape 0x5e */
 | |
| 		accm[3] |= 0x60000000U;		/* must escape 0x7d, 0x7e */
 | |
| 		memcpy(ap->xaccm, accm, sizeof(ap->xaccm));
 | |
| 		err = 0;
 | |
| 		break;
 | |
| 
 | |
| 	case PPPIOCGMRU:
 | |
| 		if (put_user(ap->mru, p))
 | |
| 			break;
 | |
| 		err = 0;
 | |
| 		break;
 | |
| 	case PPPIOCSMRU:
 | |
| 		if (get_user(val, p))
 | |
| 			break;
 | |
| 		if (val < PPP_MRU)
 | |
| 			val = PPP_MRU;
 | |
| 		ap->mru = val;
 | |
| 		err = 0;
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		err = -ENOTTY;
 | |
| 	}
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is called at softirq level to deliver received packets
 | |
|  * to the ppp_generic code, and to tell the ppp_generic code
 | |
|  * if we can accept more output now.
 | |
|  */
 | |
| static void ppp_async_process(unsigned long arg)
 | |
| {
 | |
| 	struct asyncppp *ap = (struct asyncppp *) arg;
 | |
| 	struct sk_buff *skb;
 | |
| 
 | |
| 	/* process received packets */
 | |
| 	while ((skb = skb_dequeue(&ap->rqueue)) != NULL) {
 | |
| 		if (skb->cb[0])
 | |
| 			ppp_input_error(&ap->chan, 0);
 | |
| 		ppp_input(&ap->chan, skb);
 | |
| 	}
 | |
| 
 | |
| 	/* try to push more stuff out */
 | |
| 	if (test_bit(XMIT_WAKEUP, &ap->xmit_flags) && ppp_async_push(ap))
 | |
| 		ppp_output_wakeup(&ap->chan);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Procedures for encapsulation and framing.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Procedure to encode the data for async serial transmission.
 | |
|  * Does octet stuffing (escaping), puts the address/control bytes
 | |
|  * on if A/C compression is disabled, and does protocol compression.
 | |
|  * Assumes ap->tpkt != 0 on entry.
 | |
|  * Returns 1 if we finished the current frame, 0 otherwise.
 | |
|  */
 | |
| 
 | |
| #define PUT_BYTE(ap, buf, c, islcp)	do {		\
 | |
| 	if ((islcp && c < 0x20) || (ap->xaccm[c >> 5] & (1 << (c & 0x1f)))) {\
 | |
| 		*buf++ = PPP_ESCAPE;			\
 | |
| 		*buf++ = c ^ PPP_TRANS;			\
 | |
| 	} else						\
 | |
| 		*buf++ = c;				\
 | |
| } while (0)
 | |
| 
 | |
| static int
 | |
| ppp_async_encode(struct asyncppp *ap)
 | |
| {
 | |
| 	int fcs, i, count, c, proto;
 | |
| 	unsigned char *buf, *buflim;
 | |
| 	unsigned char *data;
 | |
| 	int islcp;
 | |
| 
 | |
| 	buf = ap->obuf;
 | |
| 	ap->olim = buf;
 | |
| 	ap->optr = buf;
 | |
| 	i = ap->tpkt_pos;
 | |
| 	data = ap->tpkt->data;
 | |
| 	count = ap->tpkt->len;
 | |
| 	fcs = ap->tfcs;
 | |
| 	proto = get_unaligned_be16(data);
 | |
| 
 | |
| 	/*
 | |
| 	 * LCP packets with code values between 1 (configure-reqest)
 | |
| 	 * and 7 (code-reject) must be sent as though no options
 | |
| 	 * had been negotiated.
 | |
| 	 */
 | |
| 	islcp = proto == PPP_LCP && 1 <= data[2] && data[2] <= 7;
 | |
| 
 | |
| 	if (i == 0) {
 | |
| 		if (islcp)
 | |
| 			async_lcp_peek(ap, data, count, 0);
 | |
| 
 | |
| 		/*
 | |
| 		 * Start of a new packet - insert the leading FLAG
 | |
| 		 * character if necessary.
 | |
| 		 */
 | |
| 		if (islcp || flag_time == 0 ||
 | |
| 		    time_after_eq(jiffies, ap->last_xmit + flag_time))
 | |
| 			*buf++ = PPP_FLAG;
 | |
| 		ap->last_xmit = jiffies;
 | |
| 		fcs = PPP_INITFCS;
 | |
| 
 | |
| 		/*
 | |
| 		 * Put in the address/control bytes if necessary
 | |
| 		 */
 | |
| 		if ((ap->flags & SC_COMP_AC) == 0 || islcp) {
 | |
| 			PUT_BYTE(ap, buf, 0xff, islcp);
 | |
| 			fcs = PPP_FCS(fcs, 0xff);
 | |
| 			PUT_BYTE(ap, buf, 0x03, islcp);
 | |
| 			fcs = PPP_FCS(fcs, 0x03);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Once we put in the last byte, we need to put in the FCS
 | |
| 	 * and closing flag, so make sure there is at least 7 bytes
 | |
| 	 * of free space in the output buffer.
 | |
| 	 */
 | |
| 	buflim = ap->obuf + OBUFSIZE - 6;
 | |
| 	while (i < count && buf < buflim) {
 | |
| 		c = data[i++];
 | |
| 		if (i == 1 && c == 0 && (ap->flags & SC_COMP_PROT))
 | |
| 			continue;	/* compress protocol field */
 | |
| 		fcs = PPP_FCS(fcs, c);
 | |
| 		PUT_BYTE(ap, buf, c, islcp);
 | |
| 	}
 | |
| 
 | |
| 	if (i < count) {
 | |
| 		/*
 | |
| 		 * Remember where we are up to in this packet.
 | |
| 		 */
 | |
| 		ap->olim = buf;
 | |
| 		ap->tpkt_pos = i;
 | |
| 		ap->tfcs = fcs;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We have finished the packet.  Add the FCS and flag.
 | |
| 	 */
 | |
| 	fcs = ~fcs;
 | |
| 	c = fcs & 0xff;
 | |
| 	PUT_BYTE(ap, buf, c, islcp);
 | |
| 	c = (fcs >> 8) & 0xff;
 | |
| 	PUT_BYTE(ap, buf, c, islcp);
 | |
| 	*buf++ = PPP_FLAG;
 | |
| 	ap->olim = buf;
 | |
| 
 | |
| 	consume_skb(ap->tpkt);
 | |
| 	ap->tpkt = NULL;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Transmit-side routines.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Send a packet to the peer over an async tty line.
 | |
|  * Returns 1 iff the packet was accepted.
 | |
|  * If the packet was not accepted, we will call ppp_output_wakeup
 | |
|  * at some later time.
 | |
|  */
 | |
| static int
 | |
| ppp_async_send(struct ppp_channel *chan, struct sk_buff *skb)
 | |
| {
 | |
| 	struct asyncppp *ap = chan->private;
 | |
| 
 | |
| 	ppp_async_push(ap);
 | |
| 
 | |
| 	if (test_and_set_bit(XMIT_FULL, &ap->xmit_flags))
 | |
| 		return 0;	/* already full */
 | |
| 	ap->tpkt = skb;
 | |
| 	ap->tpkt_pos = 0;
 | |
| 
 | |
| 	ppp_async_push(ap);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Push as much data as possible out to the tty.
 | |
|  */
 | |
| static int
 | |
| ppp_async_push(struct asyncppp *ap)
 | |
| {
 | |
| 	int avail, sent, done = 0;
 | |
| 	struct tty_struct *tty = ap->tty;
 | |
| 	int tty_stuffed = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * We can get called recursively here if the tty write
 | |
| 	 * function calls our wakeup function.  This can happen
 | |
| 	 * for example on a pty with both the master and slave
 | |
| 	 * set to PPP line discipline.
 | |
| 	 * We use the XMIT_BUSY bit to detect this and get out,
 | |
| 	 * leaving the XMIT_WAKEUP bit set to tell the other
 | |
| 	 * instance that it may now be able to write more now.
 | |
| 	 */
 | |
| 	if (test_and_set_bit(XMIT_BUSY, &ap->xmit_flags))
 | |
| 		return 0;
 | |
| 	spin_lock_bh(&ap->xmit_lock);
 | |
| 	for (;;) {
 | |
| 		if (test_and_clear_bit(XMIT_WAKEUP, &ap->xmit_flags))
 | |
| 			tty_stuffed = 0;
 | |
| 		if (!tty_stuffed && ap->optr < ap->olim) {
 | |
| 			avail = ap->olim - ap->optr;
 | |
| 			set_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
 | |
| 			sent = tty->ops->write(tty, ap->optr, avail);
 | |
| 			if (sent < 0)
 | |
| 				goto flush;	/* error, e.g. loss of CD */
 | |
| 			ap->optr += sent;
 | |
| 			if (sent < avail)
 | |
| 				tty_stuffed = 1;
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (ap->optr >= ap->olim && ap->tpkt) {
 | |
| 			if (ppp_async_encode(ap)) {
 | |
| 				/* finished processing ap->tpkt */
 | |
| 				clear_bit(XMIT_FULL, &ap->xmit_flags);
 | |
| 				done = 1;
 | |
| 			}
 | |
| 			continue;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * We haven't made any progress this time around.
 | |
| 		 * Clear XMIT_BUSY to let other callers in, but
 | |
| 		 * after doing so we have to check if anyone set
 | |
| 		 * XMIT_WAKEUP since we last checked it.  If they
 | |
| 		 * did, we should try again to set XMIT_BUSY and go
 | |
| 		 * around again in case XMIT_BUSY was still set when
 | |
| 		 * the other caller tried.
 | |
| 		 */
 | |
| 		clear_bit(XMIT_BUSY, &ap->xmit_flags);
 | |
| 		/* any more work to do? if not, exit the loop */
 | |
| 		if (!(test_bit(XMIT_WAKEUP, &ap->xmit_flags) ||
 | |
| 		      (!tty_stuffed && ap->tpkt)))
 | |
| 			break;
 | |
| 		/* more work to do, see if we can do it now */
 | |
| 		if (test_and_set_bit(XMIT_BUSY, &ap->xmit_flags))
 | |
| 			break;
 | |
| 	}
 | |
| 	spin_unlock_bh(&ap->xmit_lock);
 | |
| 	return done;
 | |
| 
 | |
| flush:
 | |
| 	clear_bit(XMIT_BUSY, &ap->xmit_flags);
 | |
| 	if (ap->tpkt) {
 | |
| 		kfree_skb(ap->tpkt);
 | |
| 		ap->tpkt = NULL;
 | |
| 		clear_bit(XMIT_FULL, &ap->xmit_flags);
 | |
| 		done = 1;
 | |
| 	}
 | |
| 	ap->optr = ap->olim;
 | |
| 	spin_unlock_bh(&ap->xmit_lock);
 | |
| 	return done;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Flush output from our internal buffers.
 | |
|  * Called for the TCFLSH ioctl. Can be entered in parallel
 | |
|  * but this is covered by the xmit_lock.
 | |
|  */
 | |
| static void
 | |
| ppp_async_flush_output(struct asyncppp *ap)
 | |
| {
 | |
| 	int done = 0;
 | |
| 
 | |
| 	spin_lock_bh(&ap->xmit_lock);
 | |
| 	ap->optr = ap->olim;
 | |
| 	if (ap->tpkt != NULL) {
 | |
| 		kfree_skb(ap->tpkt);
 | |
| 		ap->tpkt = NULL;
 | |
| 		clear_bit(XMIT_FULL, &ap->xmit_flags);
 | |
| 		done = 1;
 | |
| 	}
 | |
| 	spin_unlock_bh(&ap->xmit_lock);
 | |
| 	if (done)
 | |
| 		ppp_output_wakeup(&ap->chan);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Receive-side routines.
 | |
|  */
 | |
| 
 | |
| /* see how many ordinary chars there are at the start of buf */
 | |
| static inline int
 | |
| scan_ordinary(struct asyncppp *ap, const unsigned char *buf, int count)
 | |
| {
 | |
| 	int i, c;
 | |
| 
 | |
| 	for (i = 0; i < count; ++i) {
 | |
| 		c = buf[i];
 | |
| 		if (c == PPP_ESCAPE || c == PPP_FLAG ||
 | |
| 		    (c < 0x20 && (ap->raccm & (1 << c)) != 0))
 | |
| 			break;
 | |
| 	}
 | |
| 	return i;
 | |
| }
 | |
| 
 | |
| /* called when a flag is seen - do end-of-packet processing */
 | |
| static void
 | |
| process_input_packet(struct asyncppp *ap)
 | |
| {
 | |
| 	struct sk_buff *skb;
 | |
| 	unsigned char *p;
 | |
| 	unsigned int len, fcs, proto;
 | |
| 
 | |
| 	skb = ap->rpkt;
 | |
| 	if (ap->state & (SC_TOSS | SC_ESCAPE))
 | |
| 		goto err;
 | |
| 
 | |
| 	if (skb == NULL)
 | |
| 		return;		/* 0-length packet */
 | |
| 
 | |
| 	/* check the FCS */
 | |
| 	p = skb->data;
 | |
| 	len = skb->len;
 | |
| 	if (len < 3)
 | |
| 		goto err;	/* too short */
 | |
| 	fcs = PPP_INITFCS;
 | |
| 	for (; len > 0; --len)
 | |
| 		fcs = PPP_FCS(fcs, *p++);
 | |
| 	if (fcs != PPP_GOODFCS)
 | |
| 		goto err;	/* bad FCS */
 | |
| 	skb_trim(skb, skb->len - 2);
 | |
| 
 | |
| 	/* check for address/control and protocol compression */
 | |
| 	p = skb->data;
 | |
| 	if (p[0] == PPP_ALLSTATIONS) {
 | |
| 		/* chop off address/control */
 | |
| 		if (p[1] != PPP_UI || skb->len < 3)
 | |
| 			goto err;
 | |
| 		p = skb_pull(skb, 2);
 | |
| 	}
 | |
| 	proto = p[0];
 | |
| 	if (proto & 1) {
 | |
| 		/* protocol is compressed */
 | |
| 		skb_push(skb, 1)[0] = 0;
 | |
| 	} else {
 | |
| 		if (skb->len < 2)
 | |
| 			goto err;
 | |
| 		proto = (proto << 8) + p[1];
 | |
| 		if (proto == PPP_LCP)
 | |
| 			async_lcp_peek(ap, p, skb->len, 1);
 | |
| 	}
 | |
| 
 | |
| 	/* queue the frame to be processed */
 | |
| 	skb->cb[0] = ap->state;
 | |
| 	skb_queue_tail(&ap->rqueue, skb);
 | |
| 	ap->rpkt = NULL;
 | |
| 	ap->state = 0;
 | |
| 	return;
 | |
| 
 | |
|  err:
 | |
| 	/* frame had an error, remember that, reset SC_TOSS & SC_ESCAPE */
 | |
| 	ap->state = SC_PREV_ERROR;
 | |
| 	if (skb) {
 | |
| 		/* make skb appear as freshly allocated */
 | |
| 		skb_trim(skb, 0);
 | |
| 		skb_reserve(skb, - skb_headroom(skb));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Called when the tty driver has data for us. Runs parallel with the
 | |
|    other ldisc functions but will not be re-entered */
 | |
| 
 | |
| static void
 | |
| ppp_async_input(struct asyncppp *ap, const unsigned char *buf,
 | |
| 		char *flags, int count)
 | |
| {
 | |
| 	struct sk_buff *skb;
 | |
| 	int c, i, j, n, s, f;
 | |
| 	unsigned char *sp;
 | |
| 
 | |
| 	/* update bits used for 8-bit cleanness detection */
 | |
| 	if (~ap->rbits & SC_RCV_BITS) {
 | |
| 		s = 0;
 | |
| 		for (i = 0; i < count; ++i) {
 | |
| 			c = buf[i];
 | |
| 			if (flags && flags[i] != 0)
 | |
| 				continue;
 | |
| 			s |= (c & 0x80)? SC_RCV_B7_1: SC_RCV_B7_0;
 | |
| 			c = ((c >> 4) ^ c) & 0xf;
 | |
| 			s |= (0x6996 & (1 << c))? SC_RCV_ODDP: SC_RCV_EVNP;
 | |
| 		}
 | |
| 		ap->rbits |= s;
 | |
| 	}
 | |
| 
 | |
| 	while (count > 0) {
 | |
| 		/* scan through and see how many chars we can do in bulk */
 | |
| 		if ((ap->state & SC_ESCAPE) && buf[0] == PPP_ESCAPE)
 | |
| 			n = 1;
 | |
| 		else
 | |
| 			n = scan_ordinary(ap, buf, count);
 | |
| 
 | |
| 		f = 0;
 | |
| 		if (flags && (ap->state & SC_TOSS) == 0) {
 | |
| 			/* check the flags to see if any char had an error */
 | |
| 			for (j = 0; j < n; ++j)
 | |
| 				if ((f = flags[j]) != 0)
 | |
| 					break;
 | |
| 		}
 | |
| 		if (f != 0) {
 | |
| 			/* start tossing */
 | |
| 			ap->state |= SC_TOSS;
 | |
| 
 | |
| 		} else if (n > 0 && (ap->state & SC_TOSS) == 0) {
 | |
| 			/* stuff the chars in the skb */
 | |
| 			skb = ap->rpkt;
 | |
| 			if (!skb) {
 | |
| 				skb = dev_alloc_skb(ap->mru + PPP_HDRLEN + 2);
 | |
| 				if (!skb)
 | |
| 					goto nomem;
 | |
|  				ap->rpkt = skb;
 | |
|  			}
 | |
|  			if (skb->len == 0) {
 | |
|  				/* Try to get the payload 4-byte aligned.
 | |
|  				 * This should match the
 | |
|  				 * PPP_ALLSTATIONS/PPP_UI/compressed tests in
 | |
|  				 * process_input_packet, but we do not have
 | |
|  				 * enough chars here to test buf[1] and buf[2].
 | |
|  				 */
 | |
| 				if (buf[0] != PPP_ALLSTATIONS)
 | |
| 					skb_reserve(skb, 2 + (buf[0] & 1));
 | |
| 			}
 | |
| 			if (n > skb_tailroom(skb)) {
 | |
| 				/* packet overflowed MRU */
 | |
| 				ap->state |= SC_TOSS;
 | |
| 			} else {
 | |
| 				sp = skb_put(skb, n);
 | |
| 				memcpy(sp, buf, n);
 | |
| 				if (ap->state & SC_ESCAPE) {
 | |
| 					sp[0] ^= PPP_TRANS;
 | |
| 					ap->state &= ~SC_ESCAPE;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (n >= count)
 | |
| 			break;
 | |
| 
 | |
| 		c = buf[n];
 | |
| 		if (flags != NULL && flags[n] != 0) {
 | |
| 			ap->state |= SC_TOSS;
 | |
| 		} else if (c == PPP_FLAG) {
 | |
| 			process_input_packet(ap);
 | |
| 		} else if (c == PPP_ESCAPE) {
 | |
| 			ap->state |= SC_ESCAPE;
 | |
| 		} else if (I_IXON(ap->tty)) {
 | |
| 			if (c == START_CHAR(ap->tty))
 | |
| 				start_tty(ap->tty);
 | |
| 			else if (c == STOP_CHAR(ap->tty))
 | |
| 				stop_tty(ap->tty);
 | |
| 		}
 | |
| 		/* otherwise it's a char in the recv ACCM */
 | |
| 		++n;
 | |
| 
 | |
| 		buf += n;
 | |
| 		if (flags)
 | |
| 			flags += n;
 | |
| 		count -= n;
 | |
| 	}
 | |
| 	return;
 | |
| 
 | |
|  nomem:
 | |
| 	printk(KERN_ERR "PPPasync: no memory (input pkt)\n");
 | |
| 	ap->state |= SC_TOSS;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We look at LCP frames going past so that we can notice
 | |
|  * and react to the LCP configure-ack from the peer.
 | |
|  * In the situation where the peer has been sent a configure-ack
 | |
|  * already, LCP is up once it has sent its configure-ack
 | |
|  * so the immediately following packet can be sent with the
 | |
|  * configured LCP options.  This allows us to process the following
 | |
|  * packet correctly without pppd needing to respond quickly.
 | |
|  *
 | |
|  * We only respond to the received configure-ack if we have just
 | |
|  * sent a configure-request, and the configure-ack contains the
 | |
|  * same data (this is checked using a 16-bit crc of the data).
 | |
|  */
 | |
| #define CONFREQ		1	/* LCP code field values */
 | |
| #define CONFACK		2
 | |
| #define LCP_MRU		1	/* LCP option numbers */
 | |
| #define LCP_ASYNCMAP	2
 | |
| 
 | |
| static void async_lcp_peek(struct asyncppp *ap, unsigned char *data,
 | |
| 			   int len, int inbound)
 | |
| {
 | |
| 	int dlen, fcs, i, code;
 | |
| 	u32 val;
 | |
| 
 | |
| 	data += 2;		/* skip protocol bytes */
 | |
| 	len -= 2;
 | |
| 	if (len < 4)		/* 4 = code, ID, length */
 | |
| 		return;
 | |
| 	code = data[0];
 | |
| 	if (code != CONFACK && code != CONFREQ)
 | |
| 		return;
 | |
| 	dlen = get_unaligned_be16(data + 2);
 | |
| 	if (len < dlen)
 | |
| 		return;		/* packet got truncated or length is bogus */
 | |
| 
 | |
| 	if (code == (inbound? CONFACK: CONFREQ)) {
 | |
| 		/*
 | |
| 		 * sent confreq or received confack:
 | |
| 		 * calculate the crc of the data from the ID field on.
 | |
| 		 */
 | |
| 		fcs = PPP_INITFCS;
 | |
| 		for (i = 1; i < dlen; ++i)
 | |
| 			fcs = PPP_FCS(fcs, data[i]);
 | |
| 
 | |
| 		if (!inbound) {
 | |
| 			/* outbound confreq - remember the crc for later */
 | |
| 			ap->lcp_fcs = fcs;
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		/* received confack, check the crc */
 | |
| 		fcs ^= ap->lcp_fcs;
 | |
| 		ap->lcp_fcs = -1;
 | |
| 		if (fcs != 0)
 | |
| 			return;
 | |
| 	} else if (inbound)
 | |
| 		return;	/* not interested in received confreq */
 | |
| 
 | |
| 	/* process the options in the confack */
 | |
| 	data += 4;
 | |
| 	dlen -= 4;
 | |
| 	/* data[0] is code, data[1] is length */
 | |
| 	while (dlen >= 2 && dlen >= data[1] && data[1] >= 2) {
 | |
| 		switch (data[0]) {
 | |
| 		case LCP_MRU:
 | |
| 			val = get_unaligned_be16(data + 2);
 | |
| 			if (inbound)
 | |
| 				ap->mru = val;
 | |
| 			else
 | |
| 				ap->chan.mtu = val;
 | |
| 			break;
 | |
| 		case LCP_ASYNCMAP:
 | |
| 			val = get_unaligned_be32(data + 2);
 | |
| 			if (inbound)
 | |
| 				ap->raccm = val;
 | |
| 			else
 | |
| 				ap->xaccm[0] = val;
 | |
| 			break;
 | |
| 		}
 | |
| 		dlen -= data[1];
 | |
| 		data += data[1];
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __exit ppp_async_cleanup(void)
 | |
| {
 | |
| 	if (tty_unregister_ldisc(N_PPP) != 0)
 | |
| 		printk(KERN_ERR "failed to unregister PPP line discipline\n");
 | |
| }
 | |
| 
 | |
| module_init(ppp_async_init);
 | |
| module_exit(ppp_async_cleanup);
 |