 3ae603c40d
			
		
	
	
	3ae603c40d
	
	
	
		
			
			Use the wrapper function for retrieving the platform data instead of accessing dev->platform_data directly. This is a cosmetic change to make the code simpler and enhance the readability. Signed-off-by: Jingoo Han <jg1.han@samsung.com> Signed-off-by: David S. Miller <davem@davemloft.net>
		
			
				
	
	
		
			1696 lines
		
	
	
	
		
			46 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1696 lines
		
	
	
	
		
			46 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*******************************************************************************
 | |
| 
 | |
|   Copyright(c) 2006 Tundra Semiconductor Corporation.
 | |
| 
 | |
|   This program is free software; you can redistribute it and/or modify it
 | |
|   under the terms of the GNU General Public License as published by the Free
 | |
|   Software Foundation; either version 2 of the License, or (at your option)
 | |
|   any later version.
 | |
| 
 | |
|   This program is distributed in the hope that it will be useful, but WITHOUT
 | |
|   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 | |
|   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 | |
|   more details.
 | |
| 
 | |
|   You should have received a copy of the GNU General Public License along with
 | |
|   this program; if not, write to the Free Software Foundation, Inc., 59
 | |
|   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 | |
| 
 | |
| *******************************************************************************/
 | |
| 
 | |
| /* This driver is based on the driver code originally developed
 | |
|  * for the Intel IOC80314 (ForestLake) Gigabit Ethernet by
 | |
|  * scott.wood@timesys.com  * Copyright (C) 2003 TimeSys Corporation
 | |
|  *
 | |
|  * Currently changes from original version are:
 | |
|  * - porting to Tsi108-based platform and kernel 2.6 (kong.lai@tundra.com)
 | |
|  * - modifications to handle two ports independently and support for
 | |
|  *   additional PHY devices (alexandre.bounine@tundra.com)
 | |
|  * - Get hardware information from platform device. (tie-fei.zang@freescale.com)
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include <linux/module.h>
 | |
| #include <linux/types.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/net.h>
 | |
| #include <linux/netdevice.h>
 | |
| #include <linux/etherdevice.h>
 | |
| #include <linux/ethtool.h>
 | |
| #include <linux/skbuff.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/crc32.h>
 | |
| #include <linux/mii.h>
 | |
| #include <linux/device.h>
 | |
| #include <linux/pci.h>
 | |
| #include <linux/rtnetlink.h>
 | |
| #include <linux/timer.h>
 | |
| #include <linux/platform_device.h>
 | |
| #include <linux/gfp.h>
 | |
| 
 | |
| #include <asm/io.h>
 | |
| #include <asm/tsi108.h>
 | |
| 
 | |
| #include "tsi108_eth.h"
 | |
| 
 | |
| #define MII_READ_DELAY 10000	/* max link wait time in msec */
 | |
| 
 | |
| #define TSI108_RXRING_LEN     256
 | |
| 
 | |
| /* NOTE: The driver currently does not support receiving packets
 | |
|  * larger than the buffer size, so don't decrease this (unless you
 | |
|  * want to add such support).
 | |
|  */
 | |
| #define TSI108_RXBUF_SIZE     1536
 | |
| 
 | |
| #define TSI108_TXRING_LEN     256
 | |
| 
 | |
| #define TSI108_TX_INT_FREQ    64
 | |
| 
 | |
| /* Check the phy status every half a second. */
 | |
| #define CHECK_PHY_INTERVAL (HZ/2)
 | |
| 
 | |
| static int tsi108_init_one(struct platform_device *pdev);
 | |
| static int tsi108_ether_remove(struct platform_device *pdev);
 | |
| 
 | |
| struct tsi108_prv_data {
 | |
| 	void  __iomem *regs;	/* Base of normal regs */
 | |
| 	void  __iomem *phyregs;	/* Base of register bank used for PHY access */
 | |
| 
 | |
| 	struct net_device *dev;
 | |
| 	struct napi_struct napi;
 | |
| 
 | |
| 	unsigned int phy;		/* Index of PHY for this interface */
 | |
| 	unsigned int irq_num;
 | |
| 	unsigned int id;
 | |
| 	unsigned int phy_type;
 | |
| 
 | |
| 	struct timer_list timer;/* Timer that triggers the check phy function */
 | |
| 	unsigned int rxtail;	/* Next entry in rxring to read */
 | |
| 	unsigned int rxhead;	/* Next entry in rxring to give a new buffer */
 | |
| 	unsigned int rxfree;	/* Number of free, allocated RX buffers */
 | |
| 
 | |
| 	unsigned int rxpending;	/* Non-zero if there are still descriptors
 | |
| 				 * to be processed from a previous descriptor
 | |
| 				 * interrupt condition that has been cleared */
 | |
| 
 | |
| 	unsigned int txtail;	/* Next TX descriptor to check status on */
 | |
| 	unsigned int txhead;	/* Next TX descriptor to use */
 | |
| 
 | |
| 	/* Number of free TX descriptors.  This could be calculated from
 | |
| 	 * rxhead and rxtail if one descriptor were left unused to disambiguate
 | |
| 	 * full and empty conditions, but it's simpler to just keep track
 | |
| 	 * explicitly. */
 | |
| 
 | |
| 	unsigned int txfree;
 | |
| 
 | |
| 	unsigned int phy_ok;		/* The PHY is currently powered on. */
 | |
| 
 | |
| 	/* PHY status (duplex is 1 for half, 2 for full,
 | |
| 	 * so that the default 0 indicates that neither has
 | |
| 	 * yet been configured). */
 | |
| 
 | |
| 	unsigned int link_up;
 | |
| 	unsigned int speed;
 | |
| 	unsigned int duplex;
 | |
| 
 | |
| 	tx_desc *txring;
 | |
| 	rx_desc *rxring;
 | |
| 	struct sk_buff *txskbs[TSI108_TXRING_LEN];
 | |
| 	struct sk_buff *rxskbs[TSI108_RXRING_LEN];
 | |
| 
 | |
| 	dma_addr_t txdma, rxdma;
 | |
| 
 | |
| 	/* txlock nests in misclock and phy_lock */
 | |
| 
 | |
| 	spinlock_t txlock, misclock;
 | |
| 
 | |
| 	/* stats is used to hold the upper bits of each hardware counter,
 | |
| 	 * and tmpstats is used to hold the full values for returning
 | |
| 	 * to the caller of get_stats().  They must be separate in case
 | |
| 	 * an overflow interrupt occurs before the stats are consumed.
 | |
| 	 */
 | |
| 
 | |
| 	struct net_device_stats stats;
 | |
| 	struct net_device_stats tmpstats;
 | |
| 
 | |
| 	/* These stats are kept separate in hardware, thus require individual
 | |
| 	 * fields for handling carry.  They are combined in get_stats.
 | |
| 	 */
 | |
| 
 | |
| 	unsigned long rx_fcs;	/* Add to rx_frame_errors */
 | |
| 	unsigned long rx_short_fcs;	/* Add to rx_frame_errors */
 | |
| 	unsigned long rx_long_fcs;	/* Add to rx_frame_errors */
 | |
| 	unsigned long rx_underruns;	/* Add to rx_length_errors */
 | |
| 	unsigned long rx_overruns;	/* Add to rx_length_errors */
 | |
| 
 | |
| 	unsigned long tx_coll_abort;	/* Add to tx_aborted_errors/collisions */
 | |
| 	unsigned long tx_pause_drop;	/* Add to tx_aborted_errors */
 | |
| 
 | |
| 	unsigned long mc_hash[16];
 | |
| 	u32 msg_enable;			/* debug message level */
 | |
| 	struct mii_if_info mii_if;
 | |
| 	unsigned int init_media;
 | |
| };
 | |
| 
 | |
| /* Structure for a device driver */
 | |
| 
 | |
| static struct platform_driver tsi_eth_driver = {
 | |
| 	.probe = tsi108_init_one,
 | |
| 	.remove = tsi108_ether_remove,
 | |
| 	.driver	= {
 | |
| 		.name = "tsi-ethernet",
 | |
| 		.owner = THIS_MODULE,
 | |
| 	},
 | |
| };
 | |
| 
 | |
| static void tsi108_timed_checker(unsigned long dev_ptr);
 | |
| 
 | |
| static void dump_eth_one(struct net_device *dev)
 | |
| {
 | |
| 	struct tsi108_prv_data *data = netdev_priv(dev);
 | |
| 
 | |
| 	printk("Dumping %s...\n", dev->name);
 | |
| 	printk("intstat %x intmask %x phy_ok %d"
 | |
| 	       " link %d speed %d duplex %d\n",
 | |
| 	       TSI_READ(TSI108_EC_INTSTAT),
 | |
| 	       TSI_READ(TSI108_EC_INTMASK), data->phy_ok,
 | |
| 	       data->link_up, data->speed, data->duplex);
 | |
| 
 | |
| 	printk("TX: head %d, tail %d, free %d, stat %x, estat %x, err %x\n",
 | |
| 	       data->txhead, data->txtail, data->txfree,
 | |
| 	       TSI_READ(TSI108_EC_TXSTAT),
 | |
| 	       TSI_READ(TSI108_EC_TXESTAT),
 | |
| 	       TSI_READ(TSI108_EC_TXERR));
 | |
| 
 | |
| 	printk("RX: head %d, tail %d, free %d, stat %x,"
 | |
| 	       " estat %x, err %x, pending %d\n\n",
 | |
| 	       data->rxhead, data->rxtail, data->rxfree,
 | |
| 	       TSI_READ(TSI108_EC_RXSTAT),
 | |
| 	       TSI_READ(TSI108_EC_RXESTAT),
 | |
| 	       TSI_READ(TSI108_EC_RXERR), data->rxpending);
 | |
| }
 | |
| 
 | |
| /* Synchronization is needed between the thread and up/down events.
 | |
|  * Note that the PHY is accessed through the same registers for both
 | |
|  * interfaces, so this can't be made interface-specific.
 | |
|  */
 | |
| 
 | |
| static DEFINE_SPINLOCK(phy_lock);
 | |
| 
 | |
| static int tsi108_read_mii(struct tsi108_prv_data *data, int reg)
 | |
| {
 | |
| 	unsigned i;
 | |
| 
 | |
| 	TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
 | |
| 				(data->phy << TSI108_MAC_MII_ADDR_PHY) |
 | |
| 				(reg << TSI108_MAC_MII_ADDR_REG));
 | |
| 	TSI_WRITE_PHY(TSI108_MAC_MII_CMD, 0);
 | |
| 	TSI_WRITE_PHY(TSI108_MAC_MII_CMD, TSI108_MAC_MII_CMD_READ);
 | |
| 	for (i = 0; i < 100; i++) {
 | |
| 		if (!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
 | |
| 		      (TSI108_MAC_MII_IND_NOTVALID | TSI108_MAC_MII_IND_BUSY)))
 | |
| 			break;
 | |
| 		udelay(10);
 | |
| 	}
 | |
| 
 | |
| 	if (i == 100)
 | |
| 		return 0xffff;
 | |
| 	else
 | |
| 		return TSI_READ_PHY(TSI108_MAC_MII_DATAIN);
 | |
| }
 | |
| 
 | |
| static void tsi108_write_mii(struct tsi108_prv_data *data,
 | |
| 				int reg, u16 val)
 | |
| {
 | |
| 	unsigned i = 100;
 | |
| 	TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
 | |
| 				(data->phy << TSI108_MAC_MII_ADDR_PHY) |
 | |
| 				(reg << TSI108_MAC_MII_ADDR_REG));
 | |
| 	TSI_WRITE_PHY(TSI108_MAC_MII_DATAOUT, val);
 | |
| 	while (i--) {
 | |
| 		if(!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
 | |
| 			TSI108_MAC_MII_IND_BUSY))
 | |
| 			break;
 | |
| 		udelay(10);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int tsi108_mdio_read(struct net_device *dev, int addr, int reg)
 | |
| {
 | |
| 	struct tsi108_prv_data *data = netdev_priv(dev);
 | |
| 	return tsi108_read_mii(data, reg);
 | |
| }
 | |
| 
 | |
| static void tsi108_mdio_write(struct net_device *dev, int addr, int reg, int val)
 | |
| {
 | |
| 	struct tsi108_prv_data *data = netdev_priv(dev);
 | |
| 	tsi108_write_mii(data, reg, val);
 | |
| }
 | |
| 
 | |
| static inline void tsi108_write_tbi(struct tsi108_prv_data *data,
 | |
| 					int reg, u16 val)
 | |
| {
 | |
| 	unsigned i = 1000;
 | |
| 	TSI_WRITE(TSI108_MAC_MII_ADDR,
 | |
| 			     (0x1e << TSI108_MAC_MII_ADDR_PHY)
 | |
| 			     | (reg << TSI108_MAC_MII_ADDR_REG));
 | |
| 	TSI_WRITE(TSI108_MAC_MII_DATAOUT, val);
 | |
| 	while(i--) {
 | |
| 		if(!(TSI_READ(TSI108_MAC_MII_IND) & TSI108_MAC_MII_IND_BUSY))
 | |
| 			return;
 | |
| 		udelay(10);
 | |
| 	}
 | |
| 	printk(KERN_ERR "%s function time out\n", __func__);
 | |
| }
 | |
| 
 | |
| static int mii_speed(struct mii_if_info *mii)
 | |
| {
 | |
| 	int advert, lpa, val, media;
 | |
| 	int lpa2 = 0;
 | |
| 	int speed;
 | |
| 
 | |
| 	if (!mii_link_ok(mii))
 | |
| 		return 0;
 | |
| 
 | |
| 	val = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_BMSR);
 | |
| 	if ((val & BMSR_ANEGCOMPLETE) == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	advert = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_ADVERTISE);
 | |
| 	lpa = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_LPA);
 | |
| 	media = mii_nway_result(advert & lpa);
 | |
| 
 | |
| 	if (mii->supports_gmii)
 | |
| 		lpa2 = mii->mdio_read(mii->dev, mii->phy_id, MII_STAT1000);
 | |
| 
 | |
| 	speed = lpa2 & (LPA_1000FULL | LPA_1000HALF) ? 1000 :
 | |
| 			(media & (ADVERTISE_100FULL | ADVERTISE_100HALF) ? 100 : 10);
 | |
| 	return speed;
 | |
| }
 | |
| 
 | |
| static void tsi108_check_phy(struct net_device *dev)
 | |
| {
 | |
| 	struct tsi108_prv_data *data = netdev_priv(dev);
 | |
| 	u32 mac_cfg2_reg, portctrl_reg;
 | |
| 	u32 duplex;
 | |
| 	u32 speed;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&phy_lock, flags);
 | |
| 
 | |
| 	if (!data->phy_ok)
 | |
| 		goto out;
 | |
| 
 | |
| 	duplex = mii_check_media(&data->mii_if, netif_msg_link(data), data->init_media);
 | |
| 	data->init_media = 0;
 | |
| 
 | |
| 	if (netif_carrier_ok(dev)) {
 | |
| 
 | |
| 		speed = mii_speed(&data->mii_if);
 | |
| 
 | |
| 		if ((speed != data->speed) || duplex) {
 | |
| 
 | |
| 			mac_cfg2_reg = TSI_READ(TSI108_MAC_CFG2);
 | |
| 			portctrl_reg = TSI_READ(TSI108_EC_PORTCTRL);
 | |
| 
 | |
| 			mac_cfg2_reg &= ~TSI108_MAC_CFG2_IFACE_MASK;
 | |
| 
 | |
| 			if (speed == 1000) {
 | |
| 				mac_cfg2_reg |= TSI108_MAC_CFG2_GIG;
 | |
| 				portctrl_reg &= ~TSI108_EC_PORTCTRL_NOGIG;
 | |
| 			} else {
 | |
| 				mac_cfg2_reg |= TSI108_MAC_CFG2_NOGIG;
 | |
| 				portctrl_reg |= TSI108_EC_PORTCTRL_NOGIG;
 | |
| 			}
 | |
| 
 | |
| 			data->speed = speed;
 | |
| 
 | |
| 			if (data->mii_if.full_duplex) {
 | |
| 				mac_cfg2_reg |= TSI108_MAC_CFG2_FULLDUPLEX;
 | |
| 				portctrl_reg &= ~TSI108_EC_PORTCTRL_HALFDUPLEX;
 | |
| 				data->duplex = 2;
 | |
| 			} else {
 | |
| 				mac_cfg2_reg &= ~TSI108_MAC_CFG2_FULLDUPLEX;
 | |
| 				portctrl_reg |= TSI108_EC_PORTCTRL_HALFDUPLEX;
 | |
| 				data->duplex = 1;
 | |
| 			}
 | |
| 
 | |
| 			TSI_WRITE(TSI108_MAC_CFG2, mac_cfg2_reg);
 | |
| 			TSI_WRITE(TSI108_EC_PORTCTRL, portctrl_reg);
 | |
| 		}
 | |
| 
 | |
| 		if (data->link_up == 0) {
 | |
| 			/* The manual says it can take 3-4 usecs for the speed change
 | |
| 			 * to take effect.
 | |
| 			 */
 | |
| 			udelay(5);
 | |
| 
 | |
| 			spin_lock(&data->txlock);
 | |
| 			if (is_valid_ether_addr(dev->dev_addr) && data->txfree)
 | |
| 				netif_wake_queue(dev);
 | |
| 
 | |
| 			data->link_up = 1;
 | |
| 			spin_unlock(&data->txlock);
 | |
| 		}
 | |
| 	} else {
 | |
| 		if (data->link_up == 1) {
 | |
| 			netif_stop_queue(dev);
 | |
| 			data->link_up = 0;
 | |
| 			printk(KERN_NOTICE "%s : link is down\n", dev->name);
 | |
| 		}
 | |
| 
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 
 | |
| out:
 | |
| 	spin_unlock_irqrestore(&phy_lock, flags);
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| tsi108_stat_carry_one(int carry, int carry_bit, int carry_shift,
 | |
| 		      unsigned long *upper)
 | |
| {
 | |
| 	if (carry & carry_bit)
 | |
| 		*upper += carry_shift;
 | |
| }
 | |
| 
 | |
| static void tsi108_stat_carry(struct net_device *dev)
 | |
| {
 | |
| 	struct tsi108_prv_data *data = netdev_priv(dev);
 | |
| 	u32 carry1, carry2;
 | |
| 
 | |
| 	spin_lock_irq(&data->misclock);
 | |
| 
 | |
| 	carry1 = TSI_READ(TSI108_STAT_CARRY1);
 | |
| 	carry2 = TSI_READ(TSI108_STAT_CARRY2);
 | |
| 
 | |
| 	TSI_WRITE(TSI108_STAT_CARRY1, carry1);
 | |
| 	TSI_WRITE(TSI108_STAT_CARRY2, carry2);
 | |
| 
 | |
| 	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXBYTES,
 | |
| 			      TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
 | |
| 
 | |
| 	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXPKTS,
 | |
| 			      TSI108_STAT_RXPKTS_CARRY,
 | |
| 			      &data->stats.rx_packets);
 | |
| 
 | |
| 	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFCS,
 | |
| 			      TSI108_STAT_RXFCS_CARRY, &data->rx_fcs);
 | |
| 
 | |
| 	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXMCAST,
 | |
| 			      TSI108_STAT_RXMCAST_CARRY,
 | |
| 			      &data->stats.multicast);
 | |
| 
 | |
| 	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXALIGN,
 | |
| 			      TSI108_STAT_RXALIGN_CARRY,
 | |
| 			      &data->stats.rx_frame_errors);
 | |
| 
 | |
| 	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXLENGTH,
 | |
| 			      TSI108_STAT_RXLENGTH_CARRY,
 | |
| 			      &data->stats.rx_length_errors);
 | |
| 
 | |
| 	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXRUNT,
 | |
| 			      TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
 | |
| 
 | |
| 	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJUMBO,
 | |
| 			      TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
 | |
| 
 | |
| 	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFRAG,
 | |
| 			      TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
 | |
| 
 | |
| 	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJABBER,
 | |
| 			      TSI108_STAT_RXJABBER_CARRY, &data->rx_long_fcs);
 | |
| 
 | |
| 	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXDROP,
 | |
| 			      TSI108_STAT_RXDROP_CARRY,
 | |
| 			      &data->stats.rx_missed_errors);
 | |
| 
 | |
| 	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXBYTES,
 | |
| 			      TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
 | |
| 
 | |
| 	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPKTS,
 | |
| 			      TSI108_STAT_TXPKTS_CARRY,
 | |
| 			      &data->stats.tx_packets);
 | |
| 
 | |
| 	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXDEF,
 | |
| 			      TSI108_STAT_TXEXDEF_CARRY,
 | |
| 			      &data->stats.tx_aborted_errors);
 | |
| 
 | |
| 	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXCOL,
 | |
| 			      TSI108_STAT_TXEXCOL_CARRY, &data->tx_coll_abort);
 | |
| 
 | |
| 	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXTCOL,
 | |
| 			      TSI108_STAT_TXTCOL_CARRY,
 | |
| 			      &data->stats.collisions);
 | |
| 
 | |
| 	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPAUSE,
 | |
| 			      TSI108_STAT_TXPAUSEDROP_CARRY,
 | |
| 			      &data->tx_pause_drop);
 | |
| 
 | |
| 	spin_unlock_irq(&data->misclock);
 | |
| }
 | |
| 
 | |
| /* Read a stat counter atomically with respect to carries.
 | |
|  * data->misclock must be held.
 | |
|  */
 | |
| static inline unsigned long
 | |
| tsi108_read_stat(struct tsi108_prv_data * data, int reg, int carry_bit,
 | |
| 		 int carry_shift, unsigned long *upper)
 | |
| {
 | |
| 	int carryreg;
 | |
| 	unsigned long val;
 | |
| 
 | |
| 	if (reg < 0xb0)
 | |
| 		carryreg = TSI108_STAT_CARRY1;
 | |
| 	else
 | |
| 		carryreg = TSI108_STAT_CARRY2;
 | |
| 
 | |
|       again:
 | |
| 	val = TSI_READ(reg) | *upper;
 | |
| 
 | |
| 	/* Check to see if it overflowed, but the interrupt hasn't
 | |
| 	 * been serviced yet.  If so, handle the carry here, and
 | |
| 	 * try again.
 | |
| 	 */
 | |
| 
 | |
| 	if (unlikely(TSI_READ(carryreg) & carry_bit)) {
 | |
| 		*upper += carry_shift;
 | |
| 		TSI_WRITE(carryreg, carry_bit);
 | |
| 		goto again;
 | |
| 	}
 | |
| 
 | |
| 	return val;
 | |
| }
 | |
| 
 | |
| static struct net_device_stats *tsi108_get_stats(struct net_device *dev)
 | |
| {
 | |
| 	unsigned long excol;
 | |
| 
 | |
| 	struct tsi108_prv_data *data = netdev_priv(dev);
 | |
| 	spin_lock_irq(&data->misclock);
 | |
| 
 | |
| 	data->tmpstats.rx_packets =
 | |
| 	    tsi108_read_stat(data, TSI108_STAT_RXPKTS,
 | |
| 			     TSI108_STAT_CARRY1_RXPKTS,
 | |
| 			     TSI108_STAT_RXPKTS_CARRY, &data->stats.rx_packets);
 | |
| 
 | |
| 	data->tmpstats.tx_packets =
 | |
| 	    tsi108_read_stat(data, TSI108_STAT_TXPKTS,
 | |
| 			     TSI108_STAT_CARRY2_TXPKTS,
 | |
| 			     TSI108_STAT_TXPKTS_CARRY, &data->stats.tx_packets);
 | |
| 
 | |
| 	data->tmpstats.rx_bytes =
 | |
| 	    tsi108_read_stat(data, TSI108_STAT_RXBYTES,
 | |
| 			     TSI108_STAT_CARRY1_RXBYTES,
 | |
| 			     TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
 | |
| 
 | |
| 	data->tmpstats.tx_bytes =
 | |
| 	    tsi108_read_stat(data, TSI108_STAT_TXBYTES,
 | |
| 			     TSI108_STAT_CARRY2_TXBYTES,
 | |
| 			     TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
 | |
| 
 | |
| 	data->tmpstats.multicast =
 | |
| 	    tsi108_read_stat(data, TSI108_STAT_RXMCAST,
 | |
| 			     TSI108_STAT_CARRY1_RXMCAST,
 | |
| 			     TSI108_STAT_RXMCAST_CARRY, &data->stats.multicast);
 | |
| 
 | |
| 	excol = tsi108_read_stat(data, TSI108_STAT_TXEXCOL,
 | |
| 				 TSI108_STAT_CARRY2_TXEXCOL,
 | |
| 				 TSI108_STAT_TXEXCOL_CARRY,
 | |
| 				 &data->tx_coll_abort);
 | |
| 
 | |
| 	data->tmpstats.collisions =
 | |
| 	    tsi108_read_stat(data, TSI108_STAT_TXTCOL,
 | |
| 			     TSI108_STAT_CARRY2_TXTCOL,
 | |
| 			     TSI108_STAT_TXTCOL_CARRY, &data->stats.collisions);
 | |
| 
 | |
| 	data->tmpstats.collisions += excol;
 | |
| 
 | |
| 	data->tmpstats.rx_length_errors =
 | |
| 	    tsi108_read_stat(data, TSI108_STAT_RXLENGTH,
 | |
| 			     TSI108_STAT_CARRY1_RXLENGTH,
 | |
| 			     TSI108_STAT_RXLENGTH_CARRY,
 | |
| 			     &data->stats.rx_length_errors);
 | |
| 
 | |
| 	data->tmpstats.rx_length_errors +=
 | |
| 	    tsi108_read_stat(data, TSI108_STAT_RXRUNT,
 | |
| 			     TSI108_STAT_CARRY1_RXRUNT,
 | |
| 			     TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
 | |
| 
 | |
| 	data->tmpstats.rx_length_errors +=
 | |
| 	    tsi108_read_stat(data, TSI108_STAT_RXJUMBO,
 | |
| 			     TSI108_STAT_CARRY1_RXJUMBO,
 | |
| 			     TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
 | |
| 
 | |
| 	data->tmpstats.rx_frame_errors =
 | |
| 	    tsi108_read_stat(data, TSI108_STAT_RXALIGN,
 | |
| 			     TSI108_STAT_CARRY1_RXALIGN,
 | |
| 			     TSI108_STAT_RXALIGN_CARRY,
 | |
| 			     &data->stats.rx_frame_errors);
 | |
| 
 | |
| 	data->tmpstats.rx_frame_errors +=
 | |
| 	    tsi108_read_stat(data, TSI108_STAT_RXFCS,
 | |
| 			     TSI108_STAT_CARRY1_RXFCS, TSI108_STAT_RXFCS_CARRY,
 | |
| 			     &data->rx_fcs);
 | |
| 
 | |
| 	data->tmpstats.rx_frame_errors +=
 | |
| 	    tsi108_read_stat(data, TSI108_STAT_RXFRAG,
 | |
| 			     TSI108_STAT_CARRY1_RXFRAG,
 | |
| 			     TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
 | |
| 
 | |
| 	data->tmpstats.rx_missed_errors =
 | |
| 	    tsi108_read_stat(data, TSI108_STAT_RXDROP,
 | |
| 			     TSI108_STAT_CARRY1_RXDROP,
 | |
| 			     TSI108_STAT_RXDROP_CARRY,
 | |
| 			     &data->stats.rx_missed_errors);
 | |
| 
 | |
| 	/* These three are maintained by software. */
 | |
| 	data->tmpstats.rx_fifo_errors = data->stats.rx_fifo_errors;
 | |
| 	data->tmpstats.rx_crc_errors = data->stats.rx_crc_errors;
 | |
| 
 | |
| 	data->tmpstats.tx_aborted_errors =
 | |
| 	    tsi108_read_stat(data, TSI108_STAT_TXEXDEF,
 | |
| 			     TSI108_STAT_CARRY2_TXEXDEF,
 | |
| 			     TSI108_STAT_TXEXDEF_CARRY,
 | |
| 			     &data->stats.tx_aborted_errors);
 | |
| 
 | |
| 	data->tmpstats.tx_aborted_errors +=
 | |
| 	    tsi108_read_stat(data, TSI108_STAT_TXPAUSEDROP,
 | |
| 			     TSI108_STAT_CARRY2_TXPAUSE,
 | |
| 			     TSI108_STAT_TXPAUSEDROP_CARRY,
 | |
| 			     &data->tx_pause_drop);
 | |
| 
 | |
| 	data->tmpstats.tx_aborted_errors += excol;
 | |
| 
 | |
| 	data->tmpstats.tx_errors = data->tmpstats.tx_aborted_errors;
 | |
| 	data->tmpstats.rx_errors = data->tmpstats.rx_length_errors +
 | |
| 	    data->tmpstats.rx_crc_errors +
 | |
| 	    data->tmpstats.rx_frame_errors +
 | |
| 	    data->tmpstats.rx_fifo_errors + data->tmpstats.rx_missed_errors;
 | |
| 
 | |
| 	spin_unlock_irq(&data->misclock);
 | |
| 	return &data->tmpstats;
 | |
| }
 | |
| 
 | |
| static void tsi108_restart_rx(struct tsi108_prv_data * data, struct net_device *dev)
 | |
| {
 | |
| 	TSI_WRITE(TSI108_EC_RXQ_PTRHIGH,
 | |
| 			     TSI108_EC_RXQ_PTRHIGH_VALID);
 | |
| 
 | |
| 	TSI_WRITE(TSI108_EC_RXCTRL, TSI108_EC_RXCTRL_GO
 | |
| 			     | TSI108_EC_RXCTRL_QUEUE0);
 | |
| }
 | |
| 
 | |
| static void tsi108_restart_tx(struct tsi108_prv_data * data)
 | |
| {
 | |
| 	TSI_WRITE(TSI108_EC_TXQ_PTRHIGH,
 | |
| 			     TSI108_EC_TXQ_PTRHIGH_VALID);
 | |
| 
 | |
| 	TSI_WRITE(TSI108_EC_TXCTRL, TSI108_EC_TXCTRL_IDLEINT |
 | |
| 			     TSI108_EC_TXCTRL_GO | TSI108_EC_TXCTRL_QUEUE0);
 | |
| }
 | |
| 
 | |
| /* txlock must be held by caller, with IRQs disabled, and
 | |
|  * with permission to re-enable them when the lock is dropped.
 | |
|  */
 | |
| static void tsi108_complete_tx(struct net_device *dev)
 | |
| {
 | |
| 	struct tsi108_prv_data *data = netdev_priv(dev);
 | |
| 	int tx;
 | |
| 	struct sk_buff *skb;
 | |
| 	int release = 0;
 | |
| 
 | |
| 	while (!data->txfree || data->txhead != data->txtail) {
 | |
| 		tx = data->txtail;
 | |
| 
 | |
| 		if (data->txring[tx].misc & TSI108_TX_OWN)
 | |
| 			break;
 | |
| 
 | |
| 		skb = data->txskbs[tx];
 | |
| 
 | |
| 		if (!(data->txring[tx].misc & TSI108_TX_OK))
 | |
| 			printk("%s: bad tx packet, misc %x\n",
 | |
| 			       dev->name, data->txring[tx].misc);
 | |
| 
 | |
| 		data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
 | |
| 		data->txfree++;
 | |
| 
 | |
| 		if (data->txring[tx].misc & TSI108_TX_EOF) {
 | |
| 			dev_kfree_skb_any(skb);
 | |
| 			release++;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (release) {
 | |
| 		if (is_valid_ether_addr(dev->dev_addr) && data->link_up)
 | |
| 			netif_wake_queue(dev);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int tsi108_send_packet(struct sk_buff * skb, struct net_device *dev)
 | |
| {
 | |
| 	struct tsi108_prv_data *data = netdev_priv(dev);
 | |
| 	int frags = skb_shinfo(skb)->nr_frags + 1;
 | |
| 	int i;
 | |
| 
 | |
| 	if (!data->phy_ok && net_ratelimit())
 | |
| 		printk(KERN_ERR "%s: Transmit while PHY is down!\n", dev->name);
 | |
| 
 | |
| 	if (!data->link_up) {
 | |
| 		printk(KERN_ERR "%s: Transmit while link is down!\n",
 | |
| 		       dev->name);
 | |
| 		netif_stop_queue(dev);
 | |
| 		return NETDEV_TX_BUSY;
 | |
| 	}
 | |
| 
 | |
| 	if (data->txfree < MAX_SKB_FRAGS + 1) {
 | |
| 		netif_stop_queue(dev);
 | |
| 
 | |
| 		if (net_ratelimit())
 | |
| 			printk(KERN_ERR "%s: Transmit with full tx ring!\n",
 | |
| 			       dev->name);
 | |
| 		return NETDEV_TX_BUSY;
 | |
| 	}
 | |
| 
 | |
| 	if (data->txfree - frags < MAX_SKB_FRAGS + 1) {
 | |
| 		netif_stop_queue(dev);
 | |
| 	}
 | |
| 
 | |
| 	spin_lock_irq(&data->txlock);
 | |
| 
 | |
| 	for (i = 0; i < frags; i++) {
 | |
| 		int misc = 0;
 | |
| 		int tx = data->txhead;
 | |
| 
 | |
| 		/* This is done to mark every TSI108_TX_INT_FREQ tx buffers with
 | |
| 		 * the interrupt bit.  TX descriptor-complete interrupts are
 | |
| 		 * enabled when the queue fills up, and masked when there is
 | |
| 		 * still free space.  This way, when saturating the outbound
 | |
| 		 * link, the tx interrupts are kept to a reasonable level.
 | |
| 		 * When the queue is not full, reclamation of skbs still occurs
 | |
| 		 * as new packets are transmitted, or on a queue-empty
 | |
| 		 * interrupt.
 | |
| 		 */
 | |
| 
 | |
| 		if ((tx % TSI108_TX_INT_FREQ == 0) &&
 | |
| 		    ((TSI108_TXRING_LEN - data->txfree) >= TSI108_TX_INT_FREQ))
 | |
| 			misc = TSI108_TX_INT;
 | |
| 
 | |
| 		data->txskbs[tx] = skb;
 | |
| 
 | |
| 		if (i == 0) {
 | |
| 			data->txring[tx].buf0 = dma_map_single(NULL, skb->data,
 | |
| 					skb_headlen(skb), DMA_TO_DEVICE);
 | |
| 			data->txring[tx].len = skb_headlen(skb);
 | |
| 			misc |= TSI108_TX_SOF;
 | |
| 		} else {
 | |
| 			const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
 | |
| 
 | |
| 			data->txring[tx].buf0 = skb_frag_dma_map(NULL, frag,
 | |
| 								 0,
 | |
| 								 skb_frag_size(frag),
 | |
| 								 DMA_TO_DEVICE);
 | |
| 			data->txring[tx].len = skb_frag_size(frag);
 | |
| 		}
 | |
| 
 | |
| 		if (i == frags - 1)
 | |
| 			misc |= TSI108_TX_EOF;
 | |
| 
 | |
| 		if (netif_msg_pktdata(data)) {
 | |
| 			int i;
 | |
| 			printk("%s: Tx Frame contents (%d)\n", dev->name,
 | |
| 			       skb->len);
 | |
| 			for (i = 0; i < skb->len; i++)
 | |
| 				printk(" %2.2x", skb->data[i]);
 | |
| 			printk(".\n");
 | |
| 		}
 | |
| 		data->txring[tx].misc = misc | TSI108_TX_OWN;
 | |
| 
 | |
| 		data->txhead = (data->txhead + 1) % TSI108_TXRING_LEN;
 | |
| 		data->txfree--;
 | |
| 	}
 | |
| 
 | |
| 	tsi108_complete_tx(dev);
 | |
| 
 | |
| 	/* This must be done after the check for completed tx descriptors,
 | |
| 	 * so that the tail pointer is correct.
 | |
| 	 */
 | |
| 
 | |
| 	if (!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_QUEUE0))
 | |
| 		tsi108_restart_tx(data);
 | |
| 
 | |
| 	spin_unlock_irq(&data->txlock);
 | |
| 	return NETDEV_TX_OK;
 | |
| }
 | |
| 
 | |
| static int tsi108_complete_rx(struct net_device *dev, int budget)
 | |
| {
 | |
| 	struct tsi108_prv_data *data = netdev_priv(dev);
 | |
| 	int done = 0;
 | |
| 
 | |
| 	while (data->rxfree && done != budget) {
 | |
| 		int rx = data->rxtail;
 | |
| 		struct sk_buff *skb;
 | |
| 
 | |
| 		if (data->rxring[rx].misc & TSI108_RX_OWN)
 | |
| 			break;
 | |
| 
 | |
| 		skb = data->rxskbs[rx];
 | |
| 		data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
 | |
| 		data->rxfree--;
 | |
| 		done++;
 | |
| 
 | |
| 		if (data->rxring[rx].misc & TSI108_RX_BAD) {
 | |
| 			spin_lock_irq(&data->misclock);
 | |
| 
 | |
| 			if (data->rxring[rx].misc & TSI108_RX_CRC)
 | |
| 				data->stats.rx_crc_errors++;
 | |
| 			if (data->rxring[rx].misc & TSI108_RX_OVER)
 | |
| 				data->stats.rx_fifo_errors++;
 | |
| 
 | |
| 			spin_unlock_irq(&data->misclock);
 | |
| 
 | |
| 			dev_kfree_skb_any(skb);
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (netif_msg_pktdata(data)) {
 | |
| 			int i;
 | |
| 			printk("%s: Rx Frame contents (%d)\n",
 | |
| 			       dev->name, data->rxring[rx].len);
 | |
| 			for (i = 0; i < data->rxring[rx].len; i++)
 | |
| 				printk(" %2.2x", skb->data[i]);
 | |
| 			printk(".\n");
 | |
| 		}
 | |
| 
 | |
| 		skb_put(skb, data->rxring[rx].len);
 | |
| 		skb->protocol = eth_type_trans(skb, dev);
 | |
| 		netif_receive_skb(skb);
 | |
| 	}
 | |
| 
 | |
| 	return done;
 | |
| }
 | |
| 
 | |
| static int tsi108_refill_rx(struct net_device *dev, int budget)
 | |
| {
 | |
| 	struct tsi108_prv_data *data = netdev_priv(dev);
 | |
| 	int done = 0;
 | |
| 
 | |
| 	while (data->rxfree != TSI108_RXRING_LEN && done != budget) {
 | |
| 		int rx = data->rxhead;
 | |
| 		struct sk_buff *skb;
 | |
| 
 | |
| 		skb = netdev_alloc_skb_ip_align(dev, TSI108_RXBUF_SIZE);
 | |
| 		data->rxskbs[rx] = skb;
 | |
| 		if (!skb)
 | |
| 			break;
 | |
| 
 | |
| 		data->rxring[rx].buf0 = dma_map_single(NULL, skb->data,
 | |
| 							TSI108_RX_SKB_SIZE,
 | |
| 							DMA_FROM_DEVICE);
 | |
| 
 | |
| 		/* Sometimes the hardware sets blen to zero after packet
 | |
| 		 * reception, even though the manual says that it's only ever
 | |
| 		 * modified by the driver.
 | |
| 		 */
 | |
| 
 | |
| 		data->rxring[rx].blen = TSI108_RX_SKB_SIZE;
 | |
| 		data->rxring[rx].misc = TSI108_RX_OWN | TSI108_RX_INT;
 | |
| 
 | |
| 		data->rxhead = (data->rxhead + 1) % TSI108_RXRING_LEN;
 | |
| 		data->rxfree++;
 | |
| 		done++;
 | |
| 	}
 | |
| 
 | |
| 	if (done != 0 && !(TSI_READ(TSI108_EC_RXSTAT) &
 | |
| 			   TSI108_EC_RXSTAT_QUEUE0))
 | |
| 		tsi108_restart_rx(data, dev);
 | |
| 
 | |
| 	return done;
 | |
| }
 | |
| 
 | |
| static int tsi108_poll(struct napi_struct *napi, int budget)
 | |
| {
 | |
| 	struct tsi108_prv_data *data = container_of(napi, struct tsi108_prv_data, napi);
 | |
| 	struct net_device *dev = data->dev;
 | |
| 	u32 estat = TSI_READ(TSI108_EC_RXESTAT);
 | |
| 	u32 intstat = TSI_READ(TSI108_EC_INTSTAT);
 | |
| 	int num_received = 0, num_filled = 0;
 | |
| 
 | |
| 	intstat &= TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
 | |
| 	    TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR | TSI108_INT_RXWAIT;
 | |
| 
 | |
| 	TSI_WRITE(TSI108_EC_RXESTAT, estat);
 | |
| 	TSI_WRITE(TSI108_EC_INTSTAT, intstat);
 | |
| 
 | |
| 	if (data->rxpending || (estat & TSI108_EC_RXESTAT_Q0_DESCINT))
 | |
| 		num_received = tsi108_complete_rx(dev, budget);
 | |
| 
 | |
| 	/* This should normally fill no more slots than the number of
 | |
| 	 * packets received in tsi108_complete_rx().  The exception
 | |
| 	 * is when we previously ran out of memory for RX SKBs.  In that
 | |
| 	 * case, it's helpful to obey the budget, not only so that the
 | |
| 	 * CPU isn't hogged, but so that memory (which may still be low)
 | |
| 	 * is not hogged by one device.
 | |
| 	 *
 | |
| 	 * A work unit is considered to be two SKBs to allow us to catch
 | |
| 	 * up when the ring has shrunk due to out-of-memory but we're
 | |
| 	 * still removing the full budget's worth of packets each time.
 | |
| 	 */
 | |
| 
 | |
| 	if (data->rxfree < TSI108_RXRING_LEN)
 | |
| 		num_filled = tsi108_refill_rx(dev, budget * 2);
 | |
| 
 | |
| 	if (intstat & TSI108_INT_RXERROR) {
 | |
| 		u32 err = TSI_READ(TSI108_EC_RXERR);
 | |
| 		TSI_WRITE(TSI108_EC_RXERR, err);
 | |
| 
 | |
| 		if (err) {
 | |
| 			if (net_ratelimit())
 | |
| 				printk(KERN_DEBUG "%s: RX error %x\n",
 | |
| 				       dev->name, err);
 | |
| 
 | |
| 			if (!(TSI_READ(TSI108_EC_RXSTAT) &
 | |
| 			      TSI108_EC_RXSTAT_QUEUE0))
 | |
| 				tsi108_restart_rx(data, dev);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (intstat & TSI108_INT_RXOVERRUN) {
 | |
| 		spin_lock_irq(&data->misclock);
 | |
| 		data->stats.rx_fifo_errors++;
 | |
| 		spin_unlock_irq(&data->misclock);
 | |
| 	}
 | |
| 
 | |
| 	if (num_received < budget) {
 | |
| 		data->rxpending = 0;
 | |
| 		napi_complete(napi);
 | |
| 
 | |
| 		TSI_WRITE(TSI108_EC_INTMASK,
 | |
| 				     TSI_READ(TSI108_EC_INTMASK)
 | |
| 				     & ~(TSI108_INT_RXQUEUE0
 | |
| 					 | TSI108_INT_RXTHRESH |
 | |
| 					 TSI108_INT_RXOVERRUN |
 | |
| 					 TSI108_INT_RXERROR |
 | |
| 					 TSI108_INT_RXWAIT));
 | |
| 	} else {
 | |
| 		data->rxpending = 1;
 | |
| 	}
 | |
| 
 | |
| 	return num_received;
 | |
| }
 | |
| 
 | |
| static void tsi108_rx_int(struct net_device *dev)
 | |
| {
 | |
| 	struct tsi108_prv_data *data = netdev_priv(dev);
 | |
| 
 | |
| 	/* A race could cause dev to already be scheduled, so it's not an
 | |
| 	 * error if that happens (and interrupts shouldn't be re-masked,
 | |
| 	 * because that can cause harmful races, if poll has already
 | |
| 	 * unmasked them but not cleared LINK_STATE_SCHED).
 | |
| 	 *
 | |
| 	 * This can happen if this code races with tsi108_poll(), which masks
 | |
| 	 * the interrupts after tsi108_irq_one() read the mask, but before
 | |
| 	 * napi_schedule is called.  It could also happen due to calls
 | |
| 	 * from tsi108_check_rxring().
 | |
| 	 */
 | |
| 
 | |
| 	if (napi_schedule_prep(&data->napi)) {
 | |
| 		/* Mask, rather than ack, the receive interrupts.  The ack
 | |
| 		 * will happen in tsi108_poll().
 | |
| 		 */
 | |
| 
 | |
| 		TSI_WRITE(TSI108_EC_INTMASK,
 | |
| 				     TSI_READ(TSI108_EC_INTMASK) |
 | |
| 				     TSI108_INT_RXQUEUE0
 | |
| 				     | TSI108_INT_RXTHRESH |
 | |
| 				     TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR |
 | |
| 				     TSI108_INT_RXWAIT);
 | |
| 		__napi_schedule(&data->napi);
 | |
| 	} else {
 | |
| 		if (!netif_running(dev)) {
 | |
| 			/* This can happen if an interrupt occurs while the
 | |
| 			 * interface is being brought down, as the START
 | |
| 			 * bit is cleared before the stop function is called.
 | |
| 			 *
 | |
| 			 * In this case, the interrupts must be masked, or
 | |
| 			 * they will continue indefinitely.
 | |
| 			 *
 | |
| 			 * There's a race here if the interface is brought down
 | |
| 			 * and then up in rapid succession, as the device could
 | |
| 			 * be made running after the above check and before
 | |
| 			 * the masking below.  This will only happen if the IRQ
 | |
| 			 * thread has a lower priority than the task brining
 | |
| 			 * up the interface.  Fixing this race would likely
 | |
| 			 * require changes in generic code.
 | |
| 			 */
 | |
| 
 | |
| 			TSI_WRITE(TSI108_EC_INTMASK,
 | |
| 					     TSI_READ
 | |
| 					     (TSI108_EC_INTMASK) |
 | |
| 					     TSI108_INT_RXQUEUE0 |
 | |
| 					     TSI108_INT_RXTHRESH |
 | |
| 					     TSI108_INT_RXOVERRUN |
 | |
| 					     TSI108_INT_RXERROR |
 | |
| 					     TSI108_INT_RXWAIT);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* If the RX ring has run out of memory, try periodically
 | |
|  * to allocate some more, as otherwise poll would never
 | |
|  * get called (apart from the initial end-of-queue condition).
 | |
|  *
 | |
|  * This is called once per second (by default) from the thread.
 | |
|  */
 | |
| 
 | |
| static void tsi108_check_rxring(struct net_device *dev)
 | |
| {
 | |
| 	struct tsi108_prv_data *data = netdev_priv(dev);
 | |
| 
 | |
| 	/* A poll is scheduled, as opposed to caling tsi108_refill_rx
 | |
| 	 * directly, so as to keep the receive path single-threaded
 | |
| 	 * (and thus not needing a lock).
 | |
| 	 */
 | |
| 
 | |
| 	if (netif_running(dev) && data->rxfree < TSI108_RXRING_LEN / 4)
 | |
| 		tsi108_rx_int(dev);
 | |
| }
 | |
| 
 | |
| static void tsi108_tx_int(struct net_device *dev)
 | |
| {
 | |
| 	struct tsi108_prv_data *data = netdev_priv(dev);
 | |
| 	u32 estat = TSI_READ(TSI108_EC_TXESTAT);
 | |
| 
 | |
| 	TSI_WRITE(TSI108_EC_TXESTAT, estat);
 | |
| 	TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_TXQUEUE0 |
 | |
| 			     TSI108_INT_TXIDLE | TSI108_INT_TXERROR);
 | |
| 	if (estat & TSI108_EC_TXESTAT_Q0_ERR) {
 | |
| 		u32 err = TSI_READ(TSI108_EC_TXERR);
 | |
| 		TSI_WRITE(TSI108_EC_TXERR, err);
 | |
| 
 | |
| 		if (err && net_ratelimit())
 | |
| 			printk(KERN_ERR "%s: TX error %x\n", dev->name, err);
 | |
| 	}
 | |
| 
 | |
| 	if (estat & (TSI108_EC_TXESTAT_Q0_DESCINT | TSI108_EC_TXESTAT_Q0_EOQ)) {
 | |
| 		spin_lock(&data->txlock);
 | |
| 		tsi108_complete_tx(dev);
 | |
| 		spin_unlock(&data->txlock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| static irqreturn_t tsi108_irq(int irq, void *dev_id)
 | |
| {
 | |
| 	struct net_device *dev = dev_id;
 | |
| 	struct tsi108_prv_data *data = netdev_priv(dev);
 | |
| 	u32 stat = TSI_READ(TSI108_EC_INTSTAT);
 | |
| 
 | |
| 	if (!(stat & TSI108_INT_ANY))
 | |
| 		return IRQ_NONE;	/* Not our interrupt */
 | |
| 
 | |
| 	stat &= ~TSI_READ(TSI108_EC_INTMASK);
 | |
| 
 | |
| 	if (stat & (TSI108_INT_TXQUEUE0 | TSI108_INT_TXIDLE |
 | |
| 		    TSI108_INT_TXERROR))
 | |
| 		tsi108_tx_int(dev);
 | |
| 	if (stat & (TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
 | |
| 		    TSI108_INT_RXWAIT | TSI108_INT_RXOVERRUN |
 | |
| 		    TSI108_INT_RXERROR))
 | |
| 		tsi108_rx_int(dev);
 | |
| 
 | |
| 	if (stat & TSI108_INT_SFN) {
 | |
| 		if (net_ratelimit())
 | |
| 			printk(KERN_DEBUG "%s: SFN error\n", dev->name);
 | |
| 		TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_SFN);
 | |
| 	}
 | |
| 
 | |
| 	if (stat & TSI108_INT_STATCARRY) {
 | |
| 		tsi108_stat_carry(dev);
 | |
| 		TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_STATCARRY);
 | |
| 	}
 | |
| 
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| static void tsi108_stop_ethernet(struct net_device *dev)
 | |
| {
 | |
| 	struct tsi108_prv_data *data = netdev_priv(dev);
 | |
| 	int i = 1000;
 | |
| 	/* Disable all TX and RX queues ... */
 | |
| 	TSI_WRITE(TSI108_EC_TXCTRL, 0);
 | |
| 	TSI_WRITE(TSI108_EC_RXCTRL, 0);
 | |
| 
 | |
| 	/* ...and wait for them to become idle */
 | |
| 	while(i--) {
 | |
| 		if(!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_ACTIVE))
 | |
| 			break;
 | |
| 		udelay(10);
 | |
| 	}
 | |
| 	i = 1000;
 | |
| 	while(i--){
 | |
| 		if(!(TSI_READ(TSI108_EC_RXSTAT) & TSI108_EC_RXSTAT_ACTIVE))
 | |
| 			return;
 | |
| 		udelay(10);
 | |
| 	}
 | |
| 	printk(KERN_ERR "%s function time out\n", __func__);
 | |
| }
 | |
| 
 | |
| static void tsi108_reset_ether(struct tsi108_prv_data * data)
 | |
| {
 | |
| 	TSI_WRITE(TSI108_MAC_CFG1, TSI108_MAC_CFG1_SOFTRST);
 | |
| 	udelay(100);
 | |
| 	TSI_WRITE(TSI108_MAC_CFG1, 0);
 | |
| 
 | |
| 	TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATRST);
 | |
| 	udelay(100);
 | |
| 	TSI_WRITE(TSI108_EC_PORTCTRL,
 | |
| 			     TSI_READ(TSI108_EC_PORTCTRL) &
 | |
| 			     ~TSI108_EC_PORTCTRL_STATRST);
 | |
| 
 | |
| 	TSI_WRITE(TSI108_EC_TXCFG, TSI108_EC_TXCFG_RST);
 | |
| 	udelay(100);
 | |
| 	TSI_WRITE(TSI108_EC_TXCFG,
 | |
| 			     TSI_READ(TSI108_EC_TXCFG) &
 | |
| 			     ~TSI108_EC_TXCFG_RST);
 | |
| 
 | |
| 	TSI_WRITE(TSI108_EC_RXCFG, TSI108_EC_RXCFG_RST);
 | |
| 	udelay(100);
 | |
| 	TSI_WRITE(TSI108_EC_RXCFG,
 | |
| 			     TSI_READ(TSI108_EC_RXCFG) &
 | |
| 			     ~TSI108_EC_RXCFG_RST);
 | |
| 
 | |
| 	TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
 | |
| 			     TSI_READ(TSI108_MAC_MII_MGMT_CFG) |
 | |
| 			     TSI108_MAC_MII_MGMT_RST);
 | |
| 	udelay(100);
 | |
| 	TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
 | |
| 			     (TSI_READ(TSI108_MAC_MII_MGMT_CFG) &
 | |
| 			     ~(TSI108_MAC_MII_MGMT_RST |
 | |
| 			       TSI108_MAC_MII_MGMT_CLK)) | 0x07);
 | |
| }
 | |
| 
 | |
| static int tsi108_get_mac(struct net_device *dev)
 | |
| {
 | |
| 	struct tsi108_prv_data *data = netdev_priv(dev);
 | |
| 	u32 word1 = TSI_READ(TSI108_MAC_ADDR1);
 | |
| 	u32 word2 = TSI_READ(TSI108_MAC_ADDR2);
 | |
| 
 | |
| 	/* Note that the octets are reversed from what the manual says,
 | |
| 	 * producing an even weirder ordering...
 | |
| 	 */
 | |
| 	if (word2 == 0 && word1 == 0) {
 | |
| 		dev->dev_addr[0] = 0x00;
 | |
| 		dev->dev_addr[1] = 0x06;
 | |
| 		dev->dev_addr[2] = 0xd2;
 | |
| 		dev->dev_addr[3] = 0x00;
 | |
| 		dev->dev_addr[4] = 0x00;
 | |
| 		if (0x8 == data->phy)
 | |
| 			dev->dev_addr[5] = 0x01;
 | |
| 		else
 | |
| 			dev->dev_addr[5] = 0x02;
 | |
| 
 | |
| 		word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
 | |
| 
 | |
| 		word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
 | |
| 		    (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
 | |
| 
 | |
| 		TSI_WRITE(TSI108_MAC_ADDR1, word1);
 | |
| 		TSI_WRITE(TSI108_MAC_ADDR2, word2);
 | |
| 	} else {
 | |
| 		dev->dev_addr[0] = (word2 >> 16) & 0xff;
 | |
| 		dev->dev_addr[1] = (word2 >> 24) & 0xff;
 | |
| 		dev->dev_addr[2] = (word1 >> 0) & 0xff;
 | |
| 		dev->dev_addr[3] = (word1 >> 8) & 0xff;
 | |
| 		dev->dev_addr[4] = (word1 >> 16) & 0xff;
 | |
| 		dev->dev_addr[5] = (word1 >> 24) & 0xff;
 | |
| 	}
 | |
| 
 | |
| 	if (!is_valid_ether_addr(dev->dev_addr)) {
 | |
| 		printk(KERN_ERR
 | |
| 		       "%s: Invalid MAC address. word1: %08x, word2: %08x\n",
 | |
| 		       dev->name, word1, word2);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int tsi108_set_mac(struct net_device *dev, void *addr)
 | |
| {
 | |
| 	struct tsi108_prv_data *data = netdev_priv(dev);
 | |
| 	u32 word1, word2;
 | |
| 	int i;
 | |
| 
 | |
| 	if (!is_valid_ether_addr(addr))
 | |
| 		return -EADDRNOTAVAIL;
 | |
| 
 | |
| 	for (i = 0; i < 6; i++)
 | |
| 		/* +2 is for the offset of the HW addr type */
 | |
| 		dev->dev_addr[i] = ((unsigned char *)addr)[i + 2];
 | |
| 
 | |
| 	word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
 | |
| 
 | |
| 	word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
 | |
| 	    (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
 | |
| 
 | |
| 	spin_lock_irq(&data->misclock);
 | |
| 	TSI_WRITE(TSI108_MAC_ADDR1, word1);
 | |
| 	TSI_WRITE(TSI108_MAC_ADDR2, word2);
 | |
| 	spin_lock(&data->txlock);
 | |
| 
 | |
| 	if (data->txfree && data->link_up)
 | |
| 		netif_wake_queue(dev);
 | |
| 
 | |
| 	spin_unlock(&data->txlock);
 | |
| 	spin_unlock_irq(&data->misclock);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Protected by dev->xmit_lock. */
 | |
| static void tsi108_set_rx_mode(struct net_device *dev)
 | |
| {
 | |
| 	struct tsi108_prv_data *data = netdev_priv(dev);
 | |
| 	u32 rxcfg = TSI_READ(TSI108_EC_RXCFG);
 | |
| 
 | |
| 	if (dev->flags & IFF_PROMISC) {
 | |
| 		rxcfg &= ~(TSI108_EC_RXCFG_UC_HASH | TSI108_EC_RXCFG_MC_HASH);
 | |
| 		rxcfg |= TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	rxcfg &= ~(TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE);
 | |
| 
 | |
| 	if (dev->flags & IFF_ALLMULTI || !netdev_mc_empty(dev)) {
 | |
| 		int i;
 | |
| 		struct netdev_hw_addr *ha;
 | |
| 		rxcfg |= TSI108_EC_RXCFG_MFE | TSI108_EC_RXCFG_MC_HASH;
 | |
| 
 | |
| 		memset(data->mc_hash, 0, sizeof(data->mc_hash));
 | |
| 
 | |
| 		netdev_for_each_mc_addr(ha, dev) {
 | |
| 			u32 hash, crc;
 | |
| 
 | |
| 			crc = ether_crc(6, ha->addr);
 | |
| 			hash = crc >> 23;
 | |
| 			__set_bit(hash, &data->mc_hash[0]);
 | |
| 		}
 | |
| 
 | |
| 		TSI_WRITE(TSI108_EC_HASHADDR,
 | |
| 				     TSI108_EC_HASHADDR_AUTOINC |
 | |
| 				     TSI108_EC_HASHADDR_MCAST);
 | |
| 
 | |
| 		for (i = 0; i < 16; i++) {
 | |
| 			/* The manual says that the hardware may drop
 | |
| 			 * back-to-back writes to the data register.
 | |
| 			 */
 | |
| 			udelay(1);
 | |
| 			TSI_WRITE(TSI108_EC_HASHDATA,
 | |
| 					     data->mc_hash[i]);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
|       out:
 | |
| 	TSI_WRITE(TSI108_EC_RXCFG, rxcfg);
 | |
| }
 | |
| 
 | |
| static void tsi108_init_phy(struct net_device *dev)
 | |
| {
 | |
| 	struct tsi108_prv_data *data = netdev_priv(dev);
 | |
| 	u32 i = 0;
 | |
| 	u16 phyval = 0;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&phy_lock, flags);
 | |
| 
 | |
| 	tsi108_write_mii(data, MII_BMCR, BMCR_RESET);
 | |
| 	while (--i) {
 | |
| 		if(!(tsi108_read_mii(data, MII_BMCR) & BMCR_RESET))
 | |
| 			break;
 | |
| 		udelay(10);
 | |
| 	}
 | |
| 	if (i == 0)
 | |
| 		printk(KERN_ERR "%s function time out\n", __func__);
 | |
| 
 | |
| 	if (data->phy_type == TSI108_PHY_BCM54XX) {
 | |
| 		tsi108_write_mii(data, 0x09, 0x0300);
 | |
| 		tsi108_write_mii(data, 0x10, 0x1020);
 | |
| 		tsi108_write_mii(data, 0x1c, 0x8c00);
 | |
| 	}
 | |
| 
 | |
| 	tsi108_write_mii(data,
 | |
| 			 MII_BMCR,
 | |
| 			 BMCR_ANENABLE | BMCR_ANRESTART);
 | |
| 	while (tsi108_read_mii(data, MII_BMCR) & BMCR_ANRESTART)
 | |
| 		cpu_relax();
 | |
| 
 | |
| 	/* Set G/MII mode and receive clock select in TBI control #2.  The
 | |
| 	 * second port won't work if this isn't done, even though we don't
 | |
| 	 * use TBI mode.
 | |
| 	 */
 | |
| 
 | |
| 	tsi108_write_tbi(data, 0x11, 0x30);
 | |
| 
 | |
| 	/* FIXME: It seems to take more than 2 back-to-back reads to the
 | |
| 	 * PHY_STAT register before the link up status bit is set.
 | |
| 	 */
 | |
| 
 | |
| 	data->link_up = 0;
 | |
| 
 | |
| 	while (!((phyval = tsi108_read_mii(data, MII_BMSR)) &
 | |
| 		 BMSR_LSTATUS)) {
 | |
| 		if (i++ > (MII_READ_DELAY / 10)) {
 | |
| 			break;
 | |
| 		}
 | |
| 		spin_unlock_irqrestore(&phy_lock, flags);
 | |
| 		msleep(10);
 | |
| 		spin_lock_irqsave(&phy_lock, flags);
 | |
| 	}
 | |
| 
 | |
| 	data->mii_if.supports_gmii = mii_check_gmii_support(&data->mii_if);
 | |
| 	printk(KERN_DEBUG "PHY_STAT reg contains %08x\n", phyval);
 | |
| 	data->phy_ok = 1;
 | |
| 	data->init_media = 1;
 | |
| 	spin_unlock_irqrestore(&phy_lock, flags);
 | |
| }
 | |
| 
 | |
| static void tsi108_kill_phy(struct net_device *dev)
 | |
| {
 | |
| 	struct tsi108_prv_data *data = netdev_priv(dev);
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&phy_lock, flags);
 | |
| 	tsi108_write_mii(data, MII_BMCR, BMCR_PDOWN);
 | |
| 	data->phy_ok = 0;
 | |
| 	spin_unlock_irqrestore(&phy_lock, flags);
 | |
| }
 | |
| 
 | |
| static int tsi108_open(struct net_device *dev)
 | |
| {
 | |
| 	int i;
 | |
| 	struct tsi108_prv_data *data = netdev_priv(dev);
 | |
| 	unsigned int rxring_size = TSI108_RXRING_LEN * sizeof(rx_desc);
 | |
| 	unsigned int txring_size = TSI108_TXRING_LEN * sizeof(tx_desc);
 | |
| 
 | |
| 	i = request_irq(data->irq_num, tsi108_irq, 0, dev->name, dev);
 | |
| 	if (i != 0) {
 | |
| 		printk(KERN_ERR "tsi108_eth%d: Could not allocate IRQ%d.\n",
 | |
| 		       data->id, data->irq_num);
 | |
| 		return i;
 | |
| 	} else {
 | |
| 		dev->irq = data->irq_num;
 | |
| 		printk(KERN_NOTICE
 | |
| 		       "tsi108_open : Port %d Assigned IRQ %d to %s\n",
 | |
| 		       data->id, dev->irq, dev->name);
 | |
| 	}
 | |
| 
 | |
| 	data->rxring = dma_zalloc_coherent(NULL, rxring_size, &data->rxdma,
 | |
| 					   GFP_KERNEL);
 | |
| 	if (!data->rxring)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	data->txring = dma_zalloc_coherent(NULL, txring_size, &data->txdma,
 | |
| 					   GFP_KERNEL);
 | |
| 	if (!data->txring) {
 | |
| 		pci_free_consistent(0, rxring_size, data->rxring, data->rxdma);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < TSI108_RXRING_LEN; i++) {
 | |
| 		data->rxring[i].next0 = data->rxdma + (i + 1) * sizeof(rx_desc);
 | |
| 		data->rxring[i].blen = TSI108_RXBUF_SIZE;
 | |
| 		data->rxring[i].vlan = 0;
 | |
| 	}
 | |
| 
 | |
| 	data->rxring[TSI108_RXRING_LEN - 1].next0 = data->rxdma;
 | |
| 
 | |
| 	data->rxtail = 0;
 | |
| 	data->rxhead = 0;
 | |
| 
 | |
| 	for (i = 0; i < TSI108_RXRING_LEN; i++) {
 | |
| 		struct sk_buff *skb;
 | |
| 
 | |
| 		skb = netdev_alloc_skb_ip_align(dev, TSI108_RXBUF_SIZE);
 | |
| 		if (!skb) {
 | |
| 			/* Bah.  No memory for now, but maybe we'll get
 | |
| 			 * some more later.
 | |
| 			 * For now, we'll live with the smaller ring.
 | |
| 			 */
 | |
| 			printk(KERN_WARNING
 | |
| 			       "%s: Could only allocate %d receive skb(s).\n",
 | |
| 			       dev->name, i);
 | |
| 			data->rxhead = i;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		data->rxskbs[i] = skb;
 | |
| 		data->rxring[i].buf0 = virt_to_phys(data->rxskbs[i]->data);
 | |
| 		data->rxring[i].misc = TSI108_RX_OWN | TSI108_RX_INT;
 | |
| 	}
 | |
| 
 | |
| 	data->rxfree = i;
 | |
| 	TSI_WRITE(TSI108_EC_RXQ_PTRLOW, data->rxdma);
 | |
| 
 | |
| 	for (i = 0; i < TSI108_TXRING_LEN; i++) {
 | |
| 		data->txring[i].next0 = data->txdma + (i + 1) * sizeof(tx_desc);
 | |
| 		data->txring[i].misc = 0;
 | |
| 	}
 | |
| 
 | |
| 	data->txring[TSI108_TXRING_LEN - 1].next0 = data->txdma;
 | |
| 	data->txtail = 0;
 | |
| 	data->txhead = 0;
 | |
| 	data->txfree = TSI108_TXRING_LEN;
 | |
| 	TSI_WRITE(TSI108_EC_TXQ_PTRLOW, data->txdma);
 | |
| 	tsi108_init_phy(dev);
 | |
| 
 | |
| 	napi_enable(&data->napi);
 | |
| 
 | |
| 	setup_timer(&data->timer, tsi108_timed_checker, (unsigned long)dev);
 | |
| 	mod_timer(&data->timer, jiffies + 1);
 | |
| 
 | |
| 	tsi108_restart_rx(data, dev);
 | |
| 
 | |
| 	TSI_WRITE(TSI108_EC_INTSTAT, ~0);
 | |
| 
 | |
| 	TSI_WRITE(TSI108_EC_INTMASK,
 | |
| 			     ~(TSI108_INT_TXQUEUE0 | TSI108_INT_RXERROR |
 | |
| 			       TSI108_INT_RXTHRESH | TSI108_INT_RXQUEUE0 |
 | |
| 			       TSI108_INT_RXOVERRUN | TSI108_INT_RXWAIT |
 | |
| 			       TSI108_INT_SFN | TSI108_INT_STATCARRY));
 | |
| 
 | |
| 	TSI_WRITE(TSI108_MAC_CFG1,
 | |
| 			     TSI108_MAC_CFG1_RXEN | TSI108_MAC_CFG1_TXEN);
 | |
| 	netif_start_queue(dev);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int tsi108_close(struct net_device *dev)
 | |
| {
 | |
| 	struct tsi108_prv_data *data = netdev_priv(dev);
 | |
| 
 | |
| 	netif_stop_queue(dev);
 | |
| 	napi_disable(&data->napi);
 | |
| 
 | |
| 	del_timer_sync(&data->timer);
 | |
| 
 | |
| 	tsi108_stop_ethernet(dev);
 | |
| 	tsi108_kill_phy(dev);
 | |
| 	TSI_WRITE(TSI108_EC_INTMASK, ~0);
 | |
| 	TSI_WRITE(TSI108_MAC_CFG1, 0);
 | |
| 
 | |
| 	/* Check for any pending TX packets, and drop them. */
 | |
| 
 | |
| 	while (!data->txfree || data->txhead != data->txtail) {
 | |
| 		int tx = data->txtail;
 | |
| 		struct sk_buff *skb;
 | |
| 		skb = data->txskbs[tx];
 | |
| 		data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
 | |
| 		data->txfree++;
 | |
| 		dev_kfree_skb(skb);
 | |
| 	}
 | |
| 
 | |
| 	free_irq(data->irq_num, dev);
 | |
| 
 | |
| 	/* Discard the RX ring. */
 | |
| 
 | |
| 	while (data->rxfree) {
 | |
| 		int rx = data->rxtail;
 | |
| 		struct sk_buff *skb;
 | |
| 
 | |
| 		skb = data->rxskbs[rx];
 | |
| 		data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
 | |
| 		data->rxfree--;
 | |
| 		dev_kfree_skb(skb);
 | |
| 	}
 | |
| 
 | |
| 	dma_free_coherent(0,
 | |
| 			    TSI108_RXRING_LEN * sizeof(rx_desc),
 | |
| 			    data->rxring, data->rxdma);
 | |
| 	dma_free_coherent(0,
 | |
| 			    TSI108_TXRING_LEN * sizeof(tx_desc),
 | |
| 			    data->txring, data->txdma);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void tsi108_init_mac(struct net_device *dev)
 | |
| {
 | |
| 	struct tsi108_prv_data *data = netdev_priv(dev);
 | |
| 
 | |
| 	TSI_WRITE(TSI108_MAC_CFG2, TSI108_MAC_CFG2_DFLT_PREAMBLE |
 | |
| 			     TSI108_MAC_CFG2_PADCRC);
 | |
| 
 | |
| 	TSI_WRITE(TSI108_EC_TXTHRESH,
 | |
| 			     (192 << TSI108_EC_TXTHRESH_STARTFILL) |
 | |
| 			     (192 << TSI108_EC_TXTHRESH_STOPFILL));
 | |
| 
 | |
| 	TSI_WRITE(TSI108_STAT_CARRYMASK1,
 | |
| 			     ~(TSI108_STAT_CARRY1_RXBYTES |
 | |
| 			       TSI108_STAT_CARRY1_RXPKTS |
 | |
| 			       TSI108_STAT_CARRY1_RXFCS |
 | |
| 			       TSI108_STAT_CARRY1_RXMCAST |
 | |
| 			       TSI108_STAT_CARRY1_RXALIGN |
 | |
| 			       TSI108_STAT_CARRY1_RXLENGTH |
 | |
| 			       TSI108_STAT_CARRY1_RXRUNT |
 | |
| 			       TSI108_STAT_CARRY1_RXJUMBO |
 | |
| 			       TSI108_STAT_CARRY1_RXFRAG |
 | |
| 			       TSI108_STAT_CARRY1_RXJABBER |
 | |
| 			       TSI108_STAT_CARRY1_RXDROP));
 | |
| 
 | |
| 	TSI_WRITE(TSI108_STAT_CARRYMASK2,
 | |
| 			     ~(TSI108_STAT_CARRY2_TXBYTES |
 | |
| 			       TSI108_STAT_CARRY2_TXPKTS |
 | |
| 			       TSI108_STAT_CARRY2_TXEXDEF |
 | |
| 			       TSI108_STAT_CARRY2_TXEXCOL |
 | |
| 			       TSI108_STAT_CARRY2_TXTCOL |
 | |
| 			       TSI108_STAT_CARRY2_TXPAUSE));
 | |
| 
 | |
| 	TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATEN);
 | |
| 	TSI_WRITE(TSI108_MAC_CFG1, 0);
 | |
| 
 | |
| 	TSI_WRITE(TSI108_EC_RXCFG,
 | |
| 			     TSI108_EC_RXCFG_SE | TSI108_EC_RXCFG_BFE);
 | |
| 
 | |
| 	TSI_WRITE(TSI108_EC_TXQ_CFG, TSI108_EC_TXQ_CFG_DESC_INT |
 | |
| 			     TSI108_EC_TXQ_CFG_EOQ_OWN_INT |
 | |
| 			     TSI108_EC_TXQ_CFG_WSWP | (TSI108_PBM_PORT <<
 | |
| 						TSI108_EC_TXQ_CFG_SFNPORT));
 | |
| 
 | |
| 	TSI_WRITE(TSI108_EC_RXQ_CFG, TSI108_EC_RXQ_CFG_DESC_INT |
 | |
| 			     TSI108_EC_RXQ_CFG_EOQ_OWN_INT |
 | |
| 			     TSI108_EC_RXQ_CFG_WSWP | (TSI108_PBM_PORT <<
 | |
| 						TSI108_EC_RXQ_CFG_SFNPORT));
 | |
| 
 | |
| 	TSI_WRITE(TSI108_EC_TXQ_BUFCFG,
 | |
| 			     TSI108_EC_TXQ_BUFCFG_BURST256 |
 | |
| 			     TSI108_EC_TXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
 | |
| 						TSI108_EC_TXQ_BUFCFG_SFNPORT));
 | |
| 
 | |
| 	TSI_WRITE(TSI108_EC_RXQ_BUFCFG,
 | |
| 			     TSI108_EC_RXQ_BUFCFG_BURST256 |
 | |
| 			     TSI108_EC_RXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
 | |
| 						TSI108_EC_RXQ_BUFCFG_SFNPORT));
 | |
| 
 | |
| 	TSI_WRITE(TSI108_EC_INTMASK, ~0);
 | |
| }
 | |
| 
 | |
| static int tsi108_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
 | |
| {
 | |
| 	struct tsi108_prv_data *data = netdev_priv(dev);
 | |
| 	unsigned long flags;
 | |
| 	int rc;
 | |
| 
 | |
| 	spin_lock_irqsave(&data->txlock, flags);
 | |
| 	rc = mii_ethtool_gset(&data->mii_if, cmd);
 | |
| 	spin_unlock_irqrestore(&data->txlock, flags);
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static int tsi108_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
 | |
| {
 | |
| 	struct tsi108_prv_data *data = netdev_priv(dev);
 | |
| 	unsigned long flags;
 | |
| 	int rc;
 | |
| 
 | |
| 	spin_lock_irqsave(&data->txlock, flags);
 | |
| 	rc = mii_ethtool_sset(&data->mii_if, cmd);
 | |
| 	spin_unlock_irqrestore(&data->txlock, flags);
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static int tsi108_do_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
 | |
| {
 | |
| 	struct tsi108_prv_data *data = netdev_priv(dev);
 | |
| 	if (!netif_running(dev))
 | |
| 		return -EINVAL;
 | |
| 	return generic_mii_ioctl(&data->mii_if, if_mii(rq), cmd, NULL);
 | |
| }
 | |
| 
 | |
| static const struct ethtool_ops tsi108_ethtool_ops = {
 | |
| 	.get_link 	= ethtool_op_get_link,
 | |
| 	.get_settings	= tsi108_get_settings,
 | |
| 	.set_settings	= tsi108_set_settings,
 | |
| };
 | |
| 
 | |
| static const struct net_device_ops tsi108_netdev_ops = {
 | |
| 	.ndo_open		= tsi108_open,
 | |
| 	.ndo_stop		= tsi108_close,
 | |
| 	.ndo_start_xmit		= tsi108_send_packet,
 | |
| 	.ndo_set_rx_mode	= tsi108_set_rx_mode,
 | |
| 	.ndo_get_stats		= tsi108_get_stats,
 | |
| 	.ndo_do_ioctl		= tsi108_do_ioctl,
 | |
| 	.ndo_set_mac_address	= tsi108_set_mac,
 | |
| 	.ndo_validate_addr	= eth_validate_addr,
 | |
| 	.ndo_change_mtu		= eth_change_mtu,
 | |
| };
 | |
| 
 | |
| static int
 | |
| tsi108_init_one(struct platform_device *pdev)
 | |
| {
 | |
| 	struct net_device *dev = NULL;
 | |
| 	struct tsi108_prv_data *data = NULL;
 | |
| 	hw_info *einfo;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	einfo = dev_get_platdata(&pdev->dev);
 | |
| 
 | |
| 	if (NULL == einfo) {
 | |
| 		printk(KERN_ERR "tsi-eth %d: Missing additional data!\n",
 | |
| 		       pdev->id);
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	/* Create an ethernet device instance */
 | |
| 
 | |
| 	dev = alloc_etherdev(sizeof(struct tsi108_prv_data));
 | |
| 	if (!dev)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	printk("tsi108_eth%d: probe...\n", pdev->id);
 | |
| 	data = netdev_priv(dev);
 | |
| 	data->dev = dev;
 | |
| 
 | |
| 	pr_debug("tsi108_eth%d:regs:phyresgs:phy:irq_num=0x%x:0x%x:0x%x:0x%x\n",
 | |
| 			pdev->id, einfo->regs, einfo->phyregs,
 | |
| 			einfo->phy, einfo->irq_num);
 | |
| 
 | |
| 	data->regs = ioremap(einfo->regs, 0x400);
 | |
| 	if (NULL == data->regs) {
 | |
| 		err = -ENOMEM;
 | |
| 		goto regs_fail;
 | |
| 	}
 | |
| 
 | |
| 	data->phyregs = ioremap(einfo->phyregs, 0x400);
 | |
| 	if (NULL == data->phyregs) {
 | |
| 		err = -ENOMEM;
 | |
| 		goto phyregs_fail;
 | |
| 	}
 | |
| /* MII setup */
 | |
| 	data->mii_if.dev = dev;
 | |
| 	data->mii_if.mdio_read = tsi108_mdio_read;
 | |
| 	data->mii_if.mdio_write = tsi108_mdio_write;
 | |
| 	data->mii_if.phy_id = einfo->phy;
 | |
| 	data->mii_if.phy_id_mask = 0x1f;
 | |
| 	data->mii_if.reg_num_mask = 0x1f;
 | |
| 
 | |
| 	data->phy = einfo->phy;
 | |
| 	data->phy_type = einfo->phy_type;
 | |
| 	data->irq_num = einfo->irq_num;
 | |
| 	data->id = pdev->id;
 | |
| 	netif_napi_add(dev, &data->napi, tsi108_poll, 64);
 | |
| 	dev->netdev_ops = &tsi108_netdev_ops;
 | |
| 	dev->ethtool_ops = &tsi108_ethtool_ops;
 | |
| 
 | |
| 	/* Apparently, the Linux networking code won't use scatter-gather
 | |
| 	 * if the hardware doesn't do checksums.  However, it's faster
 | |
| 	 * to checksum in place and use SG, as (among other reasons)
 | |
| 	 * the cache won't be dirtied (which then has to be flushed
 | |
| 	 * before DMA).  The checksumming is done by the driver (via
 | |
| 	 * a new function skb_csum_dev() in net/core/skbuff.c).
 | |
| 	 */
 | |
| 
 | |
| 	dev->features = NETIF_F_HIGHDMA;
 | |
| 
 | |
| 	spin_lock_init(&data->txlock);
 | |
| 	spin_lock_init(&data->misclock);
 | |
| 
 | |
| 	tsi108_reset_ether(data);
 | |
| 	tsi108_kill_phy(dev);
 | |
| 
 | |
| 	if ((err = tsi108_get_mac(dev)) != 0) {
 | |
| 		printk(KERN_ERR "%s: Invalid MAC address.  Please correct.\n",
 | |
| 		       dev->name);
 | |
| 		goto register_fail;
 | |
| 	}
 | |
| 
 | |
| 	tsi108_init_mac(dev);
 | |
| 	err = register_netdev(dev);
 | |
| 	if (err) {
 | |
| 		printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
 | |
| 				dev->name);
 | |
| 		goto register_fail;
 | |
| 	}
 | |
| 
 | |
| 	platform_set_drvdata(pdev, dev);
 | |
| 	printk(KERN_INFO "%s: Tsi108 Gigabit Ethernet, MAC: %pM\n",
 | |
| 	       dev->name, dev->dev_addr);
 | |
| #ifdef DEBUG
 | |
| 	data->msg_enable = DEBUG;
 | |
| 	dump_eth_one(dev);
 | |
| #endif
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| register_fail:
 | |
| 	iounmap(data->phyregs);
 | |
| 
 | |
| phyregs_fail:
 | |
| 	iounmap(data->regs);
 | |
| 
 | |
| regs_fail:
 | |
| 	free_netdev(dev);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /* There's no way to either get interrupts from the PHY when
 | |
|  * something changes, or to have the Tsi108 automatically communicate
 | |
|  * with the PHY to reconfigure itself.
 | |
|  *
 | |
|  * Thus, we have to do it using a timer.
 | |
|  */
 | |
| 
 | |
| static void tsi108_timed_checker(unsigned long dev_ptr)
 | |
| {
 | |
| 	struct net_device *dev = (struct net_device *)dev_ptr;
 | |
| 	struct tsi108_prv_data *data = netdev_priv(dev);
 | |
| 
 | |
| 	tsi108_check_phy(dev);
 | |
| 	tsi108_check_rxring(dev);
 | |
| 	mod_timer(&data->timer, jiffies + CHECK_PHY_INTERVAL);
 | |
| }
 | |
| 
 | |
| static int tsi108_ether_remove(struct platform_device *pdev)
 | |
| {
 | |
| 	struct net_device *dev = platform_get_drvdata(pdev);
 | |
| 	struct tsi108_prv_data *priv = netdev_priv(dev);
 | |
| 
 | |
| 	unregister_netdev(dev);
 | |
| 	tsi108_stop_ethernet(dev);
 | |
| 	iounmap(priv->regs);
 | |
| 	iounmap(priv->phyregs);
 | |
| 	free_netdev(dev);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| module_platform_driver(tsi_eth_driver);
 | |
| 
 | |
| MODULE_AUTHOR("Tundra Semiconductor Corporation");
 | |
| MODULE_DESCRIPTION("Tsi108 Gigabit Ethernet driver");
 | |
| MODULE_LICENSE("GPL");
 | |
| MODULE_ALIAS("platform:tsi-ethernet");
 |