 f7a6d2c442
			
		
	
	
	f7a6d2c442
	
	
	
		
			
			Update the dates for files that have been added to in 2012-2013. Drop the 'Solarstorm' brand name that's still lingering here. Signed-off-by: Ben Hutchings <bhutchings@solarflare.com>
		
			
				
	
	
		
			2942 lines
		
	
	
	
		
			86 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2942 lines
		
	
	
	
		
			86 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /****************************************************************************
 | |
|  * Driver for Solarflare network controllers and boards
 | |
|  * Copyright 2005-2006 Fen Systems Ltd.
 | |
|  * Copyright 2006-2013 Solarflare Communications Inc.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify it
 | |
|  * under the terms of the GNU General Public License version 2 as published
 | |
|  * by the Free Software Foundation, incorporated herein by reference.
 | |
|  */
 | |
| 
 | |
| #include <linux/bitops.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/pci.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/crc32.h>
 | |
| #include "net_driver.h"
 | |
| #include "bitfield.h"
 | |
| #include "efx.h"
 | |
| #include "nic.h"
 | |
| #include "farch_regs.h"
 | |
| #include "io.h"
 | |
| #include "workarounds.h"
 | |
| 
 | |
| /* Falcon-architecture (SFC4000 and SFC9000-family) support */
 | |
| 
 | |
| /**************************************************************************
 | |
|  *
 | |
|  * Configurable values
 | |
|  *
 | |
|  **************************************************************************
 | |
|  */
 | |
| 
 | |
| /* This is set to 16 for a good reason.  In summary, if larger than
 | |
|  * 16, the descriptor cache holds more than a default socket
 | |
|  * buffer's worth of packets (for UDP we can only have at most one
 | |
|  * socket buffer's worth outstanding).  This combined with the fact
 | |
|  * that we only get 1 TX event per descriptor cache means the NIC
 | |
|  * goes idle.
 | |
|  */
 | |
| #define TX_DC_ENTRIES 16
 | |
| #define TX_DC_ENTRIES_ORDER 1
 | |
| 
 | |
| #define RX_DC_ENTRIES 64
 | |
| #define RX_DC_ENTRIES_ORDER 3
 | |
| 
 | |
| /* If EFX_MAX_INT_ERRORS internal errors occur within
 | |
|  * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
 | |
|  * disable it.
 | |
|  */
 | |
| #define EFX_INT_ERROR_EXPIRE 3600
 | |
| #define EFX_MAX_INT_ERRORS 5
 | |
| 
 | |
| /* Depth of RX flush request fifo */
 | |
| #define EFX_RX_FLUSH_COUNT 4
 | |
| 
 | |
| /* Driver generated events */
 | |
| #define _EFX_CHANNEL_MAGIC_TEST		0x000101
 | |
| #define _EFX_CHANNEL_MAGIC_FILL		0x000102
 | |
| #define _EFX_CHANNEL_MAGIC_RX_DRAIN	0x000103
 | |
| #define _EFX_CHANNEL_MAGIC_TX_DRAIN	0x000104
 | |
| 
 | |
| #define _EFX_CHANNEL_MAGIC(_code, _data)	((_code) << 8 | (_data))
 | |
| #define _EFX_CHANNEL_MAGIC_CODE(_magic)		((_magic) >> 8)
 | |
| 
 | |
| #define EFX_CHANNEL_MAGIC_TEST(_channel)				\
 | |
| 	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
 | |
| #define EFX_CHANNEL_MAGIC_FILL(_rx_queue)				\
 | |
| 	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL,			\
 | |
| 			   efx_rx_queue_index(_rx_queue))
 | |
| #define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue)				\
 | |
| 	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN,			\
 | |
| 			   efx_rx_queue_index(_rx_queue))
 | |
| #define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue)				\
 | |
| 	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN,			\
 | |
| 			   (_tx_queue)->queue)
 | |
| 
 | |
| static void efx_farch_magic_event(struct efx_channel *channel, u32 magic);
 | |
| 
 | |
| /**************************************************************************
 | |
|  *
 | |
|  * Hardware access
 | |
|  *
 | |
|  **************************************************************************/
 | |
| 
 | |
| static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
 | |
| 				     unsigned int index)
 | |
| {
 | |
| 	efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
 | |
| 			value, index);
 | |
| }
 | |
| 
 | |
| static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
 | |
| 				     const efx_oword_t *mask)
 | |
| {
 | |
| 	return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
 | |
| 		((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
 | |
| }
 | |
| 
 | |
| int efx_farch_test_registers(struct efx_nic *efx,
 | |
| 			     const struct efx_farch_register_test *regs,
 | |
| 			     size_t n_regs)
 | |
| {
 | |
| 	unsigned address = 0, i, j;
 | |
| 	efx_oword_t mask, imask, original, reg, buf;
 | |
| 
 | |
| 	for (i = 0; i < n_regs; ++i) {
 | |
| 		address = regs[i].address;
 | |
| 		mask = imask = regs[i].mask;
 | |
| 		EFX_INVERT_OWORD(imask);
 | |
| 
 | |
| 		efx_reado(efx, &original, address);
 | |
| 
 | |
| 		/* bit sweep on and off */
 | |
| 		for (j = 0; j < 128; j++) {
 | |
| 			if (!EFX_EXTRACT_OWORD32(mask, j, j))
 | |
| 				continue;
 | |
| 
 | |
| 			/* Test this testable bit can be set in isolation */
 | |
| 			EFX_AND_OWORD(reg, original, mask);
 | |
| 			EFX_SET_OWORD32(reg, j, j, 1);
 | |
| 
 | |
| 			efx_writeo(efx, ®, address);
 | |
| 			efx_reado(efx, &buf, address);
 | |
| 
 | |
| 			if (efx_masked_compare_oword(®, &buf, &mask))
 | |
| 				goto fail;
 | |
| 
 | |
| 			/* Test this testable bit can be cleared in isolation */
 | |
| 			EFX_OR_OWORD(reg, original, mask);
 | |
| 			EFX_SET_OWORD32(reg, j, j, 0);
 | |
| 
 | |
| 			efx_writeo(efx, ®, address);
 | |
| 			efx_reado(efx, &buf, address);
 | |
| 
 | |
| 			if (efx_masked_compare_oword(®, &buf, &mask))
 | |
| 				goto fail;
 | |
| 		}
 | |
| 
 | |
| 		efx_writeo(efx, &original, address);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| fail:
 | |
| 	netif_err(efx, hw, efx->net_dev,
 | |
| 		  "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
 | |
| 		  " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
 | |
| 		  EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
 | |
| 	return -EIO;
 | |
| }
 | |
| 
 | |
| /**************************************************************************
 | |
|  *
 | |
|  * Special buffer handling
 | |
|  * Special buffers are used for event queues and the TX and RX
 | |
|  * descriptor rings.
 | |
|  *
 | |
|  *************************************************************************/
 | |
| 
 | |
| /*
 | |
|  * Initialise a special buffer
 | |
|  *
 | |
|  * This will define a buffer (previously allocated via
 | |
|  * efx_alloc_special_buffer()) in the buffer table, allowing
 | |
|  * it to be used for event queues, descriptor rings etc.
 | |
|  */
 | |
| static void
 | |
| efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
 | |
| {
 | |
| 	efx_qword_t buf_desc;
 | |
| 	unsigned int index;
 | |
| 	dma_addr_t dma_addr;
 | |
| 	int i;
 | |
| 
 | |
| 	EFX_BUG_ON_PARANOID(!buffer->buf.addr);
 | |
| 
 | |
| 	/* Write buffer descriptors to NIC */
 | |
| 	for (i = 0; i < buffer->entries; i++) {
 | |
| 		index = buffer->index + i;
 | |
| 		dma_addr = buffer->buf.dma_addr + (i * EFX_BUF_SIZE);
 | |
| 		netif_dbg(efx, probe, efx->net_dev,
 | |
| 			  "mapping special buffer %d at %llx\n",
 | |
| 			  index, (unsigned long long)dma_addr);
 | |
| 		EFX_POPULATE_QWORD_3(buf_desc,
 | |
| 				     FRF_AZ_BUF_ADR_REGION, 0,
 | |
| 				     FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
 | |
| 				     FRF_AZ_BUF_OWNER_ID_FBUF, 0);
 | |
| 		efx_write_buf_tbl(efx, &buf_desc, index);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Unmaps a buffer and clears the buffer table entries */
 | |
| static void
 | |
| efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
 | |
| {
 | |
| 	efx_oword_t buf_tbl_upd;
 | |
| 	unsigned int start = buffer->index;
 | |
| 	unsigned int end = (buffer->index + buffer->entries - 1);
 | |
| 
 | |
| 	if (!buffer->entries)
 | |
| 		return;
 | |
| 
 | |
| 	netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
 | |
| 		  buffer->index, buffer->index + buffer->entries - 1);
 | |
| 
 | |
| 	EFX_POPULATE_OWORD_4(buf_tbl_upd,
 | |
| 			     FRF_AZ_BUF_UPD_CMD, 0,
 | |
| 			     FRF_AZ_BUF_CLR_CMD, 1,
 | |
| 			     FRF_AZ_BUF_CLR_END_ID, end,
 | |
| 			     FRF_AZ_BUF_CLR_START_ID, start);
 | |
| 	efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate a new special buffer
 | |
|  *
 | |
|  * This allocates memory for a new buffer, clears it and allocates a
 | |
|  * new buffer ID range.  It does not write into the buffer table.
 | |
|  *
 | |
|  * This call will allocate 4KB buffers, since 8KB buffers can't be
 | |
|  * used for event queues and descriptor rings.
 | |
|  */
 | |
| static int efx_alloc_special_buffer(struct efx_nic *efx,
 | |
| 				    struct efx_special_buffer *buffer,
 | |
| 				    unsigned int len)
 | |
| {
 | |
| 	len = ALIGN(len, EFX_BUF_SIZE);
 | |
| 
 | |
| 	if (efx_nic_alloc_buffer(efx, &buffer->buf, len, GFP_KERNEL))
 | |
| 		return -ENOMEM;
 | |
| 	buffer->entries = len / EFX_BUF_SIZE;
 | |
| 	BUG_ON(buffer->buf.dma_addr & (EFX_BUF_SIZE - 1));
 | |
| 
 | |
| 	/* Select new buffer ID */
 | |
| 	buffer->index = efx->next_buffer_table;
 | |
| 	efx->next_buffer_table += buffer->entries;
 | |
| #ifdef CONFIG_SFC_SRIOV
 | |
| 	BUG_ON(efx_sriov_enabled(efx) &&
 | |
| 	       efx->vf_buftbl_base < efx->next_buffer_table);
 | |
| #endif
 | |
| 
 | |
| 	netif_dbg(efx, probe, efx->net_dev,
 | |
| 		  "allocating special buffers %d-%d at %llx+%x "
 | |
| 		  "(virt %p phys %llx)\n", buffer->index,
 | |
| 		  buffer->index + buffer->entries - 1,
 | |
| 		  (u64)buffer->buf.dma_addr, len,
 | |
| 		  buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void
 | |
| efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
 | |
| {
 | |
| 	if (!buffer->buf.addr)
 | |
| 		return;
 | |
| 
 | |
| 	netif_dbg(efx, hw, efx->net_dev,
 | |
| 		  "deallocating special buffers %d-%d at %llx+%x "
 | |
| 		  "(virt %p phys %llx)\n", buffer->index,
 | |
| 		  buffer->index + buffer->entries - 1,
 | |
| 		  (u64)buffer->buf.dma_addr, buffer->buf.len,
 | |
| 		  buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
 | |
| 
 | |
| 	efx_nic_free_buffer(efx, &buffer->buf);
 | |
| 	buffer->entries = 0;
 | |
| }
 | |
| 
 | |
| /**************************************************************************
 | |
|  *
 | |
|  * TX path
 | |
|  *
 | |
|  **************************************************************************/
 | |
| 
 | |
| /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
 | |
| static inline void efx_farch_notify_tx_desc(struct efx_tx_queue *tx_queue)
 | |
| {
 | |
| 	unsigned write_ptr;
 | |
| 	efx_dword_t reg;
 | |
| 
 | |
| 	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
 | |
| 	EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
 | |
| 	efx_writed_page(tx_queue->efx, ®,
 | |
| 			FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
 | |
| }
 | |
| 
 | |
| /* Write pointer and first descriptor for TX descriptor ring */
 | |
| static inline void efx_farch_push_tx_desc(struct efx_tx_queue *tx_queue,
 | |
| 					  const efx_qword_t *txd)
 | |
| {
 | |
| 	unsigned write_ptr;
 | |
| 	efx_oword_t reg;
 | |
| 
 | |
| 	BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
 | |
| 	BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
 | |
| 
 | |
| 	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
 | |
| 	EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
 | |
| 			     FRF_AZ_TX_DESC_WPTR, write_ptr);
 | |
| 	reg.qword[0] = *txd;
 | |
| 	efx_writeo_page(tx_queue->efx, ®,
 | |
| 			FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* For each entry inserted into the software descriptor ring, create a
 | |
|  * descriptor in the hardware TX descriptor ring (in host memory), and
 | |
|  * write a doorbell.
 | |
|  */
 | |
| void efx_farch_tx_write(struct efx_tx_queue *tx_queue)
 | |
| {
 | |
| 
 | |
| 	struct efx_tx_buffer *buffer;
 | |
| 	efx_qword_t *txd;
 | |
| 	unsigned write_ptr;
 | |
| 	unsigned old_write_count = tx_queue->write_count;
 | |
| 
 | |
| 	BUG_ON(tx_queue->write_count == tx_queue->insert_count);
 | |
| 
 | |
| 	do {
 | |
| 		write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
 | |
| 		buffer = &tx_queue->buffer[write_ptr];
 | |
| 		txd = efx_tx_desc(tx_queue, write_ptr);
 | |
| 		++tx_queue->write_count;
 | |
| 
 | |
| 		EFX_BUG_ON_PARANOID(buffer->flags & EFX_TX_BUF_OPTION);
 | |
| 
 | |
| 		/* Create TX descriptor ring entry */
 | |
| 		BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
 | |
| 		EFX_POPULATE_QWORD_4(*txd,
 | |
| 				     FSF_AZ_TX_KER_CONT,
 | |
| 				     buffer->flags & EFX_TX_BUF_CONT,
 | |
| 				     FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
 | |
| 				     FSF_AZ_TX_KER_BUF_REGION, 0,
 | |
| 				     FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
 | |
| 	} while (tx_queue->write_count != tx_queue->insert_count);
 | |
| 
 | |
| 	wmb(); /* Ensure descriptors are written before they are fetched */
 | |
| 
 | |
| 	if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
 | |
| 		txd = efx_tx_desc(tx_queue,
 | |
| 				  old_write_count & tx_queue->ptr_mask);
 | |
| 		efx_farch_push_tx_desc(tx_queue, txd);
 | |
| 		++tx_queue->pushes;
 | |
| 	} else {
 | |
| 		efx_farch_notify_tx_desc(tx_queue);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Allocate hardware resources for a TX queue */
 | |
| int efx_farch_tx_probe(struct efx_tx_queue *tx_queue)
 | |
| {
 | |
| 	struct efx_nic *efx = tx_queue->efx;
 | |
| 	unsigned entries;
 | |
| 
 | |
| 	entries = tx_queue->ptr_mask + 1;
 | |
| 	return efx_alloc_special_buffer(efx, &tx_queue->txd,
 | |
| 					entries * sizeof(efx_qword_t));
 | |
| }
 | |
| 
 | |
| void efx_farch_tx_init(struct efx_tx_queue *tx_queue)
 | |
| {
 | |
| 	struct efx_nic *efx = tx_queue->efx;
 | |
| 	efx_oword_t reg;
 | |
| 
 | |
| 	/* Pin TX descriptor ring */
 | |
| 	efx_init_special_buffer(efx, &tx_queue->txd);
 | |
| 
 | |
| 	/* Push TX descriptor ring to card */
 | |
| 	EFX_POPULATE_OWORD_10(reg,
 | |
| 			      FRF_AZ_TX_DESCQ_EN, 1,
 | |
| 			      FRF_AZ_TX_ISCSI_DDIG_EN, 0,
 | |
| 			      FRF_AZ_TX_ISCSI_HDIG_EN, 0,
 | |
| 			      FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
 | |
| 			      FRF_AZ_TX_DESCQ_EVQ_ID,
 | |
| 			      tx_queue->channel->channel,
 | |
| 			      FRF_AZ_TX_DESCQ_OWNER_ID, 0,
 | |
| 			      FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
 | |
| 			      FRF_AZ_TX_DESCQ_SIZE,
 | |
| 			      __ffs(tx_queue->txd.entries),
 | |
| 			      FRF_AZ_TX_DESCQ_TYPE, 0,
 | |
| 			      FRF_BZ_TX_NON_IP_DROP_DIS, 1);
 | |
| 
 | |
| 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
 | |
| 		int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
 | |
| 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
 | |
| 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS,
 | |
| 				    !csum);
 | |
| 	}
 | |
| 
 | |
| 	efx_writeo_table(efx, ®, efx->type->txd_ptr_tbl_base,
 | |
| 			 tx_queue->queue);
 | |
| 
 | |
| 	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
 | |
| 		/* Only 128 bits in this register */
 | |
| 		BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128);
 | |
| 
 | |
| 		efx_reado(efx, ®, FR_AA_TX_CHKSM_CFG);
 | |
| 		if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
 | |
| 			__clear_bit_le(tx_queue->queue, ®);
 | |
| 		else
 | |
| 			__set_bit_le(tx_queue->queue, ®);
 | |
| 		efx_writeo(efx, ®, FR_AA_TX_CHKSM_CFG);
 | |
| 	}
 | |
| 
 | |
| 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
 | |
| 		EFX_POPULATE_OWORD_1(reg,
 | |
| 				     FRF_BZ_TX_PACE,
 | |
| 				     (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
 | |
| 				     FFE_BZ_TX_PACE_OFF :
 | |
| 				     FFE_BZ_TX_PACE_RESERVED);
 | |
| 		efx_writeo_table(efx, ®, FR_BZ_TX_PACE_TBL,
 | |
| 				 tx_queue->queue);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void efx_farch_flush_tx_queue(struct efx_tx_queue *tx_queue)
 | |
| {
 | |
| 	struct efx_nic *efx = tx_queue->efx;
 | |
| 	efx_oword_t tx_flush_descq;
 | |
| 
 | |
| 	WARN_ON(atomic_read(&tx_queue->flush_outstanding));
 | |
| 	atomic_set(&tx_queue->flush_outstanding, 1);
 | |
| 
 | |
| 	EFX_POPULATE_OWORD_2(tx_flush_descq,
 | |
| 			     FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
 | |
| 			     FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
 | |
| 	efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
 | |
| }
 | |
| 
 | |
| void efx_farch_tx_fini(struct efx_tx_queue *tx_queue)
 | |
| {
 | |
| 	struct efx_nic *efx = tx_queue->efx;
 | |
| 	efx_oword_t tx_desc_ptr;
 | |
| 
 | |
| 	/* Remove TX descriptor ring from card */
 | |
| 	EFX_ZERO_OWORD(tx_desc_ptr);
 | |
| 	efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
 | |
| 			 tx_queue->queue);
 | |
| 
 | |
| 	/* Unpin TX descriptor ring */
 | |
| 	efx_fini_special_buffer(efx, &tx_queue->txd);
 | |
| }
 | |
| 
 | |
| /* Free buffers backing TX queue */
 | |
| void efx_farch_tx_remove(struct efx_tx_queue *tx_queue)
 | |
| {
 | |
| 	efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
 | |
| }
 | |
| 
 | |
| /**************************************************************************
 | |
|  *
 | |
|  * RX path
 | |
|  *
 | |
|  **************************************************************************/
 | |
| 
 | |
| /* This creates an entry in the RX descriptor queue */
 | |
| static inline void
 | |
| efx_farch_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
 | |
| {
 | |
| 	struct efx_rx_buffer *rx_buf;
 | |
| 	efx_qword_t *rxd;
 | |
| 
 | |
| 	rxd = efx_rx_desc(rx_queue, index);
 | |
| 	rx_buf = efx_rx_buffer(rx_queue, index);
 | |
| 	EFX_POPULATE_QWORD_3(*rxd,
 | |
| 			     FSF_AZ_RX_KER_BUF_SIZE,
 | |
| 			     rx_buf->len -
 | |
| 			     rx_queue->efx->type->rx_buffer_padding,
 | |
| 			     FSF_AZ_RX_KER_BUF_REGION, 0,
 | |
| 			     FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
 | |
| }
 | |
| 
 | |
| /* This writes to the RX_DESC_WPTR register for the specified receive
 | |
|  * descriptor ring.
 | |
|  */
 | |
| void efx_farch_rx_write(struct efx_rx_queue *rx_queue)
 | |
| {
 | |
| 	struct efx_nic *efx = rx_queue->efx;
 | |
| 	efx_dword_t reg;
 | |
| 	unsigned write_ptr;
 | |
| 
 | |
| 	while (rx_queue->notified_count != rx_queue->added_count) {
 | |
| 		efx_farch_build_rx_desc(
 | |
| 			rx_queue,
 | |
| 			rx_queue->notified_count & rx_queue->ptr_mask);
 | |
| 		++rx_queue->notified_count;
 | |
| 	}
 | |
| 
 | |
| 	wmb();
 | |
| 	write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
 | |
| 	EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
 | |
| 	efx_writed_page(efx, ®, FR_AZ_RX_DESC_UPD_DWORD_P0,
 | |
| 			efx_rx_queue_index(rx_queue));
 | |
| }
 | |
| 
 | |
| int efx_farch_rx_probe(struct efx_rx_queue *rx_queue)
 | |
| {
 | |
| 	struct efx_nic *efx = rx_queue->efx;
 | |
| 	unsigned entries;
 | |
| 
 | |
| 	entries = rx_queue->ptr_mask + 1;
 | |
| 	return efx_alloc_special_buffer(efx, &rx_queue->rxd,
 | |
| 					entries * sizeof(efx_qword_t));
 | |
| }
 | |
| 
 | |
| void efx_farch_rx_init(struct efx_rx_queue *rx_queue)
 | |
| {
 | |
| 	efx_oword_t rx_desc_ptr;
 | |
| 	struct efx_nic *efx = rx_queue->efx;
 | |
| 	bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
 | |
| 	bool iscsi_digest_en = is_b0;
 | |
| 	bool jumbo_en;
 | |
| 
 | |
| 	/* For kernel-mode queues in Falcon A1, the JUMBO flag enables
 | |
| 	 * DMA to continue after a PCIe page boundary (and scattering
 | |
| 	 * is not possible).  In Falcon B0 and Siena, it enables
 | |
| 	 * scatter.
 | |
| 	 */
 | |
| 	jumbo_en = !is_b0 || efx->rx_scatter;
 | |
| 
 | |
| 	netif_dbg(efx, hw, efx->net_dev,
 | |
| 		  "RX queue %d ring in special buffers %d-%d\n",
 | |
| 		  efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
 | |
| 		  rx_queue->rxd.index + rx_queue->rxd.entries - 1);
 | |
| 
 | |
| 	rx_queue->scatter_n = 0;
 | |
| 
 | |
| 	/* Pin RX descriptor ring */
 | |
| 	efx_init_special_buffer(efx, &rx_queue->rxd);
 | |
| 
 | |
| 	/* Push RX descriptor ring to card */
 | |
| 	EFX_POPULATE_OWORD_10(rx_desc_ptr,
 | |
| 			      FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
 | |
| 			      FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
 | |
| 			      FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
 | |
| 			      FRF_AZ_RX_DESCQ_EVQ_ID,
 | |
| 			      efx_rx_queue_channel(rx_queue)->channel,
 | |
| 			      FRF_AZ_RX_DESCQ_OWNER_ID, 0,
 | |
| 			      FRF_AZ_RX_DESCQ_LABEL,
 | |
| 			      efx_rx_queue_index(rx_queue),
 | |
| 			      FRF_AZ_RX_DESCQ_SIZE,
 | |
| 			      __ffs(rx_queue->rxd.entries),
 | |
| 			      FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
 | |
| 			      FRF_AZ_RX_DESCQ_JUMBO, jumbo_en,
 | |
| 			      FRF_AZ_RX_DESCQ_EN, 1);
 | |
| 	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
 | |
| 			 efx_rx_queue_index(rx_queue));
 | |
| }
 | |
| 
 | |
| static void efx_farch_flush_rx_queue(struct efx_rx_queue *rx_queue)
 | |
| {
 | |
| 	struct efx_nic *efx = rx_queue->efx;
 | |
| 	efx_oword_t rx_flush_descq;
 | |
| 
 | |
| 	EFX_POPULATE_OWORD_2(rx_flush_descq,
 | |
| 			     FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
 | |
| 			     FRF_AZ_RX_FLUSH_DESCQ,
 | |
| 			     efx_rx_queue_index(rx_queue));
 | |
| 	efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
 | |
| }
 | |
| 
 | |
| void efx_farch_rx_fini(struct efx_rx_queue *rx_queue)
 | |
| {
 | |
| 	efx_oword_t rx_desc_ptr;
 | |
| 	struct efx_nic *efx = rx_queue->efx;
 | |
| 
 | |
| 	/* Remove RX descriptor ring from card */
 | |
| 	EFX_ZERO_OWORD(rx_desc_ptr);
 | |
| 	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
 | |
| 			 efx_rx_queue_index(rx_queue));
 | |
| 
 | |
| 	/* Unpin RX descriptor ring */
 | |
| 	efx_fini_special_buffer(efx, &rx_queue->rxd);
 | |
| }
 | |
| 
 | |
| /* Free buffers backing RX queue */
 | |
| void efx_farch_rx_remove(struct efx_rx_queue *rx_queue)
 | |
| {
 | |
| 	efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
 | |
| }
 | |
| 
 | |
| /**************************************************************************
 | |
|  *
 | |
|  * Flush handling
 | |
|  *
 | |
|  **************************************************************************/
 | |
| 
 | |
| /* efx_farch_flush_queues() must be woken up when all flushes are completed,
 | |
|  * or more RX flushes can be kicked off.
 | |
|  */
 | |
| static bool efx_farch_flush_wake(struct efx_nic *efx)
 | |
| {
 | |
| 	/* Ensure that all updates are visible to efx_farch_flush_queues() */
 | |
| 	smp_mb();
 | |
| 
 | |
| 	return (atomic_read(&efx->active_queues) == 0 ||
 | |
| 		(atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT
 | |
| 		 && atomic_read(&efx->rxq_flush_pending) > 0));
 | |
| }
 | |
| 
 | |
| static bool efx_check_tx_flush_complete(struct efx_nic *efx)
 | |
| {
 | |
| 	bool i = true;
 | |
| 	efx_oword_t txd_ptr_tbl;
 | |
| 	struct efx_channel *channel;
 | |
| 	struct efx_tx_queue *tx_queue;
 | |
| 
 | |
| 	efx_for_each_channel(channel, efx) {
 | |
| 		efx_for_each_channel_tx_queue(tx_queue, channel) {
 | |
| 			efx_reado_table(efx, &txd_ptr_tbl,
 | |
| 					FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue);
 | |
| 			if (EFX_OWORD_FIELD(txd_ptr_tbl,
 | |
| 					    FRF_AZ_TX_DESCQ_FLUSH) ||
 | |
| 			    EFX_OWORD_FIELD(txd_ptr_tbl,
 | |
| 					    FRF_AZ_TX_DESCQ_EN)) {
 | |
| 				netif_dbg(efx, hw, efx->net_dev,
 | |
| 					  "flush did not complete on TXQ %d\n",
 | |
| 					  tx_queue->queue);
 | |
| 				i = false;
 | |
| 			} else if (atomic_cmpxchg(&tx_queue->flush_outstanding,
 | |
| 						  1, 0)) {
 | |
| 				/* The flush is complete, but we didn't
 | |
| 				 * receive a flush completion event
 | |
| 				 */
 | |
| 				netif_dbg(efx, hw, efx->net_dev,
 | |
| 					  "flush complete on TXQ %d, so drain "
 | |
| 					  "the queue\n", tx_queue->queue);
 | |
| 				/* Don't need to increment active_queues as it
 | |
| 				 * has already been incremented for the queues
 | |
| 				 * which did not drain
 | |
| 				 */
 | |
| 				efx_farch_magic_event(channel,
 | |
| 						      EFX_CHANNEL_MAGIC_TX_DRAIN(
 | |
| 							      tx_queue));
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return i;
 | |
| }
 | |
| 
 | |
| /* Flush all the transmit queues, and continue flushing receive queues until
 | |
|  * they're all flushed. Wait for the DRAIN events to be recieved so that there
 | |
|  * are no more RX and TX events left on any channel. */
 | |
| static int efx_farch_do_flush(struct efx_nic *efx)
 | |
| {
 | |
| 	unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
 | |
| 	struct efx_channel *channel;
 | |
| 	struct efx_rx_queue *rx_queue;
 | |
| 	struct efx_tx_queue *tx_queue;
 | |
| 	int rc = 0;
 | |
| 
 | |
| 	efx_for_each_channel(channel, efx) {
 | |
| 		efx_for_each_channel_tx_queue(tx_queue, channel) {
 | |
| 			efx_farch_flush_tx_queue(tx_queue);
 | |
| 		}
 | |
| 		efx_for_each_channel_rx_queue(rx_queue, channel) {
 | |
| 			rx_queue->flush_pending = true;
 | |
| 			atomic_inc(&efx->rxq_flush_pending);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	while (timeout && atomic_read(&efx->active_queues) > 0) {
 | |
| 		/* If SRIOV is enabled, then offload receive queue flushing to
 | |
| 		 * the firmware (though we will still have to poll for
 | |
| 		 * completion). If that fails, fall back to the old scheme.
 | |
| 		 */
 | |
| 		if (efx_sriov_enabled(efx)) {
 | |
| 			rc = efx_mcdi_flush_rxqs(efx);
 | |
| 			if (!rc)
 | |
| 				goto wait;
 | |
| 		}
 | |
| 
 | |
| 		/* The hardware supports four concurrent rx flushes, each of
 | |
| 		 * which may need to be retried if there is an outstanding
 | |
| 		 * descriptor fetch
 | |
| 		 */
 | |
| 		efx_for_each_channel(channel, efx) {
 | |
| 			efx_for_each_channel_rx_queue(rx_queue, channel) {
 | |
| 				if (atomic_read(&efx->rxq_flush_outstanding) >=
 | |
| 				    EFX_RX_FLUSH_COUNT)
 | |
| 					break;
 | |
| 
 | |
| 				if (rx_queue->flush_pending) {
 | |
| 					rx_queue->flush_pending = false;
 | |
| 					atomic_dec(&efx->rxq_flush_pending);
 | |
| 					atomic_inc(&efx->rxq_flush_outstanding);
 | |
| 					efx_farch_flush_rx_queue(rx_queue);
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 	wait:
 | |
| 		timeout = wait_event_timeout(efx->flush_wq,
 | |
| 					     efx_farch_flush_wake(efx),
 | |
| 					     timeout);
 | |
| 	}
 | |
| 
 | |
| 	if (atomic_read(&efx->active_queues) &&
 | |
| 	    !efx_check_tx_flush_complete(efx)) {
 | |
| 		netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
 | |
| 			  "(rx %d+%d)\n", atomic_read(&efx->active_queues),
 | |
| 			  atomic_read(&efx->rxq_flush_outstanding),
 | |
| 			  atomic_read(&efx->rxq_flush_pending));
 | |
| 		rc = -ETIMEDOUT;
 | |
| 
 | |
| 		atomic_set(&efx->active_queues, 0);
 | |
| 		atomic_set(&efx->rxq_flush_pending, 0);
 | |
| 		atomic_set(&efx->rxq_flush_outstanding, 0);
 | |
| 	}
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| int efx_farch_fini_dmaq(struct efx_nic *efx)
 | |
| {
 | |
| 	struct efx_channel *channel;
 | |
| 	struct efx_tx_queue *tx_queue;
 | |
| 	struct efx_rx_queue *rx_queue;
 | |
| 	int rc = 0;
 | |
| 
 | |
| 	/* Do not attempt to write to the NIC during EEH recovery */
 | |
| 	if (efx->state != STATE_RECOVERY) {
 | |
| 		/* Only perform flush if DMA is enabled */
 | |
| 		if (efx->pci_dev->is_busmaster) {
 | |
| 			efx->type->prepare_flush(efx);
 | |
| 			rc = efx_farch_do_flush(efx);
 | |
| 			efx->type->finish_flush(efx);
 | |
| 		}
 | |
| 
 | |
| 		efx_for_each_channel(channel, efx) {
 | |
| 			efx_for_each_channel_rx_queue(rx_queue, channel)
 | |
| 				efx_farch_rx_fini(rx_queue);
 | |
| 			efx_for_each_channel_tx_queue(tx_queue, channel)
 | |
| 				efx_farch_tx_fini(tx_queue);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /**************************************************************************
 | |
|  *
 | |
|  * Event queue processing
 | |
|  * Event queues are processed by per-channel tasklets.
 | |
|  *
 | |
|  **************************************************************************/
 | |
| 
 | |
| /* Update a channel's event queue's read pointer (RPTR) register
 | |
|  *
 | |
|  * This writes the EVQ_RPTR_REG register for the specified channel's
 | |
|  * event queue.
 | |
|  */
 | |
| void efx_farch_ev_read_ack(struct efx_channel *channel)
 | |
| {
 | |
| 	efx_dword_t reg;
 | |
| 	struct efx_nic *efx = channel->efx;
 | |
| 
 | |
| 	EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
 | |
| 			     channel->eventq_read_ptr & channel->eventq_mask);
 | |
| 
 | |
| 	/* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
 | |
| 	 * of 4 bytes, but it is really 16 bytes just like later revisions.
 | |
| 	 */
 | |
| 	efx_writed(efx, ®,
 | |
| 		   efx->type->evq_rptr_tbl_base +
 | |
| 		   FR_BZ_EVQ_RPTR_STEP * channel->channel);
 | |
| }
 | |
| 
 | |
| /* Use HW to insert a SW defined event */
 | |
| void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq,
 | |
| 			      efx_qword_t *event)
 | |
| {
 | |
| 	efx_oword_t drv_ev_reg;
 | |
| 
 | |
| 	BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
 | |
| 		     FRF_AZ_DRV_EV_DATA_WIDTH != 64);
 | |
| 	drv_ev_reg.u32[0] = event->u32[0];
 | |
| 	drv_ev_reg.u32[1] = event->u32[1];
 | |
| 	drv_ev_reg.u32[2] = 0;
 | |
| 	drv_ev_reg.u32[3] = 0;
 | |
| 	EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
 | |
| 	efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
 | |
| }
 | |
| 
 | |
| static void efx_farch_magic_event(struct efx_channel *channel, u32 magic)
 | |
| {
 | |
| 	efx_qword_t event;
 | |
| 
 | |
| 	EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
 | |
| 			     FSE_AZ_EV_CODE_DRV_GEN_EV,
 | |
| 			     FSF_AZ_DRV_GEN_EV_MAGIC, magic);
 | |
| 	efx_farch_generate_event(channel->efx, channel->channel, &event);
 | |
| }
 | |
| 
 | |
| /* Handle a transmit completion event
 | |
|  *
 | |
|  * The NIC batches TX completion events; the message we receive is of
 | |
|  * the form "complete all TX events up to this index".
 | |
|  */
 | |
| static int
 | |
| efx_farch_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
 | |
| {
 | |
| 	unsigned int tx_ev_desc_ptr;
 | |
| 	unsigned int tx_ev_q_label;
 | |
| 	struct efx_tx_queue *tx_queue;
 | |
| 	struct efx_nic *efx = channel->efx;
 | |
| 	int tx_packets = 0;
 | |
| 
 | |
| 	if (unlikely(ACCESS_ONCE(efx->reset_pending)))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
 | |
| 		/* Transmit completion */
 | |
| 		tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
 | |
| 		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
 | |
| 		tx_queue = efx_channel_get_tx_queue(
 | |
| 			channel, tx_ev_q_label % EFX_TXQ_TYPES);
 | |
| 		tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
 | |
| 			      tx_queue->ptr_mask);
 | |
| 		efx_xmit_done(tx_queue, tx_ev_desc_ptr);
 | |
| 	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
 | |
| 		/* Rewrite the FIFO write pointer */
 | |
| 		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
 | |
| 		tx_queue = efx_channel_get_tx_queue(
 | |
| 			channel, tx_ev_q_label % EFX_TXQ_TYPES);
 | |
| 
 | |
| 		netif_tx_lock(efx->net_dev);
 | |
| 		efx_farch_notify_tx_desc(tx_queue);
 | |
| 		netif_tx_unlock(efx->net_dev);
 | |
| 	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR)) {
 | |
| 		efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
 | |
| 	} else {
 | |
| 		netif_err(efx, tx_err, efx->net_dev,
 | |
| 			  "channel %d unexpected TX event "
 | |
| 			  EFX_QWORD_FMT"\n", channel->channel,
 | |
| 			  EFX_QWORD_VAL(*event));
 | |
| 	}
 | |
| 
 | |
| 	return tx_packets;
 | |
| }
 | |
| 
 | |
| /* Detect errors included in the rx_evt_pkt_ok bit. */
 | |
| static u16 efx_farch_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
 | |
| 				      const efx_qword_t *event)
 | |
| {
 | |
| 	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
 | |
| 	struct efx_nic *efx = rx_queue->efx;
 | |
| 	bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
 | |
| 	bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
 | |
| 	bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
 | |
| 	bool rx_ev_other_err, rx_ev_pause_frm;
 | |
| 	bool rx_ev_hdr_type, rx_ev_mcast_pkt;
 | |
| 	unsigned rx_ev_pkt_type;
 | |
| 
 | |
| 	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
 | |
| 	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
 | |
| 	rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
 | |
| 	rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
 | |
| 	rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
 | |
| 						 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
 | |
| 	rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
 | |
| 						  FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
 | |
| 	rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
 | |
| 						   FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
 | |
| 	rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
 | |
| 	rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
 | |
| 	rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
 | |
| 			  0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
 | |
| 	rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
 | |
| 
 | |
| 	/* Every error apart from tobe_disc and pause_frm */
 | |
| 	rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
 | |
| 			   rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
 | |
| 			   rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
 | |
| 
 | |
| 	/* Count errors that are not in MAC stats.  Ignore expected
 | |
| 	 * checksum errors during self-test. */
 | |
| 	if (rx_ev_frm_trunc)
 | |
| 		++channel->n_rx_frm_trunc;
 | |
| 	else if (rx_ev_tobe_disc)
 | |
| 		++channel->n_rx_tobe_disc;
 | |
| 	else if (!efx->loopback_selftest) {
 | |
| 		if (rx_ev_ip_hdr_chksum_err)
 | |
| 			++channel->n_rx_ip_hdr_chksum_err;
 | |
| 		else if (rx_ev_tcp_udp_chksum_err)
 | |
| 			++channel->n_rx_tcp_udp_chksum_err;
 | |
| 	}
 | |
| 
 | |
| 	/* TOBE_DISC is expected on unicast mismatches; don't print out an
 | |
| 	 * error message.  FRM_TRUNC indicates RXDP dropped the packet due
 | |
| 	 * to a FIFO overflow.
 | |
| 	 */
 | |
| #ifdef DEBUG
 | |
| 	if (rx_ev_other_err && net_ratelimit()) {
 | |
| 		netif_dbg(efx, rx_err, efx->net_dev,
 | |
| 			  " RX queue %d unexpected RX event "
 | |
| 			  EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
 | |
| 			  efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
 | |
| 			  rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
 | |
| 			  rx_ev_ip_hdr_chksum_err ?
 | |
| 			  " [IP_HDR_CHKSUM_ERR]" : "",
 | |
| 			  rx_ev_tcp_udp_chksum_err ?
 | |
| 			  " [TCP_UDP_CHKSUM_ERR]" : "",
 | |
| 			  rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
 | |
| 			  rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
 | |
| 			  rx_ev_drib_nib ? " [DRIB_NIB]" : "",
 | |
| 			  rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
 | |
| 			  rx_ev_pause_frm ? " [PAUSE]" : "");
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	/* The frame must be discarded if any of these are true. */
 | |
| 	return (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
 | |
| 		rx_ev_tobe_disc | rx_ev_pause_frm) ?
 | |
| 		EFX_RX_PKT_DISCARD : 0;
 | |
| }
 | |
| 
 | |
| /* Handle receive events that are not in-order. Return true if this
 | |
|  * can be handled as a partial packet discard, false if it's more
 | |
|  * serious.
 | |
|  */
 | |
| static bool
 | |
| efx_farch_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
 | |
| {
 | |
| 	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
 | |
| 	struct efx_nic *efx = rx_queue->efx;
 | |
| 	unsigned expected, dropped;
 | |
| 
 | |
| 	if (rx_queue->scatter_n &&
 | |
| 	    index == ((rx_queue->removed_count + rx_queue->scatter_n - 1) &
 | |
| 		      rx_queue->ptr_mask)) {
 | |
| 		++channel->n_rx_nodesc_trunc;
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	expected = rx_queue->removed_count & rx_queue->ptr_mask;
 | |
| 	dropped = (index - expected) & rx_queue->ptr_mask;
 | |
| 	netif_info(efx, rx_err, efx->net_dev,
 | |
| 		   "dropped %d events (index=%d expected=%d)\n",
 | |
| 		   dropped, index, expected);
 | |
| 
 | |
| 	efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
 | |
| 			   RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /* Handle a packet received event
 | |
|  *
 | |
|  * The NIC gives a "discard" flag if it's a unicast packet with the
 | |
|  * wrong destination address
 | |
|  * Also "is multicast" and "matches multicast filter" flags can be used to
 | |
|  * discard non-matching multicast packets.
 | |
|  */
 | |
| static void
 | |
| efx_farch_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
 | |
| {
 | |
| 	unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
 | |
| 	unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
 | |
| 	unsigned expected_ptr;
 | |
| 	bool rx_ev_pkt_ok, rx_ev_sop, rx_ev_cont;
 | |
| 	u16 flags;
 | |
| 	struct efx_rx_queue *rx_queue;
 | |
| 	struct efx_nic *efx = channel->efx;
 | |
| 
 | |
| 	if (unlikely(ACCESS_ONCE(efx->reset_pending)))
 | |
| 		return;
 | |
| 
 | |
| 	rx_ev_cont = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT);
 | |
| 	rx_ev_sop = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP);
 | |
| 	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
 | |
| 		channel->channel);
 | |
| 
 | |
| 	rx_queue = efx_channel_get_rx_queue(channel);
 | |
| 
 | |
| 	rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
 | |
| 	expected_ptr = ((rx_queue->removed_count + rx_queue->scatter_n) &
 | |
| 			rx_queue->ptr_mask);
 | |
| 
 | |
| 	/* Check for partial drops and other errors */
 | |
| 	if (unlikely(rx_ev_desc_ptr != expected_ptr) ||
 | |
| 	    unlikely(rx_ev_sop != (rx_queue->scatter_n == 0))) {
 | |
| 		if (rx_ev_desc_ptr != expected_ptr &&
 | |
| 		    !efx_farch_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr))
 | |
| 			return;
 | |
| 
 | |
| 		/* Discard all pending fragments */
 | |
| 		if (rx_queue->scatter_n) {
 | |
| 			efx_rx_packet(
 | |
| 				rx_queue,
 | |
| 				rx_queue->removed_count & rx_queue->ptr_mask,
 | |
| 				rx_queue->scatter_n, 0, EFX_RX_PKT_DISCARD);
 | |
| 			rx_queue->removed_count += rx_queue->scatter_n;
 | |
| 			rx_queue->scatter_n = 0;
 | |
| 		}
 | |
| 
 | |
| 		/* Return if there is no new fragment */
 | |
| 		if (rx_ev_desc_ptr != expected_ptr)
 | |
| 			return;
 | |
| 
 | |
| 		/* Discard new fragment if not SOP */
 | |
| 		if (!rx_ev_sop) {
 | |
| 			efx_rx_packet(
 | |
| 				rx_queue,
 | |
| 				rx_queue->removed_count & rx_queue->ptr_mask,
 | |
| 				1, 0, EFX_RX_PKT_DISCARD);
 | |
| 			++rx_queue->removed_count;
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	++rx_queue->scatter_n;
 | |
| 	if (rx_ev_cont)
 | |
| 		return;
 | |
| 
 | |
| 	rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
 | |
| 	rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
 | |
| 	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
 | |
| 
 | |
| 	if (likely(rx_ev_pkt_ok)) {
 | |
| 		/* If packet is marked as OK then we can rely on the
 | |
| 		 * hardware checksum and classification.
 | |
| 		 */
 | |
| 		flags = 0;
 | |
| 		switch (rx_ev_hdr_type) {
 | |
| 		case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP:
 | |
| 			flags |= EFX_RX_PKT_TCP;
 | |
| 			/* fall through */
 | |
| 		case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP:
 | |
| 			flags |= EFX_RX_PKT_CSUMMED;
 | |
| 			/* fall through */
 | |
| 		case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_OTHER:
 | |
| 		case FSE_AZ_RX_EV_HDR_TYPE_OTHER:
 | |
| 			break;
 | |
| 		}
 | |
| 	} else {
 | |
| 		flags = efx_farch_handle_rx_not_ok(rx_queue, event);
 | |
| 	}
 | |
| 
 | |
| 	/* Detect multicast packets that didn't match the filter */
 | |
| 	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
 | |
| 	if (rx_ev_mcast_pkt) {
 | |
| 		unsigned int rx_ev_mcast_hash_match =
 | |
| 			EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
 | |
| 
 | |
| 		if (unlikely(!rx_ev_mcast_hash_match)) {
 | |
| 			++channel->n_rx_mcast_mismatch;
 | |
| 			flags |= EFX_RX_PKT_DISCARD;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	channel->irq_mod_score += 2;
 | |
| 
 | |
| 	/* Handle received packet */
 | |
| 	efx_rx_packet(rx_queue,
 | |
| 		      rx_queue->removed_count & rx_queue->ptr_mask,
 | |
| 		      rx_queue->scatter_n, rx_ev_byte_cnt, flags);
 | |
| 	rx_queue->removed_count += rx_queue->scatter_n;
 | |
| 	rx_queue->scatter_n = 0;
 | |
| }
 | |
| 
 | |
| /* If this flush done event corresponds to a &struct efx_tx_queue, then
 | |
|  * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
 | |
|  * of all transmit completions.
 | |
|  */
 | |
| static void
 | |
| efx_farch_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
 | |
| {
 | |
| 	struct efx_tx_queue *tx_queue;
 | |
| 	int qid;
 | |
| 
 | |
| 	qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
 | |
| 	if (qid < EFX_TXQ_TYPES * efx->n_tx_channels) {
 | |
| 		tx_queue = efx_get_tx_queue(efx, qid / EFX_TXQ_TYPES,
 | |
| 					    qid % EFX_TXQ_TYPES);
 | |
| 		if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0)) {
 | |
| 			efx_farch_magic_event(tx_queue->channel,
 | |
| 					      EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
 | |
|  * was succesful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
 | |
|  * the RX queue back to the mask of RX queues in need of flushing.
 | |
|  */
 | |
| static void
 | |
| efx_farch_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
 | |
| {
 | |
| 	struct efx_channel *channel;
 | |
| 	struct efx_rx_queue *rx_queue;
 | |
| 	int qid;
 | |
| 	bool failed;
 | |
| 
 | |
| 	qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
 | |
| 	failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
 | |
| 	if (qid >= efx->n_channels)
 | |
| 		return;
 | |
| 	channel = efx_get_channel(efx, qid);
 | |
| 	if (!efx_channel_has_rx_queue(channel))
 | |
| 		return;
 | |
| 	rx_queue = efx_channel_get_rx_queue(channel);
 | |
| 
 | |
| 	if (failed) {
 | |
| 		netif_info(efx, hw, efx->net_dev,
 | |
| 			   "RXQ %d flush retry\n", qid);
 | |
| 		rx_queue->flush_pending = true;
 | |
| 		atomic_inc(&efx->rxq_flush_pending);
 | |
| 	} else {
 | |
| 		efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
 | |
| 				      EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
 | |
| 	}
 | |
| 	atomic_dec(&efx->rxq_flush_outstanding);
 | |
| 	if (efx_farch_flush_wake(efx))
 | |
| 		wake_up(&efx->flush_wq);
 | |
| }
 | |
| 
 | |
| static void
 | |
| efx_farch_handle_drain_event(struct efx_channel *channel)
 | |
| {
 | |
| 	struct efx_nic *efx = channel->efx;
 | |
| 
 | |
| 	WARN_ON(atomic_read(&efx->active_queues) == 0);
 | |
| 	atomic_dec(&efx->active_queues);
 | |
| 	if (efx_farch_flush_wake(efx))
 | |
| 		wake_up(&efx->flush_wq);
 | |
| }
 | |
| 
 | |
| static void efx_farch_handle_generated_event(struct efx_channel *channel,
 | |
| 					     efx_qword_t *event)
 | |
| {
 | |
| 	struct efx_nic *efx = channel->efx;
 | |
| 	struct efx_rx_queue *rx_queue =
 | |
| 		efx_channel_has_rx_queue(channel) ?
 | |
| 		efx_channel_get_rx_queue(channel) : NULL;
 | |
| 	unsigned magic, code;
 | |
| 
 | |
| 	magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
 | |
| 	code = _EFX_CHANNEL_MAGIC_CODE(magic);
 | |
| 
 | |
| 	if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
 | |
| 		channel->event_test_cpu = raw_smp_processor_id();
 | |
| 	} else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
 | |
| 		/* The queue must be empty, so we won't receive any rx
 | |
| 		 * events, so efx_process_channel() won't refill the
 | |
| 		 * queue. Refill it here */
 | |
| 		efx_fast_push_rx_descriptors(rx_queue);
 | |
| 	} else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
 | |
| 		efx_farch_handle_drain_event(channel);
 | |
| 	} else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) {
 | |
| 		efx_farch_handle_drain_event(channel);
 | |
| 	} else {
 | |
| 		netif_dbg(efx, hw, efx->net_dev, "channel %d received "
 | |
| 			  "generated event "EFX_QWORD_FMT"\n",
 | |
| 			  channel->channel, EFX_QWORD_VAL(*event));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void
 | |
| efx_farch_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
 | |
| {
 | |
| 	struct efx_nic *efx = channel->efx;
 | |
| 	unsigned int ev_sub_code;
 | |
| 	unsigned int ev_sub_data;
 | |
| 
 | |
| 	ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
 | |
| 	ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
 | |
| 
 | |
| 	switch (ev_sub_code) {
 | |
| 	case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
 | |
| 		netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
 | |
| 			   channel->channel, ev_sub_data);
 | |
| 		efx_farch_handle_tx_flush_done(efx, event);
 | |
| 		efx_sriov_tx_flush_done(efx, event);
 | |
| 		break;
 | |
| 	case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
 | |
| 		netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
 | |
| 			   channel->channel, ev_sub_data);
 | |
| 		efx_farch_handle_rx_flush_done(efx, event);
 | |
| 		efx_sriov_rx_flush_done(efx, event);
 | |
| 		break;
 | |
| 	case FSE_AZ_EVQ_INIT_DONE_EV:
 | |
| 		netif_dbg(efx, hw, efx->net_dev,
 | |
| 			  "channel %d EVQ %d initialised\n",
 | |
| 			  channel->channel, ev_sub_data);
 | |
| 		break;
 | |
| 	case FSE_AZ_SRM_UPD_DONE_EV:
 | |
| 		netif_vdbg(efx, hw, efx->net_dev,
 | |
| 			   "channel %d SRAM update done\n", channel->channel);
 | |
| 		break;
 | |
| 	case FSE_AZ_WAKE_UP_EV:
 | |
| 		netif_vdbg(efx, hw, efx->net_dev,
 | |
| 			   "channel %d RXQ %d wakeup event\n",
 | |
| 			   channel->channel, ev_sub_data);
 | |
| 		break;
 | |
| 	case FSE_AZ_TIMER_EV:
 | |
| 		netif_vdbg(efx, hw, efx->net_dev,
 | |
| 			   "channel %d RX queue %d timer expired\n",
 | |
| 			   channel->channel, ev_sub_data);
 | |
| 		break;
 | |
| 	case FSE_AA_RX_RECOVER_EV:
 | |
| 		netif_err(efx, rx_err, efx->net_dev,
 | |
| 			  "channel %d seen DRIVER RX_RESET event. "
 | |
| 			"Resetting.\n", channel->channel);
 | |
| 		atomic_inc(&efx->rx_reset);
 | |
| 		efx_schedule_reset(efx,
 | |
| 				   EFX_WORKAROUND_6555(efx) ?
 | |
| 				   RESET_TYPE_RX_RECOVERY :
 | |
| 				   RESET_TYPE_DISABLE);
 | |
| 		break;
 | |
| 	case FSE_BZ_RX_DSC_ERROR_EV:
 | |
| 		if (ev_sub_data < EFX_VI_BASE) {
 | |
| 			netif_err(efx, rx_err, efx->net_dev,
 | |
| 				  "RX DMA Q %d reports descriptor fetch error."
 | |
| 				  " RX Q %d is disabled.\n", ev_sub_data,
 | |
| 				  ev_sub_data);
 | |
| 			efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
 | |
| 		} else
 | |
| 			efx_sriov_desc_fetch_err(efx, ev_sub_data);
 | |
| 		break;
 | |
| 	case FSE_BZ_TX_DSC_ERROR_EV:
 | |
| 		if (ev_sub_data < EFX_VI_BASE) {
 | |
| 			netif_err(efx, tx_err, efx->net_dev,
 | |
| 				  "TX DMA Q %d reports descriptor fetch error."
 | |
| 				  " TX Q %d is disabled.\n", ev_sub_data,
 | |
| 				  ev_sub_data);
 | |
| 			efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
 | |
| 		} else
 | |
| 			efx_sriov_desc_fetch_err(efx, ev_sub_data);
 | |
| 		break;
 | |
| 	default:
 | |
| 		netif_vdbg(efx, hw, efx->net_dev,
 | |
| 			   "channel %d unknown driver event code %d "
 | |
| 			   "data %04x\n", channel->channel, ev_sub_code,
 | |
| 			   ev_sub_data);
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int efx_farch_ev_process(struct efx_channel *channel, int budget)
 | |
| {
 | |
| 	struct efx_nic *efx = channel->efx;
 | |
| 	unsigned int read_ptr;
 | |
| 	efx_qword_t event, *p_event;
 | |
| 	int ev_code;
 | |
| 	int tx_packets = 0;
 | |
| 	int spent = 0;
 | |
| 
 | |
| 	read_ptr = channel->eventq_read_ptr;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		p_event = efx_event(channel, read_ptr);
 | |
| 		event = *p_event;
 | |
| 
 | |
| 		if (!efx_event_present(&event))
 | |
| 			/* End of events */
 | |
| 			break;
 | |
| 
 | |
| 		netif_vdbg(channel->efx, intr, channel->efx->net_dev,
 | |
| 			   "channel %d event is "EFX_QWORD_FMT"\n",
 | |
| 			   channel->channel, EFX_QWORD_VAL(event));
 | |
| 
 | |
| 		/* Clear this event by marking it all ones */
 | |
| 		EFX_SET_QWORD(*p_event);
 | |
| 
 | |
| 		++read_ptr;
 | |
| 
 | |
| 		ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
 | |
| 
 | |
| 		switch (ev_code) {
 | |
| 		case FSE_AZ_EV_CODE_RX_EV:
 | |
| 			efx_farch_handle_rx_event(channel, &event);
 | |
| 			if (++spent == budget)
 | |
| 				goto out;
 | |
| 			break;
 | |
| 		case FSE_AZ_EV_CODE_TX_EV:
 | |
| 			tx_packets += efx_farch_handle_tx_event(channel,
 | |
| 								&event);
 | |
| 			if (tx_packets > efx->txq_entries) {
 | |
| 				spent = budget;
 | |
| 				goto out;
 | |
| 			}
 | |
| 			break;
 | |
| 		case FSE_AZ_EV_CODE_DRV_GEN_EV:
 | |
| 			efx_farch_handle_generated_event(channel, &event);
 | |
| 			break;
 | |
| 		case FSE_AZ_EV_CODE_DRIVER_EV:
 | |
| 			efx_farch_handle_driver_event(channel, &event);
 | |
| 			break;
 | |
| 		case FSE_CZ_EV_CODE_USER_EV:
 | |
| 			efx_sriov_event(channel, &event);
 | |
| 			break;
 | |
| 		case FSE_CZ_EV_CODE_MCDI_EV:
 | |
| 			efx_mcdi_process_event(channel, &event);
 | |
| 			break;
 | |
| 		case FSE_AZ_EV_CODE_GLOBAL_EV:
 | |
| 			if (efx->type->handle_global_event &&
 | |
| 			    efx->type->handle_global_event(channel, &event))
 | |
| 				break;
 | |
| 			/* else fall through */
 | |
| 		default:
 | |
| 			netif_err(channel->efx, hw, channel->efx->net_dev,
 | |
| 				  "channel %d unknown event type %d (data "
 | |
| 				  EFX_QWORD_FMT ")\n", channel->channel,
 | |
| 				  ev_code, EFX_QWORD_VAL(event));
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	channel->eventq_read_ptr = read_ptr;
 | |
| 	return spent;
 | |
| }
 | |
| 
 | |
| /* Allocate buffer table entries for event queue */
 | |
| int efx_farch_ev_probe(struct efx_channel *channel)
 | |
| {
 | |
| 	struct efx_nic *efx = channel->efx;
 | |
| 	unsigned entries;
 | |
| 
 | |
| 	entries = channel->eventq_mask + 1;
 | |
| 	return efx_alloc_special_buffer(efx, &channel->eventq,
 | |
| 					entries * sizeof(efx_qword_t));
 | |
| }
 | |
| 
 | |
| int efx_farch_ev_init(struct efx_channel *channel)
 | |
| {
 | |
| 	efx_oword_t reg;
 | |
| 	struct efx_nic *efx = channel->efx;
 | |
| 
 | |
| 	netif_dbg(efx, hw, efx->net_dev,
 | |
| 		  "channel %d event queue in special buffers %d-%d\n",
 | |
| 		  channel->channel, channel->eventq.index,
 | |
| 		  channel->eventq.index + channel->eventq.entries - 1);
 | |
| 
 | |
| 	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
 | |
| 		EFX_POPULATE_OWORD_3(reg,
 | |
| 				     FRF_CZ_TIMER_Q_EN, 1,
 | |
| 				     FRF_CZ_HOST_NOTIFY_MODE, 0,
 | |
| 				     FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
 | |
| 		efx_writeo_table(efx, ®, FR_BZ_TIMER_TBL, channel->channel);
 | |
| 	}
 | |
| 
 | |
| 	/* Pin event queue buffer */
 | |
| 	efx_init_special_buffer(efx, &channel->eventq);
 | |
| 
 | |
| 	/* Fill event queue with all ones (i.e. empty events) */
 | |
| 	memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
 | |
| 
 | |
| 	/* Push event queue to card */
 | |
| 	EFX_POPULATE_OWORD_3(reg,
 | |
| 			     FRF_AZ_EVQ_EN, 1,
 | |
| 			     FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
 | |
| 			     FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
 | |
| 	efx_writeo_table(efx, ®, efx->type->evq_ptr_tbl_base,
 | |
| 			 channel->channel);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void efx_farch_ev_fini(struct efx_channel *channel)
 | |
| {
 | |
| 	efx_oword_t reg;
 | |
| 	struct efx_nic *efx = channel->efx;
 | |
| 
 | |
| 	/* Remove event queue from card */
 | |
| 	EFX_ZERO_OWORD(reg);
 | |
| 	efx_writeo_table(efx, ®, efx->type->evq_ptr_tbl_base,
 | |
| 			 channel->channel);
 | |
| 	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
 | |
| 		efx_writeo_table(efx, ®, FR_BZ_TIMER_TBL, channel->channel);
 | |
| 
 | |
| 	/* Unpin event queue */
 | |
| 	efx_fini_special_buffer(efx, &channel->eventq);
 | |
| }
 | |
| 
 | |
| /* Free buffers backing event queue */
 | |
| void efx_farch_ev_remove(struct efx_channel *channel)
 | |
| {
 | |
| 	efx_free_special_buffer(channel->efx, &channel->eventq);
 | |
| }
 | |
| 
 | |
| 
 | |
| void efx_farch_ev_test_generate(struct efx_channel *channel)
 | |
| {
 | |
| 	efx_farch_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
 | |
| }
 | |
| 
 | |
| void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue)
 | |
| {
 | |
| 	efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
 | |
| 			      EFX_CHANNEL_MAGIC_FILL(rx_queue));
 | |
| }
 | |
| 
 | |
| /**************************************************************************
 | |
|  *
 | |
|  * Hardware interrupts
 | |
|  * The hardware interrupt handler does very little work; all the event
 | |
|  * queue processing is carried out by per-channel tasklets.
 | |
|  *
 | |
|  **************************************************************************/
 | |
| 
 | |
| /* Enable/disable/generate interrupts */
 | |
| static inline void efx_farch_interrupts(struct efx_nic *efx,
 | |
| 				      bool enabled, bool force)
 | |
| {
 | |
| 	efx_oword_t int_en_reg_ker;
 | |
| 
 | |
| 	EFX_POPULATE_OWORD_3(int_en_reg_ker,
 | |
| 			     FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
 | |
| 			     FRF_AZ_KER_INT_KER, force,
 | |
| 			     FRF_AZ_DRV_INT_EN_KER, enabled);
 | |
| 	efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
 | |
| }
 | |
| 
 | |
| void efx_farch_irq_enable_master(struct efx_nic *efx)
 | |
| {
 | |
| 	EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
 | |
| 	wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
 | |
| 
 | |
| 	efx_farch_interrupts(efx, true, false);
 | |
| }
 | |
| 
 | |
| void efx_farch_irq_disable_master(struct efx_nic *efx)
 | |
| {
 | |
| 	/* Disable interrupts */
 | |
| 	efx_farch_interrupts(efx, false, false);
 | |
| }
 | |
| 
 | |
| /* Generate a test interrupt
 | |
|  * Interrupt must already have been enabled, otherwise nasty things
 | |
|  * may happen.
 | |
|  */
 | |
| void efx_farch_irq_test_generate(struct efx_nic *efx)
 | |
| {
 | |
| 	efx_farch_interrupts(efx, true, true);
 | |
| }
 | |
| 
 | |
| /* Process a fatal interrupt
 | |
|  * Disable bus mastering ASAP and schedule a reset
 | |
|  */
 | |
| irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx)
 | |
| {
 | |
| 	struct falcon_nic_data *nic_data = efx->nic_data;
 | |
| 	efx_oword_t *int_ker = efx->irq_status.addr;
 | |
| 	efx_oword_t fatal_intr;
 | |
| 	int error, mem_perr;
 | |
| 
 | |
| 	efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
 | |
| 	error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
 | |
| 
 | |
| 	netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
 | |
| 		  EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
 | |
| 		  EFX_OWORD_VAL(fatal_intr),
 | |
| 		  error ? "disabling bus mastering" : "no recognised error");
 | |
| 
 | |
| 	/* If this is a memory parity error dump which blocks are offending */
 | |
| 	mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
 | |
| 		    EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
 | |
| 	if (mem_perr) {
 | |
| 		efx_oword_t reg;
 | |
| 		efx_reado(efx, ®, FR_AZ_MEM_STAT);
 | |
| 		netif_err(efx, hw, efx->net_dev,
 | |
| 			  "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
 | |
| 			  EFX_OWORD_VAL(reg));
 | |
| 	}
 | |
| 
 | |
| 	/* Disable both devices */
 | |
| 	pci_clear_master(efx->pci_dev);
 | |
| 	if (efx_nic_is_dual_func(efx))
 | |
| 		pci_clear_master(nic_data->pci_dev2);
 | |
| 	efx_farch_irq_disable_master(efx);
 | |
| 
 | |
| 	/* Count errors and reset or disable the NIC accordingly */
 | |
| 	if (efx->int_error_count == 0 ||
 | |
| 	    time_after(jiffies, efx->int_error_expire)) {
 | |
| 		efx->int_error_count = 0;
 | |
| 		efx->int_error_expire =
 | |
| 			jiffies + EFX_INT_ERROR_EXPIRE * HZ;
 | |
| 	}
 | |
| 	if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
 | |
| 		netif_err(efx, hw, efx->net_dev,
 | |
| 			  "SYSTEM ERROR - reset scheduled\n");
 | |
| 		efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
 | |
| 	} else {
 | |
| 		netif_err(efx, hw, efx->net_dev,
 | |
| 			  "SYSTEM ERROR - max number of errors seen."
 | |
| 			  "NIC will be disabled\n");
 | |
| 		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
 | |
| 	}
 | |
| 
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| /* Handle a legacy interrupt
 | |
|  * Acknowledges the interrupt and schedule event queue processing.
 | |
|  */
 | |
| irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id)
 | |
| {
 | |
| 	struct efx_nic *efx = dev_id;
 | |
| 	bool soft_enabled = ACCESS_ONCE(efx->irq_soft_enabled);
 | |
| 	efx_oword_t *int_ker = efx->irq_status.addr;
 | |
| 	irqreturn_t result = IRQ_NONE;
 | |
| 	struct efx_channel *channel;
 | |
| 	efx_dword_t reg;
 | |
| 	u32 queues;
 | |
| 	int syserr;
 | |
| 
 | |
| 	/* Read the ISR which also ACKs the interrupts */
 | |
| 	efx_readd(efx, ®, FR_BZ_INT_ISR0);
 | |
| 	queues = EFX_EXTRACT_DWORD(reg, 0, 31);
 | |
| 
 | |
| 	/* Legacy interrupts are disabled too late by the EEH kernel
 | |
| 	 * code. Disable them earlier.
 | |
| 	 * If an EEH error occurred, the read will have returned all ones.
 | |
| 	 */
 | |
| 	if (EFX_DWORD_IS_ALL_ONES(reg) && efx_try_recovery(efx) &&
 | |
| 	    !efx->eeh_disabled_legacy_irq) {
 | |
| 		disable_irq_nosync(efx->legacy_irq);
 | |
| 		efx->eeh_disabled_legacy_irq = true;
 | |
| 	}
 | |
| 
 | |
| 	/* Handle non-event-queue sources */
 | |
| 	if (queues & (1U << efx->irq_level) && soft_enabled) {
 | |
| 		syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
 | |
| 		if (unlikely(syserr))
 | |
| 			return efx_farch_fatal_interrupt(efx);
 | |
| 		efx->last_irq_cpu = raw_smp_processor_id();
 | |
| 	}
 | |
| 
 | |
| 	if (queues != 0) {
 | |
| 		efx->irq_zero_count = 0;
 | |
| 
 | |
| 		/* Schedule processing of any interrupting queues */
 | |
| 		if (likely(soft_enabled)) {
 | |
| 			efx_for_each_channel(channel, efx) {
 | |
| 				if (queues & 1)
 | |
| 					efx_schedule_channel_irq(channel);
 | |
| 				queues >>= 1;
 | |
| 			}
 | |
| 		}
 | |
| 		result = IRQ_HANDLED;
 | |
| 
 | |
| 	} else {
 | |
| 		efx_qword_t *event;
 | |
| 
 | |
| 		/* Legacy ISR read can return zero once (SF bug 15783) */
 | |
| 
 | |
| 		/* We can't return IRQ_HANDLED more than once on seeing ISR=0
 | |
| 		 * because this might be a shared interrupt. */
 | |
| 		if (efx->irq_zero_count++ == 0)
 | |
| 			result = IRQ_HANDLED;
 | |
| 
 | |
| 		/* Ensure we schedule or rearm all event queues */
 | |
| 		if (likely(soft_enabled)) {
 | |
| 			efx_for_each_channel(channel, efx) {
 | |
| 				event = efx_event(channel,
 | |
| 						  channel->eventq_read_ptr);
 | |
| 				if (efx_event_present(event))
 | |
| 					efx_schedule_channel_irq(channel);
 | |
| 				else
 | |
| 					efx_farch_ev_read_ack(channel);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (result == IRQ_HANDLED)
 | |
| 		netif_vdbg(efx, intr, efx->net_dev,
 | |
| 			   "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
 | |
| 			   irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
 | |
| 
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| /* Handle an MSI interrupt
 | |
|  *
 | |
|  * Handle an MSI hardware interrupt.  This routine schedules event
 | |
|  * queue processing.  No interrupt acknowledgement cycle is necessary.
 | |
|  * Also, we never need to check that the interrupt is for us, since
 | |
|  * MSI interrupts cannot be shared.
 | |
|  */
 | |
| irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id)
 | |
| {
 | |
| 	struct efx_msi_context *context = dev_id;
 | |
| 	struct efx_nic *efx = context->efx;
 | |
| 	efx_oword_t *int_ker = efx->irq_status.addr;
 | |
| 	int syserr;
 | |
| 
 | |
| 	netif_vdbg(efx, intr, efx->net_dev,
 | |
| 		   "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
 | |
| 		   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
 | |
| 
 | |
| 	if (!likely(ACCESS_ONCE(efx->irq_soft_enabled)))
 | |
| 		return IRQ_HANDLED;
 | |
| 
 | |
| 	/* Handle non-event-queue sources */
 | |
| 	if (context->index == efx->irq_level) {
 | |
| 		syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
 | |
| 		if (unlikely(syserr))
 | |
| 			return efx_farch_fatal_interrupt(efx);
 | |
| 		efx->last_irq_cpu = raw_smp_processor_id();
 | |
| 	}
 | |
| 
 | |
| 	/* Schedule processing of the channel */
 | |
| 	efx_schedule_channel_irq(efx->channel[context->index]);
 | |
| 
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Setup RSS indirection table.
 | |
|  * This maps from the hash value of the packet to RXQ
 | |
|  */
 | |
| void efx_farch_rx_push_indir_table(struct efx_nic *efx)
 | |
| {
 | |
| 	size_t i = 0;
 | |
| 	efx_dword_t dword;
 | |
| 
 | |
| 	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
 | |
| 		return;
 | |
| 
 | |
| 	BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
 | |
| 		     FR_BZ_RX_INDIRECTION_TBL_ROWS);
 | |
| 
 | |
| 	for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
 | |
| 		EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
 | |
| 				     efx->rx_indir_table[i]);
 | |
| 		efx_writed(efx, &dword,
 | |
| 			   FR_BZ_RX_INDIRECTION_TBL +
 | |
| 			   FR_BZ_RX_INDIRECTION_TBL_STEP * i);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Looks at available SRAM resources and works out how many queues we
 | |
|  * can support, and where things like descriptor caches should live.
 | |
|  *
 | |
|  * SRAM is split up as follows:
 | |
|  * 0                          buftbl entries for channels
 | |
|  * efx->vf_buftbl_base        buftbl entries for SR-IOV
 | |
|  * efx->rx_dc_base            RX descriptor caches
 | |
|  * efx->tx_dc_base            TX descriptor caches
 | |
|  */
 | |
| void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw)
 | |
| {
 | |
| 	unsigned vi_count, buftbl_min;
 | |
| 
 | |
| 	/* Account for the buffer table entries backing the datapath channels
 | |
| 	 * and the descriptor caches for those channels.
 | |
| 	 */
 | |
| 	buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE +
 | |
| 		       efx->n_tx_channels * EFX_TXQ_TYPES * EFX_MAX_DMAQ_SIZE +
 | |
| 		       efx->n_channels * EFX_MAX_EVQ_SIZE)
 | |
| 		      * sizeof(efx_qword_t) / EFX_BUF_SIZE);
 | |
| 	vi_count = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
 | |
| 
 | |
| #ifdef CONFIG_SFC_SRIOV
 | |
| 	if (efx_sriov_wanted(efx)) {
 | |
| 		unsigned vi_dc_entries, buftbl_free, entries_per_vf, vf_limit;
 | |
| 
 | |
| 		efx->vf_buftbl_base = buftbl_min;
 | |
| 
 | |
| 		vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES;
 | |
| 		vi_count = max(vi_count, EFX_VI_BASE);
 | |
| 		buftbl_free = (sram_lim_qw - buftbl_min -
 | |
| 			       vi_count * vi_dc_entries);
 | |
| 
 | |
| 		entries_per_vf = ((vi_dc_entries + EFX_VF_BUFTBL_PER_VI) *
 | |
| 				  efx_vf_size(efx));
 | |
| 		vf_limit = min(buftbl_free / entries_per_vf,
 | |
| 			       (1024U - EFX_VI_BASE) >> efx->vi_scale);
 | |
| 
 | |
| 		if (efx->vf_count > vf_limit) {
 | |
| 			netif_err(efx, probe, efx->net_dev,
 | |
| 				  "Reducing VF count from from %d to %d\n",
 | |
| 				  efx->vf_count, vf_limit);
 | |
| 			efx->vf_count = vf_limit;
 | |
| 		}
 | |
| 		vi_count += efx->vf_count * efx_vf_size(efx);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
 | |
| 	efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
 | |
| }
 | |
| 
 | |
| u32 efx_farch_fpga_ver(struct efx_nic *efx)
 | |
| {
 | |
| 	efx_oword_t altera_build;
 | |
| 	efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
 | |
| 	return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
 | |
| }
 | |
| 
 | |
| void efx_farch_init_common(struct efx_nic *efx)
 | |
| {
 | |
| 	efx_oword_t temp;
 | |
| 
 | |
| 	/* Set positions of descriptor caches in SRAM. */
 | |
| 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
 | |
| 	efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
 | |
| 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
 | |
| 	efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
 | |
| 
 | |
| 	/* Set TX descriptor cache size. */
 | |
| 	BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
 | |
| 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
 | |
| 	efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
 | |
| 
 | |
| 	/* Set RX descriptor cache size.  Set low watermark to size-8, as
 | |
| 	 * this allows most efficient prefetching.
 | |
| 	 */
 | |
| 	BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
 | |
| 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
 | |
| 	efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
 | |
| 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
 | |
| 	efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
 | |
| 
 | |
| 	/* Program INT_KER address */
 | |
| 	EFX_POPULATE_OWORD_2(temp,
 | |
| 			     FRF_AZ_NORM_INT_VEC_DIS_KER,
 | |
| 			     EFX_INT_MODE_USE_MSI(efx),
 | |
| 			     FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
 | |
| 	efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
 | |
| 
 | |
| 	if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
 | |
| 		/* Use an interrupt level unused by event queues */
 | |
| 		efx->irq_level = 0x1f;
 | |
| 	else
 | |
| 		/* Use a valid MSI-X vector */
 | |
| 		efx->irq_level = 0;
 | |
| 
 | |
| 	/* Enable all the genuinely fatal interrupts.  (They are still
 | |
| 	 * masked by the overall interrupt mask, controlled by
 | |
| 	 * falcon_interrupts()).
 | |
| 	 *
 | |
| 	 * Note: All other fatal interrupts are enabled
 | |
| 	 */
 | |
| 	EFX_POPULATE_OWORD_3(temp,
 | |
| 			     FRF_AZ_ILL_ADR_INT_KER_EN, 1,
 | |
| 			     FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
 | |
| 			     FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
 | |
| 	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
 | |
| 		EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
 | |
| 	EFX_INVERT_OWORD(temp);
 | |
| 	efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
 | |
| 
 | |
| 	efx_farch_rx_push_indir_table(efx);
 | |
| 
 | |
| 	/* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
 | |
| 	 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
 | |
| 	 */
 | |
| 	efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
 | |
| 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
 | |
| 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
 | |
| 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
 | |
| 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
 | |
| 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
 | |
| 	/* Enable SW_EV to inherit in char driver - assume harmless here */
 | |
| 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
 | |
| 	/* Prefetch threshold 2 => fetch when descriptor cache half empty */
 | |
| 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
 | |
| 	/* Disable hardware watchdog which can misfire */
 | |
| 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
 | |
| 	/* Squash TX of packets of 16 bytes or less */
 | |
| 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
 | |
| 		EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
 | |
| 	efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
 | |
| 
 | |
| 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
 | |
| 		EFX_POPULATE_OWORD_4(temp,
 | |
| 				     /* Default values */
 | |
| 				     FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
 | |
| 				     FRF_BZ_TX_PACE_SB_AF, 0xb,
 | |
| 				     FRF_BZ_TX_PACE_FB_BASE, 0,
 | |
| 				     /* Allow large pace values in the
 | |
| 				      * fast bin. */
 | |
| 				     FRF_BZ_TX_PACE_BIN_TH,
 | |
| 				     FFE_BZ_TX_PACE_RESERVED);
 | |
| 		efx_writeo(efx, &temp, FR_BZ_TX_PACE);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**************************************************************************
 | |
|  *
 | |
|  * Filter tables
 | |
|  *
 | |
|  **************************************************************************
 | |
|  */
 | |
| 
 | |
| /* "Fudge factors" - difference between programmed value and actual depth.
 | |
|  * Due to pipelined implementation we need to program H/W with a value that
 | |
|  * is larger than the hop limit we want.
 | |
|  */
 | |
| #define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD 3
 | |
| #define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL 1
 | |
| 
 | |
| /* Hard maximum search limit.  Hardware will time-out beyond 200-something.
 | |
|  * We also need to avoid infinite loops in efx_farch_filter_search() when the
 | |
|  * table is full.
 | |
|  */
 | |
| #define EFX_FARCH_FILTER_CTL_SRCH_MAX 200
 | |
| 
 | |
| /* Don't try very hard to find space for performance hints, as this is
 | |
|  * counter-productive. */
 | |
| #define EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX 5
 | |
| 
 | |
| enum efx_farch_filter_type {
 | |
| 	EFX_FARCH_FILTER_TCP_FULL = 0,
 | |
| 	EFX_FARCH_FILTER_TCP_WILD,
 | |
| 	EFX_FARCH_FILTER_UDP_FULL,
 | |
| 	EFX_FARCH_FILTER_UDP_WILD,
 | |
| 	EFX_FARCH_FILTER_MAC_FULL = 4,
 | |
| 	EFX_FARCH_FILTER_MAC_WILD,
 | |
| 	EFX_FARCH_FILTER_UC_DEF = 8,
 | |
| 	EFX_FARCH_FILTER_MC_DEF,
 | |
| 	EFX_FARCH_FILTER_TYPE_COUNT,		/* number of specific types */
 | |
| };
 | |
| 
 | |
| enum efx_farch_filter_table_id {
 | |
| 	EFX_FARCH_FILTER_TABLE_RX_IP = 0,
 | |
| 	EFX_FARCH_FILTER_TABLE_RX_MAC,
 | |
| 	EFX_FARCH_FILTER_TABLE_RX_DEF,
 | |
| 	EFX_FARCH_FILTER_TABLE_TX_MAC,
 | |
| 	EFX_FARCH_FILTER_TABLE_COUNT,
 | |
| };
 | |
| 
 | |
| enum efx_farch_filter_index {
 | |
| 	EFX_FARCH_FILTER_INDEX_UC_DEF,
 | |
| 	EFX_FARCH_FILTER_INDEX_MC_DEF,
 | |
| 	EFX_FARCH_FILTER_SIZE_RX_DEF,
 | |
| };
 | |
| 
 | |
| struct efx_farch_filter_spec {
 | |
| 	u8	type:4;
 | |
| 	u8	priority:4;
 | |
| 	u8	flags;
 | |
| 	u16	dmaq_id;
 | |
| 	u32	data[3];
 | |
| };
 | |
| 
 | |
| struct efx_farch_filter_table {
 | |
| 	enum efx_farch_filter_table_id id;
 | |
| 	u32		offset;		/* address of table relative to BAR */
 | |
| 	unsigned	size;		/* number of entries */
 | |
| 	unsigned	step;		/* step between entries */
 | |
| 	unsigned	used;		/* number currently used */
 | |
| 	unsigned long	*used_bitmap;
 | |
| 	struct efx_farch_filter_spec *spec;
 | |
| 	unsigned	search_limit[EFX_FARCH_FILTER_TYPE_COUNT];
 | |
| };
 | |
| 
 | |
| struct efx_farch_filter_state {
 | |
| 	struct efx_farch_filter_table table[EFX_FARCH_FILTER_TABLE_COUNT];
 | |
| };
 | |
| 
 | |
| static void
 | |
| efx_farch_filter_table_clear_entry(struct efx_nic *efx,
 | |
| 				   struct efx_farch_filter_table *table,
 | |
| 				   unsigned int filter_idx);
 | |
| 
 | |
| /* The filter hash function is LFSR polynomial x^16 + x^3 + 1 of a 32-bit
 | |
|  * key derived from the n-tuple.  The initial LFSR state is 0xffff. */
 | |
| static u16 efx_farch_filter_hash(u32 key)
 | |
| {
 | |
| 	u16 tmp;
 | |
| 
 | |
| 	/* First 16 rounds */
 | |
| 	tmp = 0x1fff ^ key >> 16;
 | |
| 	tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
 | |
| 	tmp = tmp ^ tmp >> 9;
 | |
| 	/* Last 16 rounds */
 | |
| 	tmp = tmp ^ tmp << 13 ^ key;
 | |
| 	tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
 | |
| 	return tmp ^ tmp >> 9;
 | |
| }
 | |
| 
 | |
| /* To allow for hash collisions, filter search continues at these
 | |
|  * increments from the first possible entry selected by the hash. */
 | |
| static u16 efx_farch_filter_increment(u32 key)
 | |
| {
 | |
| 	return key * 2 - 1;
 | |
| }
 | |
| 
 | |
| static enum efx_farch_filter_table_id
 | |
| efx_farch_filter_spec_table_id(const struct efx_farch_filter_spec *spec)
 | |
| {
 | |
| 	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
 | |
| 		     (EFX_FARCH_FILTER_TCP_FULL >> 2));
 | |
| 	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
 | |
| 		     (EFX_FARCH_FILTER_TCP_WILD >> 2));
 | |
| 	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
 | |
| 		     (EFX_FARCH_FILTER_UDP_FULL >> 2));
 | |
| 	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
 | |
| 		     (EFX_FARCH_FILTER_UDP_WILD >> 2));
 | |
| 	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
 | |
| 		     (EFX_FARCH_FILTER_MAC_FULL >> 2));
 | |
| 	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
 | |
| 		     (EFX_FARCH_FILTER_MAC_WILD >> 2));
 | |
| 	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_TX_MAC !=
 | |
| 		     EFX_FARCH_FILTER_TABLE_RX_MAC + 2);
 | |
| 	return (spec->type >> 2) + ((spec->flags & EFX_FILTER_FLAG_TX) ? 2 : 0);
 | |
| }
 | |
| 
 | |
| static void efx_farch_filter_push_rx_config(struct efx_nic *efx)
 | |
| {
 | |
| 	struct efx_farch_filter_state *state = efx->filter_state;
 | |
| 	struct efx_farch_filter_table *table;
 | |
| 	efx_oword_t filter_ctl;
 | |
| 
 | |
| 	efx_reado(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
 | |
| 
 | |
| 	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
 | |
| 	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_FULL_SRCH_LIMIT,
 | |
| 			    table->search_limit[EFX_FARCH_FILTER_TCP_FULL] +
 | |
| 			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
 | |
| 	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_WILD_SRCH_LIMIT,
 | |
| 			    table->search_limit[EFX_FARCH_FILTER_TCP_WILD] +
 | |
| 			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
 | |
| 	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_FULL_SRCH_LIMIT,
 | |
| 			    table->search_limit[EFX_FARCH_FILTER_UDP_FULL] +
 | |
| 			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
 | |
| 	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_WILD_SRCH_LIMIT,
 | |
| 			    table->search_limit[EFX_FARCH_FILTER_UDP_WILD] +
 | |
| 			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
 | |
| 
 | |
| 	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
 | |
| 	if (table->size) {
 | |
| 		EFX_SET_OWORD_FIELD(
 | |
| 			filter_ctl, FRF_CZ_ETHERNET_FULL_SEARCH_LIMIT,
 | |
| 			table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
 | |
| 			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
 | |
| 		EFX_SET_OWORD_FIELD(
 | |
| 			filter_ctl, FRF_CZ_ETHERNET_WILDCARD_SEARCH_LIMIT,
 | |
| 			table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
 | |
| 			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
 | |
| 	}
 | |
| 
 | |
| 	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
 | |
| 	if (table->size) {
 | |
| 		EFX_SET_OWORD_FIELD(
 | |
| 			filter_ctl, FRF_CZ_UNICAST_NOMATCH_Q_ID,
 | |
| 			table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].dmaq_id);
 | |
| 		EFX_SET_OWORD_FIELD(
 | |
| 			filter_ctl, FRF_CZ_UNICAST_NOMATCH_RSS_ENABLED,
 | |
| 			!!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
 | |
| 			   EFX_FILTER_FLAG_RX_RSS));
 | |
| 		EFX_SET_OWORD_FIELD(
 | |
| 			filter_ctl, FRF_CZ_MULTICAST_NOMATCH_Q_ID,
 | |
| 			table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].dmaq_id);
 | |
| 		EFX_SET_OWORD_FIELD(
 | |
| 			filter_ctl, FRF_CZ_MULTICAST_NOMATCH_RSS_ENABLED,
 | |
| 			!!(table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
 | |
| 			   EFX_FILTER_FLAG_RX_RSS));
 | |
| 
 | |
| 		/* There is a single bit to enable RX scatter for all
 | |
| 		 * unmatched packets.  Only set it if scatter is
 | |
| 		 * enabled in both filter specs.
 | |
| 		 */
 | |
| 		EFX_SET_OWORD_FIELD(
 | |
| 			filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
 | |
| 			!!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
 | |
| 			   table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
 | |
| 			   EFX_FILTER_FLAG_RX_SCATTER));
 | |
| 	} else if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
 | |
| 		/* We don't expose 'default' filters because unmatched
 | |
| 		 * packets always go to the queue number found in the
 | |
| 		 * RSS table.  But we still need to set the RX scatter
 | |
| 		 * bit here.
 | |
| 		 */
 | |
| 		EFX_SET_OWORD_FIELD(
 | |
| 			filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
 | |
| 			efx->rx_scatter);
 | |
| 	}
 | |
| 
 | |
| 	efx_writeo(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
 | |
| }
 | |
| 
 | |
| static void efx_farch_filter_push_tx_limits(struct efx_nic *efx)
 | |
| {
 | |
| 	struct efx_farch_filter_state *state = efx->filter_state;
 | |
| 	struct efx_farch_filter_table *table;
 | |
| 	efx_oword_t tx_cfg;
 | |
| 
 | |
| 	efx_reado(efx, &tx_cfg, FR_AZ_TX_CFG);
 | |
| 
 | |
| 	table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
 | |
| 	if (table->size) {
 | |
| 		EFX_SET_OWORD_FIELD(
 | |
| 			tx_cfg, FRF_CZ_TX_ETH_FILTER_FULL_SEARCH_RANGE,
 | |
| 			table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
 | |
| 			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
 | |
| 		EFX_SET_OWORD_FIELD(
 | |
| 			tx_cfg, FRF_CZ_TX_ETH_FILTER_WILD_SEARCH_RANGE,
 | |
| 			table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
 | |
| 			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
 | |
| 	}
 | |
| 
 | |
| 	efx_writeo(efx, &tx_cfg, FR_AZ_TX_CFG);
 | |
| }
 | |
| 
 | |
| static int
 | |
| efx_farch_filter_from_gen_spec(struct efx_farch_filter_spec *spec,
 | |
| 			       const struct efx_filter_spec *gen_spec)
 | |
| {
 | |
| 	bool is_full = false;
 | |
| 
 | |
| 	if ((gen_spec->flags & EFX_FILTER_FLAG_RX_RSS) &&
 | |
| 	    gen_spec->rss_context != EFX_FILTER_RSS_CONTEXT_DEFAULT)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	spec->priority = gen_spec->priority;
 | |
| 	spec->flags = gen_spec->flags;
 | |
| 	spec->dmaq_id = gen_spec->dmaq_id;
 | |
| 
 | |
| 	switch (gen_spec->match_flags) {
 | |
| 	case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
 | |
| 	      EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT |
 | |
| 	      EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT):
 | |
| 		is_full = true;
 | |
| 		/* fall through */
 | |
| 	case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
 | |
| 	      EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT): {
 | |
| 		__be32 rhost, host1, host2;
 | |
| 		__be16 rport, port1, port2;
 | |
| 
 | |
| 		EFX_BUG_ON_PARANOID(!(gen_spec->flags & EFX_FILTER_FLAG_RX));
 | |
| 
 | |
| 		if (gen_spec->ether_type != htons(ETH_P_IP))
 | |
| 			return -EPROTONOSUPPORT;
 | |
| 		if (gen_spec->loc_port == 0 ||
 | |
| 		    (is_full && gen_spec->rem_port == 0))
 | |
| 			return -EADDRNOTAVAIL;
 | |
| 		switch (gen_spec->ip_proto) {
 | |
| 		case IPPROTO_TCP:
 | |
| 			spec->type = (is_full ? EFX_FARCH_FILTER_TCP_FULL :
 | |
| 				      EFX_FARCH_FILTER_TCP_WILD);
 | |
| 			break;
 | |
| 		case IPPROTO_UDP:
 | |
| 			spec->type = (is_full ? EFX_FARCH_FILTER_UDP_FULL :
 | |
| 				      EFX_FARCH_FILTER_UDP_WILD);
 | |
| 			break;
 | |
| 		default:
 | |
| 			return -EPROTONOSUPPORT;
 | |
| 		}
 | |
| 
 | |
| 		/* Filter is constructed in terms of source and destination,
 | |
| 		 * with the odd wrinkle that the ports are swapped in a UDP
 | |
| 		 * wildcard filter.  We need to convert from local and remote
 | |
| 		 * (= zero for wildcard) addresses.
 | |
| 		 */
 | |
| 		rhost = is_full ? gen_spec->rem_host[0] : 0;
 | |
| 		rport = is_full ? gen_spec->rem_port : 0;
 | |
| 		host1 = rhost;
 | |
| 		host2 = gen_spec->loc_host[0];
 | |
| 		if (!is_full && gen_spec->ip_proto == IPPROTO_UDP) {
 | |
| 			port1 = gen_spec->loc_port;
 | |
| 			port2 = rport;
 | |
| 		} else {
 | |
| 			port1 = rport;
 | |
| 			port2 = gen_spec->loc_port;
 | |
| 		}
 | |
| 		spec->data[0] = ntohl(host1) << 16 | ntohs(port1);
 | |
| 		spec->data[1] = ntohs(port2) << 16 | ntohl(host1) >> 16;
 | |
| 		spec->data[2] = ntohl(host2);
 | |
| 
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	case EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_OUTER_VID:
 | |
| 		is_full = true;
 | |
| 		/* fall through */
 | |
| 	case EFX_FILTER_MATCH_LOC_MAC:
 | |
| 		spec->type = (is_full ? EFX_FARCH_FILTER_MAC_FULL :
 | |
| 			      EFX_FARCH_FILTER_MAC_WILD);
 | |
| 		spec->data[0] = is_full ? ntohs(gen_spec->outer_vid) : 0;
 | |
| 		spec->data[1] = (gen_spec->loc_mac[2] << 24 |
 | |
| 				 gen_spec->loc_mac[3] << 16 |
 | |
| 				 gen_spec->loc_mac[4] << 8 |
 | |
| 				 gen_spec->loc_mac[5]);
 | |
| 		spec->data[2] = (gen_spec->loc_mac[0] << 8 |
 | |
| 				 gen_spec->loc_mac[1]);
 | |
| 		break;
 | |
| 
 | |
| 	case EFX_FILTER_MATCH_LOC_MAC_IG:
 | |
| 		spec->type = (is_multicast_ether_addr(gen_spec->loc_mac) ?
 | |
| 			      EFX_FARCH_FILTER_MC_DEF :
 | |
| 			      EFX_FARCH_FILTER_UC_DEF);
 | |
| 		memset(spec->data, 0, sizeof(spec->data)); /* ensure equality */
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		return -EPROTONOSUPPORT;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void
 | |
| efx_farch_filter_to_gen_spec(struct efx_filter_spec *gen_spec,
 | |
| 			     const struct efx_farch_filter_spec *spec)
 | |
| {
 | |
| 	bool is_full = false;
 | |
| 
 | |
| 	/* *gen_spec should be completely initialised, to be consistent
 | |
| 	 * with efx_filter_init_{rx,tx}() and in case we want to copy
 | |
| 	 * it back to userland.
 | |
| 	 */
 | |
| 	memset(gen_spec, 0, sizeof(*gen_spec));
 | |
| 
 | |
| 	gen_spec->priority = spec->priority;
 | |
| 	gen_spec->flags = spec->flags;
 | |
| 	gen_spec->dmaq_id = spec->dmaq_id;
 | |
| 
 | |
| 	switch (spec->type) {
 | |
| 	case EFX_FARCH_FILTER_TCP_FULL:
 | |
| 	case EFX_FARCH_FILTER_UDP_FULL:
 | |
| 		is_full = true;
 | |
| 		/* fall through */
 | |
| 	case EFX_FARCH_FILTER_TCP_WILD:
 | |
| 	case EFX_FARCH_FILTER_UDP_WILD: {
 | |
| 		__be32 host1, host2;
 | |
| 		__be16 port1, port2;
 | |
| 
 | |
| 		gen_spec->match_flags =
 | |
| 			EFX_FILTER_MATCH_ETHER_TYPE |
 | |
| 			EFX_FILTER_MATCH_IP_PROTO |
 | |
| 			EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT;
 | |
| 		if (is_full)
 | |
| 			gen_spec->match_flags |= (EFX_FILTER_MATCH_REM_HOST |
 | |
| 						  EFX_FILTER_MATCH_REM_PORT);
 | |
| 		gen_spec->ether_type = htons(ETH_P_IP);
 | |
| 		gen_spec->ip_proto =
 | |
| 			(spec->type == EFX_FARCH_FILTER_TCP_FULL ||
 | |
| 			 spec->type == EFX_FARCH_FILTER_TCP_WILD) ?
 | |
| 			IPPROTO_TCP : IPPROTO_UDP;
 | |
| 
 | |
| 		host1 = htonl(spec->data[0] >> 16 | spec->data[1] << 16);
 | |
| 		port1 = htons(spec->data[0]);
 | |
| 		host2 = htonl(spec->data[2]);
 | |
| 		port2 = htons(spec->data[1] >> 16);
 | |
| 		if (spec->flags & EFX_FILTER_FLAG_TX) {
 | |
| 			gen_spec->loc_host[0] = host1;
 | |
| 			gen_spec->rem_host[0] = host2;
 | |
| 		} else {
 | |
| 			gen_spec->loc_host[0] = host2;
 | |
| 			gen_spec->rem_host[0] = host1;
 | |
| 		}
 | |
| 		if (!!(gen_spec->flags & EFX_FILTER_FLAG_TX) ^
 | |
| 		    (!is_full && gen_spec->ip_proto == IPPROTO_UDP)) {
 | |
| 			gen_spec->loc_port = port1;
 | |
| 			gen_spec->rem_port = port2;
 | |
| 		} else {
 | |
| 			gen_spec->loc_port = port2;
 | |
| 			gen_spec->rem_port = port1;
 | |
| 		}
 | |
| 
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	case EFX_FARCH_FILTER_MAC_FULL:
 | |
| 		is_full = true;
 | |
| 		/* fall through */
 | |
| 	case EFX_FARCH_FILTER_MAC_WILD:
 | |
| 		gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC;
 | |
| 		if (is_full)
 | |
| 			gen_spec->match_flags |= EFX_FILTER_MATCH_OUTER_VID;
 | |
| 		gen_spec->loc_mac[0] = spec->data[2] >> 8;
 | |
| 		gen_spec->loc_mac[1] = spec->data[2];
 | |
| 		gen_spec->loc_mac[2] = spec->data[1] >> 24;
 | |
| 		gen_spec->loc_mac[3] = spec->data[1] >> 16;
 | |
| 		gen_spec->loc_mac[4] = spec->data[1] >> 8;
 | |
| 		gen_spec->loc_mac[5] = spec->data[1];
 | |
| 		gen_spec->outer_vid = htons(spec->data[0]);
 | |
| 		break;
 | |
| 
 | |
| 	case EFX_FARCH_FILTER_UC_DEF:
 | |
| 	case EFX_FARCH_FILTER_MC_DEF:
 | |
| 		gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC_IG;
 | |
| 		gen_spec->loc_mac[0] = spec->type == EFX_FARCH_FILTER_MC_DEF;
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		WARN_ON(1);
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void
 | |
| efx_farch_filter_init_rx_for_stack(struct efx_nic *efx,
 | |
| 				   struct efx_farch_filter_spec *spec)
 | |
| {
 | |
| 	/* If there's only one channel then disable RSS for non VF
 | |
| 	 * traffic, thereby allowing VFs to use RSS when the PF can't.
 | |
| 	 */
 | |
| 	spec->priority = EFX_FILTER_PRI_REQUIRED;
 | |
| 	spec->flags = (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_RX_STACK |
 | |
| 		       (efx->n_rx_channels > 1 ? EFX_FILTER_FLAG_RX_RSS : 0) |
 | |
| 		       (efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0));
 | |
| 	spec->dmaq_id = 0;
 | |
| }
 | |
| 
 | |
| /* Build a filter entry and return its n-tuple key. */
 | |
| static u32 efx_farch_filter_build(efx_oword_t *filter,
 | |
| 				  struct efx_farch_filter_spec *spec)
 | |
| {
 | |
| 	u32 data3;
 | |
| 
 | |
| 	switch (efx_farch_filter_spec_table_id(spec)) {
 | |
| 	case EFX_FARCH_FILTER_TABLE_RX_IP: {
 | |
| 		bool is_udp = (spec->type == EFX_FARCH_FILTER_UDP_FULL ||
 | |
| 			       spec->type == EFX_FARCH_FILTER_UDP_WILD);
 | |
| 		EFX_POPULATE_OWORD_7(
 | |
| 			*filter,
 | |
| 			FRF_BZ_RSS_EN,
 | |
| 			!!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
 | |
| 			FRF_BZ_SCATTER_EN,
 | |
| 			!!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
 | |
| 			FRF_BZ_TCP_UDP, is_udp,
 | |
| 			FRF_BZ_RXQ_ID, spec->dmaq_id,
 | |
| 			EFX_DWORD_2, spec->data[2],
 | |
| 			EFX_DWORD_1, spec->data[1],
 | |
| 			EFX_DWORD_0, spec->data[0]);
 | |
| 		data3 = is_udp;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	case EFX_FARCH_FILTER_TABLE_RX_MAC: {
 | |
| 		bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
 | |
| 		EFX_POPULATE_OWORD_7(
 | |
| 			*filter,
 | |
| 			FRF_CZ_RMFT_RSS_EN,
 | |
| 			!!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
 | |
| 			FRF_CZ_RMFT_SCATTER_EN,
 | |
| 			!!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
 | |
| 			FRF_CZ_RMFT_RXQ_ID, spec->dmaq_id,
 | |
| 			FRF_CZ_RMFT_WILDCARD_MATCH, is_wild,
 | |
| 			FRF_CZ_RMFT_DEST_MAC_HI, spec->data[2],
 | |
| 			FRF_CZ_RMFT_DEST_MAC_LO, spec->data[1],
 | |
| 			FRF_CZ_RMFT_VLAN_ID, spec->data[0]);
 | |
| 		data3 = is_wild;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	case EFX_FARCH_FILTER_TABLE_TX_MAC: {
 | |
| 		bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
 | |
| 		EFX_POPULATE_OWORD_5(*filter,
 | |
| 				     FRF_CZ_TMFT_TXQ_ID, spec->dmaq_id,
 | |
| 				     FRF_CZ_TMFT_WILDCARD_MATCH, is_wild,
 | |
| 				     FRF_CZ_TMFT_SRC_MAC_HI, spec->data[2],
 | |
| 				     FRF_CZ_TMFT_SRC_MAC_LO, spec->data[1],
 | |
| 				     FRF_CZ_TMFT_VLAN_ID, spec->data[0]);
 | |
| 		data3 = is_wild | spec->dmaq_id << 1;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	default:
 | |
| 		BUG();
 | |
| 	}
 | |
| 
 | |
| 	return spec->data[0] ^ spec->data[1] ^ spec->data[2] ^ data3;
 | |
| }
 | |
| 
 | |
| static bool efx_farch_filter_equal(const struct efx_farch_filter_spec *left,
 | |
| 				   const struct efx_farch_filter_spec *right)
 | |
| {
 | |
| 	if (left->type != right->type ||
 | |
| 	    memcmp(left->data, right->data, sizeof(left->data)))
 | |
| 		return false;
 | |
| 
 | |
| 	if (left->flags & EFX_FILTER_FLAG_TX &&
 | |
| 	    left->dmaq_id != right->dmaq_id)
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Construct/deconstruct external filter IDs.  At least the RX filter
 | |
|  * IDs must be ordered by matching priority, for RX NFC semantics.
 | |
|  *
 | |
|  * Deconstruction needs to be robust against invalid IDs so that
 | |
|  * efx_filter_remove_id_safe() and efx_filter_get_filter_safe() can
 | |
|  * accept user-provided IDs.
 | |
|  */
 | |
| 
 | |
| #define EFX_FARCH_FILTER_MATCH_PRI_COUNT	5
 | |
| 
 | |
| static const u8 efx_farch_filter_type_match_pri[EFX_FARCH_FILTER_TYPE_COUNT] = {
 | |
| 	[EFX_FARCH_FILTER_TCP_FULL]	= 0,
 | |
| 	[EFX_FARCH_FILTER_UDP_FULL]	= 0,
 | |
| 	[EFX_FARCH_FILTER_TCP_WILD]	= 1,
 | |
| 	[EFX_FARCH_FILTER_UDP_WILD]	= 1,
 | |
| 	[EFX_FARCH_FILTER_MAC_FULL]	= 2,
 | |
| 	[EFX_FARCH_FILTER_MAC_WILD]	= 3,
 | |
| 	[EFX_FARCH_FILTER_UC_DEF]	= 4,
 | |
| 	[EFX_FARCH_FILTER_MC_DEF]	= 4,
 | |
| };
 | |
| 
 | |
| static const enum efx_farch_filter_table_id efx_farch_filter_range_table[] = {
 | |
| 	EFX_FARCH_FILTER_TABLE_RX_IP,	/* RX match pri 0 */
 | |
| 	EFX_FARCH_FILTER_TABLE_RX_IP,
 | |
| 	EFX_FARCH_FILTER_TABLE_RX_MAC,
 | |
| 	EFX_FARCH_FILTER_TABLE_RX_MAC,
 | |
| 	EFX_FARCH_FILTER_TABLE_RX_DEF,	/* RX match pri 4 */
 | |
| 	EFX_FARCH_FILTER_TABLE_TX_MAC,	/* TX match pri 0 */
 | |
| 	EFX_FARCH_FILTER_TABLE_TX_MAC,	/* TX match pri 1 */
 | |
| };
 | |
| 
 | |
| #define EFX_FARCH_FILTER_INDEX_WIDTH 13
 | |
| #define EFX_FARCH_FILTER_INDEX_MASK ((1 << EFX_FARCH_FILTER_INDEX_WIDTH) - 1)
 | |
| 
 | |
| static inline u32
 | |
| efx_farch_filter_make_id(const struct efx_farch_filter_spec *spec,
 | |
| 			 unsigned int index)
 | |
| {
 | |
| 	unsigned int range;
 | |
| 
 | |
| 	range = efx_farch_filter_type_match_pri[spec->type];
 | |
| 	if (!(spec->flags & EFX_FILTER_FLAG_RX))
 | |
| 		range += EFX_FARCH_FILTER_MATCH_PRI_COUNT;
 | |
| 
 | |
| 	return range << EFX_FARCH_FILTER_INDEX_WIDTH | index;
 | |
| }
 | |
| 
 | |
| static inline enum efx_farch_filter_table_id
 | |
| efx_farch_filter_id_table_id(u32 id)
 | |
| {
 | |
| 	unsigned int range = id >> EFX_FARCH_FILTER_INDEX_WIDTH;
 | |
| 
 | |
| 	if (range < ARRAY_SIZE(efx_farch_filter_range_table))
 | |
| 		return efx_farch_filter_range_table[range];
 | |
| 	else
 | |
| 		return EFX_FARCH_FILTER_TABLE_COUNT; /* invalid */
 | |
| }
 | |
| 
 | |
| static inline unsigned int efx_farch_filter_id_index(u32 id)
 | |
| {
 | |
| 	return id & EFX_FARCH_FILTER_INDEX_MASK;
 | |
| }
 | |
| 
 | |
| u32 efx_farch_filter_get_rx_id_limit(struct efx_nic *efx)
 | |
| {
 | |
| 	struct efx_farch_filter_state *state = efx->filter_state;
 | |
| 	unsigned int range = EFX_FARCH_FILTER_MATCH_PRI_COUNT - 1;
 | |
| 	enum efx_farch_filter_table_id table_id;
 | |
| 
 | |
| 	do {
 | |
| 		table_id = efx_farch_filter_range_table[range];
 | |
| 		if (state->table[table_id].size != 0)
 | |
| 			return range << EFX_FARCH_FILTER_INDEX_WIDTH |
 | |
| 				state->table[table_id].size;
 | |
| 	} while (range--);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| s32 efx_farch_filter_insert(struct efx_nic *efx,
 | |
| 			    struct efx_filter_spec *gen_spec,
 | |
| 			    bool replace_equal)
 | |
| {
 | |
| 	struct efx_farch_filter_state *state = efx->filter_state;
 | |
| 	struct efx_farch_filter_table *table;
 | |
| 	struct efx_farch_filter_spec spec;
 | |
| 	efx_oword_t filter;
 | |
| 	int rep_index, ins_index;
 | |
| 	unsigned int depth = 0;
 | |
| 	int rc;
 | |
| 
 | |
| 	rc = efx_farch_filter_from_gen_spec(&spec, gen_spec);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	table = &state->table[efx_farch_filter_spec_table_id(&spec)];
 | |
| 	if (table->size == 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	netif_vdbg(efx, hw, efx->net_dev,
 | |
| 		   "%s: type %d search_limit=%d", __func__, spec.type,
 | |
| 		   table->search_limit[spec.type]);
 | |
| 
 | |
| 	if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
 | |
| 		/* One filter spec per type */
 | |
| 		BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_UC_DEF != 0);
 | |
| 		BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_MC_DEF !=
 | |
| 			     EFX_FARCH_FILTER_MC_DEF - EFX_FARCH_FILTER_UC_DEF);
 | |
| 		rep_index = spec.type - EFX_FARCH_FILTER_UC_DEF;
 | |
| 		ins_index = rep_index;
 | |
| 
 | |
| 		spin_lock_bh(&efx->filter_lock);
 | |
| 	} else {
 | |
| 		/* Search concurrently for
 | |
| 		 * (1) a filter to be replaced (rep_index): any filter
 | |
| 		 *     with the same match values, up to the current
 | |
| 		 *     search depth for this type, and
 | |
| 		 * (2) the insertion point (ins_index): (1) or any
 | |
| 		 *     free slot before it or up to the maximum search
 | |
| 		 *     depth for this priority
 | |
| 		 * We fail if we cannot find (2).
 | |
| 		 *
 | |
| 		 * We can stop once either
 | |
| 		 * (a) we find (1), in which case we have definitely
 | |
| 		 *     found (2) as well; or
 | |
| 		 * (b) we have searched exhaustively for (1), and have
 | |
| 		 *     either found (2) or searched exhaustively for it
 | |
| 		 */
 | |
| 		u32 key = efx_farch_filter_build(&filter, &spec);
 | |
| 		unsigned int hash = efx_farch_filter_hash(key);
 | |
| 		unsigned int incr = efx_farch_filter_increment(key);
 | |
| 		unsigned int max_rep_depth = table->search_limit[spec.type];
 | |
| 		unsigned int max_ins_depth =
 | |
| 			spec.priority <= EFX_FILTER_PRI_HINT ?
 | |
| 			EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX :
 | |
| 			EFX_FARCH_FILTER_CTL_SRCH_MAX;
 | |
| 		unsigned int i = hash & (table->size - 1);
 | |
| 
 | |
| 		ins_index = -1;
 | |
| 		depth = 1;
 | |
| 
 | |
| 		spin_lock_bh(&efx->filter_lock);
 | |
| 
 | |
| 		for (;;) {
 | |
| 			if (!test_bit(i, table->used_bitmap)) {
 | |
| 				if (ins_index < 0)
 | |
| 					ins_index = i;
 | |
| 			} else if (efx_farch_filter_equal(&spec,
 | |
| 							  &table->spec[i])) {
 | |
| 				/* Case (a) */
 | |
| 				if (ins_index < 0)
 | |
| 					ins_index = i;
 | |
| 				rep_index = i;
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			if (depth >= max_rep_depth &&
 | |
| 			    (ins_index >= 0 || depth >= max_ins_depth)) {
 | |
| 				/* Case (b) */
 | |
| 				if (ins_index < 0) {
 | |
| 					rc = -EBUSY;
 | |
| 					goto out;
 | |
| 				}
 | |
| 				rep_index = -1;
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			i = (i + incr) & (table->size - 1);
 | |
| 			++depth;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* If we found a filter to be replaced, check whether we
 | |
| 	 * should do so
 | |
| 	 */
 | |
| 	if (rep_index >= 0) {
 | |
| 		struct efx_farch_filter_spec *saved_spec =
 | |
| 			&table->spec[rep_index];
 | |
| 
 | |
| 		if (spec.priority == saved_spec->priority && !replace_equal) {
 | |
| 			rc = -EEXIST;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		if (spec.priority < saved_spec->priority &&
 | |
| 		    !(saved_spec->priority == EFX_FILTER_PRI_REQUIRED &&
 | |
| 		      saved_spec->flags & EFX_FILTER_FLAG_RX_STACK)) {
 | |
| 			rc = -EPERM;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		if (spec.flags & EFX_FILTER_FLAG_RX_STACK) {
 | |
| 			/* Just make sure it won't be removed */
 | |
| 			saved_spec->flags |= EFX_FILTER_FLAG_RX_STACK;
 | |
| 			rc = 0;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		/* Retain the RX_STACK flag */
 | |
| 		spec.flags |= saved_spec->flags & EFX_FILTER_FLAG_RX_STACK;
 | |
| 	}
 | |
| 
 | |
| 	/* Insert the filter */
 | |
| 	if (ins_index != rep_index) {
 | |
| 		__set_bit(ins_index, table->used_bitmap);
 | |
| 		++table->used;
 | |
| 	}
 | |
| 	table->spec[ins_index] = spec;
 | |
| 
 | |
| 	if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
 | |
| 		efx_farch_filter_push_rx_config(efx);
 | |
| 	} else {
 | |
| 		if (table->search_limit[spec.type] < depth) {
 | |
| 			table->search_limit[spec.type] = depth;
 | |
| 			if (spec.flags & EFX_FILTER_FLAG_TX)
 | |
| 				efx_farch_filter_push_tx_limits(efx);
 | |
| 			else
 | |
| 				efx_farch_filter_push_rx_config(efx);
 | |
| 		}
 | |
| 
 | |
| 		efx_writeo(efx, &filter,
 | |
| 			   table->offset + table->step * ins_index);
 | |
| 
 | |
| 		/* If we were able to replace a filter by inserting
 | |
| 		 * at a lower depth, clear the replaced filter
 | |
| 		 */
 | |
| 		if (ins_index != rep_index && rep_index >= 0)
 | |
| 			efx_farch_filter_table_clear_entry(efx, table,
 | |
| 							   rep_index);
 | |
| 	}
 | |
| 
 | |
| 	netif_vdbg(efx, hw, efx->net_dev,
 | |
| 		   "%s: filter type %d index %d rxq %u set",
 | |
| 		   __func__, spec.type, ins_index, spec.dmaq_id);
 | |
| 	rc = efx_farch_filter_make_id(&spec, ins_index);
 | |
| 
 | |
| out:
 | |
| 	spin_unlock_bh(&efx->filter_lock);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static void
 | |
| efx_farch_filter_table_clear_entry(struct efx_nic *efx,
 | |
| 				   struct efx_farch_filter_table *table,
 | |
| 				   unsigned int filter_idx)
 | |
| {
 | |
| 	static efx_oword_t filter;
 | |
| 
 | |
| 	EFX_WARN_ON_PARANOID(!test_bit(filter_idx, table->used_bitmap));
 | |
| 	BUG_ON(table->offset == 0); /* can't clear MAC default filters */
 | |
| 
 | |
| 	__clear_bit(filter_idx, table->used_bitmap);
 | |
| 	--table->used;
 | |
| 	memset(&table->spec[filter_idx], 0, sizeof(table->spec[0]));
 | |
| 
 | |
| 	efx_writeo(efx, &filter, table->offset + table->step * filter_idx);
 | |
| 
 | |
| 	/* If this filter required a greater search depth than
 | |
| 	 * any other, the search limit for its type can now be
 | |
| 	 * decreased.  However, it is hard to determine that
 | |
| 	 * unless the table has become completely empty - in
 | |
| 	 * which case, all its search limits can be set to 0.
 | |
| 	 */
 | |
| 	if (unlikely(table->used == 0)) {
 | |
| 		memset(table->search_limit, 0, sizeof(table->search_limit));
 | |
| 		if (table->id == EFX_FARCH_FILTER_TABLE_TX_MAC)
 | |
| 			efx_farch_filter_push_tx_limits(efx);
 | |
| 		else
 | |
| 			efx_farch_filter_push_rx_config(efx);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int efx_farch_filter_remove(struct efx_nic *efx,
 | |
| 				   struct efx_farch_filter_table *table,
 | |
| 				   unsigned int filter_idx,
 | |
| 				   enum efx_filter_priority priority)
 | |
| {
 | |
| 	struct efx_farch_filter_spec *spec = &table->spec[filter_idx];
 | |
| 
 | |
| 	if (!test_bit(filter_idx, table->used_bitmap) ||
 | |
| 	    spec->priority > priority)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	if (spec->flags & EFX_FILTER_FLAG_RX_STACK) {
 | |
| 		efx_farch_filter_init_rx_for_stack(efx, spec);
 | |
| 		efx_farch_filter_push_rx_config(efx);
 | |
| 	} else {
 | |
| 		efx_farch_filter_table_clear_entry(efx, table, filter_idx);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int efx_farch_filter_remove_safe(struct efx_nic *efx,
 | |
| 				 enum efx_filter_priority priority,
 | |
| 				 u32 filter_id)
 | |
| {
 | |
| 	struct efx_farch_filter_state *state = efx->filter_state;
 | |
| 	enum efx_farch_filter_table_id table_id;
 | |
| 	struct efx_farch_filter_table *table;
 | |
| 	unsigned int filter_idx;
 | |
| 	struct efx_farch_filter_spec *spec;
 | |
| 	int rc;
 | |
| 
 | |
| 	table_id = efx_farch_filter_id_table_id(filter_id);
 | |
| 	if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
 | |
| 		return -ENOENT;
 | |
| 	table = &state->table[table_id];
 | |
| 
 | |
| 	filter_idx = efx_farch_filter_id_index(filter_id);
 | |
| 	if (filter_idx >= table->size)
 | |
| 		return -ENOENT;
 | |
| 	spec = &table->spec[filter_idx];
 | |
| 
 | |
| 	spin_lock_bh(&efx->filter_lock);
 | |
| 	rc = efx_farch_filter_remove(efx, table, filter_idx, priority);
 | |
| 	spin_unlock_bh(&efx->filter_lock);
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| int efx_farch_filter_get_safe(struct efx_nic *efx,
 | |
| 			      enum efx_filter_priority priority,
 | |
| 			      u32 filter_id, struct efx_filter_spec *spec_buf)
 | |
| {
 | |
| 	struct efx_farch_filter_state *state = efx->filter_state;
 | |
| 	enum efx_farch_filter_table_id table_id;
 | |
| 	struct efx_farch_filter_table *table;
 | |
| 	struct efx_farch_filter_spec *spec;
 | |
| 	unsigned int filter_idx;
 | |
| 	int rc;
 | |
| 
 | |
| 	table_id = efx_farch_filter_id_table_id(filter_id);
 | |
| 	if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
 | |
| 		return -ENOENT;
 | |
| 	table = &state->table[table_id];
 | |
| 
 | |
| 	filter_idx = efx_farch_filter_id_index(filter_id);
 | |
| 	if (filter_idx >= table->size)
 | |
| 		return -ENOENT;
 | |
| 	spec = &table->spec[filter_idx];
 | |
| 
 | |
| 	spin_lock_bh(&efx->filter_lock);
 | |
| 
 | |
| 	if (test_bit(filter_idx, table->used_bitmap) &&
 | |
| 	    spec->priority == priority) {
 | |
| 		efx_farch_filter_to_gen_spec(spec_buf, spec);
 | |
| 		rc = 0;
 | |
| 	} else {
 | |
| 		rc = -ENOENT;
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_bh(&efx->filter_lock);
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static void
 | |
| efx_farch_filter_table_clear(struct efx_nic *efx,
 | |
| 			     enum efx_farch_filter_table_id table_id,
 | |
| 			     enum efx_filter_priority priority)
 | |
| {
 | |
| 	struct efx_farch_filter_state *state = efx->filter_state;
 | |
| 	struct efx_farch_filter_table *table = &state->table[table_id];
 | |
| 	unsigned int filter_idx;
 | |
| 
 | |
| 	spin_lock_bh(&efx->filter_lock);
 | |
| 	for (filter_idx = 0; filter_idx < table->size; ++filter_idx)
 | |
| 		efx_farch_filter_remove(efx, table, filter_idx, priority);
 | |
| 	spin_unlock_bh(&efx->filter_lock);
 | |
| }
 | |
| 
 | |
| void efx_farch_filter_clear_rx(struct efx_nic *efx,
 | |
| 			       enum efx_filter_priority priority)
 | |
| {
 | |
| 	efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_IP,
 | |
| 				     priority);
 | |
| 	efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_MAC,
 | |
| 				     priority);
 | |
| 	efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_DEF,
 | |
| 				     priority);
 | |
| }
 | |
| 
 | |
| u32 efx_farch_filter_count_rx_used(struct efx_nic *efx,
 | |
| 				   enum efx_filter_priority priority)
 | |
| {
 | |
| 	struct efx_farch_filter_state *state = efx->filter_state;
 | |
| 	enum efx_farch_filter_table_id table_id;
 | |
| 	struct efx_farch_filter_table *table;
 | |
| 	unsigned int filter_idx;
 | |
| 	u32 count = 0;
 | |
| 
 | |
| 	spin_lock_bh(&efx->filter_lock);
 | |
| 
 | |
| 	for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
 | |
| 	     table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
 | |
| 	     table_id++) {
 | |
| 		table = &state->table[table_id];
 | |
| 		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
 | |
| 			if (test_bit(filter_idx, table->used_bitmap) &&
 | |
| 			    table->spec[filter_idx].priority == priority)
 | |
| 				++count;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_bh(&efx->filter_lock);
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| s32 efx_farch_filter_get_rx_ids(struct efx_nic *efx,
 | |
| 				enum efx_filter_priority priority,
 | |
| 				u32 *buf, u32 size)
 | |
| {
 | |
| 	struct efx_farch_filter_state *state = efx->filter_state;
 | |
| 	enum efx_farch_filter_table_id table_id;
 | |
| 	struct efx_farch_filter_table *table;
 | |
| 	unsigned int filter_idx;
 | |
| 	s32 count = 0;
 | |
| 
 | |
| 	spin_lock_bh(&efx->filter_lock);
 | |
| 
 | |
| 	for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
 | |
| 	     table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
 | |
| 	     table_id++) {
 | |
| 		table = &state->table[table_id];
 | |
| 		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
 | |
| 			if (test_bit(filter_idx, table->used_bitmap) &&
 | |
| 			    table->spec[filter_idx].priority == priority) {
 | |
| 				if (count == size) {
 | |
| 					count = -EMSGSIZE;
 | |
| 					goto out;
 | |
| 				}
 | |
| 				buf[count++] = efx_farch_filter_make_id(
 | |
| 					&table->spec[filter_idx], filter_idx);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| out:
 | |
| 	spin_unlock_bh(&efx->filter_lock);
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| /* Restore filter stater after reset */
 | |
| void efx_farch_filter_table_restore(struct efx_nic *efx)
 | |
| {
 | |
| 	struct efx_farch_filter_state *state = efx->filter_state;
 | |
| 	enum efx_farch_filter_table_id table_id;
 | |
| 	struct efx_farch_filter_table *table;
 | |
| 	efx_oword_t filter;
 | |
| 	unsigned int filter_idx;
 | |
| 
 | |
| 	spin_lock_bh(&efx->filter_lock);
 | |
| 
 | |
| 	for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
 | |
| 		table = &state->table[table_id];
 | |
| 
 | |
| 		/* Check whether this is a regular register table */
 | |
| 		if (table->step == 0)
 | |
| 			continue;
 | |
| 
 | |
| 		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
 | |
| 			if (!test_bit(filter_idx, table->used_bitmap))
 | |
| 				continue;
 | |
| 			efx_farch_filter_build(&filter, &table->spec[filter_idx]);
 | |
| 			efx_writeo(efx, &filter,
 | |
| 				   table->offset + table->step * filter_idx);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	efx_farch_filter_push_rx_config(efx);
 | |
| 	efx_farch_filter_push_tx_limits(efx);
 | |
| 
 | |
| 	spin_unlock_bh(&efx->filter_lock);
 | |
| }
 | |
| 
 | |
| void efx_farch_filter_table_remove(struct efx_nic *efx)
 | |
| {
 | |
| 	struct efx_farch_filter_state *state = efx->filter_state;
 | |
| 	enum efx_farch_filter_table_id table_id;
 | |
| 
 | |
| 	for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
 | |
| 		kfree(state->table[table_id].used_bitmap);
 | |
| 		vfree(state->table[table_id].spec);
 | |
| 	}
 | |
| 	kfree(state);
 | |
| }
 | |
| 
 | |
| int efx_farch_filter_table_probe(struct efx_nic *efx)
 | |
| {
 | |
| 	struct efx_farch_filter_state *state;
 | |
| 	struct efx_farch_filter_table *table;
 | |
| 	unsigned table_id;
 | |
| 
 | |
| 	state = kzalloc(sizeof(struct efx_farch_filter_state), GFP_KERNEL);
 | |
| 	if (!state)
 | |
| 		return -ENOMEM;
 | |
| 	efx->filter_state = state;
 | |
| 
 | |
| 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
 | |
| 		table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
 | |
| 		table->id = EFX_FARCH_FILTER_TABLE_RX_IP;
 | |
| 		table->offset = FR_BZ_RX_FILTER_TBL0;
 | |
| 		table->size = FR_BZ_RX_FILTER_TBL0_ROWS;
 | |
| 		table->step = FR_BZ_RX_FILTER_TBL0_STEP;
 | |
| 	}
 | |
| 
 | |
| 	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
 | |
| 		table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
 | |
| 		table->id = EFX_FARCH_FILTER_TABLE_RX_MAC;
 | |
| 		table->offset = FR_CZ_RX_MAC_FILTER_TBL0;
 | |
| 		table->size = FR_CZ_RX_MAC_FILTER_TBL0_ROWS;
 | |
| 		table->step = FR_CZ_RX_MAC_FILTER_TBL0_STEP;
 | |
| 
 | |
| 		table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
 | |
| 		table->id = EFX_FARCH_FILTER_TABLE_RX_DEF;
 | |
| 		table->size = EFX_FARCH_FILTER_SIZE_RX_DEF;
 | |
| 
 | |
| 		table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
 | |
| 		table->id = EFX_FARCH_FILTER_TABLE_TX_MAC;
 | |
| 		table->offset = FR_CZ_TX_MAC_FILTER_TBL0;
 | |
| 		table->size = FR_CZ_TX_MAC_FILTER_TBL0_ROWS;
 | |
| 		table->step = FR_CZ_TX_MAC_FILTER_TBL0_STEP;
 | |
| 	}
 | |
| 
 | |
| 	for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
 | |
| 		table = &state->table[table_id];
 | |
| 		if (table->size == 0)
 | |
| 			continue;
 | |
| 		table->used_bitmap = kcalloc(BITS_TO_LONGS(table->size),
 | |
| 					     sizeof(unsigned long),
 | |
| 					     GFP_KERNEL);
 | |
| 		if (!table->used_bitmap)
 | |
| 			goto fail;
 | |
| 		table->spec = vzalloc(table->size * sizeof(*table->spec));
 | |
| 		if (!table->spec)
 | |
| 			goto fail;
 | |
| 	}
 | |
| 
 | |
| 	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
 | |
| 	if (table->size) {
 | |
| 		/* RX default filters must always exist */
 | |
| 		struct efx_farch_filter_spec *spec;
 | |
| 		unsigned i;
 | |
| 
 | |
| 		for (i = 0; i < EFX_FARCH_FILTER_SIZE_RX_DEF; i++) {
 | |
| 			spec = &table->spec[i];
 | |
| 			spec->type = EFX_FARCH_FILTER_UC_DEF + i;
 | |
| 			efx_farch_filter_init_rx_for_stack(efx, spec);
 | |
| 			__set_bit(i, table->used_bitmap);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	efx_farch_filter_push_rx_config(efx);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| fail:
 | |
| 	efx_farch_filter_table_remove(efx);
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| /* Update scatter enable flags for filters pointing to our own RX queues */
 | |
| void efx_farch_filter_update_rx_scatter(struct efx_nic *efx)
 | |
| {
 | |
| 	struct efx_farch_filter_state *state = efx->filter_state;
 | |
| 	enum efx_farch_filter_table_id table_id;
 | |
| 	struct efx_farch_filter_table *table;
 | |
| 	efx_oword_t filter;
 | |
| 	unsigned int filter_idx;
 | |
| 
 | |
| 	spin_lock_bh(&efx->filter_lock);
 | |
| 
 | |
| 	for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
 | |
| 	     table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
 | |
| 	     table_id++) {
 | |
| 		table = &state->table[table_id];
 | |
| 
 | |
| 		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
 | |
| 			if (!test_bit(filter_idx, table->used_bitmap) ||
 | |
| 			    table->spec[filter_idx].dmaq_id >=
 | |
| 			    efx->n_rx_channels)
 | |
| 				continue;
 | |
| 
 | |
| 			if (efx->rx_scatter)
 | |
| 				table->spec[filter_idx].flags |=
 | |
| 					EFX_FILTER_FLAG_RX_SCATTER;
 | |
| 			else
 | |
| 				table->spec[filter_idx].flags &=
 | |
| 					~EFX_FILTER_FLAG_RX_SCATTER;
 | |
| 
 | |
| 			if (table_id == EFX_FARCH_FILTER_TABLE_RX_DEF)
 | |
| 				/* Pushed by efx_farch_filter_push_rx_config() */
 | |
| 				continue;
 | |
| 
 | |
| 			efx_farch_filter_build(&filter, &table->spec[filter_idx]);
 | |
| 			efx_writeo(efx, &filter,
 | |
| 				   table->offset + table->step * filter_idx);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	efx_farch_filter_push_rx_config(efx);
 | |
| 
 | |
| 	spin_unlock_bh(&efx->filter_lock);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_RFS_ACCEL
 | |
| 
 | |
| s32 efx_farch_filter_rfs_insert(struct efx_nic *efx,
 | |
| 				struct efx_filter_spec *gen_spec)
 | |
| {
 | |
| 	return efx_farch_filter_insert(efx, gen_spec, true);
 | |
| }
 | |
| 
 | |
| bool efx_farch_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
 | |
| 				     unsigned int index)
 | |
| {
 | |
| 	struct efx_farch_filter_state *state = efx->filter_state;
 | |
| 	struct efx_farch_filter_table *table =
 | |
| 		&state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
 | |
| 
 | |
| 	if (test_bit(index, table->used_bitmap) &&
 | |
| 	    table->spec[index].priority == EFX_FILTER_PRI_HINT &&
 | |
| 	    rps_may_expire_flow(efx->net_dev, table->spec[index].dmaq_id,
 | |
| 				flow_id, index)) {
 | |
| 		efx_farch_filter_table_clear_entry(efx, table, index);
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_RFS_ACCEL */
 | |
| 
 | |
| void efx_farch_filter_sync_rx_mode(struct efx_nic *efx)
 | |
| {
 | |
| 	struct net_device *net_dev = efx->net_dev;
 | |
| 	struct netdev_hw_addr *ha;
 | |
| 	union efx_multicast_hash *mc_hash = &efx->multicast_hash;
 | |
| 	u32 crc;
 | |
| 	int bit;
 | |
| 
 | |
| 	netif_addr_lock_bh(net_dev);
 | |
| 
 | |
| 	efx->unicast_filter = !(net_dev->flags & IFF_PROMISC);
 | |
| 
 | |
| 	/* Build multicast hash table */
 | |
| 	if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) {
 | |
| 		memset(mc_hash, 0xff, sizeof(*mc_hash));
 | |
| 	} else {
 | |
| 		memset(mc_hash, 0x00, sizeof(*mc_hash));
 | |
| 		netdev_for_each_mc_addr(ha, net_dev) {
 | |
| 			crc = ether_crc_le(ETH_ALEN, ha->addr);
 | |
| 			bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
 | |
| 			__set_bit_le(bit, mc_hash);
 | |
| 		}
 | |
| 
 | |
| 		/* Broadcast packets go through the multicast hash filter.
 | |
| 		 * ether_crc_le() of the broadcast address is 0xbe2612ff
 | |
| 		 * so we always add bit 0xff to the mask.
 | |
| 		 */
 | |
| 		__set_bit_le(0xff, mc_hash);
 | |
| 	}
 | |
| 
 | |
| 	netif_addr_unlock_bh(net_dev);
 | |
| }
 |