 9b3c6e85c2
			
		
	
	
	9b3c6e85c2
	
	
	
		
			
			CONFIG_HOTPLUG is going away as an option. As a result, the __dev* markings need to be removed. This change removes the use of __devinit, __devexit_p, and __devexit from these drivers. Based on patches originally written by Bill Pemberton, but redone by me in order to handle some of the coding style issues better, by hand. Cc: Bill Pemberton <wfp5p@virginia.edu> Cc: Doug Thompson <dougthompson@xmission.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Mark Gross <mark.gross@intel.com> Cc: Jason Uhlenkott <juhlenko@akamai.com> Cc: Mauro Carvalho Chehab <mchehab@redhat.com> Cc: Tim Small <tim@buttersideup.com> Cc: Ranganathan Desikan <ravi@jetztechnologies.com> Cc: "Arvind R." <arvino55@gmail.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: David Daney <david.daney@cavium.com> Cc: Egor Martovetsky <egor@pasemi.com> Cc: Olof Johansson <olof@lixom.net> Cc: Chris Metcalf <cmetcalf@tilera.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
		
			
				
	
	
		
			1594 lines
		
	
	
	
		
			42 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1594 lines
		
	
	
	
		
			42 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Intel 5000(P/V/X) class Memory Controllers kernel module
 | |
|  *
 | |
|  * This file may be distributed under the terms of the
 | |
|  * GNU General Public License.
 | |
|  *
 | |
|  * Written by Douglas Thompson Linux Networx (http://lnxi.com)
 | |
|  *	norsk5@xmission.com
 | |
|  *
 | |
|  * This module is based on the following document:
 | |
|  *
 | |
|  * Intel 5000X Chipset Memory Controller Hub (MCH) - Datasheet
 | |
|  * 	http://developer.intel.com/design/chipsets/datashts/313070.htm
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include <linux/module.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/pci.h>
 | |
| #include <linux/pci_ids.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/edac.h>
 | |
| #include <asm/mmzone.h>
 | |
| 
 | |
| #include "edac_core.h"
 | |
| 
 | |
| /*
 | |
|  * Alter this version for the I5000 module when modifications are made
 | |
|  */
 | |
| #define I5000_REVISION    " Ver: 2.0.12"
 | |
| #define EDAC_MOD_STR      "i5000_edac"
 | |
| 
 | |
| #define i5000_printk(level, fmt, arg...) \
 | |
|         edac_printk(level, "i5000", fmt, ##arg)
 | |
| 
 | |
| #define i5000_mc_printk(mci, level, fmt, arg...) \
 | |
|         edac_mc_chipset_printk(mci, level, "i5000", fmt, ##arg)
 | |
| 
 | |
| #ifndef PCI_DEVICE_ID_INTEL_FBD_0
 | |
| #define PCI_DEVICE_ID_INTEL_FBD_0	0x25F5
 | |
| #endif
 | |
| #ifndef PCI_DEVICE_ID_INTEL_FBD_1
 | |
| #define PCI_DEVICE_ID_INTEL_FBD_1	0x25F6
 | |
| #endif
 | |
| 
 | |
| /* Device 16,
 | |
|  * Function 0: System Address
 | |
|  * Function 1: Memory Branch Map, Control, Errors Register
 | |
|  * Function 2: FSB Error Registers
 | |
|  *
 | |
|  * All 3 functions of Device 16 (0,1,2) share the SAME DID
 | |
|  */
 | |
| #define	PCI_DEVICE_ID_INTEL_I5000_DEV16	0x25F0
 | |
| 
 | |
| /* OFFSETS for Function 0 */
 | |
| 
 | |
| /* OFFSETS for Function 1 */
 | |
| #define		AMBASE			0x48
 | |
| #define		MAXCH			0x56
 | |
| #define		MAXDIMMPERCH		0x57
 | |
| #define		TOLM			0x6C
 | |
| #define		REDMEMB			0x7C
 | |
| #define			RED_ECC_LOCATOR(x)	((x) & 0x3FFFF)
 | |
| #define			REC_ECC_LOCATOR_EVEN(x)	((x) & 0x001FF)
 | |
| #define			REC_ECC_LOCATOR_ODD(x)	((x) & 0x3FE00)
 | |
| #define		MIR0			0x80
 | |
| #define		MIR1			0x84
 | |
| #define		MIR2			0x88
 | |
| #define		AMIR0			0x8C
 | |
| #define		AMIR1			0x90
 | |
| #define		AMIR2			0x94
 | |
| 
 | |
| #define		FERR_FAT_FBD		0x98
 | |
| #define		NERR_FAT_FBD		0x9C
 | |
| #define			EXTRACT_FBDCHAN_INDX(x)	(((x)>>28) & 0x3)
 | |
| #define			FERR_FAT_FBDCHAN 0x30000000
 | |
| #define			FERR_FAT_M3ERR	0x00000004
 | |
| #define			FERR_FAT_M2ERR	0x00000002
 | |
| #define			FERR_FAT_M1ERR	0x00000001
 | |
| #define			FERR_FAT_MASK	(FERR_FAT_M1ERR | \
 | |
| 						FERR_FAT_M2ERR | \
 | |
| 						FERR_FAT_M3ERR)
 | |
| 
 | |
| #define		FERR_NF_FBD		0xA0
 | |
| 
 | |
| /* Thermal and SPD or BFD errors */
 | |
| #define			FERR_NF_M28ERR	0x01000000
 | |
| #define			FERR_NF_M27ERR	0x00800000
 | |
| #define			FERR_NF_M26ERR	0x00400000
 | |
| #define			FERR_NF_M25ERR	0x00200000
 | |
| #define			FERR_NF_M24ERR	0x00100000
 | |
| #define			FERR_NF_M23ERR	0x00080000
 | |
| #define			FERR_NF_M22ERR	0x00040000
 | |
| #define			FERR_NF_M21ERR	0x00020000
 | |
| 
 | |
| /* Correctable errors */
 | |
| #define			FERR_NF_M20ERR	0x00010000
 | |
| #define			FERR_NF_M19ERR	0x00008000
 | |
| #define			FERR_NF_M18ERR	0x00004000
 | |
| #define			FERR_NF_M17ERR	0x00002000
 | |
| 
 | |
| /* Non-Retry or redundant Retry errors */
 | |
| #define			FERR_NF_M16ERR	0x00001000
 | |
| #define			FERR_NF_M15ERR	0x00000800
 | |
| #define			FERR_NF_M14ERR	0x00000400
 | |
| #define			FERR_NF_M13ERR	0x00000200
 | |
| 
 | |
| /* Uncorrectable errors */
 | |
| #define			FERR_NF_M12ERR	0x00000100
 | |
| #define			FERR_NF_M11ERR	0x00000080
 | |
| #define			FERR_NF_M10ERR	0x00000040
 | |
| #define			FERR_NF_M9ERR	0x00000020
 | |
| #define			FERR_NF_M8ERR	0x00000010
 | |
| #define			FERR_NF_M7ERR	0x00000008
 | |
| #define			FERR_NF_M6ERR	0x00000004
 | |
| #define			FERR_NF_M5ERR	0x00000002
 | |
| #define			FERR_NF_M4ERR	0x00000001
 | |
| 
 | |
| #define			FERR_NF_UNCORRECTABLE	(FERR_NF_M12ERR | \
 | |
| 							FERR_NF_M11ERR | \
 | |
| 							FERR_NF_M10ERR | \
 | |
| 							FERR_NF_M9ERR | \
 | |
| 							FERR_NF_M8ERR | \
 | |
| 							FERR_NF_M7ERR | \
 | |
| 							FERR_NF_M6ERR | \
 | |
| 							FERR_NF_M5ERR | \
 | |
| 							FERR_NF_M4ERR)
 | |
| #define			FERR_NF_CORRECTABLE	(FERR_NF_M20ERR | \
 | |
| 							FERR_NF_M19ERR | \
 | |
| 							FERR_NF_M18ERR | \
 | |
| 							FERR_NF_M17ERR)
 | |
| #define			FERR_NF_DIMM_SPARE	(FERR_NF_M27ERR | \
 | |
| 							FERR_NF_M28ERR)
 | |
| #define			FERR_NF_THERMAL		(FERR_NF_M26ERR | \
 | |
| 							FERR_NF_M25ERR | \
 | |
| 							FERR_NF_M24ERR | \
 | |
| 							FERR_NF_M23ERR)
 | |
| #define			FERR_NF_SPD_PROTOCOL	(FERR_NF_M22ERR)
 | |
| #define			FERR_NF_NORTH_CRC	(FERR_NF_M21ERR)
 | |
| #define			FERR_NF_NON_RETRY	(FERR_NF_M13ERR | \
 | |
| 							FERR_NF_M14ERR | \
 | |
| 							FERR_NF_M15ERR)
 | |
| 
 | |
| #define		NERR_NF_FBD		0xA4
 | |
| #define			FERR_NF_MASK		(FERR_NF_UNCORRECTABLE | \
 | |
| 							FERR_NF_CORRECTABLE | \
 | |
| 							FERR_NF_DIMM_SPARE | \
 | |
| 							FERR_NF_THERMAL | \
 | |
| 							FERR_NF_SPD_PROTOCOL | \
 | |
| 							FERR_NF_NORTH_CRC | \
 | |
| 							FERR_NF_NON_RETRY)
 | |
| 
 | |
| #define		EMASK_FBD		0xA8
 | |
| #define			EMASK_FBD_M28ERR	0x08000000
 | |
| #define			EMASK_FBD_M27ERR	0x04000000
 | |
| #define			EMASK_FBD_M26ERR	0x02000000
 | |
| #define			EMASK_FBD_M25ERR	0x01000000
 | |
| #define			EMASK_FBD_M24ERR	0x00800000
 | |
| #define			EMASK_FBD_M23ERR	0x00400000
 | |
| #define			EMASK_FBD_M22ERR	0x00200000
 | |
| #define			EMASK_FBD_M21ERR	0x00100000
 | |
| #define			EMASK_FBD_M20ERR	0x00080000
 | |
| #define			EMASK_FBD_M19ERR	0x00040000
 | |
| #define			EMASK_FBD_M18ERR	0x00020000
 | |
| #define			EMASK_FBD_M17ERR	0x00010000
 | |
| 
 | |
| #define			EMASK_FBD_M15ERR	0x00004000
 | |
| #define			EMASK_FBD_M14ERR	0x00002000
 | |
| #define			EMASK_FBD_M13ERR	0x00001000
 | |
| #define			EMASK_FBD_M12ERR	0x00000800
 | |
| #define			EMASK_FBD_M11ERR	0x00000400
 | |
| #define			EMASK_FBD_M10ERR	0x00000200
 | |
| #define			EMASK_FBD_M9ERR		0x00000100
 | |
| #define			EMASK_FBD_M8ERR		0x00000080
 | |
| #define			EMASK_FBD_M7ERR		0x00000040
 | |
| #define			EMASK_FBD_M6ERR		0x00000020
 | |
| #define			EMASK_FBD_M5ERR		0x00000010
 | |
| #define			EMASK_FBD_M4ERR		0x00000008
 | |
| #define			EMASK_FBD_M3ERR		0x00000004
 | |
| #define			EMASK_FBD_M2ERR		0x00000002
 | |
| #define			EMASK_FBD_M1ERR		0x00000001
 | |
| 
 | |
| #define			ENABLE_EMASK_FBD_FATAL_ERRORS	(EMASK_FBD_M1ERR | \
 | |
| 							EMASK_FBD_M2ERR | \
 | |
| 							EMASK_FBD_M3ERR)
 | |
| 
 | |
| #define 		ENABLE_EMASK_FBD_UNCORRECTABLE	(EMASK_FBD_M4ERR | \
 | |
| 							EMASK_FBD_M5ERR | \
 | |
| 							EMASK_FBD_M6ERR | \
 | |
| 							EMASK_FBD_M7ERR | \
 | |
| 							EMASK_FBD_M8ERR | \
 | |
| 							EMASK_FBD_M9ERR | \
 | |
| 							EMASK_FBD_M10ERR | \
 | |
| 							EMASK_FBD_M11ERR | \
 | |
| 							EMASK_FBD_M12ERR)
 | |
| #define 		ENABLE_EMASK_FBD_CORRECTABLE	(EMASK_FBD_M17ERR | \
 | |
| 							EMASK_FBD_M18ERR | \
 | |
| 							EMASK_FBD_M19ERR | \
 | |
| 							EMASK_FBD_M20ERR)
 | |
| #define			ENABLE_EMASK_FBD_DIMM_SPARE	(EMASK_FBD_M27ERR | \
 | |
| 							EMASK_FBD_M28ERR)
 | |
| #define			ENABLE_EMASK_FBD_THERMALS	(EMASK_FBD_M26ERR | \
 | |
| 							EMASK_FBD_M25ERR | \
 | |
| 							EMASK_FBD_M24ERR | \
 | |
| 							EMASK_FBD_M23ERR)
 | |
| #define			ENABLE_EMASK_FBD_SPD_PROTOCOL	(EMASK_FBD_M22ERR)
 | |
| #define			ENABLE_EMASK_FBD_NORTH_CRC	(EMASK_FBD_M21ERR)
 | |
| #define			ENABLE_EMASK_FBD_NON_RETRY	(EMASK_FBD_M15ERR | \
 | |
| 							EMASK_FBD_M14ERR | \
 | |
| 							EMASK_FBD_M13ERR)
 | |
| 
 | |
| #define		ENABLE_EMASK_ALL	(ENABLE_EMASK_FBD_NON_RETRY | \
 | |
| 					ENABLE_EMASK_FBD_NORTH_CRC | \
 | |
| 					ENABLE_EMASK_FBD_SPD_PROTOCOL | \
 | |
| 					ENABLE_EMASK_FBD_THERMALS | \
 | |
| 					ENABLE_EMASK_FBD_DIMM_SPARE | \
 | |
| 					ENABLE_EMASK_FBD_FATAL_ERRORS | \
 | |
| 					ENABLE_EMASK_FBD_CORRECTABLE | \
 | |
| 					ENABLE_EMASK_FBD_UNCORRECTABLE)
 | |
| 
 | |
| #define		ERR0_FBD		0xAC
 | |
| #define		ERR1_FBD		0xB0
 | |
| #define		ERR2_FBD		0xB4
 | |
| #define		MCERR_FBD		0xB8
 | |
| #define		NRECMEMA		0xBE
 | |
| #define			NREC_BANK(x)		(((x)>>12) & 0x7)
 | |
| #define			NREC_RDWR(x)		(((x)>>11) & 1)
 | |
| #define			NREC_RANK(x)		(((x)>>8) & 0x7)
 | |
| #define		NRECMEMB		0xC0
 | |
| #define			NREC_CAS(x)		(((x)>>16) & 0xFFFFFF)
 | |
| #define			NREC_RAS(x)		((x) & 0x7FFF)
 | |
| #define		NRECFGLOG		0xC4
 | |
| #define		NREEECFBDA		0xC8
 | |
| #define		NREEECFBDB		0xCC
 | |
| #define		NREEECFBDC		0xD0
 | |
| #define		NREEECFBDD		0xD4
 | |
| #define		NREEECFBDE		0xD8
 | |
| #define		REDMEMA			0xDC
 | |
| #define		RECMEMA			0xE2
 | |
| #define			REC_BANK(x)		(((x)>>12) & 0x7)
 | |
| #define			REC_RDWR(x)		(((x)>>11) & 1)
 | |
| #define			REC_RANK(x)		(((x)>>8) & 0x7)
 | |
| #define		RECMEMB			0xE4
 | |
| #define			REC_CAS(x)		(((x)>>16) & 0xFFFFFF)
 | |
| #define			REC_RAS(x)		((x) & 0x7FFF)
 | |
| #define		RECFGLOG		0xE8
 | |
| #define		RECFBDA			0xEC
 | |
| #define		RECFBDB			0xF0
 | |
| #define		RECFBDC			0xF4
 | |
| #define		RECFBDD			0xF8
 | |
| #define		RECFBDE			0xFC
 | |
| 
 | |
| /* OFFSETS for Function 2 */
 | |
| 
 | |
| /*
 | |
|  * Device 21,
 | |
|  * Function 0: Memory Map Branch 0
 | |
|  *
 | |
|  * Device 22,
 | |
|  * Function 0: Memory Map Branch 1
 | |
|  */
 | |
| #define PCI_DEVICE_ID_I5000_BRANCH_0	0x25F5
 | |
| #define PCI_DEVICE_ID_I5000_BRANCH_1	0x25F6
 | |
| 
 | |
| #define AMB_PRESENT_0	0x64
 | |
| #define AMB_PRESENT_1	0x66
 | |
| #define MTR0		0x80
 | |
| #define MTR1		0x84
 | |
| #define MTR2		0x88
 | |
| #define MTR3		0x8C
 | |
| 
 | |
| #define NUM_MTRS		4
 | |
| #define CHANNELS_PER_BRANCH	2
 | |
| #define MAX_BRANCHES		2
 | |
| 
 | |
| /* Defines to extract the various fields from the
 | |
|  *	MTRx - Memory Technology Registers
 | |
|  */
 | |
| #define MTR_DIMMS_PRESENT(mtr)		((mtr) & (0x1 << 8))
 | |
| #define MTR_DRAM_WIDTH(mtr)		((((mtr) >> 6) & 0x1) ? 8 : 4)
 | |
| #define MTR_DRAM_BANKS(mtr)		((((mtr) >> 5) & 0x1) ? 8 : 4)
 | |
| #define MTR_DRAM_BANKS_ADDR_BITS(mtr)	((MTR_DRAM_BANKS(mtr) == 8) ? 3 : 2)
 | |
| #define MTR_DIMM_RANK(mtr)		(((mtr) >> 4) & 0x1)
 | |
| #define MTR_DIMM_RANK_ADDR_BITS(mtr)	(MTR_DIMM_RANK(mtr) ? 2 : 1)
 | |
| #define MTR_DIMM_ROWS(mtr)		(((mtr) >> 2) & 0x3)
 | |
| #define MTR_DIMM_ROWS_ADDR_BITS(mtr)	(MTR_DIMM_ROWS(mtr) + 13)
 | |
| #define MTR_DIMM_COLS(mtr)		((mtr) & 0x3)
 | |
| #define MTR_DIMM_COLS_ADDR_BITS(mtr)	(MTR_DIMM_COLS(mtr) + 10)
 | |
| 
 | |
| /* enables the report of miscellaneous messages as CE errors - default off */
 | |
| static int misc_messages;
 | |
| 
 | |
| /* Enumeration of supported devices */
 | |
| enum i5000_chips {
 | |
| 	I5000P = 0,
 | |
| 	I5000V = 1,		/* future */
 | |
| 	I5000X = 2		/* future */
 | |
| };
 | |
| 
 | |
| /* Device name and register DID (Device ID) */
 | |
| struct i5000_dev_info {
 | |
| 	const char *ctl_name;	/* name for this device */
 | |
| 	u16 fsb_mapping_errors;	/* DID for the branchmap,control */
 | |
| };
 | |
| 
 | |
| /* Table of devices attributes supported by this driver */
 | |
| static const struct i5000_dev_info i5000_devs[] = {
 | |
| 	[I5000P] = {
 | |
| 		.ctl_name = "I5000",
 | |
| 		.fsb_mapping_errors = PCI_DEVICE_ID_INTEL_I5000_DEV16,
 | |
| 	},
 | |
| };
 | |
| 
 | |
| struct i5000_dimm_info {
 | |
| 	int megabytes;		/* size, 0 means not present  */
 | |
| 	int dual_rank;
 | |
| };
 | |
| 
 | |
| #define	MAX_CHANNELS	6	/* max possible channels */
 | |
| #define MAX_CSROWS	(8*2)	/* max possible csrows per channel */
 | |
| 
 | |
| /* driver private data structure */
 | |
| struct i5000_pvt {
 | |
| 	struct pci_dev *system_address;	/* 16.0 */
 | |
| 	struct pci_dev *branchmap_werrors;	/* 16.1 */
 | |
| 	struct pci_dev *fsb_error_regs;	/* 16.2 */
 | |
| 	struct pci_dev *branch_0;	/* 21.0 */
 | |
| 	struct pci_dev *branch_1;	/* 22.0 */
 | |
| 
 | |
| 	u16 tolm;		/* top of low memory */
 | |
| 	union {
 | |
| 		u64 ambase;		/* AMB BAR */
 | |
| 		struct {
 | |
| 			u32 ambase_bottom;
 | |
| 			u32 ambase_top;
 | |
| 		} u __packed;
 | |
| 	};
 | |
| 
 | |
| 	u16 mir0, mir1, mir2;
 | |
| 
 | |
| 	u16 b0_mtr[NUM_MTRS];	/* Memory Technlogy Reg */
 | |
| 	u16 b0_ambpresent0;	/* Branch 0, Channel 0 */
 | |
| 	u16 b0_ambpresent1;	/* Brnach 0, Channel 1 */
 | |
| 
 | |
| 	u16 b1_mtr[NUM_MTRS];	/* Memory Technlogy Reg */
 | |
| 	u16 b1_ambpresent0;	/* Branch 1, Channel 8 */
 | |
| 	u16 b1_ambpresent1;	/* Branch 1, Channel 1 */
 | |
| 
 | |
| 	/* DIMM information matrix, allocating architecture maximums */
 | |
| 	struct i5000_dimm_info dimm_info[MAX_CSROWS][MAX_CHANNELS];
 | |
| 
 | |
| 	/* Actual values for this controller */
 | |
| 	int maxch;		/* Max channels */
 | |
| 	int maxdimmperch;	/* Max DIMMs per channel */
 | |
| };
 | |
| 
 | |
| /* I5000 MCH error information retrieved from Hardware */
 | |
| struct i5000_error_info {
 | |
| 
 | |
| 	/* These registers are always read from the MC */
 | |
| 	u32 ferr_fat_fbd;	/* First Errors Fatal */
 | |
| 	u32 nerr_fat_fbd;	/* Next Errors Fatal */
 | |
| 	u32 ferr_nf_fbd;	/* First Errors Non-Fatal */
 | |
| 	u32 nerr_nf_fbd;	/* Next Errors Non-Fatal */
 | |
| 
 | |
| 	/* These registers are input ONLY if there was a Recoverable  Error */
 | |
| 	u32 redmemb;		/* Recoverable Mem Data Error log B */
 | |
| 	u16 recmema;		/* Recoverable Mem Error log A */
 | |
| 	u32 recmemb;		/* Recoverable Mem Error log B */
 | |
| 
 | |
| 	/* These registers are input ONLY if there was a
 | |
| 	 * Non-Recoverable Error */
 | |
| 	u16 nrecmema;		/* Non-Recoverable Mem log A */
 | |
| 	u16 nrecmemb;		/* Non-Recoverable Mem log B */
 | |
| 
 | |
| };
 | |
| 
 | |
| static struct edac_pci_ctl_info *i5000_pci;
 | |
| 
 | |
| /*
 | |
|  *	i5000_get_error_info	Retrieve the hardware error information from
 | |
|  *				the hardware and cache it in the 'info'
 | |
|  *				structure
 | |
|  */
 | |
| static void i5000_get_error_info(struct mem_ctl_info *mci,
 | |
| 				 struct i5000_error_info *info)
 | |
| {
 | |
| 	struct i5000_pvt *pvt;
 | |
| 	u32 value;
 | |
| 
 | |
| 	pvt = mci->pvt_info;
 | |
| 
 | |
| 	/* read in the 1st FATAL error register */
 | |
| 	pci_read_config_dword(pvt->branchmap_werrors, FERR_FAT_FBD, &value);
 | |
| 
 | |
| 	/* Mask only the bits that the doc says are valid
 | |
| 	 */
 | |
| 	value &= (FERR_FAT_FBDCHAN | FERR_FAT_MASK);
 | |
| 
 | |
| 	/* If there is an error, then read in the */
 | |
| 	/* NEXT FATAL error register and the Memory Error Log Register A */
 | |
| 	if (value & FERR_FAT_MASK) {
 | |
| 		info->ferr_fat_fbd = value;
 | |
| 
 | |
| 		/* harvest the various error data we need */
 | |
| 		pci_read_config_dword(pvt->branchmap_werrors,
 | |
| 				NERR_FAT_FBD, &info->nerr_fat_fbd);
 | |
| 		pci_read_config_word(pvt->branchmap_werrors,
 | |
| 				NRECMEMA, &info->nrecmema);
 | |
| 		pci_read_config_word(pvt->branchmap_werrors,
 | |
| 				NRECMEMB, &info->nrecmemb);
 | |
| 
 | |
| 		/* Clear the error bits, by writing them back */
 | |
| 		pci_write_config_dword(pvt->branchmap_werrors,
 | |
| 				FERR_FAT_FBD, value);
 | |
| 	} else {
 | |
| 		info->ferr_fat_fbd = 0;
 | |
| 		info->nerr_fat_fbd = 0;
 | |
| 		info->nrecmema = 0;
 | |
| 		info->nrecmemb = 0;
 | |
| 	}
 | |
| 
 | |
| 	/* read in the 1st NON-FATAL error register */
 | |
| 	pci_read_config_dword(pvt->branchmap_werrors, FERR_NF_FBD, &value);
 | |
| 
 | |
| 	/* If there is an error, then read in the 1st NON-FATAL error
 | |
| 	 * register as well */
 | |
| 	if (value & FERR_NF_MASK) {
 | |
| 		info->ferr_nf_fbd = value;
 | |
| 
 | |
| 		/* harvest the various error data we need */
 | |
| 		pci_read_config_dword(pvt->branchmap_werrors,
 | |
| 				NERR_NF_FBD, &info->nerr_nf_fbd);
 | |
| 		pci_read_config_word(pvt->branchmap_werrors,
 | |
| 				RECMEMA, &info->recmema);
 | |
| 		pci_read_config_dword(pvt->branchmap_werrors,
 | |
| 				RECMEMB, &info->recmemb);
 | |
| 		pci_read_config_dword(pvt->branchmap_werrors,
 | |
| 				REDMEMB, &info->redmemb);
 | |
| 
 | |
| 		/* Clear the error bits, by writing them back */
 | |
| 		pci_write_config_dword(pvt->branchmap_werrors,
 | |
| 				FERR_NF_FBD, value);
 | |
| 	} else {
 | |
| 		info->ferr_nf_fbd = 0;
 | |
| 		info->nerr_nf_fbd = 0;
 | |
| 		info->recmema = 0;
 | |
| 		info->recmemb = 0;
 | |
| 		info->redmemb = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * i5000_process_fatal_error_info(struct mem_ctl_info *mci,
 | |
|  * 					struct i5000_error_info *info,
 | |
|  * 					int handle_errors);
 | |
|  *
 | |
|  *	handle the Intel FATAL errors, if any
 | |
|  */
 | |
| static void i5000_process_fatal_error_info(struct mem_ctl_info *mci,
 | |
| 					struct i5000_error_info *info,
 | |
| 					int handle_errors)
 | |
| {
 | |
| 	char msg[EDAC_MC_LABEL_LEN + 1 + 160];
 | |
| 	char *specific = NULL;
 | |
| 	u32 allErrors;
 | |
| 	int channel;
 | |
| 	int bank;
 | |
| 	int rank;
 | |
| 	int rdwr;
 | |
| 	int ras, cas;
 | |
| 
 | |
| 	/* mask off the Error bits that are possible */
 | |
| 	allErrors = (info->ferr_fat_fbd & FERR_FAT_MASK);
 | |
| 	if (!allErrors)
 | |
| 		return;		/* if no error, return now */
 | |
| 
 | |
| 	channel = EXTRACT_FBDCHAN_INDX(info->ferr_fat_fbd);
 | |
| 
 | |
| 	/* Use the NON-Recoverable macros to extract data */
 | |
| 	bank = NREC_BANK(info->nrecmema);
 | |
| 	rank = NREC_RANK(info->nrecmema);
 | |
| 	rdwr = NREC_RDWR(info->nrecmema);
 | |
| 	ras = NREC_RAS(info->nrecmemb);
 | |
| 	cas = NREC_CAS(info->nrecmemb);
 | |
| 
 | |
| 	edac_dbg(0, "\t\tCSROW= %d  Channel= %d (DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
 | |
| 		 rank, channel, bank,
 | |
| 		 rdwr ? "Write" : "Read", ras, cas);
 | |
| 
 | |
| 	/* Only 1 bit will be on */
 | |
| 	switch (allErrors) {
 | |
| 	case FERR_FAT_M1ERR:
 | |
| 		specific = "Alert on non-redundant retry or fast "
 | |
| 				"reset timeout";
 | |
| 		break;
 | |
| 	case FERR_FAT_M2ERR:
 | |
| 		specific = "Northbound CRC error on non-redundant "
 | |
| 				"retry";
 | |
| 		break;
 | |
| 	case FERR_FAT_M3ERR:
 | |
| 		{
 | |
| 		static int done;
 | |
| 
 | |
| 		/*
 | |
| 		 * This error is generated to inform that the intelligent
 | |
| 		 * throttling is disabled and the temperature passed the
 | |
| 		 * specified middle point. Since this is something the BIOS
 | |
| 		 * should take care of, we'll warn only once to avoid
 | |
| 		 * worthlessly flooding the log.
 | |
| 		 */
 | |
| 		if (done)
 | |
| 			return;
 | |
| 		done++;
 | |
| 
 | |
| 		specific = ">Tmid Thermal event with intelligent "
 | |
| 			   "throttling disabled";
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/* Form out message */
 | |
| 	snprintf(msg, sizeof(msg),
 | |
| 		 "Bank=%d RAS=%d CAS=%d FATAL Err=0x%x (%s)",
 | |
| 		 bank, ras, cas, allErrors, specific);
 | |
| 
 | |
| 	/* Call the helper to output message */
 | |
| 	edac_mc_handle_error(HW_EVENT_ERR_FATAL, mci, 1, 0, 0, 0,
 | |
| 			     channel >> 1, channel & 1, rank,
 | |
| 			     rdwr ? "Write error" : "Read error",
 | |
| 			     msg);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * i5000_process_fatal_error_info(struct mem_ctl_info *mci,
 | |
|  * 				struct i5000_error_info *info,
 | |
|  * 				int handle_errors);
 | |
|  *
 | |
|  *	handle the Intel NON-FATAL errors, if any
 | |
|  */
 | |
| static void i5000_process_nonfatal_error_info(struct mem_ctl_info *mci,
 | |
| 					struct i5000_error_info *info,
 | |
| 					int handle_errors)
 | |
| {
 | |
| 	char msg[EDAC_MC_LABEL_LEN + 1 + 170];
 | |
| 	char *specific = NULL;
 | |
| 	u32 allErrors;
 | |
| 	u32 ue_errors;
 | |
| 	u32 ce_errors;
 | |
| 	u32 misc_errors;
 | |
| 	int branch;
 | |
| 	int channel;
 | |
| 	int bank;
 | |
| 	int rank;
 | |
| 	int rdwr;
 | |
| 	int ras, cas;
 | |
| 
 | |
| 	/* mask off the Error bits that are possible */
 | |
| 	allErrors = (info->ferr_nf_fbd & FERR_NF_MASK);
 | |
| 	if (!allErrors)
 | |
| 		return;		/* if no error, return now */
 | |
| 
 | |
| 	/* ONLY ONE of the possible error bits will be set, as per the docs */
 | |
| 	ue_errors = allErrors & FERR_NF_UNCORRECTABLE;
 | |
| 	if (ue_errors) {
 | |
| 		edac_dbg(0, "\tUncorrected bits= 0x%x\n", ue_errors);
 | |
| 
 | |
| 		branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);
 | |
| 
 | |
| 		/*
 | |
| 		 * According with i5000 datasheet, bit 28 has no significance
 | |
| 		 * for errors M4Err-M12Err and M17Err-M21Err, on FERR_NF_FBD
 | |
| 		 */
 | |
| 		channel = branch & 2;
 | |
| 
 | |
| 		bank = NREC_BANK(info->nrecmema);
 | |
| 		rank = NREC_RANK(info->nrecmema);
 | |
| 		rdwr = NREC_RDWR(info->nrecmema);
 | |
| 		ras = NREC_RAS(info->nrecmemb);
 | |
| 		cas = NREC_CAS(info->nrecmemb);
 | |
| 
 | |
| 		edac_dbg(0, "\t\tCSROW= %d  Channels= %d,%d  (Branch= %d DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
 | |
| 			 rank, channel, channel + 1, branch >> 1, bank,
 | |
| 			 rdwr ? "Write" : "Read", ras, cas);
 | |
| 
 | |
| 		switch (ue_errors) {
 | |
| 		case FERR_NF_M12ERR:
 | |
| 			specific = "Non-Aliased Uncorrectable Patrol Data ECC";
 | |
| 			break;
 | |
| 		case FERR_NF_M11ERR:
 | |
| 			specific = "Non-Aliased Uncorrectable Spare-Copy "
 | |
| 					"Data ECC";
 | |
| 			break;
 | |
| 		case FERR_NF_M10ERR:
 | |
| 			specific = "Non-Aliased Uncorrectable Mirrored Demand "
 | |
| 					"Data ECC";
 | |
| 			break;
 | |
| 		case FERR_NF_M9ERR:
 | |
| 			specific = "Non-Aliased Uncorrectable Non-Mirrored "
 | |
| 					"Demand Data ECC";
 | |
| 			break;
 | |
| 		case FERR_NF_M8ERR:
 | |
| 			specific = "Aliased Uncorrectable Patrol Data ECC";
 | |
| 			break;
 | |
| 		case FERR_NF_M7ERR:
 | |
| 			specific = "Aliased Uncorrectable Spare-Copy Data ECC";
 | |
| 			break;
 | |
| 		case FERR_NF_M6ERR:
 | |
| 			specific = "Aliased Uncorrectable Mirrored Demand "
 | |
| 					"Data ECC";
 | |
| 			break;
 | |
| 		case FERR_NF_M5ERR:
 | |
| 			specific = "Aliased Uncorrectable Non-Mirrored Demand "
 | |
| 					"Data ECC";
 | |
| 			break;
 | |
| 		case FERR_NF_M4ERR:
 | |
| 			specific = "Uncorrectable Data ECC on Replay";
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/* Form out message */
 | |
| 		snprintf(msg, sizeof(msg),
 | |
| 			 "Rank=%d Bank=%d RAS=%d CAS=%d, UE Err=0x%x (%s)",
 | |
| 			 rank, bank, ras, cas, ue_errors, specific);
 | |
| 
 | |
| 		/* Call the helper to output message */
 | |
| 		edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1, 0, 0, 0,
 | |
| 				channel >> 1, -1, rank,
 | |
| 				rdwr ? "Write error" : "Read error",
 | |
| 				msg);
 | |
| 	}
 | |
| 
 | |
| 	/* Check correctable errors */
 | |
| 	ce_errors = allErrors & FERR_NF_CORRECTABLE;
 | |
| 	if (ce_errors) {
 | |
| 		edac_dbg(0, "\tCorrected bits= 0x%x\n", ce_errors);
 | |
| 
 | |
| 		branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);
 | |
| 
 | |
| 		channel = 0;
 | |
| 		if (REC_ECC_LOCATOR_ODD(info->redmemb))
 | |
| 			channel = 1;
 | |
| 
 | |
| 		/* Convert channel to be based from zero, instead of
 | |
| 		 * from branch base of 0 */
 | |
| 		channel += branch;
 | |
| 
 | |
| 		bank = REC_BANK(info->recmema);
 | |
| 		rank = REC_RANK(info->recmema);
 | |
| 		rdwr = REC_RDWR(info->recmema);
 | |
| 		ras = REC_RAS(info->recmemb);
 | |
| 		cas = REC_CAS(info->recmemb);
 | |
| 
 | |
| 		edac_dbg(0, "\t\tCSROW= %d Channel= %d  (Branch %d DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
 | |
| 			 rank, channel, branch >> 1, bank,
 | |
| 			 rdwr ? "Write" : "Read", ras, cas);
 | |
| 
 | |
| 		switch (ce_errors) {
 | |
| 		case FERR_NF_M17ERR:
 | |
| 			specific = "Correctable Non-Mirrored Demand Data ECC";
 | |
| 			break;
 | |
| 		case FERR_NF_M18ERR:
 | |
| 			specific = "Correctable Mirrored Demand Data ECC";
 | |
| 			break;
 | |
| 		case FERR_NF_M19ERR:
 | |
| 			specific = "Correctable Spare-Copy Data ECC";
 | |
| 			break;
 | |
| 		case FERR_NF_M20ERR:
 | |
| 			specific = "Correctable Patrol Data ECC";
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/* Form out message */
 | |
| 		snprintf(msg, sizeof(msg),
 | |
| 			 "Rank=%d Bank=%d RDWR=%s RAS=%d "
 | |
| 			 "CAS=%d, CE Err=0x%x (%s))", branch >> 1, bank,
 | |
| 			 rdwr ? "Write" : "Read", ras, cas, ce_errors,
 | |
| 			 specific);
 | |
| 
 | |
| 		/* Call the helper to output message */
 | |
| 		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, 0, 0, 0,
 | |
| 				channel >> 1, channel % 2, rank,
 | |
| 				rdwr ? "Write error" : "Read error",
 | |
| 				msg);
 | |
| 	}
 | |
| 
 | |
| 	if (!misc_messages)
 | |
| 		return;
 | |
| 
 | |
| 	misc_errors = allErrors & (FERR_NF_NON_RETRY | FERR_NF_NORTH_CRC |
 | |
| 				   FERR_NF_SPD_PROTOCOL | FERR_NF_DIMM_SPARE);
 | |
| 	if (misc_errors) {
 | |
| 		switch (misc_errors) {
 | |
| 		case FERR_NF_M13ERR:
 | |
| 			specific = "Non-Retry or Redundant Retry FBD Memory "
 | |
| 					"Alert or Redundant Fast Reset Timeout";
 | |
| 			break;
 | |
| 		case FERR_NF_M14ERR:
 | |
| 			specific = "Non-Retry or Redundant Retry FBD "
 | |
| 					"Configuration Alert";
 | |
| 			break;
 | |
| 		case FERR_NF_M15ERR:
 | |
| 			specific = "Non-Retry or Redundant Retry FBD "
 | |
| 					"Northbound CRC error on read data";
 | |
| 			break;
 | |
| 		case FERR_NF_M21ERR:
 | |
| 			specific = "FBD Northbound CRC error on "
 | |
| 					"FBD Sync Status";
 | |
| 			break;
 | |
| 		case FERR_NF_M22ERR:
 | |
| 			specific = "SPD protocol error";
 | |
| 			break;
 | |
| 		case FERR_NF_M27ERR:
 | |
| 			specific = "DIMM-spare copy started";
 | |
| 			break;
 | |
| 		case FERR_NF_M28ERR:
 | |
| 			specific = "DIMM-spare copy completed";
 | |
| 			break;
 | |
| 		}
 | |
| 		branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);
 | |
| 
 | |
| 		/* Form out message */
 | |
| 		snprintf(msg, sizeof(msg),
 | |
| 			 "Err=%#x (%s)", misc_errors, specific);
 | |
| 
 | |
| 		/* Call the helper to output message */
 | |
| 		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, 0, 0, 0,
 | |
| 				branch >> 1, -1, -1,
 | |
| 				"Misc error", msg);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	i5000_process_error_info	Process the error info that is
 | |
|  *	in the 'info' structure, previously retrieved from hardware
 | |
|  */
 | |
| static void i5000_process_error_info(struct mem_ctl_info *mci,
 | |
| 				struct i5000_error_info *info,
 | |
| 				int handle_errors)
 | |
| {
 | |
| 	/* First handle any fatal errors that occurred */
 | |
| 	i5000_process_fatal_error_info(mci, info, handle_errors);
 | |
| 
 | |
| 	/* now handle any non-fatal errors that occurred */
 | |
| 	i5000_process_nonfatal_error_info(mci, info, handle_errors);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	i5000_clear_error	Retrieve any error from the hardware
 | |
|  *				but do NOT process that error.
 | |
|  *				Used for 'clearing' out of previous errors
 | |
|  *				Called by the Core module.
 | |
|  */
 | |
| static void i5000_clear_error(struct mem_ctl_info *mci)
 | |
| {
 | |
| 	struct i5000_error_info info;
 | |
| 
 | |
| 	i5000_get_error_info(mci, &info);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	i5000_check_error	Retrieve and process errors reported by the
 | |
|  *				hardware. Called by the Core module.
 | |
|  */
 | |
| static void i5000_check_error(struct mem_ctl_info *mci)
 | |
| {
 | |
| 	struct i5000_error_info info;
 | |
| 	edac_dbg(4, "MC%d\n", mci->mc_idx);
 | |
| 	i5000_get_error_info(mci, &info);
 | |
| 	i5000_process_error_info(mci, &info, 1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	i5000_get_devices	Find and perform 'get' operation on the MCH's
 | |
|  *			device/functions we want to reference for this driver
 | |
|  *
 | |
|  *			Need to 'get' device 16 func 1 and func 2
 | |
|  */
 | |
| static int i5000_get_devices(struct mem_ctl_info *mci, int dev_idx)
 | |
| {
 | |
| 	//const struct i5000_dev_info *i5000_dev = &i5000_devs[dev_idx];
 | |
| 	struct i5000_pvt *pvt;
 | |
| 	struct pci_dev *pdev;
 | |
| 
 | |
| 	pvt = mci->pvt_info;
 | |
| 
 | |
| 	/* Attempt to 'get' the MCH register we want */
 | |
| 	pdev = NULL;
 | |
| 	while (1) {
 | |
| 		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
 | |
| 				PCI_DEVICE_ID_INTEL_I5000_DEV16, pdev);
 | |
| 
 | |
| 		/* End of list, leave */
 | |
| 		if (pdev == NULL) {
 | |
| 			i5000_printk(KERN_ERR,
 | |
| 				"'system address,Process Bus' "
 | |
| 				"device not found:"
 | |
| 				"vendor 0x%x device 0x%x FUNC 1 "
 | |
| 				"(broken BIOS?)\n",
 | |
| 				PCI_VENDOR_ID_INTEL,
 | |
| 				PCI_DEVICE_ID_INTEL_I5000_DEV16);
 | |
| 
 | |
| 			return 1;
 | |
| 		}
 | |
| 
 | |
| 		/* Scan for device 16 func 1 */
 | |
| 		if (PCI_FUNC(pdev->devfn) == 1)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	pvt->branchmap_werrors = pdev;
 | |
| 
 | |
| 	/* Attempt to 'get' the MCH register we want */
 | |
| 	pdev = NULL;
 | |
| 	while (1) {
 | |
| 		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
 | |
| 				PCI_DEVICE_ID_INTEL_I5000_DEV16, pdev);
 | |
| 
 | |
| 		if (pdev == NULL) {
 | |
| 			i5000_printk(KERN_ERR,
 | |
| 				"MC: 'branchmap,control,errors' "
 | |
| 				"device not found:"
 | |
| 				"vendor 0x%x device 0x%x Func 2 "
 | |
| 				"(broken BIOS?)\n",
 | |
| 				PCI_VENDOR_ID_INTEL,
 | |
| 				PCI_DEVICE_ID_INTEL_I5000_DEV16);
 | |
| 
 | |
| 			pci_dev_put(pvt->branchmap_werrors);
 | |
| 			return 1;
 | |
| 		}
 | |
| 
 | |
| 		/* Scan for device 16 func 1 */
 | |
| 		if (PCI_FUNC(pdev->devfn) == 2)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	pvt->fsb_error_regs = pdev;
 | |
| 
 | |
| 	edac_dbg(1, "System Address, processor bus- PCI Bus ID: %s  %x:%x\n",
 | |
| 		 pci_name(pvt->system_address),
 | |
| 		 pvt->system_address->vendor, pvt->system_address->device);
 | |
| 	edac_dbg(1, "Branchmap, control and errors - PCI Bus ID: %s  %x:%x\n",
 | |
| 		 pci_name(pvt->branchmap_werrors),
 | |
| 		 pvt->branchmap_werrors->vendor,
 | |
| 		 pvt->branchmap_werrors->device);
 | |
| 	edac_dbg(1, "FSB Error Regs - PCI Bus ID: %s  %x:%x\n",
 | |
| 		 pci_name(pvt->fsb_error_regs),
 | |
| 		 pvt->fsb_error_regs->vendor, pvt->fsb_error_regs->device);
 | |
| 
 | |
| 	pdev = NULL;
 | |
| 	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
 | |
| 			PCI_DEVICE_ID_I5000_BRANCH_0, pdev);
 | |
| 
 | |
| 	if (pdev == NULL) {
 | |
| 		i5000_printk(KERN_ERR,
 | |
| 			"MC: 'BRANCH 0' device not found:"
 | |
| 			"vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n",
 | |
| 			PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_I5000_BRANCH_0);
 | |
| 
 | |
| 		pci_dev_put(pvt->branchmap_werrors);
 | |
| 		pci_dev_put(pvt->fsb_error_regs);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	pvt->branch_0 = pdev;
 | |
| 
 | |
| 	/* If this device claims to have more than 2 channels then
 | |
| 	 * fetch Branch 1's information
 | |
| 	 */
 | |
| 	if (pvt->maxch >= CHANNELS_PER_BRANCH) {
 | |
| 		pdev = NULL;
 | |
| 		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
 | |
| 				PCI_DEVICE_ID_I5000_BRANCH_1, pdev);
 | |
| 
 | |
| 		if (pdev == NULL) {
 | |
| 			i5000_printk(KERN_ERR,
 | |
| 				"MC: 'BRANCH 1' device not found:"
 | |
| 				"vendor 0x%x device 0x%x Func 0 "
 | |
| 				"(broken BIOS?)\n",
 | |
| 				PCI_VENDOR_ID_INTEL,
 | |
| 				PCI_DEVICE_ID_I5000_BRANCH_1);
 | |
| 
 | |
| 			pci_dev_put(pvt->branchmap_werrors);
 | |
| 			pci_dev_put(pvt->fsb_error_regs);
 | |
| 			pci_dev_put(pvt->branch_0);
 | |
| 			return 1;
 | |
| 		}
 | |
| 
 | |
| 		pvt->branch_1 = pdev;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	i5000_put_devices	'put' all the devices that we have
 | |
|  *				reserved via 'get'
 | |
|  */
 | |
| static void i5000_put_devices(struct mem_ctl_info *mci)
 | |
| {
 | |
| 	struct i5000_pvt *pvt;
 | |
| 
 | |
| 	pvt = mci->pvt_info;
 | |
| 
 | |
| 	pci_dev_put(pvt->branchmap_werrors);	/* FUNC 1 */
 | |
| 	pci_dev_put(pvt->fsb_error_regs);	/* FUNC 2 */
 | |
| 	pci_dev_put(pvt->branch_0);	/* DEV 21 */
 | |
| 
 | |
| 	/* Only if more than 2 channels do we release the second branch */
 | |
| 	if (pvt->maxch >= CHANNELS_PER_BRANCH)
 | |
| 		pci_dev_put(pvt->branch_1);	/* DEV 22 */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	determine_amb_resent
 | |
|  *
 | |
|  *		the information is contained in NUM_MTRS different registers
 | |
|  *		determineing which of the NUM_MTRS requires knowing
 | |
|  *		which channel is in question
 | |
|  *
 | |
|  *	2 branches, each with 2 channels
 | |
|  *		b0_ambpresent0 for channel '0'
 | |
|  *		b0_ambpresent1 for channel '1'
 | |
|  *		b1_ambpresent0 for channel '2'
 | |
|  *		b1_ambpresent1 for channel '3'
 | |
|  */
 | |
| static int determine_amb_present_reg(struct i5000_pvt *pvt, int channel)
 | |
| {
 | |
| 	int amb_present;
 | |
| 
 | |
| 	if (channel < CHANNELS_PER_BRANCH) {
 | |
| 		if (channel & 0x1)
 | |
| 			amb_present = pvt->b0_ambpresent1;
 | |
| 		else
 | |
| 			amb_present = pvt->b0_ambpresent0;
 | |
| 	} else {
 | |
| 		if (channel & 0x1)
 | |
| 			amb_present = pvt->b1_ambpresent1;
 | |
| 		else
 | |
| 			amb_present = pvt->b1_ambpresent0;
 | |
| 	}
 | |
| 
 | |
| 	return amb_present;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * determine_mtr(pvt, csrow, channel)
 | |
|  *
 | |
|  *	return the proper MTR register as determine by the csrow and channel desired
 | |
|  */
 | |
| static int determine_mtr(struct i5000_pvt *pvt, int slot, int channel)
 | |
| {
 | |
| 	int mtr;
 | |
| 
 | |
| 	if (channel < CHANNELS_PER_BRANCH)
 | |
| 		mtr = pvt->b0_mtr[slot];
 | |
| 	else
 | |
| 		mtr = pvt->b1_mtr[slot];
 | |
| 
 | |
| 	return mtr;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  */
 | |
| static void decode_mtr(int slot_row, u16 mtr)
 | |
| {
 | |
| 	int ans;
 | |
| 
 | |
| 	ans = MTR_DIMMS_PRESENT(mtr);
 | |
| 
 | |
| 	edac_dbg(2, "\tMTR%d=0x%x:  DIMMs are %sPresent\n",
 | |
| 		 slot_row, mtr, ans ? "" : "NOT ");
 | |
| 	if (!ans)
 | |
| 		return;
 | |
| 
 | |
| 	edac_dbg(2, "\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr));
 | |
| 	edac_dbg(2, "\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr));
 | |
| 	edac_dbg(2, "\t\tNUMRANK: %s\n",
 | |
| 		 MTR_DIMM_RANK(mtr) ? "double" : "single");
 | |
| 	edac_dbg(2, "\t\tNUMROW: %s\n",
 | |
| 		 MTR_DIMM_ROWS(mtr) == 0 ? "8,192 - 13 rows" :
 | |
| 		 MTR_DIMM_ROWS(mtr) == 1 ? "16,384 - 14 rows" :
 | |
| 		 MTR_DIMM_ROWS(mtr) == 2 ? "32,768 - 15 rows" :
 | |
| 		 "reserved");
 | |
| 	edac_dbg(2, "\t\tNUMCOL: %s\n",
 | |
| 		 MTR_DIMM_COLS(mtr) == 0 ? "1,024 - 10 columns" :
 | |
| 		 MTR_DIMM_COLS(mtr) == 1 ? "2,048 - 11 columns" :
 | |
| 		 MTR_DIMM_COLS(mtr) == 2 ? "4,096 - 12 columns" :
 | |
| 		 "reserved");
 | |
| }
 | |
| 
 | |
| static void handle_channel(struct i5000_pvt *pvt, int slot, int channel,
 | |
| 			struct i5000_dimm_info *dinfo)
 | |
| {
 | |
| 	int mtr;
 | |
| 	int amb_present_reg;
 | |
| 	int addrBits;
 | |
| 
 | |
| 	mtr = determine_mtr(pvt, slot, channel);
 | |
| 	if (MTR_DIMMS_PRESENT(mtr)) {
 | |
| 		amb_present_reg = determine_amb_present_reg(pvt, channel);
 | |
| 
 | |
| 		/* Determine if there is a DIMM present in this DIMM slot */
 | |
| 		if (amb_present_reg) {
 | |
| 			dinfo->dual_rank = MTR_DIMM_RANK(mtr);
 | |
| 
 | |
| 			/* Start with the number of bits for a Bank
 | |
| 				* on the DRAM */
 | |
| 			addrBits = MTR_DRAM_BANKS_ADDR_BITS(mtr);
 | |
| 			/* Add the number of ROW bits */
 | |
| 			addrBits += MTR_DIMM_ROWS_ADDR_BITS(mtr);
 | |
| 			/* add the number of COLUMN bits */
 | |
| 			addrBits += MTR_DIMM_COLS_ADDR_BITS(mtr);
 | |
| 
 | |
| 			/* Dual-rank memories have twice the size */
 | |
| 			if (dinfo->dual_rank)
 | |
| 				addrBits++;
 | |
| 
 | |
| 			addrBits += 6;	/* add 64 bits per DIMM */
 | |
| 			addrBits -= 20;	/* divide by 2^^20 */
 | |
| 			addrBits -= 3;	/* 8 bits per bytes */
 | |
| 
 | |
| 			dinfo->megabytes = 1 << addrBits;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	calculate_dimm_size
 | |
|  *
 | |
|  *	also will output a DIMM matrix map, if debug is enabled, for viewing
 | |
|  *	how the DIMMs are populated
 | |
|  */
 | |
| static void calculate_dimm_size(struct i5000_pvt *pvt)
 | |
| {
 | |
| 	struct i5000_dimm_info *dinfo;
 | |
| 	int slot, channel, branch;
 | |
| 	char *p, *mem_buffer;
 | |
| 	int space, n;
 | |
| 
 | |
| 	/* ================= Generate some debug output ================= */
 | |
| 	space = PAGE_SIZE;
 | |
| 	mem_buffer = p = kmalloc(space, GFP_KERNEL);
 | |
| 	if (p == NULL) {
 | |
| 		i5000_printk(KERN_ERR, "MC: %s:%s() kmalloc() failed\n",
 | |
| 			__FILE__, __func__);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Scan all the actual slots
 | |
| 	 * and calculate the information for each DIMM
 | |
| 	 * Start with the highest slot first, to display it first
 | |
| 	 * and work toward the 0th slot
 | |
| 	 */
 | |
| 	for (slot = pvt->maxdimmperch - 1; slot >= 0; slot--) {
 | |
| 
 | |
| 		/* on an odd slot, first output a 'boundary' marker,
 | |
| 		 * then reset the message buffer  */
 | |
| 		if (slot & 0x1) {
 | |
| 			n = snprintf(p, space, "--------------------------"
 | |
| 				"--------------------------------");
 | |
| 			p += n;
 | |
| 			space -= n;
 | |
| 			edac_dbg(2, "%s\n", mem_buffer);
 | |
| 			p = mem_buffer;
 | |
| 			space = PAGE_SIZE;
 | |
| 		}
 | |
| 		n = snprintf(p, space, "slot %2d    ", slot);
 | |
| 		p += n;
 | |
| 		space -= n;
 | |
| 
 | |
| 		for (channel = 0; channel < pvt->maxch; channel++) {
 | |
| 			dinfo = &pvt->dimm_info[slot][channel];
 | |
| 			handle_channel(pvt, slot, channel, dinfo);
 | |
| 			if (dinfo->megabytes)
 | |
| 				n = snprintf(p, space, "%4d MB %dR| ",
 | |
| 					     dinfo->megabytes, dinfo->dual_rank + 1);
 | |
| 			else
 | |
| 				n = snprintf(p, space, "%4d MB   | ", 0);
 | |
| 			p += n;
 | |
| 			space -= n;
 | |
| 		}
 | |
| 		p += n;
 | |
| 		space -= n;
 | |
| 		edac_dbg(2, "%s\n", mem_buffer);
 | |
| 		p = mem_buffer;
 | |
| 		space = PAGE_SIZE;
 | |
| 	}
 | |
| 
 | |
| 	/* Output the last bottom 'boundary' marker */
 | |
| 	n = snprintf(p, space, "--------------------------"
 | |
| 		"--------------------------------");
 | |
| 	p += n;
 | |
| 	space -= n;
 | |
| 	edac_dbg(2, "%s\n", mem_buffer);
 | |
| 	p = mem_buffer;
 | |
| 	space = PAGE_SIZE;
 | |
| 
 | |
| 	/* now output the 'channel' labels */
 | |
| 	n = snprintf(p, space, "           ");
 | |
| 	p += n;
 | |
| 	space -= n;
 | |
| 	for (channel = 0; channel < pvt->maxch; channel++) {
 | |
| 		n = snprintf(p, space, "channel %d | ", channel);
 | |
| 		p += n;
 | |
| 		space -= n;
 | |
| 	}
 | |
| 	edac_dbg(2, "%s\n", mem_buffer);
 | |
| 	p = mem_buffer;
 | |
| 	space = PAGE_SIZE;
 | |
| 
 | |
| 	n = snprintf(p, space, "           ");
 | |
| 	p += n;
 | |
| 	for (branch = 0; branch < MAX_BRANCHES; branch++) {
 | |
| 		n = snprintf(p, space, "       branch %d       | ", branch);
 | |
| 		p += n;
 | |
| 		space -= n;
 | |
| 	}
 | |
| 
 | |
| 	/* output the last message and free buffer */
 | |
| 	edac_dbg(2, "%s\n", mem_buffer);
 | |
| 	kfree(mem_buffer);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	i5000_get_mc_regs	read in the necessary registers and
 | |
|  *				cache locally
 | |
|  *
 | |
|  *			Fills in the private data members
 | |
|  */
 | |
| static void i5000_get_mc_regs(struct mem_ctl_info *mci)
 | |
| {
 | |
| 	struct i5000_pvt *pvt;
 | |
| 	u32 actual_tolm;
 | |
| 	u16 limit;
 | |
| 	int slot_row;
 | |
| 	int maxch;
 | |
| 	int maxdimmperch;
 | |
| 	int way0, way1;
 | |
| 
 | |
| 	pvt = mci->pvt_info;
 | |
| 
 | |
| 	pci_read_config_dword(pvt->system_address, AMBASE,
 | |
| 			&pvt->u.ambase_bottom);
 | |
| 	pci_read_config_dword(pvt->system_address, AMBASE + sizeof(u32),
 | |
| 			&pvt->u.ambase_top);
 | |
| 
 | |
| 	maxdimmperch = pvt->maxdimmperch;
 | |
| 	maxch = pvt->maxch;
 | |
| 
 | |
| 	edac_dbg(2, "AMBASE= 0x%lx  MAXCH= %d  MAX-DIMM-Per-CH= %d\n",
 | |
| 		 (long unsigned int)pvt->ambase, pvt->maxch, pvt->maxdimmperch);
 | |
| 
 | |
| 	/* Get the Branch Map regs */
 | |
| 	pci_read_config_word(pvt->branchmap_werrors, TOLM, &pvt->tolm);
 | |
| 	pvt->tolm >>= 12;
 | |
| 	edac_dbg(2, "TOLM (number of 256M regions) =%u (0x%x)\n",
 | |
| 		 pvt->tolm, pvt->tolm);
 | |
| 
 | |
| 	actual_tolm = pvt->tolm << 28;
 | |
| 	edac_dbg(2, "Actual TOLM byte addr=%u (0x%x)\n",
 | |
| 		 actual_tolm, actual_tolm);
 | |
| 
 | |
| 	pci_read_config_word(pvt->branchmap_werrors, MIR0, &pvt->mir0);
 | |
| 	pci_read_config_word(pvt->branchmap_werrors, MIR1, &pvt->mir1);
 | |
| 	pci_read_config_word(pvt->branchmap_werrors, MIR2, &pvt->mir2);
 | |
| 
 | |
| 	/* Get the MIR[0-2] regs */
 | |
| 	limit = (pvt->mir0 >> 4) & 0x0FFF;
 | |
| 	way0 = pvt->mir0 & 0x1;
 | |
| 	way1 = pvt->mir0 & 0x2;
 | |
| 	edac_dbg(2, "MIR0: limit= 0x%x  WAY1= %u  WAY0= %x\n",
 | |
| 		 limit, way1, way0);
 | |
| 	limit = (pvt->mir1 >> 4) & 0x0FFF;
 | |
| 	way0 = pvt->mir1 & 0x1;
 | |
| 	way1 = pvt->mir1 & 0x2;
 | |
| 	edac_dbg(2, "MIR1: limit= 0x%x  WAY1= %u  WAY0= %x\n",
 | |
| 		 limit, way1, way0);
 | |
| 	limit = (pvt->mir2 >> 4) & 0x0FFF;
 | |
| 	way0 = pvt->mir2 & 0x1;
 | |
| 	way1 = pvt->mir2 & 0x2;
 | |
| 	edac_dbg(2, "MIR2: limit= 0x%x  WAY1= %u  WAY0= %x\n",
 | |
| 		 limit, way1, way0);
 | |
| 
 | |
| 	/* Get the MTR[0-3] regs */
 | |
| 	for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
 | |
| 		int where = MTR0 + (slot_row * sizeof(u32));
 | |
| 
 | |
| 		pci_read_config_word(pvt->branch_0, where,
 | |
| 				&pvt->b0_mtr[slot_row]);
 | |
| 
 | |
| 		edac_dbg(2, "MTR%d where=0x%x B0 value=0x%x\n",
 | |
| 			 slot_row, where, pvt->b0_mtr[slot_row]);
 | |
| 
 | |
| 		if (pvt->maxch >= CHANNELS_PER_BRANCH) {
 | |
| 			pci_read_config_word(pvt->branch_1, where,
 | |
| 					&pvt->b1_mtr[slot_row]);
 | |
| 			edac_dbg(2, "MTR%d where=0x%x B1 value=0x%x\n",
 | |
| 				 slot_row, where, pvt->b1_mtr[slot_row]);
 | |
| 		} else {
 | |
| 			pvt->b1_mtr[slot_row] = 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Read and dump branch 0's MTRs */
 | |
| 	edac_dbg(2, "Memory Technology Registers:\n");
 | |
| 	edac_dbg(2, "   Branch 0:\n");
 | |
| 	for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
 | |
| 		decode_mtr(slot_row, pvt->b0_mtr[slot_row]);
 | |
| 	}
 | |
| 	pci_read_config_word(pvt->branch_0, AMB_PRESENT_0,
 | |
| 			&pvt->b0_ambpresent0);
 | |
| 	edac_dbg(2, "\t\tAMB-Branch 0-present0 0x%x:\n", pvt->b0_ambpresent0);
 | |
| 	pci_read_config_word(pvt->branch_0, AMB_PRESENT_1,
 | |
| 			&pvt->b0_ambpresent1);
 | |
| 	edac_dbg(2, "\t\tAMB-Branch 0-present1 0x%x:\n", pvt->b0_ambpresent1);
 | |
| 
 | |
| 	/* Only if we have 2 branchs (4 channels) */
 | |
| 	if (pvt->maxch < CHANNELS_PER_BRANCH) {
 | |
| 		pvt->b1_ambpresent0 = 0;
 | |
| 		pvt->b1_ambpresent1 = 0;
 | |
| 	} else {
 | |
| 		/* Read and dump  branch 1's MTRs */
 | |
| 		edac_dbg(2, "   Branch 1:\n");
 | |
| 		for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
 | |
| 			decode_mtr(slot_row, pvt->b1_mtr[slot_row]);
 | |
| 		}
 | |
| 		pci_read_config_word(pvt->branch_1, AMB_PRESENT_0,
 | |
| 				&pvt->b1_ambpresent0);
 | |
| 		edac_dbg(2, "\t\tAMB-Branch 1-present0 0x%x:\n",
 | |
| 			 pvt->b1_ambpresent0);
 | |
| 		pci_read_config_word(pvt->branch_1, AMB_PRESENT_1,
 | |
| 				&pvt->b1_ambpresent1);
 | |
| 		edac_dbg(2, "\t\tAMB-Branch 1-present1 0x%x:\n",
 | |
| 			 pvt->b1_ambpresent1);
 | |
| 	}
 | |
| 
 | |
| 	/* Go and determine the size of each DIMM and place in an
 | |
| 	 * orderly matrix */
 | |
| 	calculate_dimm_size(pvt);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	i5000_init_csrows	Initialize the 'csrows' table within
 | |
|  *				the mci control	structure with the
 | |
|  *				addressing of memory.
 | |
|  *
 | |
|  *	return:
 | |
|  *		0	success
 | |
|  *		1	no actual memory found on this MC
 | |
|  */
 | |
| static int i5000_init_csrows(struct mem_ctl_info *mci)
 | |
| {
 | |
| 	struct i5000_pvt *pvt;
 | |
| 	struct dimm_info *dimm;
 | |
| 	int empty, channel_count;
 | |
| 	int max_csrows;
 | |
| 	int mtr;
 | |
| 	int csrow_megs;
 | |
| 	int channel;
 | |
| 	int slot;
 | |
| 
 | |
| 	pvt = mci->pvt_info;
 | |
| 
 | |
| 	channel_count = pvt->maxch;
 | |
| 	max_csrows = pvt->maxdimmperch * 2;
 | |
| 
 | |
| 	empty = 1;		/* Assume NO memory */
 | |
| 
 | |
| 	/*
 | |
| 	 * FIXME: The memory layout used to map slot/channel into the
 | |
| 	 * real memory architecture is weird: branch+slot are "csrows"
 | |
| 	 * and channel is channel. That required an extra array (dimm_info)
 | |
| 	 * to map the dimms. A good cleanup would be to remove this array,
 | |
| 	 * and do a loop here with branch, channel, slot
 | |
| 	 */
 | |
| 	for (slot = 0; slot < max_csrows; slot++) {
 | |
| 		for (channel = 0; channel < pvt->maxch; channel++) {
 | |
| 
 | |
| 			mtr = determine_mtr(pvt, slot, channel);
 | |
| 
 | |
| 			if (!MTR_DIMMS_PRESENT(mtr))
 | |
| 				continue;
 | |
| 
 | |
| 			dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
 | |
| 				       channel / MAX_BRANCHES,
 | |
| 				       channel % MAX_BRANCHES, slot);
 | |
| 
 | |
| 			csrow_megs = pvt->dimm_info[slot][channel].megabytes;
 | |
| 			dimm->grain = 8;
 | |
| 
 | |
| 			/* Assume DDR2 for now */
 | |
| 			dimm->mtype = MEM_FB_DDR2;
 | |
| 
 | |
| 			/* ask what device type on this row */
 | |
| 			if (MTR_DRAM_WIDTH(mtr))
 | |
| 				dimm->dtype = DEV_X8;
 | |
| 			else
 | |
| 				dimm->dtype = DEV_X4;
 | |
| 
 | |
| 			dimm->edac_mode = EDAC_S8ECD8ED;
 | |
| 			dimm->nr_pages = csrow_megs << 8;
 | |
| 		}
 | |
| 
 | |
| 		empty = 0;
 | |
| 	}
 | |
| 
 | |
| 	return empty;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	i5000_enable_error_reporting
 | |
|  *			Turn on the memory reporting features of the hardware
 | |
|  */
 | |
| static void i5000_enable_error_reporting(struct mem_ctl_info *mci)
 | |
| {
 | |
| 	struct i5000_pvt *pvt;
 | |
| 	u32 fbd_error_mask;
 | |
| 
 | |
| 	pvt = mci->pvt_info;
 | |
| 
 | |
| 	/* Read the FBD Error Mask Register */
 | |
| 	pci_read_config_dword(pvt->branchmap_werrors, EMASK_FBD,
 | |
| 			&fbd_error_mask);
 | |
| 
 | |
| 	/* Enable with a '0' */
 | |
| 	fbd_error_mask &= ~(ENABLE_EMASK_ALL);
 | |
| 
 | |
| 	pci_write_config_dword(pvt->branchmap_werrors, EMASK_FBD,
 | |
| 			fbd_error_mask);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * i5000_get_dimm_and_channel_counts(pdev, &nr_csrows, &num_channels)
 | |
|  *
 | |
|  *	ask the device how many channels are present and how many CSROWS
 | |
|  *	 as well
 | |
|  */
 | |
| static void i5000_get_dimm_and_channel_counts(struct pci_dev *pdev,
 | |
| 					int *num_dimms_per_channel,
 | |
| 					int *num_channels)
 | |
| {
 | |
| 	u8 value;
 | |
| 
 | |
| 	/* Need to retrieve just how many channels and dimms per channel are
 | |
| 	 * supported on this memory controller
 | |
| 	 */
 | |
| 	pci_read_config_byte(pdev, MAXDIMMPERCH, &value);
 | |
| 	*num_dimms_per_channel = (int)value;
 | |
| 
 | |
| 	pci_read_config_byte(pdev, MAXCH, &value);
 | |
| 	*num_channels = (int)value;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	i5000_probe1	Probe for ONE instance of device to see if it is
 | |
|  *			present.
 | |
|  *	return:
 | |
|  *		0 for FOUND a device
 | |
|  *		< 0 for error code
 | |
|  */
 | |
| static int i5000_probe1(struct pci_dev *pdev, int dev_idx)
 | |
| {
 | |
| 	struct mem_ctl_info *mci;
 | |
| 	struct edac_mc_layer layers[3];
 | |
| 	struct i5000_pvt *pvt;
 | |
| 	int num_channels;
 | |
| 	int num_dimms_per_channel;
 | |
| 
 | |
| 	edac_dbg(0, "MC: pdev bus %u dev=0x%x fn=0x%x\n",
 | |
| 		 pdev->bus->number,
 | |
| 		 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
 | |
| 
 | |
| 	/* We only are looking for func 0 of the set */
 | |
| 	if (PCI_FUNC(pdev->devfn) != 0)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	/* Ask the devices for the number of CSROWS and CHANNELS so
 | |
| 	 * that we can calculate the memory resources, etc
 | |
| 	 *
 | |
| 	 * The Chipset will report what it can handle which will be greater
 | |
| 	 * or equal to what the motherboard manufacturer will implement.
 | |
| 	 *
 | |
| 	 * As we don't have a motherboard identification routine to determine
 | |
| 	 * actual number of slots/dimms per channel, we thus utilize the
 | |
| 	 * resource as specified by the chipset. Thus, we might have
 | |
| 	 * have more DIMMs per channel than actually on the mobo, but this
 | |
| 	 * allows the driver to support up to the chipset max, without
 | |
| 	 * some fancy mobo determination.
 | |
| 	 */
 | |
| 	i5000_get_dimm_and_channel_counts(pdev, &num_dimms_per_channel,
 | |
| 					&num_channels);
 | |
| 
 | |
| 	edac_dbg(0, "MC: Number of Branches=2 Channels= %d  DIMMS= %d\n",
 | |
| 		 num_channels, num_dimms_per_channel);
 | |
| 
 | |
| 	/* allocate a new MC control structure */
 | |
| 
 | |
| 	layers[0].type = EDAC_MC_LAYER_BRANCH;
 | |
| 	layers[0].size = MAX_BRANCHES;
 | |
| 	layers[0].is_virt_csrow = false;
 | |
| 	layers[1].type = EDAC_MC_LAYER_CHANNEL;
 | |
| 	layers[1].size = num_channels / MAX_BRANCHES;
 | |
| 	layers[1].is_virt_csrow = false;
 | |
| 	layers[2].type = EDAC_MC_LAYER_SLOT;
 | |
| 	layers[2].size = num_dimms_per_channel;
 | |
| 	layers[2].is_virt_csrow = true;
 | |
| 	mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(*pvt));
 | |
| 	if (mci == NULL)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	edac_dbg(0, "MC: mci = %p\n", mci);
 | |
| 
 | |
| 	mci->pdev = &pdev->dev;	/* record ptr  to the generic device */
 | |
| 
 | |
| 	pvt = mci->pvt_info;
 | |
| 	pvt->system_address = pdev;	/* Record this device in our private */
 | |
| 	pvt->maxch = num_channels;
 | |
| 	pvt->maxdimmperch = num_dimms_per_channel;
 | |
| 
 | |
| 	/* 'get' the pci devices we want to reserve for our use */
 | |
| 	if (i5000_get_devices(mci, dev_idx))
 | |
| 		goto fail0;
 | |
| 
 | |
| 	/* Time to get serious */
 | |
| 	i5000_get_mc_regs(mci);	/* retrieve the hardware registers */
 | |
| 
 | |
| 	mci->mc_idx = 0;
 | |
| 	mci->mtype_cap = MEM_FLAG_FB_DDR2;
 | |
| 	mci->edac_ctl_cap = EDAC_FLAG_NONE;
 | |
| 	mci->edac_cap = EDAC_FLAG_NONE;
 | |
| 	mci->mod_name = "i5000_edac.c";
 | |
| 	mci->mod_ver = I5000_REVISION;
 | |
| 	mci->ctl_name = i5000_devs[dev_idx].ctl_name;
 | |
| 	mci->dev_name = pci_name(pdev);
 | |
| 	mci->ctl_page_to_phys = NULL;
 | |
| 
 | |
| 	/* Set the function pointer to an actual operation function */
 | |
| 	mci->edac_check = i5000_check_error;
 | |
| 
 | |
| 	/* initialize the MC control structure 'csrows' table
 | |
| 	 * with the mapping and control information */
 | |
| 	if (i5000_init_csrows(mci)) {
 | |
| 		edac_dbg(0, "MC: Setting mci->edac_cap to EDAC_FLAG_NONE because i5000_init_csrows() returned nonzero value\n");
 | |
| 		mci->edac_cap = EDAC_FLAG_NONE;	/* no csrows found */
 | |
| 	} else {
 | |
| 		edac_dbg(1, "MC: Enable error reporting now\n");
 | |
| 		i5000_enable_error_reporting(mci);
 | |
| 	}
 | |
| 
 | |
| 	/* add this new MC control structure to EDAC's list of MCs */
 | |
| 	if (edac_mc_add_mc(mci)) {
 | |
| 		edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
 | |
| 		/* FIXME: perhaps some code should go here that disables error
 | |
| 		 * reporting if we just enabled it
 | |
| 		 */
 | |
| 		goto fail1;
 | |
| 	}
 | |
| 
 | |
| 	i5000_clear_error(mci);
 | |
| 
 | |
| 	/* allocating generic PCI control info */
 | |
| 	i5000_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
 | |
| 	if (!i5000_pci) {
 | |
| 		printk(KERN_WARNING
 | |
| 			"%s(): Unable to create PCI control\n",
 | |
| 			__func__);
 | |
| 		printk(KERN_WARNING
 | |
| 			"%s(): PCI error report via EDAC not setup\n",
 | |
| 			__func__);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| 	/* Error exit unwinding stack */
 | |
| fail1:
 | |
| 
 | |
| 	i5000_put_devices(mci);
 | |
| 
 | |
| fail0:
 | |
| 	edac_mc_free(mci);
 | |
| 	return -ENODEV;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	i5000_init_one	constructor for one instance of device
 | |
|  *
 | |
|  * 	returns:
 | |
|  *		negative on error
 | |
|  *		count (>= 0)
 | |
|  */
 | |
| static int i5000_init_one(struct pci_dev *pdev, const struct pci_device_id *id)
 | |
| {
 | |
| 	int rc;
 | |
| 
 | |
| 	edac_dbg(0, "MC:\n");
 | |
| 
 | |
| 	/* wake up device */
 | |
| 	rc = pci_enable_device(pdev);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	/* now probe and enable the device */
 | |
| 	return i5000_probe1(pdev, id->driver_data);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	i5000_remove_one	destructor for one instance of device
 | |
|  *
 | |
|  */
 | |
| static void i5000_remove_one(struct pci_dev *pdev)
 | |
| {
 | |
| 	struct mem_ctl_info *mci;
 | |
| 
 | |
| 	edac_dbg(0, "\n");
 | |
| 
 | |
| 	if (i5000_pci)
 | |
| 		edac_pci_release_generic_ctl(i5000_pci);
 | |
| 
 | |
| 	if ((mci = edac_mc_del_mc(&pdev->dev)) == NULL)
 | |
| 		return;
 | |
| 
 | |
| 	/* retrieve references to resources, and free those resources */
 | |
| 	i5000_put_devices(mci);
 | |
| 	edac_mc_free(mci);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	pci_device_id	table for which devices we are looking for
 | |
|  *
 | |
|  *	The "E500P" device is the first device supported.
 | |
|  */
 | |
| static DEFINE_PCI_DEVICE_TABLE(i5000_pci_tbl) = {
 | |
| 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I5000_DEV16),
 | |
| 	 .driver_data = I5000P},
 | |
| 
 | |
| 	{0,}			/* 0 terminated list. */
 | |
| };
 | |
| 
 | |
| MODULE_DEVICE_TABLE(pci, i5000_pci_tbl);
 | |
| 
 | |
| /*
 | |
|  *	i5000_driver	pci_driver structure for this module
 | |
|  *
 | |
|  */
 | |
| static struct pci_driver i5000_driver = {
 | |
| 	.name = KBUILD_BASENAME,
 | |
| 	.probe = i5000_init_one,
 | |
| 	.remove = i5000_remove_one,
 | |
| 	.id_table = i5000_pci_tbl,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  *	i5000_init		Module entry function
 | |
|  *			Try to initialize this module for its devices
 | |
|  */
 | |
| static int __init i5000_init(void)
 | |
| {
 | |
| 	int pci_rc;
 | |
| 
 | |
| 	edac_dbg(2, "MC:\n");
 | |
| 
 | |
|        /* Ensure that the OPSTATE is set correctly for POLL or NMI */
 | |
|        opstate_init();
 | |
| 
 | |
| 	pci_rc = pci_register_driver(&i5000_driver);
 | |
| 
 | |
| 	return (pci_rc < 0) ? pci_rc : 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	i5000_exit()	Module exit function
 | |
|  *			Unregister the driver
 | |
|  */
 | |
| static void __exit i5000_exit(void)
 | |
| {
 | |
| 	edac_dbg(2, "MC:\n");
 | |
| 	pci_unregister_driver(&i5000_driver);
 | |
| }
 | |
| 
 | |
| module_init(i5000_init);
 | |
| module_exit(i5000_exit);
 | |
| 
 | |
| MODULE_LICENSE("GPL");
 | |
| MODULE_AUTHOR
 | |
|     ("Linux Networx (http://lnxi.com) Doug Thompson <norsk5@xmission.com>");
 | |
| MODULE_DESCRIPTION("MC Driver for Intel I5000 memory controllers - "
 | |
| 		I5000_REVISION);
 | |
| 
 | |
| module_param(edac_op_state, int, 0444);
 | |
| MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
 | |
| module_param(misc_messages, int, 0444);
 | |
| MODULE_PARM_DESC(misc_messages, "Log miscellaneous non fatal messages");
 | |
| 
 |