swiotlb_sync_single_range_for_cpu and swiotlb_sync_single_range_for_device are unnecessary because swiotlb_sync_single_for_cpu and swiotlb_sync_single_for_device can be used instead. Signed-off-by: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp> Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			898 lines
		
	
	
	
		
			25 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			898 lines
		
	
	
	
		
			25 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Dynamic DMA mapping support.
 | 
						|
 *
 | 
						|
 * This implementation is a fallback for platforms that do not support
 | 
						|
 * I/O TLBs (aka DMA address translation hardware).
 | 
						|
 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
 | 
						|
 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
 | 
						|
 * Copyright (C) 2000, 2003 Hewlett-Packard Co
 | 
						|
 *	David Mosberger-Tang <davidm@hpl.hp.com>
 | 
						|
 *
 | 
						|
 * 03/05/07 davidm	Switch from PCI-DMA to generic device DMA API.
 | 
						|
 * 00/12/13 davidm	Rename to swiotlb.c and add mark_clean() to avoid
 | 
						|
 *			unnecessary i-cache flushing.
 | 
						|
 * 04/07/.. ak		Better overflow handling. Assorted fixes.
 | 
						|
 * 05/09/10 linville	Add support for syncing ranges, support syncing for
 | 
						|
 *			DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
 | 
						|
 * 08/12/11 beckyb	Add highmem support
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/cache.h>
 | 
						|
#include <linux/dma-mapping.h>
 | 
						|
#include <linux/mm.h>
 | 
						|
#include <linux/module.h>
 | 
						|
#include <linux/spinlock.h>
 | 
						|
#include <linux/string.h>
 | 
						|
#include <linux/swiotlb.h>
 | 
						|
#include <linux/pfn.h>
 | 
						|
#include <linux/types.h>
 | 
						|
#include <linux/ctype.h>
 | 
						|
#include <linux/highmem.h>
 | 
						|
#include <linux/gfp.h>
 | 
						|
 | 
						|
#include <asm/io.h>
 | 
						|
#include <asm/dma.h>
 | 
						|
#include <asm/scatterlist.h>
 | 
						|
 | 
						|
#include <linux/init.h>
 | 
						|
#include <linux/bootmem.h>
 | 
						|
#include <linux/iommu-helper.h>
 | 
						|
 | 
						|
#define OFFSET(val,align) ((unsigned long)	\
 | 
						|
	                   ( (val) & ( (align) - 1)))
 | 
						|
 | 
						|
#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
 | 
						|
 | 
						|
/*
 | 
						|
 * Minimum IO TLB size to bother booting with.  Systems with mainly
 | 
						|
 * 64bit capable cards will only lightly use the swiotlb.  If we can't
 | 
						|
 * allocate a contiguous 1MB, we're probably in trouble anyway.
 | 
						|
 */
 | 
						|
#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
 | 
						|
 | 
						|
/*
 | 
						|
 * Enumeration for sync targets
 | 
						|
 */
 | 
						|
enum dma_sync_target {
 | 
						|
	SYNC_FOR_CPU = 0,
 | 
						|
	SYNC_FOR_DEVICE = 1,
 | 
						|
};
 | 
						|
 | 
						|
int swiotlb_force;
 | 
						|
 | 
						|
/*
 | 
						|
 * Used to do a quick range check in unmap_single and
 | 
						|
 * sync_single_*, to see if the memory was in fact allocated by this
 | 
						|
 * API.
 | 
						|
 */
 | 
						|
static char *io_tlb_start, *io_tlb_end;
 | 
						|
 | 
						|
/*
 | 
						|
 * The number of IO TLB blocks (in groups of 64) betweeen io_tlb_start and
 | 
						|
 * io_tlb_end.  This is command line adjustable via setup_io_tlb_npages.
 | 
						|
 */
 | 
						|
static unsigned long io_tlb_nslabs;
 | 
						|
 | 
						|
/*
 | 
						|
 * When the IOMMU overflows we return a fallback buffer. This sets the size.
 | 
						|
 */
 | 
						|
static unsigned long io_tlb_overflow = 32*1024;
 | 
						|
 | 
						|
void *io_tlb_overflow_buffer;
 | 
						|
 | 
						|
/*
 | 
						|
 * This is a free list describing the number of free entries available from
 | 
						|
 * each index
 | 
						|
 */
 | 
						|
static unsigned int *io_tlb_list;
 | 
						|
static unsigned int io_tlb_index;
 | 
						|
 | 
						|
/*
 | 
						|
 * We need to save away the original address corresponding to a mapped entry
 | 
						|
 * for the sync operations.
 | 
						|
 */
 | 
						|
static phys_addr_t *io_tlb_orig_addr;
 | 
						|
 | 
						|
/*
 | 
						|
 * Protect the above data structures in the map and unmap calls
 | 
						|
 */
 | 
						|
static DEFINE_SPINLOCK(io_tlb_lock);
 | 
						|
 | 
						|
static int late_alloc;
 | 
						|
 | 
						|
static int __init
 | 
						|
setup_io_tlb_npages(char *str)
 | 
						|
{
 | 
						|
	if (isdigit(*str)) {
 | 
						|
		io_tlb_nslabs = simple_strtoul(str, &str, 0);
 | 
						|
		/* avoid tail segment of size < IO_TLB_SEGSIZE */
 | 
						|
		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
 | 
						|
	}
 | 
						|
	if (*str == ',')
 | 
						|
		++str;
 | 
						|
	if (!strcmp(str, "force"))
 | 
						|
		swiotlb_force = 1;
 | 
						|
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
__setup("swiotlb=", setup_io_tlb_npages);
 | 
						|
/* make io_tlb_overflow tunable too? */
 | 
						|
 | 
						|
/* Note that this doesn't work with highmem page */
 | 
						|
static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev,
 | 
						|
				      volatile void *address)
 | 
						|
{
 | 
						|
	return phys_to_dma(hwdev, virt_to_phys(address));
 | 
						|
}
 | 
						|
 | 
						|
void swiotlb_print_info(void)
 | 
						|
{
 | 
						|
	unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT;
 | 
						|
	phys_addr_t pstart, pend;
 | 
						|
 | 
						|
	pstart = virt_to_phys(io_tlb_start);
 | 
						|
	pend = virt_to_phys(io_tlb_end);
 | 
						|
 | 
						|
	printk(KERN_INFO "Placing %luMB software IO TLB between %p - %p\n",
 | 
						|
	       bytes >> 20, io_tlb_start, io_tlb_end);
 | 
						|
	printk(KERN_INFO "software IO TLB at phys %#llx - %#llx\n",
 | 
						|
	       (unsigned long long)pstart,
 | 
						|
	       (unsigned long long)pend);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Statically reserve bounce buffer space and initialize bounce buffer data
 | 
						|
 * structures for the software IO TLB used to implement the DMA API.
 | 
						|
 */
 | 
						|
void __init
 | 
						|
swiotlb_init_with_default_size(size_t default_size, int verbose)
 | 
						|
{
 | 
						|
	unsigned long i, bytes;
 | 
						|
 | 
						|
	if (!io_tlb_nslabs) {
 | 
						|
		io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
 | 
						|
		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
 | 
						|
	}
 | 
						|
 | 
						|
	bytes = io_tlb_nslabs << IO_TLB_SHIFT;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Get IO TLB memory from the low pages
 | 
						|
	 */
 | 
						|
	io_tlb_start = alloc_bootmem_low_pages(bytes);
 | 
						|
	if (!io_tlb_start)
 | 
						|
		panic("Cannot allocate SWIOTLB buffer");
 | 
						|
	io_tlb_end = io_tlb_start + bytes;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Allocate and initialize the free list array.  This array is used
 | 
						|
	 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
 | 
						|
	 * between io_tlb_start and io_tlb_end.
 | 
						|
	 */
 | 
						|
	io_tlb_list = alloc_bootmem(io_tlb_nslabs * sizeof(int));
 | 
						|
	for (i = 0; i < io_tlb_nslabs; i++)
 | 
						|
 		io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
 | 
						|
	io_tlb_index = 0;
 | 
						|
	io_tlb_orig_addr = alloc_bootmem(io_tlb_nslabs * sizeof(phys_addr_t));
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Get the overflow emergency buffer
 | 
						|
	 */
 | 
						|
	io_tlb_overflow_buffer = alloc_bootmem_low(io_tlb_overflow);
 | 
						|
	if (!io_tlb_overflow_buffer)
 | 
						|
		panic("Cannot allocate SWIOTLB overflow buffer!\n");
 | 
						|
	if (verbose)
 | 
						|
		swiotlb_print_info();
 | 
						|
}
 | 
						|
 | 
						|
void __init
 | 
						|
swiotlb_init(int verbose)
 | 
						|
{
 | 
						|
	swiotlb_init_with_default_size(64 * (1<<20), verbose);	/* default to 64MB */
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Systems with larger DMA zones (those that don't support ISA) can
 | 
						|
 * initialize the swiotlb later using the slab allocator if needed.
 | 
						|
 * This should be just like above, but with some error catching.
 | 
						|
 */
 | 
						|
int
 | 
						|
swiotlb_late_init_with_default_size(size_t default_size)
 | 
						|
{
 | 
						|
	unsigned long i, bytes, req_nslabs = io_tlb_nslabs;
 | 
						|
	unsigned int order;
 | 
						|
 | 
						|
	if (!io_tlb_nslabs) {
 | 
						|
		io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
 | 
						|
		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Get IO TLB memory from the low pages
 | 
						|
	 */
 | 
						|
	order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
 | 
						|
	io_tlb_nslabs = SLABS_PER_PAGE << order;
 | 
						|
	bytes = io_tlb_nslabs << IO_TLB_SHIFT;
 | 
						|
 | 
						|
	while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
 | 
						|
		io_tlb_start = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
 | 
						|
							order);
 | 
						|
		if (io_tlb_start)
 | 
						|
			break;
 | 
						|
		order--;
 | 
						|
	}
 | 
						|
 | 
						|
	if (!io_tlb_start)
 | 
						|
		goto cleanup1;
 | 
						|
 | 
						|
	if (order != get_order(bytes)) {
 | 
						|
		printk(KERN_WARNING "Warning: only able to allocate %ld MB "
 | 
						|
		       "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
 | 
						|
		io_tlb_nslabs = SLABS_PER_PAGE << order;
 | 
						|
		bytes = io_tlb_nslabs << IO_TLB_SHIFT;
 | 
						|
	}
 | 
						|
	io_tlb_end = io_tlb_start + bytes;
 | 
						|
	memset(io_tlb_start, 0, bytes);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Allocate and initialize the free list array.  This array is used
 | 
						|
	 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
 | 
						|
	 * between io_tlb_start and io_tlb_end.
 | 
						|
	 */
 | 
						|
	io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
 | 
						|
	                              get_order(io_tlb_nslabs * sizeof(int)));
 | 
						|
	if (!io_tlb_list)
 | 
						|
		goto cleanup2;
 | 
						|
 | 
						|
	for (i = 0; i < io_tlb_nslabs; i++)
 | 
						|
 		io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
 | 
						|
	io_tlb_index = 0;
 | 
						|
 | 
						|
	io_tlb_orig_addr = (phys_addr_t *)
 | 
						|
		__get_free_pages(GFP_KERNEL,
 | 
						|
				 get_order(io_tlb_nslabs *
 | 
						|
					   sizeof(phys_addr_t)));
 | 
						|
	if (!io_tlb_orig_addr)
 | 
						|
		goto cleanup3;
 | 
						|
 | 
						|
	memset(io_tlb_orig_addr, 0, io_tlb_nslabs * sizeof(phys_addr_t));
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Get the overflow emergency buffer
 | 
						|
	 */
 | 
						|
	io_tlb_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
 | 
						|
	                                          get_order(io_tlb_overflow));
 | 
						|
	if (!io_tlb_overflow_buffer)
 | 
						|
		goto cleanup4;
 | 
						|
 | 
						|
	swiotlb_print_info();
 | 
						|
 | 
						|
	late_alloc = 1;
 | 
						|
 | 
						|
	return 0;
 | 
						|
 | 
						|
cleanup4:
 | 
						|
	free_pages((unsigned long)io_tlb_orig_addr,
 | 
						|
		   get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
 | 
						|
	io_tlb_orig_addr = NULL;
 | 
						|
cleanup3:
 | 
						|
	free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
 | 
						|
	                                                 sizeof(int)));
 | 
						|
	io_tlb_list = NULL;
 | 
						|
cleanup2:
 | 
						|
	io_tlb_end = NULL;
 | 
						|
	free_pages((unsigned long)io_tlb_start, order);
 | 
						|
	io_tlb_start = NULL;
 | 
						|
cleanup1:
 | 
						|
	io_tlb_nslabs = req_nslabs;
 | 
						|
	return -ENOMEM;
 | 
						|
}
 | 
						|
 | 
						|
void __init swiotlb_free(void)
 | 
						|
{
 | 
						|
	if (!io_tlb_overflow_buffer)
 | 
						|
		return;
 | 
						|
 | 
						|
	if (late_alloc) {
 | 
						|
		free_pages((unsigned long)io_tlb_overflow_buffer,
 | 
						|
			   get_order(io_tlb_overflow));
 | 
						|
		free_pages((unsigned long)io_tlb_orig_addr,
 | 
						|
			   get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
 | 
						|
		free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
 | 
						|
								 sizeof(int)));
 | 
						|
		free_pages((unsigned long)io_tlb_start,
 | 
						|
			   get_order(io_tlb_nslabs << IO_TLB_SHIFT));
 | 
						|
	} else {
 | 
						|
		free_bootmem_late(__pa(io_tlb_overflow_buffer),
 | 
						|
				  io_tlb_overflow);
 | 
						|
		free_bootmem_late(__pa(io_tlb_orig_addr),
 | 
						|
				  io_tlb_nslabs * sizeof(phys_addr_t));
 | 
						|
		free_bootmem_late(__pa(io_tlb_list),
 | 
						|
				  io_tlb_nslabs * sizeof(int));
 | 
						|
		free_bootmem_late(__pa(io_tlb_start),
 | 
						|
				  io_tlb_nslabs << IO_TLB_SHIFT);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static int is_swiotlb_buffer(phys_addr_t paddr)
 | 
						|
{
 | 
						|
	return paddr >= virt_to_phys(io_tlb_start) &&
 | 
						|
		paddr < virt_to_phys(io_tlb_end);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Bounce: copy the swiotlb buffer back to the original dma location
 | 
						|
 */
 | 
						|
static void swiotlb_bounce(phys_addr_t phys, char *dma_addr, size_t size,
 | 
						|
			   enum dma_data_direction dir)
 | 
						|
{
 | 
						|
	unsigned long pfn = PFN_DOWN(phys);
 | 
						|
 | 
						|
	if (PageHighMem(pfn_to_page(pfn))) {
 | 
						|
		/* The buffer does not have a mapping.  Map it in and copy */
 | 
						|
		unsigned int offset = phys & ~PAGE_MASK;
 | 
						|
		char *buffer;
 | 
						|
		unsigned int sz = 0;
 | 
						|
		unsigned long flags;
 | 
						|
 | 
						|
		while (size) {
 | 
						|
			sz = min_t(size_t, PAGE_SIZE - offset, size);
 | 
						|
 | 
						|
			local_irq_save(flags);
 | 
						|
			buffer = kmap_atomic(pfn_to_page(pfn),
 | 
						|
					     KM_BOUNCE_READ);
 | 
						|
			if (dir == DMA_TO_DEVICE)
 | 
						|
				memcpy(dma_addr, buffer + offset, sz);
 | 
						|
			else
 | 
						|
				memcpy(buffer + offset, dma_addr, sz);
 | 
						|
			kunmap_atomic(buffer, KM_BOUNCE_READ);
 | 
						|
			local_irq_restore(flags);
 | 
						|
 | 
						|
			size -= sz;
 | 
						|
			pfn++;
 | 
						|
			dma_addr += sz;
 | 
						|
			offset = 0;
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		if (dir == DMA_TO_DEVICE)
 | 
						|
			memcpy(dma_addr, phys_to_virt(phys), size);
 | 
						|
		else
 | 
						|
			memcpy(phys_to_virt(phys), dma_addr, size);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Allocates bounce buffer and returns its kernel virtual address.
 | 
						|
 */
 | 
						|
static void *
 | 
						|
map_single(struct device *hwdev, phys_addr_t phys, size_t size, int dir)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	char *dma_addr;
 | 
						|
	unsigned int nslots, stride, index, wrap;
 | 
						|
	int i;
 | 
						|
	unsigned long start_dma_addr;
 | 
						|
	unsigned long mask;
 | 
						|
	unsigned long offset_slots;
 | 
						|
	unsigned long max_slots;
 | 
						|
 | 
						|
	mask = dma_get_seg_boundary(hwdev);
 | 
						|
	start_dma_addr = swiotlb_virt_to_bus(hwdev, io_tlb_start) & mask;
 | 
						|
 | 
						|
	offset_slots = ALIGN(start_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
 | 
						|
 | 
						|
	/*
 | 
						|
 	 * Carefully handle integer overflow which can occur when mask == ~0UL.
 | 
						|
 	 */
 | 
						|
	max_slots = mask + 1
 | 
						|
		    ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
 | 
						|
		    : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * For mappings greater than a page, we limit the stride (and
 | 
						|
	 * hence alignment) to a page size.
 | 
						|
	 */
 | 
						|
	nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
 | 
						|
	if (size > PAGE_SIZE)
 | 
						|
		stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
 | 
						|
	else
 | 
						|
		stride = 1;
 | 
						|
 | 
						|
	BUG_ON(!nslots);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Find suitable number of IO TLB entries size that will fit this
 | 
						|
	 * request and allocate a buffer from that IO TLB pool.
 | 
						|
	 */
 | 
						|
	spin_lock_irqsave(&io_tlb_lock, flags);
 | 
						|
	index = ALIGN(io_tlb_index, stride);
 | 
						|
	if (index >= io_tlb_nslabs)
 | 
						|
		index = 0;
 | 
						|
	wrap = index;
 | 
						|
 | 
						|
	do {
 | 
						|
		while (iommu_is_span_boundary(index, nslots, offset_slots,
 | 
						|
					      max_slots)) {
 | 
						|
			index += stride;
 | 
						|
			if (index >= io_tlb_nslabs)
 | 
						|
				index = 0;
 | 
						|
			if (index == wrap)
 | 
						|
				goto not_found;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If we find a slot that indicates we have 'nslots' number of
 | 
						|
		 * contiguous buffers, we allocate the buffers from that slot
 | 
						|
		 * and mark the entries as '0' indicating unavailable.
 | 
						|
		 */
 | 
						|
		if (io_tlb_list[index] >= nslots) {
 | 
						|
			int count = 0;
 | 
						|
 | 
						|
			for (i = index; i < (int) (index + nslots); i++)
 | 
						|
				io_tlb_list[i] = 0;
 | 
						|
			for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
 | 
						|
				io_tlb_list[i] = ++count;
 | 
						|
			dma_addr = io_tlb_start + (index << IO_TLB_SHIFT);
 | 
						|
 | 
						|
			/*
 | 
						|
			 * Update the indices to avoid searching in the next
 | 
						|
			 * round.
 | 
						|
			 */
 | 
						|
			io_tlb_index = ((index + nslots) < io_tlb_nslabs
 | 
						|
					? (index + nslots) : 0);
 | 
						|
 | 
						|
			goto found;
 | 
						|
		}
 | 
						|
		index += stride;
 | 
						|
		if (index >= io_tlb_nslabs)
 | 
						|
			index = 0;
 | 
						|
	} while (index != wrap);
 | 
						|
 | 
						|
not_found:
 | 
						|
	spin_unlock_irqrestore(&io_tlb_lock, flags);
 | 
						|
	return NULL;
 | 
						|
found:
 | 
						|
	spin_unlock_irqrestore(&io_tlb_lock, flags);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Save away the mapping from the original address to the DMA address.
 | 
						|
	 * This is needed when we sync the memory.  Then we sync the buffer if
 | 
						|
	 * needed.
 | 
						|
	 */
 | 
						|
	for (i = 0; i < nslots; i++)
 | 
						|
		io_tlb_orig_addr[index+i] = phys + (i << IO_TLB_SHIFT);
 | 
						|
	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
 | 
						|
		swiotlb_bounce(phys, dma_addr, size, DMA_TO_DEVICE);
 | 
						|
 | 
						|
	return dma_addr;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * dma_addr is the kernel virtual address of the bounce buffer to unmap.
 | 
						|
 */
 | 
						|
static void
 | 
						|
do_unmap_single(struct device *hwdev, char *dma_addr, size_t size, int dir)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
 | 
						|
	int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
 | 
						|
	phys_addr_t phys = io_tlb_orig_addr[index];
 | 
						|
 | 
						|
	/*
 | 
						|
	 * First, sync the memory before unmapping the entry
 | 
						|
	 */
 | 
						|
	if (phys && ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
 | 
						|
		swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Return the buffer to the free list by setting the corresponding
 | 
						|
	 * entries to indicate the number of contiguous entries available.
 | 
						|
	 * While returning the entries to the free list, we merge the entries
 | 
						|
	 * with slots below and above the pool being returned.
 | 
						|
	 */
 | 
						|
	spin_lock_irqsave(&io_tlb_lock, flags);
 | 
						|
	{
 | 
						|
		count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
 | 
						|
			 io_tlb_list[index + nslots] : 0);
 | 
						|
		/*
 | 
						|
		 * Step 1: return the slots to the free list, merging the
 | 
						|
		 * slots with superceeding slots
 | 
						|
		 */
 | 
						|
		for (i = index + nslots - 1; i >= index; i--)
 | 
						|
			io_tlb_list[i] = ++count;
 | 
						|
		/*
 | 
						|
		 * Step 2: merge the returned slots with the preceding slots,
 | 
						|
		 * if available (non zero)
 | 
						|
		 */
 | 
						|
		for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
 | 
						|
			io_tlb_list[i] = ++count;
 | 
						|
	}
 | 
						|
	spin_unlock_irqrestore(&io_tlb_lock, flags);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
sync_single(struct device *hwdev, char *dma_addr, size_t size,
 | 
						|
	    int dir, int target)
 | 
						|
{
 | 
						|
	int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
 | 
						|
	phys_addr_t phys = io_tlb_orig_addr[index];
 | 
						|
 | 
						|
	phys += ((unsigned long)dma_addr & ((1 << IO_TLB_SHIFT) - 1));
 | 
						|
 | 
						|
	switch (target) {
 | 
						|
	case SYNC_FOR_CPU:
 | 
						|
		if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
 | 
						|
			swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE);
 | 
						|
		else
 | 
						|
			BUG_ON(dir != DMA_TO_DEVICE);
 | 
						|
		break;
 | 
						|
	case SYNC_FOR_DEVICE:
 | 
						|
		if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
 | 
						|
			swiotlb_bounce(phys, dma_addr, size, DMA_TO_DEVICE);
 | 
						|
		else
 | 
						|
			BUG_ON(dir != DMA_FROM_DEVICE);
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		BUG();
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void *
 | 
						|
swiotlb_alloc_coherent(struct device *hwdev, size_t size,
 | 
						|
		       dma_addr_t *dma_handle, gfp_t flags)
 | 
						|
{
 | 
						|
	dma_addr_t dev_addr;
 | 
						|
	void *ret;
 | 
						|
	int order = get_order(size);
 | 
						|
	u64 dma_mask = DMA_BIT_MASK(32);
 | 
						|
 | 
						|
	if (hwdev && hwdev->coherent_dma_mask)
 | 
						|
		dma_mask = hwdev->coherent_dma_mask;
 | 
						|
 | 
						|
	ret = (void *)__get_free_pages(flags, order);
 | 
						|
	if (ret && swiotlb_virt_to_bus(hwdev, ret) + size - 1 > dma_mask) {
 | 
						|
		/*
 | 
						|
		 * The allocated memory isn't reachable by the device.
 | 
						|
		 */
 | 
						|
		free_pages((unsigned long) ret, order);
 | 
						|
		ret = NULL;
 | 
						|
	}
 | 
						|
	if (!ret) {
 | 
						|
		/*
 | 
						|
		 * We are either out of memory or the device can't DMA
 | 
						|
		 * to GFP_DMA memory; fall back on map_single(), which
 | 
						|
		 * will grab memory from the lowest available address range.
 | 
						|
		 */
 | 
						|
		ret = map_single(hwdev, 0, size, DMA_FROM_DEVICE);
 | 
						|
		if (!ret)
 | 
						|
			return NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	memset(ret, 0, size);
 | 
						|
	dev_addr = swiotlb_virt_to_bus(hwdev, ret);
 | 
						|
 | 
						|
	/* Confirm address can be DMA'd by device */
 | 
						|
	if (dev_addr + size - 1 > dma_mask) {
 | 
						|
		printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
 | 
						|
		       (unsigned long long)dma_mask,
 | 
						|
		       (unsigned long long)dev_addr);
 | 
						|
 | 
						|
		/* DMA_TO_DEVICE to avoid memcpy in unmap_single */
 | 
						|
		do_unmap_single(hwdev, ret, size, DMA_TO_DEVICE);
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	*dma_handle = dev_addr;
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(swiotlb_alloc_coherent);
 | 
						|
 | 
						|
void
 | 
						|
swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
 | 
						|
		      dma_addr_t dev_addr)
 | 
						|
{
 | 
						|
	phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
 | 
						|
 | 
						|
	WARN_ON(irqs_disabled());
 | 
						|
	if (!is_swiotlb_buffer(paddr))
 | 
						|
		free_pages((unsigned long)vaddr, get_order(size));
 | 
						|
	else
 | 
						|
		/* DMA_TO_DEVICE to avoid memcpy in unmap_single */
 | 
						|
		do_unmap_single(hwdev, vaddr, size, DMA_TO_DEVICE);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(swiotlb_free_coherent);
 | 
						|
 | 
						|
static void
 | 
						|
swiotlb_full(struct device *dev, size_t size, int dir, int do_panic)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Ran out of IOMMU space for this operation. This is very bad.
 | 
						|
	 * Unfortunately the drivers cannot handle this operation properly.
 | 
						|
	 * unless they check for dma_mapping_error (most don't)
 | 
						|
	 * When the mapping is small enough return a static buffer to limit
 | 
						|
	 * the damage, or panic when the transfer is too big.
 | 
						|
	 */
 | 
						|
	printk(KERN_ERR "DMA: Out of SW-IOMMU space for %zu bytes at "
 | 
						|
	       "device %s\n", size, dev ? dev_name(dev) : "?");
 | 
						|
 | 
						|
	if (size <= io_tlb_overflow || !do_panic)
 | 
						|
		return;
 | 
						|
 | 
						|
	if (dir == DMA_BIDIRECTIONAL)
 | 
						|
		panic("DMA: Random memory could be DMA accessed\n");
 | 
						|
	if (dir == DMA_FROM_DEVICE)
 | 
						|
		panic("DMA: Random memory could be DMA written\n");
 | 
						|
	if (dir == DMA_TO_DEVICE)
 | 
						|
		panic("DMA: Random memory could be DMA read\n");
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Map a single buffer of the indicated size for DMA in streaming mode.  The
 | 
						|
 * physical address to use is returned.
 | 
						|
 *
 | 
						|
 * Once the device is given the dma address, the device owns this memory until
 | 
						|
 * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
 | 
						|
 */
 | 
						|
dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
 | 
						|
			    unsigned long offset, size_t size,
 | 
						|
			    enum dma_data_direction dir,
 | 
						|
			    struct dma_attrs *attrs)
 | 
						|
{
 | 
						|
	phys_addr_t phys = page_to_phys(page) + offset;
 | 
						|
	dma_addr_t dev_addr = phys_to_dma(dev, phys);
 | 
						|
	void *map;
 | 
						|
 | 
						|
	BUG_ON(dir == DMA_NONE);
 | 
						|
	/*
 | 
						|
	 * If the address happens to be in the device's DMA window,
 | 
						|
	 * we can safely return the device addr and not worry about bounce
 | 
						|
	 * buffering it.
 | 
						|
	 */
 | 
						|
	if (dma_capable(dev, dev_addr, size) && !swiotlb_force)
 | 
						|
		return dev_addr;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Oh well, have to allocate and map a bounce buffer.
 | 
						|
	 */
 | 
						|
	map = map_single(dev, phys, size, dir);
 | 
						|
	if (!map) {
 | 
						|
		swiotlb_full(dev, size, dir, 1);
 | 
						|
		map = io_tlb_overflow_buffer;
 | 
						|
	}
 | 
						|
 | 
						|
	dev_addr = swiotlb_virt_to_bus(dev, map);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Ensure that the address returned is DMA'ble
 | 
						|
	 */
 | 
						|
	if (!dma_capable(dev, dev_addr, size))
 | 
						|
		panic("map_single: bounce buffer is not DMA'ble");
 | 
						|
 | 
						|
	return dev_addr;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(swiotlb_map_page);
 | 
						|
 | 
						|
/*
 | 
						|
 * Unmap a single streaming mode DMA translation.  The dma_addr and size must
 | 
						|
 * match what was provided for in a previous swiotlb_map_page call.  All
 | 
						|
 * other usages are undefined.
 | 
						|
 *
 | 
						|
 * After this call, reads by the cpu to the buffer are guaranteed to see
 | 
						|
 * whatever the device wrote there.
 | 
						|
 */
 | 
						|
static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
 | 
						|
			 size_t size, int dir)
 | 
						|
{
 | 
						|
	phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
 | 
						|
 | 
						|
	BUG_ON(dir == DMA_NONE);
 | 
						|
 | 
						|
	if (is_swiotlb_buffer(paddr)) {
 | 
						|
		do_unmap_single(hwdev, phys_to_virt(paddr), size, dir);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	if (dir != DMA_FROM_DEVICE)
 | 
						|
		return;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * phys_to_virt doesn't work with hihgmem page but we could
 | 
						|
	 * call dma_mark_clean() with hihgmem page here. However, we
 | 
						|
	 * are fine since dma_mark_clean() is null on POWERPC. We can
 | 
						|
	 * make dma_mark_clean() take a physical address if necessary.
 | 
						|
	 */
 | 
						|
	dma_mark_clean(phys_to_virt(paddr), size);
 | 
						|
}
 | 
						|
 | 
						|
void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
 | 
						|
			size_t size, enum dma_data_direction dir,
 | 
						|
			struct dma_attrs *attrs)
 | 
						|
{
 | 
						|
	unmap_single(hwdev, dev_addr, size, dir);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(swiotlb_unmap_page);
 | 
						|
 | 
						|
/*
 | 
						|
 * Make physical memory consistent for a single streaming mode DMA translation
 | 
						|
 * after a transfer.
 | 
						|
 *
 | 
						|
 * If you perform a swiotlb_map_page() but wish to interrogate the buffer
 | 
						|
 * using the cpu, yet do not wish to teardown the dma mapping, you must
 | 
						|
 * call this function before doing so.  At the next point you give the dma
 | 
						|
 * address back to the card, you must first perform a
 | 
						|
 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
 | 
						|
 */
 | 
						|
static void
 | 
						|
swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
 | 
						|
		    size_t size, int dir, int target)
 | 
						|
{
 | 
						|
	phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
 | 
						|
 | 
						|
	BUG_ON(dir == DMA_NONE);
 | 
						|
 | 
						|
	if (is_swiotlb_buffer(paddr)) {
 | 
						|
		sync_single(hwdev, phys_to_virt(paddr), size, dir, target);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	if (dir != DMA_FROM_DEVICE)
 | 
						|
		return;
 | 
						|
 | 
						|
	dma_mark_clean(phys_to_virt(paddr), size);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
 | 
						|
			    size_t size, enum dma_data_direction dir)
 | 
						|
{
 | 
						|
	swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
 | 
						|
 | 
						|
void
 | 
						|
swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
 | 
						|
			       size_t size, enum dma_data_direction dir)
 | 
						|
{
 | 
						|
	swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(swiotlb_sync_single_for_device);
 | 
						|
 | 
						|
/*
 | 
						|
 * Map a set of buffers described by scatterlist in streaming mode for DMA.
 | 
						|
 * This is the scatter-gather version of the above swiotlb_map_page
 | 
						|
 * interface.  Here the scatter gather list elements are each tagged with the
 | 
						|
 * appropriate dma address and length.  They are obtained via
 | 
						|
 * sg_dma_{address,length}(SG).
 | 
						|
 *
 | 
						|
 * NOTE: An implementation may be able to use a smaller number of
 | 
						|
 *       DMA address/length pairs than there are SG table elements.
 | 
						|
 *       (for example via virtual mapping capabilities)
 | 
						|
 *       The routine returns the number of addr/length pairs actually
 | 
						|
 *       used, at most nents.
 | 
						|
 *
 | 
						|
 * Device ownership issues as mentioned above for swiotlb_map_page are the
 | 
						|
 * same here.
 | 
						|
 */
 | 
						|
int
 | 
						|
swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
 | 
						|
		     enum dma_data_direction dir, struct dma_attrs *attrs)
 | 
						|
{
 | 
						|
	struct scatterlist *sg;
 | 
						|
	int i;
 | 
						|
 | 
						|
	BUG_ON(dir == DMA_NONE);
 | 
						|
 | 
						|
	for_each_sg(sgl, sg, nelems, i) {
 | 
						|
		phys_addr_t paddr = sg_phys(sg);
 | 
						|
		dma_addr_t dev_addr = phys_to_dma(hwdev, paddr);
 | 
						|
 | 
						|
		if (swiotlb_force ||
 | 
						|
		    !dma_capable(hwdev, dev_addr, sg->length)) {
 | 
						|
			void *map = map_single(hwdev, sg_phys(sg),
 | 
						|
					       sg->length, dir);
 | 
						|
			if (!map) {
 | 
						|
				/* Don't panic here, we expect map_sg users
 | 
						|
				   to do proper error handling. */
 | 
						|
				swiotlb_full(hwdev, sg->length, dir, 0);
 | 
						|
				swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
 | 
						|
						       attrs);
 | 
						|
				sgl[0].dma_length = 0;
 | 
						|
				return 0;
 | 
						|
			}
 | 
						|
			sg->dma_address = swiotlb_virt_to_bus(hwdev, map);
 | 
						|
		} else
 | 
						|
			sg->dma_address = dev_addr;
 | 
						|
		sg->dma_length = sg->length;
 | 
						|
	}
 | 
						|
	return nelems;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(swiotlb_map_sg_attrs);
 | 
						|
 | 
						|
int
 | 
						|
swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
 | 
						|
	       int dir)
 | 
						|
{
 | 
						|
	return swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(swiotlb_map_sg);
 | 
						|
 | 
						|
/*
 | 
						|
 * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
 | 
						|
 * concerning calls here are the same as for swiotlb_unmap_page() above.
 | 
						|
 */
 | 
						|
void
 | 
						|
swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
 | 
						|
		       int nelems, enum dma_data_direction dir, struct dma_attrs *attrs)
 | 
						|
{
 | 
						|
	struct scatterlist *sg;
 | 
						|
	int i;
 | 
						|
 | 
						|
	BUG_ON(dir == DMA_NONE);
 | 
						|
 | 
						|
	for_each_sg(sgl, sg, nelems, i)
 | 
						|
		unmap_single(hwdev, sg->dma_address, sg->dma_length, dir);
 | 
						|
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(swiotlb_unmap_sg_attrs);
 | 
						|
 | 
						|
void
 | 
						|
swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
 | 
						|
		 int dir)
 | 
						|
{
 | 
						|
	return swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(swiotlb_unmap_sg);
 | 
						|
 | 
						|
/*
 | 
						|
 * Make physical memory consistent for a set of streaming mode DMA translations
 | 
						|
 * after a transfer.
 | 
						|
 *
 | 
						|
 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
 | 
						|
 * and usage.
 | 
						|
 */
 | 
						|
static void
 | 
						|
swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
 | 
						|
		int nelems, int dir, int target)
 | 
						|
{
 | 
						|
	struct scatterlist *sg;
 | 
						|
	int i;
 | 
						|
 | 
						|
	for_each_sg(sgl, sg, nelems, i)
 | 
						|
		swiotlb_sync_single(hwdev, sg->dma_address,
 | 
						|
				    sg->dma_length, dir, target);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
 | 
						|
			int nelems, enum dma_data_direction dir)
 | 
						|
{
 | 
						|
	swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
 | 
						|
 | 
						|
void
 | 
						|
swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
 | 
						|
			   int nelems, enum dma_data_direction dir)
 | 
						|
{
 | 
						|
	swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
 | 
						|
 | 
						|
int
 | 
						|
swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
 | 
						|
{
 | 
						|
	return (dma_addr == swiotlb_virt_to_bus(hwdev, io_tlb_overflow_buffer));
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(swiotlb_dma_mapping_error);
 | 
						|
 | 
						|
/*
 | 
						|
 * Return whether the given device DMA address mask can be supported
 | 
						|
 * properly.  For example, if your device can only drive the low 24-bits
 | 
						|
 * during bus mastering, then you would pass 0x00ffffff as the mask to
 | 
						|
 * this function.
 | 
						|
 */
 | 
						|
int
 | 
						|
swiotlb_dma_supported(struct device *hwdev, u64 mask)
 | 
						|
{
 | 
						|
	return swiotlb_virt_to_bus(hwdev, io_tlb_end - 1) <= mask;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(swiotlb_dma_supported);
 |