 d10902812c
			
		
	
	
	d10902812c
	
	
	
		
			
			* 'x86-platform-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (27 commits) x86: Clean up apic.c and apic.h x86: Remove superflous goal definition of tsc_sync x86: dt: Correct local apic documentation in device tree bindings x86: dt: Cleanup local apic setup x86: dt: Fix OLPC=y/INTEL_CE=n build rtc: cmos: Add OF bindings x86: ce4100: Use OF to setup devices x86: ioapic: Add OF bindings for IO_APIC x86: dtb: Add generic bus probe x86: dtb: Add support for PCI devices backed by dtb nodes x86: dtb: Add device tree support for HPET x86: dtb: Add early parsing of IO_APIC x86: dtb: Add irq domain abstraction x86: dtb: Add a device tree for CE4100 x86: Add device tree support x86: e820: Remove conditional early mapping in parse_e820_ext x86: OLPC: Make OLPC=n build again x86: OLPC: Remove extra OLPC_OPENFIRMWARE_DT indirection x86: OLPC: Cleanup config maze completely x86: OLPC: Hide OLPC_OPENFIRMWARE config switch ... Fix up conflicts in arch/x86/platform/ce4100/ce4100.c
		
			
				
	
	
		
			709 lines
		
	
	
	
		
			19 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			709 lines
		
	
	
	
		
			19 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * apb_timer.c: Driver for Langwell APB timers
 | |
|  *
 | |
|  * (C) Copyright 2009 Intel Corporation
 | |
|  * Author: Jacob Pan (jacob.jun.pan@intel.com)
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License
 | |
|  * as published by the Free Software Foundation; version 2
 | |
|  * of the License.
 | |
|  *
 | |
|  * Note:
 | |
|  * Langwell is the south complex of Intel Moorestown MID platform. There are
 | |
|  * eight external timers in total that can be used by the operating system.
 | |
|  * The timer information, such as frequency and addresses, is provided to the
 | |
|  * OS via SFI tables.
 | |
|  * Timer interrupts are routed via FW/HW emulated IOAPIC independently via
 | |
|  * individual redirection table entries (RTE).
 | |
|  * Unlike HPET, there is no master counter, therefore one of the timers are
 | |
|  * used as clocksource. The overall allocation looks like:
 | |
|  *  - timer 0 - NR_CPUs for per cpu timer
 | |
|  *  - one timer for clocksource
 | |
|  *  - one timer for watchdog driver.
 | |
|  * It is also worth notice that APB timer does not support true one-shot mode,
 | |
|  * free-running mode will be used here to emulate one-shot mode.
 | |
|  * APB timer can also be used as broadcast timer along with per cpu local APIC
 | |
|  * timer, but by default APB timer has higher rating than local APIC timers.
 | |
|  */
 | |
| 
 | |
| #include <linux/clocksource.h>
 | |
| #include <linux/clockchips.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/sysdev.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/pm.h>
 | |
| #include <linux/pci.h>
 | |
| #include <linux/sfi.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/irq.h>
 | |
| 
 | |
| #include <asm/fixmap.h>
 | |
| #include <asm/apb_timer.h>
 | |
| #include <asm/mrst.h>
 | |
| 
 | |
| #define APBT_MASK			CLOCKSOURCE_MASK(32)
 | |
| #define APBT_SHIFT			22
 | |
| #define APBT_CLOCKEVENT_RATING		110
 | |
| #define APBT_CLOCKSOURCE_RATING		250
 | |
| #define APBT_MIN_DELTA_USEC		200
 | |
| 
 | |
| #define EVT_TO_APBT_DEV(evt) container_of(evt, struct apbt_dev, evt)
 | |
| #define APBT_CLOCKEVENT0_NUM   (0)
 | |
| #define APBT_CLOCKEVENT1_NUM   (1)
 | |
| #define APBT_CLOCKSOURCE_NUM   (2)
 | |
| 
 | |
| static unsigned long apbt_address;
 | |
| static int apb_timer_block_enabled;
 | |
| static void __iomem *apbt_virt_address;
 | |
| static int phy_cs_timer_id;
 | |
| 
 | |
| /*
 | |
|  * Common DW APB timer info
 | |
|  */
 | |
| static uint64_t apbt_freq;
 | |
| 
 | |
| static void apbt_set_mode(enum clock_event_mode mode,
 | |
| 			  struct clock_event_device *evt);
 | |
| static int apbt_next_event(unsigned long delta,
 | |
| 			   struct clock_event_device *evt);
 | |
| static cycle_t apbt_read_clocksource(struct clocksource *cs);
 | |
| static void apbt_restart_clocksource(struct clocksource *cs);
 | |
| 
 | |
| struct apbt_dev {
 | |
| 	struct clock_event_device evt;
 | |
| 	unsigned int num;
 | |
| 	int cpu;
 | |
| 	unsigned int irq;
 | |
| 	unsigned int tick;
 | |
| 	unsigned int count;
 | |
| 	unsigned int flags;
 | |
| 	char name[10];
 | |
| };
 | |
| 
 | |
| static DEFINE_PER_CPU(struct apbt_dev, cpu_apbt_dev);
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| static unsigned int apbt_num_timers_used;
 | |
| static struct apbt_dev *apbt_devs;
 | |
| #endif
 | |
| 
 | |
| static	inline unsigned long apbt_readl_reg(unsigned long a)
 | |
| {
 | |
| 	return readl(apbt_virt_address + a);
 | |
| }
 | |
| 
 | |
| static inline void apbt_writel_reg(unsigned long d, unsigned long a)
 | |
| {
 | |
| 	writel(d, apbt_virt_address + a);
 | |
| }
 | |
| 
 | |
| static inline unsigned long apbt_readl(int n, unsigned long a)
 | |
| {
 | |
| 	return readl(apbt_virt_address + a + n * APBTMRS_REG_SIZE);
 | |
| }
 | |
| 
 | |
| static inline void apbt_writel(int n, unsigned long d, unsigned long a)
 | |
| {
 | |
| 	writel(d, apbt_virt_address + a + n * APBTMRS_REG_SIZE);
 | |
| }
 | |
| 
 | |
| static inline void apbt_set_mapping(void)
 | |
| {
 | |
| 	struct sfi_timer_table_entry *mtmr;
 | |
| 
 | |
| 	if (apbt_virt_address) {
 | |
| 		pr_debug("APBT base already mapped\n");
 | |
| 		return;
 | |
| 	}
 | |
| 	mtmr = sfi_get_mtmr(APBT_CLOCKEVENT0_NUM);
 | |
| 	if (mtmr == NULL) {
 | |
| 		printk(KERN_ERR "Failed to get MTMR %d from SFI\n",
 | |
| 		       APBT_CLOCKEVENT0_NUM);
 | |
| 		return;
 | |
| 	}
 | |
| 	apbt_address = (unsigned long)mtmr->phys_addr;
 | |
| 	if (!apbt_address) {
 | |
| 		printk(KERN_WARNING "No timer base from SFI, use default\n");
 | |
| 		apbt_address = APBT_DEFAULT_BASE;
 | |
| 	}
 | |
| 	apbt_virt_address = ioremap_nocache(apbt_address, APBT_MMAP_SIZE);
 | |
| 	if (apbt_virt_address) {
 | |
| 		pr_debug("Mapped APBT physical addr %p at virtual addr %p\n",\
 | |
| 			 (void *)apbt_address, (void *)apbt_virt_address);
 | |
| 	} else {
 | |
| 		pr_debug("Failed mapping APBT phy address at %p\n",\
 | |
| 			 (void *)apbt_address);
 | |
| 		goto panic_noapbt;
 | |
| 	}
 | |
| 	apbt_freq = mtmr->freq_hz / USEC_PER_SEC;
 | |
| 	sfi_free_mtmr(mtmr);
 | |
| 
 | |
| 	/* Now figure out the physical timer id for clocksource device */
 | |
| 	mtmr = sfi_get_mtmr(APBT_CLOCKSOURCE_NUM);
 | |
| 	if (mtmr == NULL)
 | |
| 		goto panic_noapbt;
 | |
| 
 | |
| 	/* Now figure out the physical timer id */
 | |
| 	phy_cs_timer_id = (unsigned int)(mtmr->phys_addr & 0xff)
 | |
| 		/ APBTMRS_REG_SIZE;
 | |
| 	pr_debug("Use timer %d for clocksource\n", phy_cs_timer_id);
 | |
| 	return;
 | |
| 
 | |
| panic_noapbt:
 | |
| 	panic("Failed to setup APB system timer\n");
 | |
| 
 | |
| }
 | |
| 
 | |
| static inline void apbt_clear_mapping(void)
 | |
| {
 | |
| 	iounmap(apbt_virt_address);
 | |
| 	apbt_virt_address = NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * APBT timer interrupt enable / disable
 | |
|  */
 | |
| static inline int is_apbt_capable(void)
 | |
| {
 | |
| 	return apbt_virt_address ? 1 : 0;
 | |
| }
 | |
| 
 | |
| static struct clocksource clocksource_apbt = {
 | |
| 	.name		= "apbt",
 | |
| 	.rating		= APBT_CLOCKSOURCE_RATING,
 | |
| 	.read		= apbt_read_clocksource,
 | |
| 	.mask		= APBT_MASK,
 | |
| 	.shift		= APBT_SHIFT,
 | |
| 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
 | |
| 	.resume		= apbt_restart_clocksource,
 | |
| };
 | |
| 
 | |
| /* boot APB clock event device */
 | |
| static struct clock_event_device apbt_clockevent = {
 | |
| 	.name		= "apbt0",
 | |
| 	.features	= CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
 | |
| 	.set_mode	= apbt_set_mode,
 | |
| 	.set_next_event = apbt_next_event,
 | |
| 	.shift		= APBT_SHIFT,
 | |
| 	.irq		= 0,
 | |
| 	.rating		= APBT_CLOCKEVENT_RATING,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * start count down from 0xffff_ffff. this is done by toggling the enable bit
 | |
|  * then load initial load count to ~0.
 | |
|  */
 | |
| static void apbt_start_counter(int n)
 | |
| {
 | |
| 	unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL);
 | |
| 
 | |
| 	ctrl &= ~APBTMR_CONTROL_ENABLE;
 | |
| 	apbt_writel(n, ctrl, APBTMR_N_CONTROL);
 | |
| 	apbt_writel(n, ~0, APBTMR_N_LOAD_COUNT);
 | |
| 	/* enable, mask interrupt */
 | |
| 	ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC;
 | |
| 	ctrl |= (APBTMR_CONTROL_ENABLE | APBTMR_CONTROL_INT);
 | |
| 	apbt_writel(n, ctrl, APBTMR_N_CONTROL);
 | |
| 	/* read it once to get cached counter value initialized */
 | |
| 	apbt_read_clocksource(&clocksource_apbt);
 | |
| }
 | |
| 
 | |
| static irqreturn_t apbt_interrupt_handler(int irq, void *data)
 | |
| {
 | |
| 	struct apbt_dev *dev = (struct apbt_dev *)data;
 | |
| 	struct clock_event_device *aevt = &dev->evt;
 | |
| 
 | |
| 	if (!aevt->event_handler) {
 | |
| 		printk(KERN_INFO "Spurious APBT timer interrupt on %d\n",
 | |
| 		       dev->num);
 | |
| 		return IRQ_NONE;
 | |
| 	}
 | |
| 	aevt->event_handler(aevt);
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| static void apbt_restart_clocksource(struct clocksource *cs)
 | |
| {
 | |
| 	apbt_start_counter(phy_cs_timer_id);
 | |
| }
 | |
| 
 | |
| static void apbt_enable_int(int n)
 | |
| {
 | |
| 	unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL);
 | |
| 	/* clear pending intr */
 | |
| 	apbt_readl(n, APBTMR_N_EOI);
 | |
| 	ctrl &= ~APBTMR_CONTROL_INT;
 | |
| 	apbt_writel(n, ctrl, APBTMR_N_CONTROL);
 | |
| }
 | |
| 
 | |
| static void apbt_disable_int(int n)
 | |
| {
 | |
| 	unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL);
 | |
| 
 | |
| 	ctrl |= APBTMR_CONTROL_INT;
 | |
| 	apbt_writel(n, ctrl, APBTMR_N_CONTROL);
 | |
| }
 | |
| 
 | |
| 
 | |
| static int __init apbt_clockevent_register(void)
 | |
| {
 | |
| 	struct sfi_timer_table_entry *mtmr;
 | |
| 	struct apbt_dev *adev = &__get_cpu_var(cpu_apbt_dev);
 | |
| 
 | |
| 	mtmr = sfi_get_mtmr(APBT_CLOCKEVENT0_NUM);
 | |
| 	if (mtmr == NULL) {
 | |
| 		printk(KERN_ERR "Failed to get MTMR %d from SFI\n",
 | |
| 		       APBT_CLOCKEVENT0_NUM);
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We need to calculate the scaled math multiplication factor for
 | |
| 	 * nanosecond to apbt tick conversion.
 | |
| 	 * mult = (nsec/cycle)*2^APBT_SHIFT
 | |
| 	 */
 | |
| 	apbt_clockevent.mult = div_sc((unsigned long) mtmr->freq_hz
 | |
| 				      , NSEC_PER_SEC, APBT_SHIFT);
 | |
| 
 | |
| 	/* Calculate the min / max delta */
 | |
| 	apbt_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
 | |
| 							   &apbt_clockevent);
 | |
| 	apbt_clockevent.min_delta_ns = clockevent_delta2ns(
 | |
| 		APBT_MIN_DELTA_USEC*apbt_freq,
 | |
| 		&apbt_clockevent);
 | |
| 	/*
 | |
| 	 * Start apbt with the boot cpu mask and make it
 | |
| 	 * global if not used for per cpu timer.
 | |
| 	 */
 | |
| 	apbt_clockevent.cpumask = cpumask_of(smp_processor_id());
 | |
| 	adev->num = smp_processor_id();
 | |
| 	memcpy(&adev->evt, &apbt_clockevent, sizeof(struct clock_event_device));
 | |
| 
 | |
| 	if (mrst_timer_options == MRST_TIMER_LAPIC_APBT) {
 | |
| 		adev->evt.rating = APBT_CLOCKEVENT_RATING - 100;
 | |
| 		global_clock_event = &adev->evt;
 | |
| 		printk(KERN_DEBUG "%s clockevent registered as global\n",
 | |
| 		       global_clock_event->name);
 | |
| 	}
 | |
| 
 | |
| 	if (request_irq(apbt_clockevent.irq, apbt_interrupt_handler,
 | |
| 			IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING,
 | |
| 			apbt_clockevent.name, adev)) {
 | |
| 		printk(KERN_ERR "Failed request IRQ for APBT%d\n",
 | |
| 		       apbt_clockevent.irq);
 | |
| 	}
 | |
| 
 | |
| 	clockevents_register_device(&adev->evt);
 | |
| 	/* Start APBT 0 interrupts */
 | |
| 	apbt_enable_int(APBT_CLOCKEVENT0_NUM);
 | |
| 
 | |
| 	sfi_free_mtmr(mtmr);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 
 | |
| static void apbt_setup_irq(struct apbt_dev *adev)
 | |
| {
 | |
| 	/* timer0 irq has been setup early */
 | |
| 	if (adev->irq == 0)
 | |
| 		return;
 | |
| 
 | |
| 	irq_modify_status(adev->irq, 0, IRQ_MOVE_PCNTXT);
 | |
| 	irq_set_affinity(adev->irq, cpumask_of(adev->cpu));
 | |
| 	/* APB timer irqs are set up as mp_irqs, timer is edge type */
 | |
| 	__set_irq_handler(adev->irq, handle_edge_irq, 0, "edge");
 | |
| 
 | |
| 	if (system_state == SYSTEM_BOOTING) {
 | |
| 		if (request_irq(adev->irq, apbt_interrupt_handler,
 | |
| 					IRQF_TIMER | IRQF_DISABLED |
 | |
| 					IRQF_NOBALANCING,
 | |
| 					adev->name, adev)) {
 | |
| 			printk(KERN_ERR "Failed request IRQ for APBT%d\n",
 | |
| 			       adev->num);
 | |
| 		}
 | |
| 	} else
 | |
| 		enable_irq(adev->irq);
 | |
| }
 | |
| 
 | |
| /* Should be called with per cpu */
 | |
| void apbt_setup_secondary_clock(void)
 | |
| {
 | |
| 	struct apbt_dev *adev;
 | |
| 	struct clock_event_device *aevt;
 | |
| 	int cpu;
 | |
| 
 | |
| 	/* Don't register boot CPU clockevent */
 | |
| 	cpu = smp_processor_id();
 | |
| 	if (!cpu)
 | |
| 		return;
 | |
| 	/*
 | |
| 	 * We need to calculate the scaled math multiplication factor for
 | |
| 	 * nanosecond to apbt tick conversion.
 | |
| 	 * mult = (nsec/cycle)*2^APBT_SHIFT
 | |
| 	 */
 | |
| 	printk(KERN_INFO "Init per CPU clockevent %d\n", cpu);
 | |
| 	adev = &per_cpu(cpu_apbt_dev, cpu);
 | |
| 	aevt = &adev->evt;
 | |
| 
 | |
| 	memcpy(aevt, &apbt_clockevent, sizeof(*aevt));
 | |
| 	aevt->cpumask = cpumask_of(cpu);
 | |
| 	aevt->name = adev->name;
 | |
| 	aevt->mode = CLOCK_EVT_MODE_UNUSED;
 | |
| 
 | |
| 	printk(KERN_INFO "Registering CPU %d clockevent device %s, mask %08x\n",
 | |
| 	       cpu, aevt->name, *(u32 *)aevt->cpumask);
 | |
| 
 | |
| 	apbt_setup_irq(adev);
 | |
| 
 | |
| 	clockevents_register_device(aevt);
 | |
| 
 | |
| 	apbt_enable_int(cpu);
 | |
| 
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * this notify handler process CPU hotplug events. in case of S0i3, nonboot
 | |
|  * cpus are disabled/enabled frequently, for performance reasons, we keep the
 | |
|  * per cpu timer irq registered so that we do need to do free_irq/request_irq.
 | |
|  *
 | |
|  * TODO: it might be more reliable to directly disable percpu clockevent device
 | |
|  * without the notifier chain. currently, cpu 0 may get interrupts from other
 | |
|  * cpu timers during the offline process due to the ordering of notification.
 | |
|  * the extra interrupt is harmless.
 | |
|  */
 | |
| static int apbt_cpuhp_notify(struct notifier_block *n,
 | |
| 			     unsigned long action, void *hcpu)
 | |
| {
 | |
| 	unsigned long cpu = (unsigned long)hcpu;
 | |
| 	struct apbt_dev *adev = &per_cpu(cpu_apbt_dev, cpu);
 | |
| 
 | |
| 	switch (action & 0xf) {
 | |
| 	case CPU_DEAD:
 | |
| 		disable_irq(adev->irq);
 | |
| 		apbt_disable_int(cpu);
 | |
| 		if (system_state == SYSTEM_RUNNING) {
 | |
| 			pr_debug("skipping APBT CPU %lu offline\n", cpu);
 | |
| 		} else if (adev) {
 | |
| 			pr_debug("APBT clockevent for cpu %lu offline\n", cpu);
 | |
| 			free_irq(adev->irq, adev);
 | |
| 		}
 | |
| 		break;
 | |
| 	default:
 | |
| 		pr_debug("APBT notified %lu, no action\n", action);
 | |
| 	}
 | |
| 	return NOTIFY_OK;
 | |
| }
 | |
| 
 | |
| static __init int apbt_late_init(void)
 | |
| {
 | |
| 	if (mrst_timer_options == MRST_TIMER_LAPIC_APBT ||
 | |
| 		!apb_timer_block_enabled)
 | |
| 		return 0;
 | |
| 	/* This notifier should be called after workqueue is ready */
 | |
| 	hotcpu_notifier(apbt_cpuhp_notify, -20);
 | |
| 	return 0;
 | |
| }
 | |
| fs_initcall(apbt_late_init);
 | |
| #else
 | |
| 
 | |
| void apbt_setup_secondary_clock(void) {}
 | |
| 
 | |
| #endif /* CONFIG_SMP */
 | |
| 
 | |
| static void apbt_set_mode(enum clock_event_mode mode,
 | |
| 			  struct clock_event_device *evt)
 | |
| {
 | |
| 	unsigned long ctrl;
 | |
| 	uint64_t delta;
 | |
| 	int timer_num;
 | |
| 	struct apbt_dev *adev = EVT_TO_APBT_DEV(evt);
 | |
| 
 | |
| 	BUG_ON(!apbt_virt_address);
 | |
| 
 | |
| 	timer_num = adev->num;
 | |
| 	pr_debug("%s CPU %d timer %d mode=%d\n",
 | |
| 		 __func__, first_cpu(*evt->cpumask), timer_num, mode);
 | |
| 
 | |
| 	switch (mode) {
 | |
| 	case CLOCK_EVT_MODE_PERIODIC:
 | |
| 		delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * apbt_clockevent.mult;
 | |
| 		delta >>= apbt_clockevent.shift;
 | |
| 		ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL);
 | |
| 		ctrl |= APBTMR_CONTROL_MODE_PERIODIC;
 | |
| 		apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
 | |
| 		/*
 | |
| 		 * DW APB p. 46, have to disable timer before load counter,
 | |
| 		 * may cause sync problem.
 | |
| 		 */
 | |
| 		ctrl &= ~APBTMR_CONTROL_ENABLE;
 | |
| 		apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
 | |
| 		udelay(1);
 | |
| 		pr_debug("Setting clock period %d for HZ %d\n", (int)delta, HZ);
 | |
| 		apbt_writel(timer_num, delta, APBTMR_N_LOAD_COUNT);
 | |
| 		ctrl |= APBTMR_CONTROL_ENABLE;
 | |
| 		apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
 | |
| 		break;
 | |
| 		/* APB timer does not have one-shot mode, use free running mode */
 | |
| 	case CLOCK_EVT_MODE_ONESHOT:
 | |
| 		ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL);
 | |
| 		/*
 | |
| 		 * set free running mode, this mode will let timer reload max
 | |
| 		 * timeout which will give time (3min on 25MHz clock) to rearm
 | |
| 		 * the next event, therefore emulate the one-shot mode.
 | |
| 		 */
 | |
| 		ctrl &= ~APBTMR_CONTROL_ENABLE;
 | |
| 		ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC;
 | |
| 
 | |
| 		apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
 | |
| 		/* write again to set free running mode */
 | |
| 		apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
 | |
| 
 | |
| 		/*
 | |
| 		 * DW APB p. 46, load counter with all 1s before starting free
 | |
| 		 * running mode.
 | |
| 		 */
 | |
| 		apbt_writel(timer_num, ~0, APBTMR_N_LOAD_COUNT);
 | |
| 		ctrl &= ~APBTMR_CONTROL_INT;
 | |
| 		ctrl |= APBTMR_CONTROL_ENABLE;
 | |
| 		apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
 | |
| 		break;
 | |
| 
 | |
| 	case CLOCK_EVT_MODE_UNUSED:
 | |
| 	case CLOCK_EVT_MODE_SHUTDOWN:
 | |
| 		apbt_disable_int(timer_num);
 | |
| 		ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL);
 | |
| 		ctrl &= ~APBTMR_CONTROL_ENABLE;
 | |
| 		apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
 | |
| 		break;
 | |
| 
 | |
| 	case CLOCK_EVT_MODE_RESUME:
 | |
| 		apbt_enable_int(timer_num);
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int apbt_next_event(unsigned long delta,
 | |
| 			   struct clock_event_device *evt)
 | |
| {
 | |
| 	unsigned long ctrl;
 | |
| 	int timer_num;
 | |
| 
 | |
| 	struct apbt_dev *adev = EVT_TO_APBT_DEV(evt);
 | |
| 
 | |
| 	timer_num = adev->num;
 | |
| 	/* Disable timer */
 | |
| 	ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL);
 | |
| 	ctrl &= ~APBTMR_CONTROL_ENABLE;
 | |
| 	apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
 | |
| 	/* write new count */
 | |
| 	apbt_writel(timer_num, delta, APBTMR_N_LOAD_COUNT);
 | |
| 	ctrl |= APBTMR_CONTROL_ENABLE;
 | |
| 	apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static cycle_t apbt_read_clocksource(struct clocksource *cs)
 | |
| {
 | |
| 	unsigned long current_count;
 | |
| 
 | |
| 	current_count = apbt_readl(phy_cs_timer_id, APBTMR_N_CURRENT_VALUE);
 | |
| 	return (cycle_t)~current_count;
 | |
| }
 | |
| 
 | |
| static int apbt_clocksource_register(void)
 | |
| {
 | |
| 	u64 start, now;
 | |
| 	cycle_t t1;
 | |
| 
 | |
| 	/* Start the counter, use timer 2 as source, timer 0/1 for event */
 | |
| 	apbt_start_counter(phy_cs_timer_id);
 | |
| 
 | |
| 	/* Verify whether apbt counter works */
 | |
| 	t1 = apbt_read_clocksource(&clocksource_apbt);
 | |
| 	rdtscll(start);
 | |
| 
 | |
| 	/*
 | |
| 	 * We don't know the TSC frequency yet, but waiting for
 | |
| 	 * 200000 TSC cycles is safe:
 | |
| 	 * 4 GHz == 50us
 | |
| 	 * 1 GHz == 200us
 | |
| 	 */
 | |
| 	do {
 | |
| 		rep_nop();
 | |
| 		rdtscll(now);
 | |
| 	} while ((now - start) < 200000UL);
 | |
| 
 | |
| 	/* APBT is the only always on clocksource, it has to work! */
 | |
| 	if (t1 == apbt_read_clocksource(&clocksource_apbt))
 | |
| 		panic("APBT counter not counting. APBT disabled\n");
 | |
| 
 | |
| 	/*
 | |
| 	 * initialize and register APBT clocksource
 | |
| 	 * convert that to ns/clock cycle
 | |
| 	 * mult = (ns/c) * 2^APBT_SHIFT
 | |
| 	 */
 | |
| 	clocksource_apbt.mult = div_sc(MSEC_PER_SEC,
 | |
| 				       (unsigned long) apbt_freq, APBT_SHIFT);
 | |
| 	clocksource_register(&clocksource_apbt);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Early setup the APBT timer, only use timer 0 for booting then switch to
 | |
|  * per CPU timer if possible.
 | |
|  * returns 1 if per cpu apbt is setup
 | |
|  * returns 0 if no per cpu apbt is chosen
 | |
|  * panic if set up failed, this is the only platform timer on Moorestown.
 | |
|  */
 | |
| void __init apbt_time_init(void)
 | |
| {
 | |
| #ifdef CONFIG_SMP
 | |
| 	int i;
 | |
| 	struct sfi_timer_table_entry *p_mtmr;
 | |
| 	unsigned int percpu_timer;
 | |
| 	struct apbt_dev *adev;
 | |
| #endif
 | |
| 
 | |
| 	if (apb_timer_block_enabled)
 | |
| 		return;
 | |
| 	apbt_set_mapping();
 | |
| 	if (apbt_virt_address) {
 | |
| 		pr_debug("Found APBT version 0x%lx\n",\
 | |
| 			 apbt_readl_reg(APBTMRS_COMP_VERSION));
 | |
| 	} else
 | |
| 		goto out_noapbt;
 | |
| 	/*
 | |
| 	 * Read the frequency and check for a sane value, for ESL model
 | |
| 	 * we extend the possible clock range to allow time scaling.
 | |
| 	 */
 | |
| 
 | |
| 	if (apbt_freq < APBT_MIN_FREQ || apbt_freq > APBT_MAX_FREQ) {
 | |
| 		pr_debug("APBT has invalid freq 0x%llx\n", apbt_freq);
 | |
| 		goto out_noapbt;
 | |
| 	}
 | |
| 	if (apbt_clocksource_register()) {
 | |
| 		pr_debug("APBT has failed to register clocksource\n");
 | |
| 		goto out_noapbt;
 | |
| 	}
 | |
| 	if (!apbt_clockevent_register())
 | |
| 		apb_timer_block_enabled = 1;
 | |
| 	else {
 | |
| 		pr_debug("APBT has failed to register clockevent\n");
 | |
| 		goto out_noapbt;
 | |
| 	}
 | |
| #ifdef CONFIG_SMP
 | |
| 	/* kernel cmdline disable apb timer, so we will use lapic timers */
 | |
| 	if (mrst_timer_options == MRST_TIMER_LAPIC_APBT) {
 | |
| 		printk(KERN_INFO "apbt: disabled per cpu timer\n");
 | |
| 		return;
 | |
| 	}
 | |
| 	pr_debug("%s: %d CPUs online\n", __func__, num_online_cpus());
 | |
| 	if (num_possible_cpus() <= sfi_mtimer_num) {
 | |
| 		percpu_timer = 1;
 | |
| 		apbt_num_timers_used = num_possible_cpus();
 | |
| 	} else {
 | |
| 		percpu_timer = 0;
 | |
| 		apbt_num_timers_used = 1;
 | |
| 		adev = &per_cpu(cpu_apbt_dev, 0);
 | |
| 		adev->flags &= ~APBT_DEV_USED;
 | |
| 	}
 | |
| 	pr_debug("%s: %d APB timers used\n", __func__, apbt_num_timers_used);
 | |
| 
 | |
| 	/* here we set up per CPU timer data structure */
 | |
| 	apbt_devs = kzalloc(sizeof(struct apbt_dev) * apbt_num_timers_used,
 | |
| 			    GFP_KERNEL);
 | |
| 	if (!apbt_devs) {
 | |
| 		printk(KERN_ERR "Failed to allocate APB timer devices\n");
 | |
| 		return;
 | |
| 	}
 | |
| 	for (i = 0; i < apbt_num_timers_used; i++) {
 | |
| 		adev = &per_cpu(cpu_apbt_dev, i);
 | |
| 		adev->num = i;
 | |
| 		adev->cpu = i;
 | |
| 		p_mtmr = sfi_get_mtmr(i);
 | |
| 		if (p_mtmr) {
 | |
| 			adev->tick = p_mtmr->freq_hz;
 | |
| 			adev->irq = p_mtmr->irq;
 | |
| 		} else
 | |
| 			printk(KERN_ERR "Failed to get timer for cpu %d\n", i);
 | |
| 		adev->count = 0;
 | |
| 		sprintf(adev->name, "apbt%d", i);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	return;
 | |
| 
 | |
| out_noapbt:
 | |
| 	apbt_clear_mapping();
 | |
| 	apb_timer_block_enabled = 0;
 | |
| 	panic("failed to enable APB timer\n");
 | |
| }
 | |
| 
 | |
| static inline void apbt_disable(int n)
 | |
| {
 | |
| 	if (is_apbt_capable()) {
 | |
| 		unsigned long ctrl =  apbt_readl(n, APBTMR_N_CONTROL);
 | |
| 		ctrl &= ~APBTMR_CONTROL_ENABLE;
 | |
| 		apbt_writel(n, ctrl, APBTMR_N_CONTROL);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* called before apb_timer_enable, use early map */
 | |
| unsigned long apbt_quick_calibrate()
 | |
| {
 | |
| 	int i, scale;
 | |
| 	u64 old, new;
 | |
| 	cycle_t t1, t2;
 | |
| 	unsigned long khz = 0;
 | |
| 	u32 loop, shift;
 | |
| 
 | |
| 	apbt_set_mapping();
 | |
| 	apbt_start_counter(phy_cs_timer_id);
 | |
| 
 | |
| 	/* check if the timer can count down, otherwise return */
 | |
| 	old = apbt_read_clocksource(&clocksource_apbt);
 | |
| 	i = 10000;
 | |
| 	while (--i) {
 | |
| 		if (old != apbt_read_clocksource(&clocksource_apbt))
 | |
| 			break;
 | |
| 	}
 | |
| 	if (!i)
 | |
| 		goto failed;
 | |
| 
 | |
| 	/* count 16 ms */
 | |
| 	loop = (apbt_freq * 1000) << 4;
 | |
| 
 | |
| 	/* restart the timer to ensure it won't get to 0 in the calibration */
 | |
| 	apbt_start_counter(phy_cs_timer_id);
 | |
| 
 | |
| 	old = apbt_read_clocksource(&clocksource_apbt);
 | |
| 	old += loop;
 | |
| 
 | |
| 	t1 = __native_read_tsc();
 | |
| 
 | |
| 	do {
 | |
| 		new = apbt_read_clocksource(&clocksource_apbt);
 | |
| 	} while (new < old);
 | |
| 
 | |
| 	t2 = __native_read_tsc();
 | |
| 
 | |
| 	shift = 5;
 | |
| 	if (unlikely(loop >> shift == 0)) {
 | |
| 		printk(KERN_INFO
 | |
| 		       "APBT TSC calibration failed, not enough resolution\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 	scale = (int)div_u64((t2 - t1), loop >> shift);
 | |
| 	khz = (scale * apbt_freq * 1000) >> shift;
 | |
| 	printk(KERN_INFO "TSC freq calculated by APB timer is %lu khz\n", khz);
 | |
| 	return khz;
 | |
| failed:
 | |
| 	return 0;
 | |
| }
 |