sched_clock is supposed to be initialized early - in the recently added init_early platform hook. However, in doing so we end up calling mod_timer() before the timer lists are initialized, resulting in an oops. Split the initialization in two - the part which the platform calls early which starts things off. The addition of the timer can be delayed until after we have more of the kernel initialized - when the normal time sources are initialized. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
		
			
				
	
	
		
			120 lines
		
	
	
	
		
			3.4 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			120 lines
		
	
	
	
		
			3.4 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * sched_clock.h: support for extending counters to full 64-bit ns counter
 | 
						|
 *
 | 
						|
 * This program is free software; you can redistribute it and/or modify
 | 
						|
 * it under the terms of the GNU General Public License version 2 as
 | 
						|
 * published by the Free Software Foundation.
 | 
						|
 */
 | 
						|
#ifndef ASM_SCHED_CLOCK
 | 
						|
#define ASM_SCHED_CLOCK
 | 
						|
 | 
						|
#include <linux/kernel.h>
 | 
						|
#include <linux/types.h>
 | 
						|
 | 
						|
struct clock_data {
 | 
						|
	u64 epoch_ns;
 | 
						|
	u32 epoch_cyc;
 | 
						|
	u32 epoch_cyc_copy;
 | 
						|
	u32 mult;
 | 
						|
	u32 shift;
 | 
						|
};
 | 
						|
 | 
						|
#define DEFINE_CLOCK_DATA(name)	struct clock_data name
 | 
						|
 | 
						|
static inline u64 cyc_to_ns(u64 cyc, u32 mult, u32 shift)
 | 
						|
{
 | 
						|
	return (cyc * mult) >> shift;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Atomically update the sched_clock epoch.  Your update callback will
 | 
						|
 * be called from a timer before the counter wraps - read the current
 | 
						|
 * counter value, and call this function to safely move the epochs
 | 
						|
 * forward.  Only use this from the update callback.
 | 
						|
 */
 | 
						|
static inline void update_sched_clock(struct clock_data *cd, u32 cyc, u32 mask)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	u64 ns = cd->epoch_ns +
 | 
						|
		cyc_to_ns((cyc - cd->epoch_cyc) & mask, cd->mult, cd->shift);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Write epoch_cyc and epoch_ns in a way that the update is
 | 
						|
	 * detectable in cyc_to_fixed_sched_clock().
 | 
						|
	 */
 | 
						|
	raw_local_irq_save(flags);
 | 
						|
	cd->epoch_cyc = cyc;
 | 
						|
	smp_wmb();
 | 
						|
	cd->epoch_ns = ns;
 | 
						|
	smp_wmb();
 | 
						|
	cd->epoch_cyc_copy = cyc;
 | 
						|
	raw_local_irq_restore(flags);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * If your clock rate is known at compile time, using this will allow
 | 
						|
 * you to optimize the mult/shift loads away.  This is paired with
 | 
						|
 * init_fixed_sched_clock() to ensure that your mult/shift are correct.
 | 
						|
 */
 | 
						|
static inline unsigned long long cyc_to_fixed_sched_clock(struct clock_data *cd,
 | 
						|
	u32 cyc, u32 mask, u32 mult, u32 shift)
 | 
						|
{
 | 
						|
	u64 epoch_ns;
 | 
						|
	u32 epoch_cyc;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Load the epoch_cyc and epoch_ns atomically.  We do this by
 | 
						|
	 * ensuring that we always write epoch_cyc, epoch_ns and
 | 
						|
	 * epoch_cyc_copy in strict order, and read them in strict order.
 | 
						|
	 * If epoch_cyc and epoch_cyc_copy are not equal, then we're in
 | 
						|
	 * the middle of an update, and we should repeat the load.
 | 
						|
	 */
 | 
						|
	do {
 | 
						|
		epoch_cyc = cd->epoch_cyc;
 | 
						|
		smp_rmb();
 | 
						|
		epoch_ns = cd->epoch_ns;
 | 
						|
		smp_rmb();
 | 
						|
	} while (epoch_cyc != cd->epoch_cyc_copy);
 | 
						|
 | 
						|
	return epoch_ns + cyc_to_ns((cyc - epoch_cyc) & mask, mult, shift);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Otherwise, you need to use this, which will obtain the mult/shift
 | 
						|
 * from the clock_data structure.  Use init_sched_clock() with this.
 | 
						|
 */
 | 
						|
static inline unsigned long long cyc_to_sched_clock(struct clock_data *cd,
 | 
						|
	u32 cyc, u32 mask)
 | 
						|
{
 | 
						|
	return cyc_to_fixed_sched_clock(cd, cyc, mask, cd->mult, cd->shift);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Initialize the clock data - calculate the appropriate multiplier
 | 
						|
 * and shift.  Also setup a timer to ensure that the epoch is refreshed
 | 
						|
 * at the appropriate time interval, which will call your update
 | 
						|
 * handler.
 | 
						|
 */
 | 
						|
void init_sched_clock(struct clock_data *, void (*)(void),
 | 
						|
	unsigned int, unsigned long);
 | 
						|
 | 
						|
/*
 | 
						|
 * Use this initialization function rather than init_sched_clock() if
 | 
						|
 * you're using cyc_to_fixed_sched_clock, which will warn if your
 | 
						|
 * constants are incorrect.
 | 
						|
 */
 | 
						|
static inline void init_fixed_sched_clock(struct clock_data *cd,
 | 
						|
	void (*update)(void), unsigned int bits, unsigned long rate,
 | 
						|
	u32 mult, u32 shift)
 | 
						|
{
 | 
						|
	init_sched_clock(cd, update, bits, rate);
 | 
						|
	if (cd->mult != mult || cd->shift != shift) {
 | 
						|
		pr_crit("sched_clock: wrong multiply/shift: %u>>%u vs calculated %u>>%u\n"
 | 
						|
			"sched_clock: fix multiply/shift to avoid scheduler hiccups\n",
 | 
						|
			mult, shift, cd->mult, cd->shift);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
extern void sched_clock_postinit(void);
 | 
						|
 | 
						|
#endif
 |