 1a6404a1d8
			
		
	
	
	1a6404a1d8
	
	
	
		
			
			On joining an existing IBSS network, beaconing has to start only after a TSF sync has happened by receiving a beacon from the BSS. In creator mode, beaconing can start immediately after a HW reset has been done. Now that mac80211 notifies the driver of the mode type (creator/joiner) via ieee80211_bss_conf->ibss_creator, make use of it to properly setup the HW beacon timers. Signed-off-by: Sujith Manoharan <c_manoha@qca.qualcomm.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
		
			
				
	
	
		
			1381 lines
		
	
	
	
		
			36 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1381 lines
		
	
	
	
		
			36 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2008-2011 Atheros Communications Inc.
 | |
|  *
 | |
|  * Permission to use, copy, modify, and/or distribute this software for any
 | |
|  * purpose with or without fee is hereby granted, provided that the above
 | |
|  * copyright notice and this permission notice appear in all copies.
 | |
|  *
 | |
|  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 | |
|  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 | |
|  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 | |
|  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 | |
|  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 | |
|  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 | |
|  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 | |
|  */
 | |
| 
 | |
| #include <linux/dma-mapping.h>
 | |
| #include <linux/relay.h>
 | |
| #include "ath9k.h"
 | |
| #include "ar9003_mac.h"
 | |
| 
 | |
| #define SKB_CB_ATHBUF(__skb)	(*((struct ath_buf **)__skb->cb))
 | |
| 
 | |
| static inline bool ath9k_check_auto_sleep(struct ath_softc *sc)
 | |
| {
 | |
| 	return sc->ps_enabled &&
 | |
| 	       (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_AUTOSLEEP);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Setup and link descriptors.
 | |
|  *
 | |
|  * 11N: we can no longer afford to self link the last descriptor.
 | |
|  * MAC acknowledges BA status as long as it copies frames to host
 | |
|  * buffer (or rx fifo). This can incorrectly acknowledge packets
 | |
|  * to a sender if last desc is self-linked.
 | |
|  */
 | |
| static void ath_rx_buf_link(struct ath_softc *sc, struct ath_buf *bf)
 | |
| {
 | |
| 	struct ath_hw *ah = sc->sc_ah;
 | |
| 	struct ath_common *common = ath9k_hw_common(ah);
 | |
| 	struct ath_desc *ds;
 | |
| 	struct sk_buff *skb;
 | |
| 
 | |
| 	ATH_RXBUF_RESET(bf);
 | |
| 
 | |
| 	ds = bf->bf_desc;
 | |
| 	ds->ds_link = 0; /* link to null */
 | |
| 	ds->ds_data = bf->bf_buf_addr;
 | |
| 
 | |
| 	/* virtual addr of the beginning of the buffer. */
 | |
| 	skb = bf->bf_mpdu;
 | |
| 	BUG_ON(skb == NULL);
 | |
| 	ds->ds_vdata = skb->data;
 | |
| 
 | |
| 	/*
 | |
| 	 * setup rx descriptors. The rx_bufsize here tells the hardware
 | |
| 	 * how much data it can DMA to us and that we are prepared
 | |
| 	 * to process
 | |
| 	 */
 | |
| 	ath9k_hw_setuprxdesc(ah, ds,
 | |
| 			     common->rx_bufsize,
 | |
| 			     0);
 | |
| 
 | |
| 	if (sc->rx.rxlink == NULL)
 | |
| 		ath9k_hw_putrxbuf(ah, bf->bf_daddr);
 | |
| 	else
 | |
| 		*sc->rx.rxlink = bf->bf_daddr;
 | |
| 
 | |
| 	sc->rx.rxlink = &ds->ds_link;
 | |
| }
 | |
| 
 | |
| static void ath_setdefantenna(struct ath_softc *sc, u32 antenna)
 | |
| {
 | |
| 	/* XXX block beacon interrupts */
 | |
| 	ath9k_hw_setantenna(sc->sc_ah, antenna);
 | |
| 	sc->rx.defant = antenna;
 | |
| 	sc->rx.rxotherant = 0;
 | |
| }
 | |
| 
 | |
| static void ath_opmode_init(struct ath_softc *sc)
 | |
| {
 | |
| 	struct ath_hw *ah = sc->sc_ah;
 | |
| 	struct ath_common *common = ath9k_hw_common(ah);
 | |
| 
 | |
| 	u32 rfilt, mfilt[2];
 | |
| 
 | |
| 	/* configure rx filter */
 | |
| 	rfilt = ath_calcrxfilter(sc);
 | |
| 	ath9k_hw_setrxfilter(ah, rfilt);
 | |
| 
 | |
| 	/* configure bssid mask */
 | |
| 	ath_hw_setbssidmask(common);
 | |
| 
 | |
| 	/* configure operational mode */
 | |
| 	ath9k_hw_setopmode(ah);
 | |
| 
 | |
| 	/* calculate and install multicast filter */
 | |
| 	mfilt[0] = mfilt[1] = ~0;
 | |
| 	ath9k_hw_setmcastfilter(ah, mfilt[0], mfilt[1]);
 | |
| }
 | |
| 
 | |
| static bool ath_rx_edma_buf_link(struct ath_softc *sc,
 | |
| 				 enum ath9k_rx_qtype qtype)
 | |
| {
 | |
| 	struct ath_hw *ah = sc->sc_ah;
 | |
| 	struct ath_rx_edma *rx_edma;
 | |
| 	struct sk_buff *skb;
 | |
| 	struct ath_buf *bf;
 | |
| 
 | |
| 	rx_edma = &sc->rx.rx_edma[qtype];
 | |
| 	if (skb_queue_len(&rx_edma->rx_fifo) >= rx_edma->rx_fifo_hwsize)
 | |
| 		return false;
 | |
| 
 | |
| 	bf = list_first_entry(&sc->rx.rxbuf, struct ath_buf, list);
 | |
| 	list_del_init(&bf->list);
 | |
| 
 | |
| 	skb = bf->bf_mpdu;
 | |
| 
 | |
| 	ATH_RXBUF_RESET(bf);
 | |
| 	memset(skb->data, 0, ah->caps.rx_status_len);
 | |
| 	dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
 | |
| 				ah->caps.rx_status_len, DMA_TO_DEVICE);
 | |
| 
 | |
| 	SKB_CB_ATHBUF(skb) = bf;
 | |
| 	ath9k_hw_addrxbuf_edma(ah, bf->bf_buf_addr, qtype);
 | |
| 	skb_queue_tail(&rx_edma->rx_fifo, skb);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static void ath_rx_addbuffer_edma(struct ath_softc *sc,
 | |
| 				  enum ath9k_rx_qtype qtype, int size)
 | |
| {
 | |
| 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
 | |
| 	struct ath_buf *bf, *tbf;
 | |
| 
 | |
| 	if (list_empty(&sc->rx.rxbuf)) {
 | |
| 		ath_dbg(common, QUEUE, "No free rx buf available\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list)
 | |
| 		if (!ath_rx_edma_buf_link(sc, qtype))
 | |
| 			break;
 | |
| 
 | |
| }
 | |
| 
 | |
| static void ath_rx_remove_buffer(struct ath_softc *sc,
 | |
| 				 enum ath9k_rx_qtype qtype)
 | |
| {
 | |
| 	struct ath_buf *bf;
 | |
| 	struct ath_rx_edma *rx_edma;
 | |
| 	struct sk_buff *skb;
 | |
| 
 | |
| 	rx_edma = &sc->rx.rx_edma[qtype];
 | |
| 
 | |
| 	while ((skb = skb_dequeue(&rx_edma->rx_fifo)) != NULL) {
 | |
| 		bf = SKB_CB_ATHBUF(skb);
 | |
| 		BUG_ON(!bf);
 | |
| 		list_add_tail(&bf->list, &sc->rx.rxbuf);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void ath_rx_edma_cleanup(struct ath_softc *sc)
 | |
| {
 | |
| 	struct ath_hw *ah = sc->sc_ah;
 | |
| 	struct ath_common *common = ath9k_hw_common(ah);
 | |
| 	struct ath_buf *bf;
 | |
| 
 | |
| 	ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP);
 | |
| 	ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP);
 | |
| 
 | |
| 	list_for_each_entry(bf, &sc->rx.rxbuf, list) {
 | |
| 		if (bf->bf_mpdu) {
 | |
| 			dma_unmap_single(sc->dev, bf->bf_buf_addr,
 | |
| 					common->rx_bufsize,
 | |
| 					DMA_BIDIRECTIONAL);
 | |
| 			dev_kfree_skb_any(bf->bf_mpdu);
 | |
| 			bf->bf_buf_addr = 0;
 | |
| 			bf->bf_mpdu = NULL;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void ath_rx_edma_init_queue(struct ath_rx_edma *rx_edma, int size)
 | |
| {
 | |
| 	skb_queue_head_init(&rx_edma->rx_fifo);
 | |
| 	rx_edma->rx_fifo_hwsize = size;
 | |
| }
 | |
| 
 | |
| static int ath_rx_edma_init(struct ath_softc *sc, int nbufs)
 | |
| {
 | |
| 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
 | |
| 	struct ath_hw *ah = sc->sc_ah;
 | |
| 	struct sk_buff *skb;
 | |
| 	struct ath_buf *bf;
 | |
| 	int error = 0, i;
 | |
| 	u32 size;
 | |
| 
 | |
| 	ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
 | |
| 				    ah->caps.rx_status_len);
 | |
| 
 | |
| 	ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_LP],
 | |
| 			       ah->caps.rx_lp_qdepth);
 | |
| 	ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_HP],
 | |
| 			       ah->caps.rx_hp_qdepth);
 | |
| 
 | |
| 	size = sizeof(struct ath_buf) * nbufs;
 | |
| 	bf = devm_kzalloc(sc->dev, size, GFP_KERNEL);
 | |
| 	if (!bf)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&sc->rx.rxbuf);
 | |
| 
 | |
| 	for (i = 0; i < nbufs; i++, bf++) {
 | |
| 		skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_KERNEL);
 | |
| 		if (!skb) {
 | |
| 			error = -ENOMEM;
 | |
| 			goto rx_init_fail;
 | |
| 		}
 | |
| 
 | |
| 		memset(skb->data, 0, common->rx_bufsize);
 | |
| 		bf->bf_mpdu = skb;
 | |
| 
 | |
| 		bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
 | |
| 						 common->rx_bufsize,
 | |
| 						 DMA_BIDIRECTIONAL);
 | |
| 		if (unlikely(dma_mapping_error(sc->dev,
 | |
| 						bf->bf_buf_addr))) {
 | |
| 				dev_kfree_skb_any(skb);
 | |
| 				bf->bf_mpdu = NULL;
 | |
| 				bf->bf_buf_addr = 0;
 | |
| 				ath_err(common,
 | |
| 					"dma_mapping_error() on RX init\n");
 | |
| 				error = -ENOMEM;
 | |
| 				goto rx_init_fail;
 | |
| 		}
 | |
| 
 | |
| 		list_add_tail(&bf->list, &sc->rx.rxbuf);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| rx_init_fail:
 | |
| 	ath_rx_edma_cleanup(sc);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| static void ath_edma_start_recv(struct ath_softc *sc)
 | |
| {
 | |
| 	ath9k_hw_rxena(sc->sc_ah);
 | |
| 
 | |
| 	ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_HP,
 | |
| 			      sc->rx.rx_edma[ATH9K_RX_QUEUE_HP].rx_fifo_hwsize);
 | |
| 
 | |
| 	ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_LP,
 | |
| 			      sc->rx.rx_edma[ATH9K_RX_QUEUE_LP].rx_fifo_hwsize);
 | |
| 
 | |
| 	ath_opmode_init(sc);
 | |
| 
 | |
| 	ath9k_hw_startpcureceive(sc->sc_ah, !!(sc->hw->conf.flags & IEEE80211_CONF_OFFCHANNEL));
 | |
| }
 | |
| 
 | |
| static void ath_edma_stop_recv(struct ath_softc *sc)
 | |
| {
 | |
| 	ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP);
 | |
| 	ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP);
 | |
| }
 | |
| 
 | |
| int ath_rx_init(struct ath_softc *sc, int nbufs)
 | |
| {
 | |
| 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
 | |
| 	struct sk_buff *skb;
 | |
| 	struct ath_buf *bf;
 | |
| 	int error = 0;
 | |
| 
 | |
| 	spin_lock_init(&sc->sc_pcu_lock);
 | |
| 
 | |
| 	common->rx_bufsize = IEEE80211_MAX_MPDU_LEN / 2 +
 | |
| 			     sc->sc_ah->caps.rx_status_len;
 | |
| 
 | |
| 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
 | |
| 		return ath_rx_edma_init(sc, nbufs);
 | |
| 	} else {
 | |
| 		ath_dbg(common, CONFIG, "cachelsz %u rxbufsize %u\n",
 | |
| 			common->cachelsz, common->rx_bufsize);
 | |
| 
 | |
| 		/* Initialize rx descriptors */
 | |
| 
 | |
| 		error = ath_descdma_setup(sc, &sc->rx.rxdma, &sc->rx.rxbuf,
 | |
| 				"rx", nbufs, 1, 0);
 | |
| 		if (error != 0) {
 | |
| 			ath_err(common,
 | |
| 				"failed to allocate rx descriptors: %d\n",
 | |
| 				error);
 | |
| 			goto err;
 | |
| 		}
 | |
| 
 | |
| 		list_for_each_entry(bf, &sc->rx.rxbuf, list) {
 | |
| 			skb = ath_rxbuf_alloc(common, common->rx_bufsize,
 | |
| 					      GFP_KERNEL);
 | |
| 			if (skb == NULL) {
 | |
| 				error = -ENOMEM;
 | |
| 				goto err;
 | |
| 			}
 | |
| 
 | |
| 			bf->bf_mpdu = skb;
 | |
| 			bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
 | |
| 					common->rx_bufsize,
 | |
| 					DMA_FROM_DEVICE);
 | |
| 			if (unlikely(dma_mapping_error(sc->dev,
 | |
| 							bf->bf_buf_addr))) {
 | |
| 				dev_kfree_skb_any(skb);
 | |
| 				bf->bf_mpdu = NULL;
 | |
| 				bf->bf_buf_addr = 0;
 | |
| 				ath_err(common,
 | |
| 					"dma_mapping_error() on RX init\n");
 | |
| 				error = -ENOMEM;
 | |
| 				goto err;
 | |
| 			}
 | |
| 		}
 | |
| 		sc->rx.rxlink = NULL;
 | |
| 	}
 | |
| 
 | |
| err:
 | |
| 	if (error)
 | |
| 		ath_rx_cleanup(sc);
 | |
| 
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| void ath_rx_cleanup(struct ath_softc *sc)
 | |
| {
 | |
| 	struct ath_hw *ah = sc->sc_ah;
 | |
| 	struct ath_common *common = ath9k_hw_common(ah);
 | |
| 	struct sk_buff *skb;
 | |
| 	struct ath_buf *bf;
 | |
| 
 | |
| 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
 | |
| 		ath_rx_edma_cleanup(sc);
 | |
| 		return;
 | |
| 	} else {
 | |
| 		list_for_each_entry(bf, &sc->rx.rxbuf, list) {
 | |
| 			skb = bf->bf_mpdu;
 | |
| 			if (skb) {
 | |
| 				dma_unmap_single(sc->dev, bf->bf_buf_addr,
 | |
| 						common->rx_bufsize,
 | |
| 						DMA_FROM_DEVICE);
 | |
| 				dev_kfree_skb(skb);
 | |
| 				bf->bf_buf_addr = 0;
 | |
| 				bf->bf_mpdu = NULL;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Calculate the receive filter according to the
 | |
|  * operating mode and state:
 | |
|  *
 | |
|  * o always accept unicast, broadcast, and multicast traffic
 | |
|  * o maintain current state of phy error reception (the hal
 | |
|  *   may enable phy error frames for noise immunity work)
 | |
|  * o probe request frames are accepted only when operating in
 | |
|  *   hostap, adhoc, or monitor modes
 | |
|  * o enable promiscuous mode according to the interface state
 | |
|  * o accept beacons:
 | |
|  *   - when operating in adhoc mode so the 802.11 layer creates
 | |
|  *     node table entries for peers,
 | |
|  *   - when operating in station mode for collecting rssi data when
 | |
|  *     the station is otherwise quiet, or
 | |
|  *   - when operating as a repeater so we see repeater-sta beacons
 | |
|  *   - when scanning
 | |
|  */
 | |
| 
 | |
| u32 ath_calcrxfilter(struct ath_softc *sc)
 | |
| {
 | |
| 	u32 rfilt;
 | |
| 
 | |
| 	rfilt = ATH9K_RX_FILTER_UCAST | ATH9K_RX_FILTER_BCAST
 | |
| 		| ATH9K_RX_FILTER_MCAST;
 | |
| 
 | |
| 	if (sc->rx.rxfilter & FIF_PROBE_REQ)
 | |
| 		rfilt |= ATH9K_RX_FILTER_PROBEREQ;
 | |
| 
 | |
| 	/*
 | |
| 	 * Set promiscuous mode when FIF_PROMISC_IN_BSS is enabled for station
 | |
| 	 * mode interface or when in monitor mode. AP mode does not need this
 | |
| 	 * since it receives all in-BSS frames anyway.
 | |
| 	 */
 | |
| 	if (sc->sc_ah->is_monitoring)
 | |
| 		rfilt |= ATH9K_RX_FILTER_PROM;
 | |
| 
 | |
| 	if (sc->rx.rxfilter & FIF_CONTROL)
 | |
| 		rfilt |= ATH9K_RX_FILTER_CONTROL;
 | |
| 
 | |
| 	if ((sc->sc_ah->opmode == NL80211_IFTYPE_STATION) &&
 | |
| 	    (sc->nvifs <= 1) &&
 | |
| 	    !(sc->rx.rxfilter & FIF_BCN_PRBRESP_PROMISC))
 | |
| 		rfilt |= ATH9K_RX_FILTER_MYBEACON;
 | |
| 	else
 | |
| 		rfilt |= ATH9K_RX_FILTER_BEACON;
 | |
| 
 | |
| 	if ((sc->sc_ah->opmode == NL80211_IFTYPE_AP) ||
 | |
| 	    (sc->rx.rxfilter & FIF_PSPOLL))
 | |
| 		rfilt |= ATH9K_RX_FILTER_PSPOLL;
 | |
| 
 | |
| 	if (conf_is_ht(&sc->hw->conf))
 | |
| 		rfilt |= ATH9K_RX_FILTER_COMP_BAR;
 | |
| 
 | |
| 	if (sc->nvifs > 1 || (sc->rx.rxfilter & FIF_OTHER_BSS)) {
 | |
| 		/* This is needed for older chips */
 | |
| 		if (sc->sc_ah->hw_version.macVersion <= AR_SREV_VERSION_9160)
 | |
| 			rfilt |= ATH9K_RX_FILTER_PROM;
 | |
| 		rfilt |= ATH9K_RX_FILTER_MCAST_BCAST_ALL;
 | |
| 	}
 | |
| 
 | |
| 	if (AR_SREV_9550(sc->sc_ah))
 | |
| 		rfilt |= ATH9K_RX_FILTER_4ADDRESS;
 | |
| 
 | |
| 	return rfilt;
 | |
| 
 | |
| }
 | |
| 
 | |
| int ath_startrecv(struct ath_softc *sc)
 | |
| {
 | |
| 	struct ath_hw *ah = sc->sc_ah;
 | |
| 	struct ath_buf *bf, *tbf;
 | |
| 
 | |
| 	if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
 | |
| 		ath_edma_start_recv(sc);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (list_empty(&sc->rx.rxbuf))
 | |
| 		goto start_recv;
 | |
| 
 | |
| 	sc->rx.rxlink = NULL;
 | |
| 	list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list) {
 | |
| 		ath_rx_buf_link(sc, bf);
 | |
| 	}
 | |
| 
 | |
| 	/* We could have deleted elements so the list may be empty now */
 | |
| 	if (list_empty(&sc->rx.rxbuf))
 | |
| 		goto start_recv;
 | |
| 
 | |
| 	bf = list_first_entry(&sc->rx.rxbuf, struct ath_buf, list);
 | |
| 	ath9k_hw_putrxbuf(ah, bf->bf_daddr);
 | |
| 	ath9k_hw_rxena(ah);
 | |
| 
 | |
| start_recv:
 | |
| 	ath_opmode_init(sc);
 | |
| 	ath9k_hw_startpcureceive(ah, !!(sc->hw->conf.flags & IEEE80211_CONF_OFFCHANNEL));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void ath_flushrecv(struct ath_softc *sc)
 | |
| {
 | |
| 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
 | |
| 		ath_rx_tasklet(sc, 1, true);
 | |
| 	ath_rx_tasklet(sc, 1, false);
 | |
| }
 | |
| 
 | |
| bool ath_stoprecv(struct ath_softc *sc)
 | |
| {
 | |
| 	struct ath_hw *ah = sc->sc_ah;
 | |
| 	bool stopped, reset = false;
 | |
| 
 | |
| 	ath9k_hw_abortpcurecv(ah);
 | |
| 	ath9k_hw_setrxfilter(ah, 0);
 | |
| 	stopped = ath9k_hw_stopdmarecv(ah, &reset);
 | |
| 
 | |
| 	ath_flushrecv(sc);
 | |
| 
 | |
| 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
 | |
| 		ath_edma_stop_recv(sc);
 | |
| 	else
 | |
| 		sc->rx.rxlink = NULL;
 | |
| 
 | |
| 	if (!(ah->ah_flags & AH_UNPLUGGED) &&
 | |
| 	    unlikely(!stopped)) {
 | |
| 		ath_err(ath9k_hw_common(sc->sc_ah),
 | |
| 			"Could not stop RX, we could be "
 | |
| 			"confusing the DMA engine when we start RX up\n");
 | |
| 		ATH_DBG_WARN_ON_ONCE(!stopped);
 | |
| 	}
 | |
| 	return stopped && !reset;
 | |
| }
 | |
| 
 | |
| static bool ath_beacon_dtim_pending_cab(struct sk_buff *skb)
 | |
| {
 | |
| 	/* Check whether the Beacon frame has DTIM indicating buffered bc/mc */
 | |
| 	struct ieee80211_mgmt *mgmt;
 | |
| 	u8 *pos, *end, id, elen;
 | |
| 	struct ieee80211_tim_ie *tim;
 | |
| 
 | |
| 	mgmt = (struct ieee80211_mgmt *)skb->data;
 | |
| 	pos = mgmt->u.beacon.variable;
 | |
| 	end = skb->data + skb->len;
 | |
| 
 | |
| 	while (pos + 2 < end) {
 | |
| 		id = *pos++;
 | |
| 		elen = *pos++;
 | |
| 		if (pos + elen > end)
 | |
| 			break;
 | |
| 
 | |
| 		if (id == WLAN_EID_TIM) {
 | |
| 			if (elen < sizeof(*tim))
 | |
| 				break;
 | |
| 			tim = (struct ieee80211_tim_ie *) pos;
 | |
| 			if (tim->dtim_count != 0)
 | |
| 				break;
 | |
| 			return tim->bitmap_ctrl & 0x01;
 | |
| 		}
 | |
| 
 | |
| 		pos += elen;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static void ath_rx_ps_beacon(struct ath_softc *sc, struct sk_buff *skb)
 | |
| {
 | |
| 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
 | |
| 
 | |
| 	if (skb->len < 24 + 8 + 2 + 2)
 | |
| 		return;
 | |
| 
 | |
| 	sc->ps_flags &= ~PS_WAIT_FOR_BEACON;
 | |
| 
 | |
| 	if (sc->ps_flags & PS_BEACON_SYNC) {
 | |
| 		sc->ps_flags &= ~PS_BEACON_SYNC;
 | |
| 		ath_dbg(common, PS,
 | |
| 			"Reconfigure beacon timers based on synchronized timestamp\n");
 | |
| 		ath9k_set_beacon(sc);
 | |
| 	}
 | |
| 
 | |
| 	if (ath_beacon_dtim_pending_cab(skb)) {
 | |
| 		/*
 | |
| 		 * Remain awake waiting for buffered broadcast/multicast
 | |
| 		 * frames. If the last broadcast/multicast frame is not
 | |
| 		 * received properly, the next beacon frame will work as
 | |
| 		 * a backup trigger for returning into NETWORK SLEEP state,
 | |
| 		 * so we are waiting for it as well.
 | |
| 		 */
 | |
| 		ath_dbg(common, PS,
 | |
| 			"Received DTIM beacon indicating buffered broadcast/multicast frame(s)\n");
 | |
| 		sc->ps_flags |= PS_WAIT_FOR_CAB | PS_WAIT_FOR_BEACON;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (sc->ps_flags & PS_WAIT_FOR_CAB) {
 | |
| 		/*
 | |
| 		 * This can happen if a broadcast frame is dropped or the AP
 | |
| 		 * fails to send a frame indicating that all CAB frames have
 | |
| 		 * been delivered.
 | |
| 		 */
 | |
| 		sc->ps_flags &= ~PS_WAIT_FOR_CAB;
 | |
| 		ath_dbg(common, PS, "PS wait for CAB frames timed out\n");
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void ath_rx_ps(struct ath_softc *sc, struct sk_buff *skb, bool mybeacon)
 | |
| {
 | |
| 	struct ieee80211_hdr *hdr;
 | |
| 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
 | |
| 
 | |
| 	hdr = (struct ieee80211_hdr *)skb->data;
 | |
| 
 | |
| 	/* Process Beacon and CAB receive in PS state */
 | |
| 	if (((sc->ps_flags & PS_WAIT_FOR_BEACON) || ath9k_check_auto_sleep(sc))
 | |
| 	    && mybeacon) {
 | |
| 		ath_rx_ps_beacon(sc, skb);
 | |
| 	} else if ((sc->ps_flags & PS_WAIT_FOR_CAB) &&
 | |
| 		   (ieee80211_is_data(hdr->frame_control) ||
 | |
| 		    ieee80211_is_action(hdr->frame_control)) &&
 | |
| 		   is_multicast_ether_addr(hdr->addr1) &&
 | |
| 		   !ieee80211_has_moredata(hdr->frame_control)) {
 | |
| 		/*
 | |
| 		 * No more broadcast/multicast frames to be received at this
 | |
| 		 * point.
 | |
| 		 */
 | |
| 		sc->ps_flags &= ~(PS_WAIT_FOR_CAB | PS_WAIT_FOR_BEACON);
 | |
| 		ath_dbg(common, PS,
 | |
| 			"All PS CAB frames received, back to sleep\n");
 | |
| 	} else if ((sc->ps_flags & PS_WAIT_FOR_PSPOLL_DATA) &&
 | |
| 		   !is_multicast_ether_addr(hdr->addr1) &&
 | |
| 		   !ieee80211_has_morefrags(hdr->frame_control)) {
 | |
| 		sc->ps_flags &= ~PS_WAIT_FOR_PSPOLL_DATA;
 | |
| 		ath_dbg(common, PS,
 | |
| 			"Going back to sleep after having received PS-Poll data (0x%lx)\n",
 | |
| 			sc->ps_flags & (PS_WAIT_FOR_BEACON |
 | |
| 					PS_WAIT_FOR_CAB |
 | |
| 					PS_WAIT_FOR_PSPOLL_DATA |
 | |
| 					PS_WAIT_FOR_TX_ACK));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static bool ath_edma_get_buffers(struct ath_softc *sc,
 | |
| 				 enum ath9k_rx_qtype qtype,
 | |
| 				 struct ath_rx_status *rs,
 | |
| 				 struct ath_buf **dest)
 | |
| {
 | |
| 	struct ath_rx_edma *rx_edma = &sc->rx.rx_edma[qtype];
 | |
| 	struct ath_hw *ah = sc->sc_ah;
 | |
| 	struct ath_common *common = ath9k_hw_common(ah);
 | |
| 	struct sk_buff *skb;
 | |
| 	struct ath_buf *bf;
 | |
| 	int ret;
 | |
| 
 | |
| 	skb = skb_peek(&rx_edma->rx_fifo);
 | |
| 	if (!skb)
 | |
| 		return false;
 | |
| 
 | |
| 	bf = SKB_CB_ATHBUF(skb);
 | |
| 	BUG_ON(!bf);
 | |
| 
 | |
| 	dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr,
 | |
| 				common->rx_bufsize, DMA_FROM_DEVICE);
 | |
| 
 | |
| 	ret = ath9k_hw_process_rxdesc_edma(ah, rs, skb->data);
 | |
| 	if (ret == -EINPROGRESS) {
 | |
| 		/*let device gain the buffer again*/
 | |
| 		dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
 | |
| 				common->rx_bufsize, DMA_FROM_DEVICE);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	__skb_unlink(skb, &rx_edma->rx_fifo);
 | |
| 	if (ret == -EINVAL) {
 | |
| 		/* corrupt descriptor, skip this one and the following one */
 | |
| 		list_add_tail(&bf->list, &sc->rx.rxbuf);
 | |
| 		ath_rx_edma_buf_link(sc, qtype);
 | |
| 
 | |
| 		skb = skb_peek(&rx_edma->rx_fifo);
 | |
| 		if (skb) {
 | |
| 			bf = SKB_CB_ATHBUF(skb);
 | |
| 			BUG_ON(!bf);
 | |
| 
 | |
| 			__skb_unlink(skb, &rx_edma->rx_fifo);
 | |
| 			list_add_tail(&bf->list, &sc->rx.rxbuf);
 | |
| 			ath_rx_edma_buf_link(sc, qtype);
 | |
| 		}
 | |
| 
 | |
| 		bf = NULL;
 | |
| 	}
 | |
| 
 | |
| 	*dest = bf;
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static struct ath_buf *ath_edma_get_next_rx_buf(struct ath_softc *sc,
 | |
| 						struct ath_rx_status *rs,
 | |
| 						enum ath9k_rx_qtype qtype)
 | |
| {
 | |
| 	struct ath_buf *bf = NULL;
 | |
| 
 | |
| 	while (ath_edma_get_buffers(sc, qtype, rs, &bf)) {
 | |
| 		if (!bf)
 | |
| 			continue;
 | |
| 
 | |
| 		return bf;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static struct ath_buf *ath_get_next_rx_buf(struct ath_softc *sc,
 | |
| 					   struct ath_rx_status *rs)
 | |
| {
 | |
| 	struct ath_hw *ah = sc->sc_ah;
 | |
| 	struct ath_common *common = ath9k_hw_common(ah);
 | |
| 	struct ath_desc *ds;
 | |
| 	struct ath_buf *bf;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (list_empty(&sc->rx.rxbuf)) {
 | |
| 		sc->rx.rxlink = NULL;
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	bf = list_first_entry(&sc->rx.rxbuf, struct ath_buf, list);
 | |
| 	ds = bf->bf_desc;
 | |
| 
 | |
| 	/*
 | |
| 	 * Must provide the virtual address of the current
 | |
| 	 * descriptor, the physical address, and the virtual
 | |
| 	 * address of the next descriptor in the h/w chain.
 | |
| 	 * This allows the HAL to look ahead to see if the
 | |
| 	 * hardware is done with a descriptor by checking the
 | |
| 	 * done bit in the following descriptor and the address
 | |
| 	 * of the current descriptor the DMA engine is working
 | |
| 	 * on.  All this is necessary because of our use of
 | |
| 	 * a self-linked list to avoid rx overruns.
 | |
| 	 */
 | |
| 	ret = ath9k_hw_rxprocdesc(ah, ds, rs);
 | |
| 	if (ret == -EINPROGRESS) {
 | |
| 		struct ath_rx_status trs;
 | |
| 		struct ath_buf *tbf;
 | |
| 		struct ath_desc *tds;
 | |
| 
 | |
| 		memset(&trs, 0, sizeof(trs));
 | |
| 		if (list_is_last(&bf->list, &sc->rx.rxbuf)) {
 | |
| 			sc->rx.rxlink = NULL;
 | |
| 			return NULL;
 | |
| 		}
 | |
| 
 | |
| 		tbf = list_entry(bf->list.next, struct ath_buf, list);
 | |
| 
 | |
| 		/*
 | |
| 		 * On some hardware the descriptor status words could
 | |
| 		 * get corrupted, including the done bit. Because of
 | |
| 		 * this, check if the next descriptor's done bit is
 | |
| 		 * set or not.
 | |
| 		 *
 | |
| 		 * If the next descriptor's done bit is set, the current
 | |
| 		 * descriptor has been corrupted. Force s/w to discard
 | |
| 		 * this descriptor and continue...
 | |
| 		 */
 | |
| 
 | |
| 		tds = tbf->bf_desc;
 | |
| 		ret = ath9k_hw_rxprocdesc(ah, tds, &trs);
 | |
| 		if (ret == -EINPROGRESS)
 | |
| 			return NULL;
 | |
| 	}
 | |
| 
 | |
| 	list_del(&bf->list);
 | |
| 	if (!bf->bf_mpdu)
 | |
| 		return bf;
 | |
| 
 | |
| 	/*
 | |
| 	 * Synchronize the DMA transfer with CPU before
 | |
| 	 * 1. accessing the frame
 | |
| 	 * 2. requeueing the same buffer to h/w
 | |
| 	 */
 | |
| 	dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr,
 | |
| 			common->rx_bufsize,
 | |
| 			DMA_FROM_DEVICE);
 | |
| 
 | |
| 	return bf;
 | |
| }
 | |
| 
 | |
| /* Assumes you've already done the endian to CPU conversion */
 | |
| static bool ath9k_rx_accept(struct ath_common *common,
 | |
| 			    struct ieee80211_hdr *hdr,
 | |
| 			    struct ieee80211_rx_status *rxs,
 | |
| 			    struct ath_rx_status *rx_stats,
 | |
| 			    bool *decrypt_error)
 | |
| {
 | |
| 	struct ath_softc *sc = (struct ath_softc *) common->priv;
 | |
| 	bool is_mc, is_valid_tkip, strip_mic, mic_error;
 | |
| 	struct ath_hw *ah = common->ah;
 | |
| 	__le16 fc;
 | |
| 	u8 rx_status_len = ah->caps.rx_status_len;
 | |
| 
 | |
| 	fc = hdr->frame_control;
 | |
| 
 | |
| 	is_mc = !!is_multicast_ether_addr(hdr->addr1);
 | |
| 	is_valid_tkip = rx_stats->rs_keyix != ATH9K_RXKEYIX_INVALID &&
 | |
| 		test_bit(rx_stats->rs_keyix, common->tkip_keymap);
 | |
| 	strip_mic = is_valid_tkip && ieee80211_is_data(fc) &&
 | |
| 		ieee80211_has_protected(fc) &&
 | |
| 		!(rx_stats->rs_status &
 | |
| 		(ATH9K_RXERR_DECRYPT | ATH9K_RXERR_CRC | ATH9K_RXERR_MIC |
 | |
| 		 ATH9K_RXERR_KEYMISS));
 | |
| 
 | |
| 	/*
 | |
| 	 * Key miss events are only relevant for pairwise keys where the
 | |
| 	 * descriptor does contain a valid key index. This has been observed
 | |
| 	 * mostly with CCMP encryption.
 | |
| 	 */
 | |
| 	if (rx_stats->rs_keyix == ATH9K_RXKEYIX_INVALID ||
 | |
| 	    !test_bit(rx_stats->rs_keyix, common->ccmp_keymap))
 | |
| 		rx_stats->rs_status &= ~ATH9K_RXERR_KEYMISS;
 | |
| 
 | |
| 	if (!rx_stats->rs_datalen) {
 | |
| 		RX_STAT_INC(rx_len_err);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
|         /*
 | |
|          * rs_status follows rs_datalen so if rs_datalen is too large
 | |
|          * we can take a hint that hardware corrupted it, so ignore
 | |
|          * those frames.
 | |
|          */
 | |
| 	if (rx_stats->rs_datalen > (common->rx_bufsize - rx_status_len)) {
 | |
| 		RX_STAT_INC(rx_len_err);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	/* Only use error bits from the last fragment */
 | |
| 	if (rx_stats->rs_more)
 | |
| 		return true;
 | |
| 
 | |
| 	mic_error = is_valid_tkip && !ieee80211_is_ctl(fc) &&
 | |
| 		!ieee80211_has_morefrags(fc) &&
 | |
| 		!(le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG) &&
 | |
| 		(rx_stats->rs_status & ATH9K_RXERR_MIC);
 | |
| 
 | |
| 	/*
 | |
| 	 * The rx_stats->rs_status will not be set until the end of the
 | |
| 	 * chained descriptors so it can be ignored if rs_more is set. The
 | |
| 	 * rs_more will be false at the last element of the chained
 | |
| 	 * descriptors.
 | |
| 	 */
 | |
| 	if (rx_stats->rs_status != 0) {
 | |
| 		u8 status_mask;
 | |
| 
 | |
| 		if (rx_stats->rs_status & ATH9K_RXERR_CRC) {
 | |
| 			rxs->flag |= RX_FLAG_FAILED_FCS_CRC;
 | |
| 			mic_error = false;
 | |
| 		}
 | |
| 		if (rx_stats->rs_status & ATH9K_RXERR_PHY)
 | |
| 			return false;
 | |
| 
 | |
| 		if ((rx_stats->rs_status & ATH9K_RXERR_DECRYPT) ||
 | |
| 		    (!is_mc && (rx_stats->rs_status & ATH9K_RXERR_KEYMISS))) {
 | |
| 			*decrypt_error = true;
 | |
| 			mic_error = false;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Reject error frames with the exception of
 | |
| 		 * decryption and MIC failures. For monitor mode,
 | |
| 		 * we also ignore the CRC error.
 | |
| 		 */
 | |
| 		status_mask = ATH9K_RXERR_DECRYPT | ATH9K_RXERR_MIC |
 | |
| 			      ATH9K_RXERR_KEYMISS;
 | |
| 
 | |
| 		if (ah->is_monitoring && (sc->rx.rxfilter & FIF_FCSFAIL))
 | |
| 			status_mask |= ATH9K_RXERR_CRC;
 | |
| 
 | |
| 		if (rx_stats->rs_status & ~status_mask)
 | |
| 			return false;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * For unicast frames the MIC error bit can have false positives,
 | |
| 	 * so all MIC error reports need to be validated in software.
 | |
| 	 * False negatives are not common, so skip software verification
 | |
| 	 * if the hardware considers the MIC valid.
 | |
| 	 */
 | |
| 	if (strip_mic)
 | |
| 		rxs->flag |= RX_FLAG_MMIC_STRIPPED;
 | |
| 	else if (is_mc && mic_error)
 | |
| 		rxs->flag |= RX_FLAG_MMIC_ERROR;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static int ath9k_process_rate(struct ath_common *common,
 | |
| 			      struct ieee80211_hw *hw,
 | |
| 			      struct ath_rx_status *rx_stats,
 | |
| 			      struct ieee80211_rx_status *rxs)
 | |
| {
 | |
| 	struct ieee80211_supported_band *sband;
 | |
| 	enum ieee80211_band band;
 | |
| 	unsigned int i = 0;
 | |
| 	struct ath_softc __maybe_unused *sc = common->priv;
 | |
| 
 | |
| 	band = hw->conf.channel->band;
 | |
| 	sband = hw->wiphy->bands[band];
 | |
| 
 | |
| 	if (rx_stats->rs_rate & 0x80) {
 | |
| 		/* HT rate */
 | |
| 		rxs->flag |= RX_FLAG_HT;
 | |
| 		if (rx_stats->rs_flags & ATH9K_RX_2040)
 | |
| 			rxs->flag |= RX_FLAG_40MHZ;
 | |
| 		if (rx_stats->rs_flags & ATH9K_RX_GI)
 | |
| 			rxs->flag |= RX_FLAG_SHORT_GI;
 | |
| 		rxs->rate_idx = rx_stats->rs_rate & 0x7f;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < sband->n_bitrates; i++) {
 | |
| 		if (sband->bitrates[i].hw_value == rx_stats->rs_rate) {
 | |
| 			rxs->rate_idx = i;
 | |
| 			return 0;
 | |
| 		}
 | |
| 		if (sband->bitrates[i].hw_value_short == rx_stats->rs_rate) {
 | |
| 			rxs->flag |= RX_FLAG_SHORTPRE;
 | |
| 			rxs->rate_idx = i;
 | |
| 			return 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * No valid hardware bitrate found -- we should not get here
 | |
| 	 * because hardware has already validated this frame as OK.
 | |
| 	 */
 | |
| 	ath_dbg(common, ANY,
 | |
| 		"unsupported hw bitrate detected 0x%02x using 1 Mbit\n",
 | |
| 		rx_stats->rs_rate);
 | |
| 	RX_STAT_INC(rx_rate_err);
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| static void ath9k_process_rssi(struct ath_common *common,
 | |
| 			       struct ieee80211_hw *hw,
 | |
| 			       struct ieee80211_hdr *hdr,
 | |
| 			       struct ath_rx_status *rx_stats)
 | |
| {
 | |
| 	struct ath_softc *sc = hw->priv;
 | |
| 	struct ath_hw *ah = common->ah;
 | |
| 	int last_rssi;
 | |
| 	int rssi = rx_stats->rs_rssi;
 | |
| 
 | |
| 	if (!rx_stats->is_mybeacon ||
 | |
| 	    ((ah->opmode != NL80211_IFTYPE_STATION) &&
 | |
| 	     (ah->opmode != NL80211_IFTYPE_ADHOC)))
 | |
| 		return;
 | |
| 
 | |
| 	if (rx_stats->rs_rssi != ATH9K_RSSI_BAD && !rx_stats->rs_moreaggr)
 | |
| 		ATH_RSSI_LPF(sc->last_rssi, rx_stats->rs_rssi);
 | |
| 
 | |
| 	last_rssi = sc->last_rssi;
 | |
| 	if (likely(last_rssi != ATH_RSSI_DUMMY_MARKER))
 | |
| 		rssi = ATH_EP_RND(last_rssi, ATH_RSSI_EP_MULTIPLIER);
 | |
| 	if (rssi < 0)
 | |
| 		rssi = 0;
 | |
| 
 | |
| 	/* Update Beacon RSSI, this is used by ANI. */
 | |
| 	ah->stats.avgbrssi = rssi;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * For Decrypt or Demic errors, we only mark packet status here and always push
 | |
|  * up the frame up to let mac80211 handle the actual error case, be it no
 | |
|  * decryption key or real decryption error. This let us keep statistics there.
 | |
|  */
 | |
| static int ath9k_rx_skb_preprocess(struct ath_common *common,
 | |
| 				   struct ieee80211_hw *hw,
 | |
| 				   struct ieee80211_hdr *hdr,
 | |
| 				   struct ath_rx_status *rx_stats,
 | |
| 				   struct ieee80211_rx_status *rx_status,
 | |
| 				   bool *decrypt_error)
 | |
| {
 | |
| 	struct ath_hw *ah = common->ah;
 | |
| 
 | |
| 	/*
 | |
| 	 * everything but the rate is checked here, the rate check is done
 | |
| 	 * separately to avoid doing two lookups for a rate for each frame.
 | |
| 	 */
 | |
| 	if (!ath9k_rx_accept(common, hdr, rx_status, rx_stats, decrypt_error))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* Only use status info from the last fragment */
 | |
| 	if (rx_stats->rs_more)
 | |
| 		return 0;
 | |
| 
 | |
| 	ath9k_process_rssi(common, hw, hdr, rx_stats);
 | |
| 
 | |
| 	if (ath9k_process_rate(common, hw, rx_stats, rx_status))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	rx_status->band = hw->conf.channel->band;
 | |
| 	rx_status->freq = hw->conf.channel->center_freq;
 | |
| 	rx_status->signal = ah->noise + rx_stats->rs_rssi;
 | |
| 	rx_status->antenna = rx_stats->rs_antenna;
 | |
| 	rx_status->flag |= RX_FLAG_MACTIME_END;
 | |
| 	if (rx_stats->rs_moreaggr)
 | |
| 		rx_status->flag |= RX_FLAG_NO_SIGNAL_VAL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void ath9k_rx_skb_postprocess(struct ath_common *common,
 | |
| 				     struct sk_buff *skb,
 | |
| 				     struct ath_rx_status *rx_stats,
 | |
| 				     struct ieee80211_rx_status *rxs,
 | |
| 				     bool decrypt_error)
 | |
| {
 | |
| 	struct ath_hw *ah = common->ah;
 | |
| 	struct ieee80211_hdr *hdr;
 | |
| 	int hdrlen, padpos, padsize;
 | |
| 	u8 keyix;
 | |
| 	__le16 fc;
 | |
| 
 | |
| 	/* see if any padding is done by the hw and remove it */
 | |
| 	hdr = (struct ieee80211_hdr *) skb->data;
 | |
| 	hdrlen = ieee80211_get_hdrlen_from_skb(skb);
 | |
| 	fc = hdr->frame_control;
 | |
| 	padpos = ath9k_cmn_padpos(hdr->frame_control);
 | |
| 
 | |
| 	/* The MAC header is padded to have 32-bit boundary if the
 | |
| 	 * packet payload is non-zero. The general calculation for
 | |
| 	 * padsize would take into account odd header lengths:
 | |
| 	 * padsize = (4 - padpos % 4) % 4; However, since only
 | |
| 	 * even-length headers are used, padding can only be 0 or 2
 | |
| 	 * bytes and we can optimize this a bit. In addition, we must
 | |
| 	 * not try to remove padding from short control frames that do
 | |
| 	 * not have payload. */
 | |
| 	padsize = padpos & 3;
 | |
| 	if (padsize && skb->len>=padpos+padsize+FCS_LEN) {
 | |
| 		memmove(skb->data + padsize, skb->data, padpos);
 | |
| 		skb_pull(skb, padsize);
 | |
| 	}
 | |
| 
 | |
| 	keyix = rx_stats->rs_keyix;
 | |
| 
 | |
| 	if (!(keyix == ATH9K_RXKEYIX_INVALID) && !decrypt_error &&
 | |
| 	    ieee80211_has_protected(fc)) {
 | |
| 		rxs->flag |= RX_FLAG_DECRYPTED;
 | |
| 	} else if (ieee80211_has_protected(fc)
 | |
| 		   && !decrypt_error && skb->len >= hdrlen + 4) {
 | |
| 		keyix = skb->data[hdrlen + 3] >> 6;
 | |
| 
 | |
| 		if (test_bit(keyix, common->keymap))
 | |
| 			rxs->flag |= RX_FLAG_DECRYPTED;
 | |
| 	}
 | |
| 	if (ah->sw_mgmt_crypto &&
 | |
| 	    (rxs->flag & RX_FLAG_DECRYPTED) &&
 | |
| 	    ieee80211_is_mgmt(fc))
 | |
| 		/* Use software decrypt for management frames. */
 | |
| 		rxs->flag &= ~RX_FLAG_DECRYPTED;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_ATH9K_DEBUGFS
 | |
| static s8 fix_rssi_inv_only(u8 rssi_val)
 | |
| {
 | |
| 	if (rssi_val == 128)
 | |
| 		rssi_val = 0;
 | |
| 	return (s8) rssi_val;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* returns 1 if this was a spectral frame, even if not handled. */
 | |
| static int ath_process_fft(struct ath_softc *sc, struct ieee80211_hdr *hdr,
 | |
| 			   struct ath_rx_status *rs, u64 tsf)
 | |
| {
 | |
| #ifdef CONFIG_ATH9K_DEBUGFS
 | |
| 	struct ath_hw *ah = sc->sc_ah;
 | |
| 	u8 bins[SPECTRAL_HT20_NUM_BINS];
 | |
| 	u8 *vdata = (u8 *)hdr;
 | |
| 	struct fft_sample_ht20 fft_sample;
 | |
| 	struct ath_radar_info *radar_info;
 | |
| 	struct ath_ht20_mag_info *mag_info;
 | |
| 	int len = rs->rs_datalen;
 | |
| 	int dc_pos;
 | |
| 	u16 length, max_magnitude;
 | |
| 
 | |
| 	/* AR9280 and before report via ATH9K_PHYERR_RADAR, AR93xx and newer
 | |
| 	 * via ATH9K_PHYERR_SPECTRAL. Haven't seen ATH9K_PHYERR_FALSE_RADAR_EXT
 | |
| 	 * yet, but this is supposed to be possible as well.
 | |
| 	 */
 | |
| 	if (rs->rs_phyerr != ATH9K_PHYERR_RADAR &&
 | |
| 	    rs->rs_phyerr != ATH9K_PHYERR_FALSE_RADAR_EXT &&
 | |
| 	    rs->rs_phyerr != ATH9K_PHYERR_SPECTRAL)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* check if spectral scan bit is set. This does not have to be checked
 | |
| 	 * if received through a SPECTRAL phy error, but shouldn't hurt.
 | |
| 	 */
 | |
| 	radar_info = ((struct ath_radar_info *)&vdata[len]) - 1;
 | |
| 	if (!(radar_info->pulse_bw_info & SPECTRAL_SCAN_BITMASK))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Variation in the data length is possible and will be fixed later.
 | |
| 	 * Note that we only support HT20 for now.
 | |
| 	 *
 | |
| 	 * TODO: add HT20_40 support as well.
 | |
| 	 */
 | |
| 	if ((len > SPECTRAL_HT20_TOTAL_DATA_LEN + 2) ||
 | |
| 	    (len < SPECTRAL_HT20_TOTAL_DATA_LEN - 1))
 | |
| 		return 1;
 | |
| 
 | |
| 	fft_sample.tlv.type = ATH_FFT_SAMPLE_HT20;
 | |
| 	length = sizeof(fft_sample) - sizeof(fft_sample.tlv);
 | |
| 	fft_sample.tlv.length = __cpu_to_be16(length);
 | |
| 
 | |
| 	fft_sample.freq = __cpu_to_be16(ah->curchan->chan->center_freq);
 | |
| 	fft_sample.rssi = fix_rssi_inv_only(rs->rs_rssi_ctl0);
 | |
| 	fft_sample.noise = ah->noise;
 | |
| 
 | |
| 	switch (len - SPECTRAL_HT20_TOTAL_DATA_LEN) {
 | |
| 	case 0:
 | |
| 		/* length correct, nothing to do. */
 | |
| 		memcpy(bins, vdata, SPECTRAL_HT20_NUM_BINS);
 | |
| 		break;
 | |
| 	case -1:
 | |
| 		/* first byte missing, duplicate it. */
 | |
| 		memcpy(&bins[1], vdata, SPECTRAL_HT20_NUM_BINS - 1);
 | |
| 		bins[0] = vdata[0];
 | |
| 		break;
 | |
| 	case 2:
 | |
| 		/* MAC added 2 extra bytes at bin 30 and 32, remove them. */
 | |
| 		memcpy(bins, vdata, 30);
 | |
| 		bins[30] = vdata[31];
 | |
| 		memcpy(&bins[31], &vdata[33], SPECTRAL_HT20_NUM_BINS - 31);
 | |
| 		break;
 | |
| 	case 1:
 | |
| 		/* MAC added 2 extra bytes AND first byte is missing. */
 | |
| 		bins[0] = vdata[0];
 | |
| 		memcpy(&bins[0], vdata, 30);
 | |
| 		bins[31] = vdata[31];
 | |
| 		memcpy(&bins[32], &vdata[33], SPECTRAL_HT20_NUM_BINS - 32);
 | |
| 		break;
 | |
| 	default:
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	/* DC value (value in the middle) is the blind spot of the spectral
 | |
| 	 * sample and invalid, interpolate it.
 | |
| 	 */
 | |
| 	dc_pos = SPECTRAL_HT20_NUM_BINS / 2;
 | |
| 	bins[dc_pos] = (bins[dc_pos + 1] + bins[dc_pos - 1]) / 2;
 | |
| 
 | |
| 	/* mag data is at the end of the frame, in front of radar_info */
 | |
| 	mag_info = ((struct ath_ht20_mag_info *)radar_info) - 1;
 | |
| 
 | |
| 	/* copy raw bins without scaling them */
 | |
| 	memcpy(fft_sample.data, bins, SPECTRAL_HT20_NUM_BINS);
 | |
| 	fft_sample.max_exp = mag_info->max_exp & 0xf;
 | |
| 
 | |
| 	max_magnitude = spectral_max_magnitude(mag_info->all_bins);
 | |
| 	fft_sample.max_magnitude = __cpu_to_be16(max_magnitude);
 | |
| 	fft_sample.max_index = spectral_max_index(mag_info->all_bins);
 | |
| 	fft_sample.bitmap_weight = spectral_bitmap_weight(mag_info->all_bins);
 | |
| 	fft_sample.tsf = __cpu_to_be64(tsf);
 | |
| 
 | |
| 	ath_debug_send_fft_sample(sc, &fft_sample.tlv);
 | |
| 	return 1;
 | |
| #else
 | |
| 	return 0;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void ath9k_apply_ampdu_details(struct ath_softc *sc,
 | |
| 	struct ath_rx_status *rs, struct ieee80211_rx_status *rxs)
 | |
| {
 | |
| 	if (rs->rs_isaggr) {
 | |
| 		rxs->flag |= RX_FLAG_AMPDU_DETAILS | RX_FLAG_AMPDU_LAST_KNOWN;
 | |
| 
 | |
| 		rxs->ampdu_reference = sc->rx.ampdu_ref;
 | |
| 
 | |
| 		if (!rs->rs_moreaggr) {
 | |
| 			rxs->flag |= RX_FLAG_AMPDU_IS_LAST;
 | |
| 			sc->rx.ampdu_ref++;
 | |
| 		}
 | |
| 
 | |
| 		if (rs->rs_flags & ATH9K_RX_DELIM_CRC_PRE)
 | |
| 			rxs->flag |= RX_FLAG_AMPDU_DELIM_CRC_ERROR;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int ath_rx_tasklet(struct ath_softc *sc, int flush, bool hp)
 | |
| {
 | |
| 	struct ath_buf *bf;
 | |
| 	struct sk_buff *skb = NULL, *requeue_skb, *hdr_skb;
 | |
| 	struct ieee80211_rx_status *rxs;
 | |
| 	struct ath_hw *ah = sc->sc_ah;
 | |
| 	struct ath_common *common = ath9k_hw_common(ah);
 | |
| 	struct ieee80211_hw *hw = sc->hw;
 | |
| 	struct ieee80211_hdr *hdr;
 | |
| 	int retval;
 | |
| 	struct ath_rx_status rs;
 | |
| 	enum ath9k_rx_qtype qtype;
 | |
| 	bool edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
 | |
| 	int dma_type;
 | |
| 	u8 rx_status_len = ah->caps.rx_status_len;
 | |
| 	u64 tsf = 0;
 | |
| 	u32 tsf_lower = 0;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (edma)
 | |
| 		dma_type = DMA_BIDIRECTIONAL;
 | |
| 	else
 | |
| 		dma_type = DMA_FROM_DEVICE;
 | |
| 
 | |
| 	qtype = hp ? ATH9K_RX_QUEUE_HP : ATH9K_RX_QUEUE_LP;
 | |
| 
 | |
| 	tsf = ath9k_hw_gettsf64(ah);
 | |
| 	tsf_lower = tsf & 0xffffffff;
 | |
| 
 | |
| 	do {
 | |
| 		bool decrypt_error = false;
 | |
| 
 | |
| 		memset(&rs, 0, sizeof(rs));
 | |
| 		if (edma)
 | |
| 			bf = ath_edma_get_next_rx_buf(sc, &rs, qtype);
 | |
| 		else
 | |
| 			bf = ath_get_next_rx_buf(sc, &rs);
 | |
| 
 | |
| 		if (!bf)
 | |
| 			break;
 | |
| 
 | |
| 		skb = bf->bf_mpdu;
 | |
| 		if (!skb)
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * Take frame header from the first fragment and RX status from
 | |
| 		 * the last one.
 | |
| 		 */
 | |
| 		if (sc->rx.frag)
 | |
| 			hdr_skb = sc->rx.frag;
 | |
| 		else
 | |
| 			hdr_skb = skb;
 | |
| 
 | |
| 		hdr = (struct ieee80211_hdr *) (hdr_skb->data + rx_status_len);
 | |
| 		rxs = IEEE80211_SKB_RXCB(hdr_skb);
 | |
| 		if (ieee80211_is_beacon(hdr->frame_control)) {
 | |
| 			RX_STAT_INC(rx_beacons);
 | |
| 			if (!is_zero_ether_addr(common->curbssid) &&
 | |
| 			    ether_addr_equal(hdr->addr3, common->curbssid))
 | |
| 				rs.is_mybeacon = true;
 | |
| 			else
 | |
| 				rs.is_mybeacon = false;
 | |
| 		}
 | |
| 		else
 | |
| 			rs.is_mybeacon = false;
 | |
| 
 | |
| 		if (ieee80211_is_data_present(hdr->frame_control) &&
 | |
| 		    !ieee80211_is_qos_nullfunc(hdr->frame_control))
 | |
| 			sc->rx.num_pkts++;
 | |
| 
 | |
| 		ath_debug_stat_rx(sc, &rs);
 | |
| 
 | |
| 		memset(rxs, 0, sizeof(struct ieee80211_rx_status));
 | |
| 
 | |
| 		rxs->mactime = (tsf & ~0xffffffffULL) | rs.rs_tstamp;
 | |
| 		if (rs.rs_tstamp > tsf_lower &&
 | |
| 		    unlikely(rs.rs_tstamp - tsf_lower > 0x10000000))
 | |
| 			rxs->mactime -= 0x100000000ULL;
 | |
| 
 | |
| 		if (rs.rs_tstamp < tsf_lower &&
 | |
| 		    unlikely(tsf_lower - rs.rs_tstamp > 0x10000000))
 | |
| 			rxs->mactime += 0x100000000ULL;
 | |
| 
 | |
| 		if (rs.rs_status & ATH9K_RXERR_PHY) {
 | |
| 			if (ath_process_fft(sc, hdr, &rs, rxs->mactime)) {
 | |
| 				RX_STAT_INC(rx_spectral);
 | |
| 				goto requeue_drop_frag;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		retval = ath9k_rx_skb_preprocess(common, hw, hdr, &rs,
 | |
| 						 rxs, &decrypt_error);
 | |
| 		if (retval)
 | |
| 			goto requeue_drop_frag;
 | |
| 
 | |
| 		if (rs.is_mybeacon) {
 | |
| 			sc->hw_busy_count = 0;
 | |
| 			ath_start_rx_poll(sc, 3);
 | |
| 		}
 | |
| 		/* Ensure we always have an skb to requeue once we are done
 | |
| 		 * processing the current buffer's skb */
 | |
| 		requeue_skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_ATOMIC);
 | |
| 
 | |
| 		/* If there is no memory we ignore the current RX'd frame,
 | |
| 		 * tell hardware it can give us a new frame using the old
 | |
| 		 * skb and put it at the tail of the sc->rx.rxbuf list for
 | |
| 		 * processing. */
 | |
| 		if (!requeue_skb) {
 | |
| 			RX_STAT_INC(rx_oom_err);
 | |
| 			goto requeue_drop_frag;
 | |
| 		}
 | |
| 
 | |
| 		/* Unmap the frame */
 | |
| 		dma_unmap_single(sc->dev, bf->bf_buf_addr,
 | |
| 				 common->rx_bufsize,
 | |
| 				 dma_type);
 | |
| 
 | |
| 		skb_put(skb, rs.rs_datalen + ah->caps.rx_status_len);
 | |
| 		if (ah->caps.rx_status_len)
 | |
| 			skb_pull(skb, ah->caps.rx_status_len);
 | |
| 
 | |
| 		if (!rs.rs_more)
 | |
| 			ath9k_rx_skb_postprocess(common, hdr_skb, &rs,
 | |
| 						 rxs, decrypt_error);
 | |
| 
 | |
| 		/* We will now give hardware our shiny new allocated skb */
 | |
| 		bf->bf_mpdu = requeue_skb;
 | |
| 		bf->bf_buf_addr = dma_map_single(sc->dev, requeue_skb->data,
 | |
| 						 common->rx_bufsize,
 | |
| 						 dma_type);
 | |
| 		if (unlikely(dma_mapping_error(sc->dev,
 | |
| 			  bf->bf_buf_addr))) {
 | |
| 			dev_kfree_skb_any(requeue_skb);
 | |
| 			bf->bf_mpdu = NULL;
 | |
| 			bf->bf_buf_addr = 0;
 | |
| 			ath_err(common, "dma_mapping_error() on RX\n");
 | |
| 			ieee80211_rx(hw, skb);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (rs.rs_more) {
 | |
| 			RX_STAT_INC(rx_frags);
 | |
| 			/*
 | |
| 			 * rs_more indicates chained descriptors which can be
 | |
| 			 * used to link buffers together for a sort of
 | |
| 			 * scatter-gather operation.
 | |
| 			 */
 | |
| 			if (sc->rx.frag) {
 | |
| 				/* too many fragments - cannot handle frame */
 | |
| 				dev_kfree_skb_any(sc->rx.frag);
 | |
| 				dev_kfree_skb_any(skb);
 | |
| 				RX_STAT_INC(rx_too_many_frags_err);
 | |
| 				skb = NULL;
 | |
| 			}
 | |
| 			sc->rx.frag = skb;
 | |
| 			goto requeue;
 | |
| 		}
 | |
| 
 | |
| 		if (sc->rx.frag) {
 | |
| 			int space = skb->len - skb_tailroom(hdr_skb);
 | |
| 
 | |
| 			if (pskb_expand_head(hdr_skb, 0, space, GFP_ATOMIC) < 0) {
 | |
| 				dev_kfree_skb(skb);
 | |
| 				RX_STAT_INC(rx_oom_err);
 | |
| 				goto requeue_drop_frag;
 | |
| 			}
 | |
| 
 | |
| 			sc->rx.frag = NULL;
 | |
| 
 | |
| 			skb_copy_from_linear_data(skb, skb_put(hdr_skb, skb->len),
 | |
| 						  skb->len);
 | |
| 			dev_kfree_skb_any(skb);
 | |
| 			skb = hdr_skb;
 | |
| 		}
 | |
| 
 | |
| 
 | |
| 		if (ah->caps.hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB) {
 | |
| 
 | |
| 			/*
 | |
| 			 * change the default rx antenna if rx diversity
 | |
| 			 * chooses the other antenna 3 times in a row.
 | |
| 			 */
 | |
| 			if (sc->rx.defant != rs.rs_antenna) {
 | |
| 				if (++sc->rx.rxotherant >= 3)
 | |
| 					ath_setdefantenna(sc, rs.rs_antenna);
 | |
| 			} else {
 | |
| 				sc->rx.rxotherant = 0;
 | |
| 			}
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 		if (rxs->flag & RX_FLAG_MMIC_STRIPPED)
 | |
| 			skb_trim(skb, skb->len - 8);
 | |
| 
 | |
| 		spin_lock_irqsave(&sc->sc_pm_lock, flags);
 | |
| 		if ((sc->ps_flags & (PS_WAIT_FOR_BEACON |
 | |
| 				     PS_WAIT_FOR_CAB |
 | |
| 				     PS_WAIT_FOR_PSPOLL_DATA)) ||
 | |
| 		    ath9k_check_auto_sleep(sc))
 | |
| 			ath_rx_ps(sc, skb, rs.is_mybeacon);
 | |
| 		spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
 | |
| 
 | |
| 		if ((ah->caps.hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB) && sc->ant_rx == 3)
 | |
| 			ath_ant_comb_scan(sc, &rs);
 | |
| 
 | |
| 		ath9k_apply_ampdu_details(sc, &rs, rxs);
 | |
| 
 | |
| 		ieee80211_rx(hw, skb);
 | |
| 
 | |
| requeue_drop_frag:
 | |
| 		if (sc->rx.frag) {
 | |
| 			dev_kfree_skb_any(sc->rx.frag);
 | |
| 			sc->rx.frag = NULL;
 | |
| 		}
 | |
| requeue:
 | |
| 		list_add_tail(&bf->list, &sc->rx.rxbuf);
 | |
| 		if (flush)
 | |
| 			continue;
 | |
| 
 | |
| 		if (edma) {
 | |
| 			ath_rx_edma_buf_link(sc, qtype);
 | |
| 		} else {
 | |
| 			ath_rx_buf_link(sc, bf);
 | |
| 			ath9k_hw_rxena(ah);
 | |
| 		}
 | |
| 	} while (1);
 | |
| 
 | |
| 	if (!(ah->imask & ATH9K_INT_RXEOL)) {
 | |
| 		ah->imask |= (ATH9K_INT_RXEOL | ATH9K_INT_RXORN);
 | |
| 		ath9k_hw_set_interrupts(ah);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 |