 a3e82996a8
			
		
	
	
	a3e82996a8
	
	
	
		
			
			Following patch adds start offset for sw_flow-key, so that we can skip tunneling information in key for non-tunnel flows. Signed-off-by: Pravin B Shelar <pshelar@nicira.com> Acked-by: Jesse Gross <jesse@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
		
			
				
	
	
		
			1506 lines
		
	
	
	
		
			39 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1506 lines
		
	
	
	
		
			39 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2007-2011 Nicira, Inc.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of version 2 of the GNU General Public
 | |
|  * License as published by the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful, but
 | |
|  * WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 | |
|  * General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
 | |
|  * 02110-1301, USA
 | |
|  */
 | |
| 
 | |
| #include "flow.h"
 | |
| #include "datapath.h"
 | |
| #include <linux/uaccess.h>
 | |
| #include <linux/netdevice.h>
 | |
| #include <linux/etherdevice.h>
 | |
| #include <linux/if_ether.h>
 | |
| #include <linux/if_vlan.h>
 | |
| #include <net/llc_pdu.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/jhash.h>
 | |
| #include <linux/jiffies.h>
 | |
| #include <linux/llc.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/in.h>
 | |
| #include <linux/rcupdate.h>
 | |
| #include <linux/if_arp.h>
 | |
| #include <linux/ip.h>
 | |
| #include <linux/ipv6.h>
 | |
| #include <linux/tcp.h>
 | |
| #include <linux/udp.h>
 | |
| #include <linux/icmp.h>
 | |
| #include <linux/icmpv6.h>
 | |
| #include <linux/rculist.h>
 | |
| #include <net/ip.h>
 | |
| #include <net/ip_tunnels.h>
 | |
| #include <net/ipv6.h>
 | |
| #include <net/ndisc.h>
 | |
| 
 | |
| static struct kmem_cache *flow_cache;
 | |
| 
 | |
| static int check_header(struct sk_buff *skb, int len)
 | |
| {
 | |
| 	if (unlikely(skb->len < len))
 | |
| 		return -EINVAL;
 | |
| 	if (unlikely(!pskb_may_pull(skb, len)))
 | |
| 		return -ENOMEM;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static bool arphdr_ok(struct sk_buff *skb)
 | |
| {
 | |
| 	return pskb_may_pull(skb, skb_network_offset(skb) +
 | |
| 				  sizeof(struct arp_eth_header));
 | |
| }
 | |
| 
 | |
| static int check_iphdr(struct sk_buff *skb)
 | |
| {
 | |
| 	unsigned int nh_ofs = skb_network_offset(skb);
 | |
| 	unsigned int ip_len;
 | |
| 	int err;
 | |
| 
 | |
| 	err = check_header(skb, nh_ofs + sizeof(struct iphdr));
 | |
| 	if (unlikely(err))
 | |
| 		return err;
 | |
| 
 | |
| 	ip_len = ip_hdrlen(skb);
 | |
| 	if (unlikely(ip_len < sizeof(struct iphdr) ||
 | |
| 		     skb->len < nh_ofs + ip_len))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	skb_set_transport_header(skb, nh_ofs + ip_len);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static bool tcphdr_ok(struct sk_buff *skb)
 | |
| {
 | |
| 	int th_ofs = skb_transport_offset(skb);
 | |
| 	int tcp_len;
 | |
| 
 | |
| 	if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr))))
 | |
| 		return false;
 | |
| 
 | |
| 	tcp_len = tcp_hdrlen(skb);
 | |
| 	if (unlikely(tcp_len < sizeof(struct tcphdr) ||
 | |
| 		     skb->len < th_ofs + tcp_len))
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool udphdr_ok(struct sk_buff *skb)
 | |
| {
 | |
| 	return pskb_may_pull(skb, skb_transport_offset(skb) +
 | |
| 				  sizeof(struct udphdr));
 | |
| }
 | |
| 
 | |
| static bool icmphdr_ok(struct sk_buff *skb)
 | |
| {
 | |
| 	return pskb_may_pull(skb, skb_transport_offset(skb) +
 | |
| 				  sizeof(struct icmphdr));
 | |
| }
 | |
| 
 | |
| u64 ovs_flow_used_time(unsigned long flow_jiffies)
 | |
| {
 | |
| 	struct timespec cur_ts;
 | |
| 	u64 cur_ms, idle_ms;
 | |
| 
 | |
| 	ktime_get_ts(&cur_ts);
 | |
| 	idle_ms = jiffies_to_msecs(jiffies - flow_jiffies);
 | |
| 	cur_ms = (u64)cur_ts.tv_sec * MSEC_PER_SEC +
 | |
| 		 cur_ts.tv_nsec / NSEC_PER_MSEC;
 | |
| 
 | |
| 	return cur_ms - idle_ms;
 | |
| }
 | |
| 
 | |
| #define SW_FLOW_KEY_OFFSET(field)		\
 | |
| 	(offsetof(struct sw_flow_key, field) +	\
 | |
| 	 FIELD_SIZEOF(struct sw_flow_key, field))
 | |
| 
 | |
| static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key,
 | |
| 			 int *key_lenp)
 | |
| {
 | |
| 	unsigned int nh_ofs = skb_network_offset(skb);
 | |
| 	unsigned int nh_len;
 | |
| 	int payload_ofs;
 | |
| 	struct ipv6hdr *nh;
 | |
| 	uint8_t nexthdr;
 | |
| 	__be16 frag_off;
 | |
| 	int err;
 | |
| 
 | |
| 	*key_lenp = SW_FLOW_KEY_OFFSET(ipv6.label);
 | |
| 
 | |
| 	err = check_header(skb, nh_ofs + sizeof(*nh));
 | |
| 	if (unlikely(err))
 | |
| 		return err;
 | |
| 
 | |
| 	nh = ipv6_hdr(skb);
 | |
| 	nexthdr = nh->nexthdr;
 | |
| 	payload_ofs = (u8 *)(nh + 1) - skb->data;
 | |
| 
 | |
| 	key->ip.proto = NEXTHDR_NONE;
 | |
| 	key->ip.tos = ipv6_get_dsfield(nh);
 | |
| 	key->ip.ttl = nh->hop_limit;
 | |
| 	key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
 | |
| 	key->ipv6.addr.src = nh->saddr;
 | |
| 	key->ipv6.addr.dst = nh->daddr;
 | |
| 
 | |
| 	payload_ofs = ipv6_skip_exthdr(skb, payload_ofs, &nexthdr, &frag_off);
 | |
| 	if (unlikely(payload_ofs < 0))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (frag_off) {
 | |
| 		if (frag_off & htons(~0x7))
 | |
| 			key->ip.frag = OVS_FRAG_TYPE_LATER;
 | |
| 		else
 | |
| 			key->ip.frag = OVS_FRAG_TYPE_FIRST;
 | |
| 	}
 | |
| 
 | |
| 	nh_len = payload_ofs - nh_ofs;
 | |
| 	skb_set_transport_header(skb, nh_ofs + nh_len);
 | |
| 	key->ip.proto = nexthdr;
 | |
| 	return nh_len;
 | |
| }
 | |
| 
 | |
| static bool icmp6hdr_ok(struct sk_buff *skb)
 | |
| {
 | |
| 	return pskb_may_pull(skb, skb_transport_offset(skb) +
 | |
| 				  sizeof(struct icmp6hdr));
 | |
| }
 | |
| 
 | |
| #define TCP_FLAGS_OFFSET 13
 | |
| #define TCP_FLAG_MASK 0x3f
 | |
| 
 | |
| void ovs_flow_used(struct sw_flow *flow, struct sk_buff *skb)
 | |
| {
 | |
| 	u8 tcp_flags = 0;
 | |
| 
 | |
| 	if ((flow->key.eth.type == htons(ETH_P_IP) ||
 | |
| 	     flow->key.eth.type == htons(ETH_P_IPV6)) &&
 | |
| 	    flow->key.ip.proto == IPPROTO_TCP &&
 | |
| 	    likely(skb->len >= skb_transport_offset(skb) + sizeof(struct tcphdr))) {
 | |
| 		u8 *tcp = (u8 *)tcp_hdr(skb);
 | |
| 		tcp_flags = *(tcp + TCP_FLAGS_OFFSET) & TCP_FLAG_MASK;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&flow->lock);
 | |
| 	flow->used = jiffies;
 | |
| 	flow->packet_count++;
 | |
| 	flow->byte_count += skb->len;
 | |
| 	flow->tcp_flags |= tcp_flags;
 | |
| 	spin_unlock(&flow->lock);
 | |
| }
 | |
| 
 | |
| struct sw_flow_actions *ovs_flow_actions_alloc(int size)
 | |
| {
 | |
| 	struct sw_flow_actions *sfa;
 | |
| 
 | |
| 	if (size > MAX_ACTIONS_BUFSIZE)
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL);
 | |
| 	if (!sfa)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	sfa->actions_len = 0;
 | |
| 	return sfa;
 | |
| }
 | |
| 
 | |
| struct sw_flow *ovs_flow_alloc(void)
 | |
| {
 | |
| 	struct sw_flow *flow;
 | |
| 
 | |
| 	flow = kmem_cache_alloc(flow_cache, GFP_KERNEL);
 | |
| 	if (!flow)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	spin_lock_init(&flow->lock);
 | |
| 	flow->sf_acts = NULL;
 | |
| 
 | |
| 	return flow;
 | |
| }
 | |
| 
 | |
| static struct hlist_head *find_bucket(struct flow_table *table, u32 hash)
 | |
| {
 | |
| 	hash = jhash_1word(hash, table->hash_seed);
 | |
| 	return flex_array_get(table->buckets,
 | |
| 				(hash & (table->n_buckets - 1)));
 | |
| }
 | |
| 
 | |
| static struct flex_array *alloc_buckets(unsigned int n_buckets)
 | |
| {
 | |
| 	struct flex_array *buckets;
 | |
| 	int i, err;
 | |
| 
 | |
| 	buckets = flex_array_alloc(sizeof(struct hlist_head *),
 | |
| 				   n_buckets, GFP_KERNEL);
 | |
| 	if (!buckets)
 | |
| 		return NULL;
 | |
| 
 | |
| 	err = flex_array_prealloc(buckets, 0, n_buckets, GFP_KERNEL);
 | |
| 	if (err) {
 | |
| 		flex_array_free(buckets);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < n_buckets; i++)
 | |
| 		INIT_HLIST_HEAD((struct hlist_head *)
 | |
| 					flex_array_get(buckets, i));
 | |
| 
 | |
| 	return buckets;
 | |
| }
 | |
| 
 | |
| static void free_buckets(struct flex_array *buckets)
 | |
| {
 | |
| 	flex_array_free(buckets);
 | |
| }
 | |
| 
 | |
| struct flow_table *ovs_flow_tbl_alloc(int new_size)
 | |
| {
 | |
| 	struct flow_table *table = kmalloc(sizeof(*table), GFP_KERNEL);
 | |
| 
 | |
| 	if (!table)
 | |
| 		return NULL;
 | |
| 
 | |
| 	table->buckets = alloc_buckets(new_size);
 | |
| 
 | |
| 	if (!table->buckets) {
 | |
| 		kfree(table);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	table->n_buckets = new_size;
 | |
| 	table->count = 0;
 | |
| 	table->node_ver = 0;
 | |
| 	table->keep_flows = false;
 | |
| 	get_random_bytes(&table->hash_seed, sizeof(u32));
 | |
| 
 | |
| 	return table;
 | |
| }
 | |
| 
 | |
| void ovs_flow_tbl_destroy(struct flow_table *table)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (!table)
 | |
| 		return;
 | |
| 
 | |
| 	if (table->keep_flows)
 | |
| 		goto skip_flows;
 | |
| 
 | |
| 	for (i = 0; i < table->n_buckets; i++) {
 | |
| 		struct sw_flow *flow;
 | |
| 		struct hlist_head *head = flex_array_get(table->buckets, i);
 | |
| 		struct hlist_node *n;
 | |
| 		int ver = table->node_ver;
 | |
| 
 | |
| 		hlist_for_each_entry_safe(flow, n, head, hash_node[ver]) {
 | |
| 			hlist_del_rcu(&flow->hash_node[ver]);
 | |
| 			ovs_flow_free(flow);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| skip_flows:
 | |
| 	free_buckets(table->buckets);
 | |
| 	kfree(table);
 | |
| }
 | |
| 
 | |
| static void flow_tbl_destroy_rcu_cb(struct rcu_head *rcu)
 | |
| {
 | |
| 	struct flow_table *table = container_of(rcu, struct flow_table, rcu);
 | |
| 
 | |
| 	ovs_flow_tbl_destroy(table);
 | |
| }
 | |
| 
 | |
| void ovs_flow_tbl_deferred_destroy(struct flow_table *table)
 | |
| {
 | |
| 	if (!table)
 | |
| 		return;
 | |
| 
 | |
| 	call_rcu(&table->rcu, flow_tbl_destroy_rcu_cb);
 | |
| }
 | |
| 
 | |
| struct sw_flow *ovs_flow_tbl_next(struct flow_table *table, u32 *bucket, u32 *last)
 | |
| {
 | |
| 	struct sw_flow *flow;
 | |
| 	struct hlist_head *head;
 | |
| 	int ver;
 | |
| 	int i;
 | |
| 
 | |
| 	ver = table->node_ver;
 | |
| 	while (*bucket < table->n_buckets) {
 | |
| 		i = 0;
 | |
| 		head = flex_array_get(table->buckets, *bucket);
 | |
| 		hlist_for_each_entry_rcu(flow, head, hash_node[ver]) {
 | |
| 			if (i < *last) {
 | |
| 				i++;
 | |
| 				continue;
 | |
| 			}
 | |
| 			*last = i + 1;
 | |
| 			return flow;
 | |
| 		}
 | |
| 		(*bucket)++;
 | |
| 		*last = 0;
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void __flow_tbl_insert(struct flow_table *table, struct sw_flow *flow)
 | |
| {
 | |
| 	struct hlist_head *head;
 | |
| 	head = find_bucket(table, flow->hash);
 | |
| 	hlist_add_head_rcu(&flow->hash_node[table->node_ver], head);
 | |
| 	table->count++;
 | |
| }
 | |
| 
 | |
| static void flow_table_copy_flows(struct flow_table *old, struct flow_table *new)
 | |
| {
 | |
| 	int old_ver;
 | |
| 	int i;
 | |
| 
 | |
| 	old_ver = old->node_ver;
 | |
| 	new->node_ver = !old_ver;
 | |
| 
 | |
| 	/* Insert in new table. */
 | |
| 	for (i = 0; i < old->n_buckets; i++) {
 | |
| 		struct sw_flow *flow;
 | |
| 		struct hlist_head *head;
 | |
| 
 | |
| 		head = flex_array_get(old->buckets, i);
 | |
| 
 | |
| 		hlist_for_each_entry(flow, head, hash_node[old_ver])
 | |
| 			__flow_tbl_insert(new, flow);
 | |
| 	}
 | |
| 	old->keep_flows = true;
 | |
| }
 | |
| 
 | |
| static struct flow_table *__flow_tbl_rehash(struct flow_table *table, int n_buckets)
 | |
| {
 | |
| 	struct flow_table *new_table;
 | |
| 
 | |
| 	new_table = ovs_flow_tbl_alloc(n_buckets);
 | |
| 	if (!new_table)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	flow_table_copy_flows(table, new_table);
 | |
| 
 | |
| 	return new_table;
 | |
| }
 | |
| 
 | |
| struct flow_table *ovs_flow_tbl_rehash(struct flow_table *table)
 | |
| {
 | |
| 	return __flow_tbl_rehash(table, table->n_buckets);
 | |
| }
 | |
| 
 | |
| struct flow_table *ovs_flow_tbl_expand(struct flow_table *table)
 | |
| {
 | |
| 	return __flow_tbl_rehash(table, table->n_buckets * 2);
 | |
| }
 | |
| 
 | |
| void ovs_flow_free(struct sw_flow *flow)
 | |
| {
 | |
| 	if (unlikely(!flow))
 | |
| 		return;
 | |
| 
 | |
| 	kfree((struct sf_flow_acts __force *)flow->sf_acts);
 | |
| 	kmem_cache_free(flow_cache, flow);
 | |
| }
 | |
| 
 | |
| /* RCU callback used by ovs_flow_deferred_free. */
 | |
| static void rcu_free_flow_callback(struct rcu_head *rcu)
 | |
| {
 | |
| 	struct sw_flow *flow = container_of(rcu, struct sw_flow, rcu);
 | |
| 
 | |
| 	ovs_flow_free(flow);
 | |
| }
 | |
| 
 | |
| /* Schedules 'flow' to be freed after the next RCU grace period.
 | |
|  * The caller must hold rcu_read_lock for this to be sensible. */
 | |
| void ovs_flow_deferred_free(struct sw_flow *flow)
 | |
| {
 | |
| 	call_rcu(&flow->rcu, rcu_free_flow_callback);
 | |
| }
 | |
| 
 | |
| /* Schedules 'sf_acts' to be freed after the next RCU grace period.
 | |
|  * The caller must hold rcu_read_lock for this to be sensible. */
 | |
| void ovs_flow_deferred_free_acts(struct sw_flow_actions *sf_acts)
 | |
| {
 | |
| 	kfree_rcu(sf_acts, rcu);
 | |
| }
 | |
| 
 | |
| static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key)
 | |
| {
 | |
| 	struct qtag_prefix {
 | |
| 		__be16 eth_type; /* ETH_P_8021Q */
 | |
| 		__be16 tci;
 | |
| 	};
 | |
| 	struct qtag_prefix *qp;
 | |
| 
 | |
| 	if (unlikely(skb->len < sizeof(struct qtag_prefix) + sizeof(__be16)))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (unlikely(!pskb_may_pull(skb, sizeof(struct qtag_prefix) +
 | |
| 					 sizeof(__be16))))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	qp = (struct qtag_prefix *) skb->data;
 | |
| 	key->eth.tci = qp->tci | htons(VLAN_TAG_PRESENT);
 | |
| 	__skb_pull(skb, sizeof(struct qtag_prefix));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static __be16 parse_ethertype(struct sk_buff *skb)
 | |
| {
 | |
| 	struct llc_snap_hdr {
 | |
| 		u8  dsap;  /* Always 0xAA */
 | |
| 		u8  ssap;  /* Always 0xAA */
 | |
| 		u8  ctrl;
 | |
| 		u8  oui[3];
 | |
| 		__be16 ethertype;
 | |
| 	};
 | |
| 	struct llc_snap_hdr *llc;
 | |
| 	__be16 proto;
 | |
| 
 | |
| 	proto = *(__be16 *) skb->data;
 | |
| 	__skb_pull(skb, sizeof(__be16));
 | |
| 
 | |
| 	if (ntohs(proto) >= ETH_P_802_3_MIN)
 | |
| 		return proto;
 | |
| 
 | |
| 	if (skb->len < sizeof(struct llc_snap_hdr))
 | |
| 		return htons(ETH_P_802_2);
 | |
| 
 | |
| 	if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr))))
 | |
| 		return htons(0);
 | |
| 
 | |
| 	llc = (struct llc_snap_hdr *) skb->data;
 | |
| 	if (llc->dsap != LLC_SAP_SNAP ||
 | |
| 	    llc->ssap != LLC_SAP_SNAP ||
 | |
| 	    (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
 | |
| 		return htons(ETH_P_802_2);
 | |
| 
 | |
| 	__skb_pull(skb, sizeof(struct llc_snap_hdr));
 | |
| 
 | |
| 	if (ntohs(llc->ethertype) >= ETH_P_802_3_MIN)
 | |
| 		return llc->ethertype;
 | |
| 
 | |
| 	return htons(ETH_P_802_2);
 | |
| }
 | |
| 
 | |
| static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key,
 | |
| 			int *key_lenp, int nh_len)
 | |
| {
 | |
| 	struct icmp6hdr *icmp = icmp6_hdr(skb);
 | |
| 	int error = 0;
 | |
| 	int key_len;
 | |
| 
 | |
| 	/* The ICMPv6 type and code fields use the 16-bit transport port
 | |
| 	 * fields, so we need to store them in 16-bit network byte order.
 | |
| 	 */
 | |
| 	key->ipv6.tp.src = htons(icmp->icmp6_type);
 | |
| 	key->ipv6.tp.dst = htons(icmp->icmp6_code);
 | |
| 	key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
 | |
| 
 | |
| 	if (icmp->icmp6_code == 0 &&
 | |
| 	    (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION ||
 | |
| 	     icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) {
 | |
| 		int icmp_len = skb->len - skb_transport_offset(skb);
 | |
| 		struct nd_msg *nd;
 | |
| 		int offset;
 | |
| 
 | |
| 		key_len = SW_FLOW_KEY_OFFSET(ipv6.nd);
 | |
| 
 | |
| 		/* In order to process neighbor discovery options, we need the
 | |
| 		 * entire packet.
 | |
| 		 */
 | |
| 		if (unlikely(icmp_len < sizeof(*nd)))
 | |
| 			goto out;
 | |
| 		if (unlikely(skb_linearize(skb))) {
 | |
| 			error = -ENOMEM;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		nd = (struct nd_msg *)skb_transport_header(skb);
 | |
| 		key->ipv6.nd.target = nd->target;
 | |
| 		key_len = SW_FLOW_KEY_OFFSET(ipv6.nd);
 | |
| 
 | |
| 		icmp_len -= sizeof(*nd);
 | |
| 		offset = 0;
 | |
| 		while (icmp_len >= 8) {
 | |
| 			struct nd_opt_hdr *nd_opt =
 | |
| 				 (struct nd_opt_hdr *)(nd->opt + offset);
 | |
| 			int opt_len = nd_opt->nd_opt_len * 8;
 | |
| 
 | |
| 			if (unlikely(!opt_len || opt_len > icmp_len))
 | |
| 				goto invalid;
 | |
| 
 | |
| 			/* Store the link layer address if the appropriate
 | |
| 			 * option is provided.  It is considered an error if
 | |
| 			 * the same link layer option is specified twice.
 | |
| 			 */
 | |
| 			if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR
 | |
| 			    && opt_len == 8) {
 | |
| 				if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll)))
 | |
| 					goto invalid;
 | |
| 				memcpy(key->ipv6.nd.sll,
 | |
| 				    &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN);
 | |
| 			} else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR
 | |
| 				   && opt_len == 8) {
 | |
| 				if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll)))
 | |
| 					goto invalid;
 | |
| 				memcpy(key->ipv6.nd.tll,
 | |
| 				    &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN);
 | |
| 			}
 | |
| 
 | |
| 			icmp_len -= opt_len;
 | |
| 			offset += opt_len;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	goto out;
 | |
| 
 | |
| invalid:
 | |
| 	memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target));
 | |
| 	memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll));
 | |
| 	memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll));
 | |
| 
 | |
| out:
 | |
| 	*key_lenp = key_len;
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ovs_flow_extract - extracts a flow key from an Ethernet frame.
 | |
|  * @skb: sk_buff that contains the frame, with skb->data pointing to the
 | |
|  * Ethernet header
 | |
|  * @in_port: port number on which @skb was received.
 | |
|  * @key: output flow key
 | |
|  * @key_lenp: length of output flow key
 | |
|  *
 | |
|  * The caller must ensure that skb->len >= ETH_HLEN.
 | |
|  *
 | |
|  * Returns 0 if successful, otherwise a negative errno value.
 | |
|  *
 | |
|  * Initializes @skb header pointers as follows:
 | |
|  *
 | |
|  *    - skb->mac_header: the Ethernet header.
 | |
|  *
 | |
|  *    - skb->network_header: just past the Ethernet header, or just past the
 | |
|  *      VLAN header, to the first byte of the Ethernet payload.
 | |
|  *
 | |
|  *    - skb->transport_header: If key->eth.type is ETH_P_IP or ETH_P_IPV6
 | |
|  *      on output, then just past the IP header, if one is present and
 | |
|  *      of a correct length, otherwise the same as skb->network_header.
 | |
|  *      For other key->eth.type values it is left untouched.
 | |
|  */
 | |
| int ovs_flow_extract(struct sk_buff *skb, u16 in_port, struct sw_flow_key *key,
 | |
| 		 int *key_lenp)
 | |
| {
 | |
| 	int error = 0;
 | |
| 	int key_len = SW_FLOW_KEY_OFFSET(eth);
 | |
| 	struct ethhdr *eth;
 | |
| 
 | |
| 	memset(key, 0, sizeof(*key));
 | |
| 
 | |
| 	key->phy.priority = skb->priority;
 | |
| 	if (OVS_CB(skb)->tun_key)
 | |
| 		memcpy(&key->tun_key, OVS_CB(skb)->tun_key, sizeof(key->tun_key));
 | |
| 	key->phy.in_port = in_port;
 | |
| 	key->phy.skb_mark = skb->mark;
 | |
| 
 | |
| 	skb_reset_mac_header(skb);
 | |
| 
 | |
| 	/* Link layer.  We are guaranteed to have at least the 14 byte Ethernet
 | |
| 	 * header in the linear data area.
 | |
| 	 */
 | |
| 	eth = eth_hdr(skb);
 | |
| 	memcpy(key->eth.src, eth->h_source, ETH_ALEN);
 | |
| 	memcpy(key->eth.dst, eth->h_dest, ETH_ALEN);
 | |
| 
 | |
| 	__skb_pull(skb, 2 * ETH_ALEN);
 | |
| 	/* We are going to push all headers that we pull, so no need to
 | |
| 	 * update skb->csum here.
 | |
| 	 */
 | |
| 
 | |
| 	if (vlan_tx_tag_present(skb))
 | |
| 		key->eth.tci = htons(skb->vlan_tci);
 | |
| 	else if (eth->h_proto == htons(ETH_P_8021Q))
 | |
| 		if (unlikely(parse_vlan(skb, key)))
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 	key->eth.type = parse_ethertype(skb);
 | |
| 	if (unlikely(key->eth.type == htons(0)))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	skb_reset_network_header(skb);
 | |
| 	__skb_push(skb, skb->data - skb_mac_header(skb));
 | |
| 
 | |
| 	/* Network layer. */
 | |
| 	if (key->eth.type == htons(ETH_P_IP)) {
 | |
| 		struct iphdr *nh;
 | |
| 		__be16 offset;
 | |
| 
 | |
| 		key_len = SW_FLOW_KEY_OFFSET(ipv4.addr);
 | |
| 
 | |
| 		error = check_iphdr(skb);
 | |
| 		if (unlikely(error)) {
 | |
| 			if (error == -EINVAL) {
 | |
| 				skb->transport_header = skb->network_header;
 | |
| 				error = 0;
 | |
| 			}
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		nh = ip_hdr(skb);
 | |
| 		key->ipv4.addr.src = nh->saddr;
 | |
| 		key->ipv4.addr.dst = nh->daddr;
 | |
| 
 | |
| 		key->ip.proto = nh->protocol;
 | |
| 		key->ip.tos = nh->tos;
 | |
| 		key->ip.ttl = nh->ttl;
 | |
| 
 | |
| 		offset = nh->frag_off & htons(IP_OFFSET);
 | |
| 		if (offset) {
 | |
| 			key->ip.frag = OVS_FRAG_TYPE_LATER;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		if (nh->frag_off & htons(IP_MF) ||
 | |
| 			 skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
 | |
| 			key->ip.frag = OVS_FRAG_TYPE_FIRST;
 | |
| 
 | |
| 		/* Transport layer. */
 | |
| 		if (key->ip.proto == IPPROTO_TCP) {
 | |
| 			key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
 | |
| 			if (tcphdr_ok(skb)) {
 | |
| 				struct tcphdr *tcp = tcp_hdr(skb);
 | |
| 				key->ipv4.tp.src = tcp->source;
 | |
| 				key->ipv4.tp.dst = tcp->dest;
 | |
| 			}
 | |
| 		} else if (key->ip.proto == IPPROTO_UDP) {
 | |
| 			key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
 | |
| 			if (udphdr_ok(skb)) {
 | |
| 				struct udphdr *udp = udp_hdr(skb);
 | |
| 				key->ipv4.tp.src = udp->source;
 | |
| 				key->ipv4.tp.dst = udp->dest;
 | |
| 			}
 | |
| 		} else if (key->ip.proto == IPPROTO_ICMP) {
 | |
| 			key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
 | |
| 			if (icmphdr_ok(skb)) {
 | |
| 				struct icmphdr *icmp = icmp_hdr(skb);
 | |
| 				/* The ICMP type and code fields use the 16-bit
 | |
| 				 * transport port fields, so we need to store
 | |
| 				 * them in 16-bit network byte order. */
 | |
| 				key->ipv4.tp.src = htons(icmp->type);
 | |
| 				key->ipv4.tp.dst = htons(icmp->code);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 	} else if ((key->eth.type == htons(ETH_P_ARP) ||
 | |
| 		   key->eth.type == htons(ETH_P_RARP)) && arphdr_ok(skb)) {
 | |
| 		struct arp_eth_header *arp;
 | |
| 
 | |
| 		arp = (struct arp_eth_header *)skb_network_header(skb);
 | |
| 
 | |
| 		if (arp->ar_hrd == htons(ARPHRD_ETHER)
 | |
| 				&& arp->ar_pro == htons(ETH_P_IP)
 | |
| 				&& arp->ar_hln == ETH_ALEN
 | |
| 				&& arp->ar_pln == 4) {
 | |
| 
 | |
| 			/* We only match on the lower 8 bits of the opcode. */
 | |
| 			if (ntohs(arp->ar_op) <= 0xff)
 | |
| 				key->ip.proto = ntohs(arp->ar_op);
 | |
| 			memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src));
 | |
| 			memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst));
 | |
| 			memcpy(key->ipv4.arp.sha, arp->ar_sha, ETH_ALEN);
 | |
| 			memcpy(key->ipv4.arp.tha, arp->ar_tha, ETH_ALEN);
 | |
| 			key_len = SW_FLOW_KEY_OFFSET(ipv4.arp);
 | |
| 		}
 | |
| 	} else if (key->eth.type == htons(ETH_P_IPV6)) {
 | |
| 		int nh_len;             /* IPv6 Header + Extensions */
 | |
| 
 | |
| 		nh_len = parse_ipv6hdr(skb, key, &key_len);
 | |
| 		if (unlikely(nh_len < 0)) {
 | |
| 			if (nh_len == -EINVAL)
 | |
| 				skb->transport_header = skb->network_header;
 | |
| 			else
 | |
| 				error = nh_len;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		if (key->ip.frag == OVS_FRAG_TYPE_LATER)
 | |
| 			goto out;
 | |
| 		if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
 | |
| 			key->ip.frag = OVS_FRAG_TYPE_FIRST;
 | |
| 
 | |
| 		/* Transport layer. */
 | |
| 		if (key->ip.proto == NEXTHDR_TCP) {
 | |
| 			key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
 | |
| 			if (tcphdr_ok(skb)) {
 | |
| 				struct tcphdr *tcp = tcp_hdr(skb);
 | |
| 				key->ipv6.tp.src = tcp->source;
 | |
| 				key->ipv6.tp.dst = tcp->dest;
 | |
| 			}
 | |
| 		} else if (key->ip.proto == NEXTHDR_UDP) {
 | |
| 			key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
 | |
| 			if (udphdr_ok(skb)) {
 | |
| 				struct udphdr *udp = udp_hdr(skb);
 | |
| 				key->ipv6.tp.src = udp->source;
 | |
| 				key->ipv6.tp.dst = udp->dest;
 | |
| 			}
 | |
| 		} else if (key->ip.proto == NEXTHDR_ICMP) {
 | |
| 			key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
 | |
| 			if (icmp6hdr_ok(skb)) {
 | |
| 				error = parse_icmpv6(skb, key, &key_len, nh_len);
 | |
| 				if (error < 0)
 | |
| 					goto out;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	*key_lenp = key_len;
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| static u32 ovs_flow_hash(const struct sw_flow_key *key, int key_start, int key_len)
 | |
| {
 | |
| 	return jhash2((u32 *)((u8 *)key + key_start),
 | |
| 		      DIV_ROUND_UP(key_len - key_start, sizeof(u32)), 0);
 | |
| }
 | |
| 
 | |
| static int flow_key_start(struct sw_flow_key *key)
 | |
| {
 | |
| 	if (key->tun_key.ipv4_dst)
 | |
| 		return 0;
 | |
| 	else
 | |
| 		return offsetof(struct sw_flow_key, phy);
 | |
| }
 | |
| 
 | |
| struct sw_flow *ovs_flow_tbl_lookup(struct flow_table *table,
 | |
| 				struct sw_flow_key *key, int key_len)
 | |
| {
 | |
| 	struct sw_flow *flow;
 | |
| 	struct hlist_head *head;
 | |
| 	u8 *_key;
 | |
| 	int key_start;
 | |
| 	u32 hash;
 | |
| 
 | |
| 	key_start = flow_key_start(key);
 | |
| 	hash = ovs_flow_hash(key, key_start, key_len);
 | |
| 
 | |
| 	_key = (u8 *) key + key_start;
 | |
| 	head = find_bucket(table, hash);
 | |
| 	hlist_for_each_entry_rcu(flow, head, hash_node[table->node_ver]) {
 | |
| 
 | |
| 		if (flow->hash == hash &&
 | |
| 		    !memcmp((u8 *)&flow->key + key_start, _key, key_len - key_start)) {
 | |
| 			return flow;
 | |
| 		}
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| void ovs_flow_tbl_insert(struct flow_table *table, struct sw_flow *flow,
 | |
| 			 struct sw_flow_key *key, int key_len)
 | |
| {
 | |
| 	flow->hash = ovs_flow_hash(key, flow_key_start(key), key_len);
 | |
| 	memcpy(&flow->key, key, sizeof(flow->key));
 | |
| 	__flow_tbl_insert(table, flow);
 | |
| }
 | |
| 
 | |
| void ovs_flow_tbl_remove(struct flow_table *table, struct sw_flow *flow)
 | |
| {
 | |
| 	BUG_ON(table->count == 0);
 | |
| 	hlist_del_rcu(&flow->hash_node[table->node_ver]);
 | |
| 	table->count--;
 | |
| }
 | |
| 
 | |
| /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute.  */
 | |
| const int ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
 | |
| 	[OVS_KEY_ATTR_ENCAP] = -1,
 | |
| 	[OVS_KEY_ATTR_PRIORITY] = sizeof(u32),
 | |
| 	[OVS_KEY_ATTR_IN_PORT] = sizeof(u32),
 | |
| 	[OVS_KEY_ATTR_SKB_MARK] = sizeof(u32),
 | |
| 	[OVS_KEY_ATTR_ETHERNET] = sizeof(struct ovs_key_ethernet),
 | |
| 	[OVS_KEY_ATTR_VLAN] = sizeof(__be16),
 | |
| 	[OVS_KEY_ATTR_ETHERTYPE] = sizeof(__be16),
 | |
| 	[OVS_KEY_ATTR_IPV4] = sizeof(struct ovs_key_ipv4),
 | |
| 	[OVS_KEY_ATTR_IPV6] = sizeof(struct ovs_key_ipv6),
 | |
| 	[OVS_KEY_ATTR_TCP] = sizeof(struct ovs_key_tcp),
 | |
| 	[OVS_KEY_ATTR_UDP] = sizeof(struct ovs_key_udp),
 | |
| 	[OVS_KEY_ATTR_ICMP] = sizeof(struct ovs_key_icmp),
 | |
| 	[OVS_KEY_ATTR_ICMPV6] = sizeof(struct ovs_key_icmpv6),
 | |
| 	[OVS_KEY_ATTR_ARP] = sizeof(struct ovs_key_arp),
 | |
| 	[OVS_KEY_ATTR_ND] = sizeof(struct ovs_key_nd),
 | |
| 	[OVS_KEY_ATTR_TUNNEL] = -1,
 | |
| };
 | |
| 
 | |
| static int ipv4_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_len,
 | |
| 				  const struct nlattr *a[], u32 *attrs)
 | |
| {
 | |
| 	const struct ovs_key_icmp *icmp_key;
 | |
| 	const struct ovs_key_tcp *tcp_key;
 | |
| 	const struct ovs_key_udp *udp_key;
 | |
| 
 | |
| 	switch (swkey->ip.proto) {
 | |
| 	case IPPROTO_TCP:
 | |
| 		if (!(*attrs & (1 << OVS_KEY_ATTR_TCP)))
 | |
| 			return -EINVAL;
 | |
| 		*attrs &= ~(1 << OVS_KEY_ATTR_TCP);
 | |
| 
 | |
| 		*key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
 | |
| 		tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
 | |
| 		swkey->ipv4.tp.src = tcp_key->tcp_src;
 | |
| 		swkey->ipv4.tp.dst = tcp_key->tcp_dst;
 | |
| 		break;
 | |
| 
 | |
| 	case IPPROTO_UDP:
 | |
| 		if (!(*attrs & (1 << OVS_KEY_ATTR_UDP)))
 | |
| 			return -EINVAL;
 | |
| 		*attrs &= ~(1 << OVS_KEY_ATTR_UDP);
 | |
| 
 | |
| 		*key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
 | |
| 		udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
 | |
| 		swkey->ipv4.tp.src = udp_key->udp_src;
 | |
| 		swkey->ipv4.tp.dst = udp_key->udp_dst;
 | |
| 		break;
 | |
| 
 | |
| 	case IPPROTO_ICMP:
 | |
| 		if (!(*attrs & (1 << OVS_KEY_ATTR_ICMP)))
 | |
| 			return -EINVAL;
 | |
| 		*attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
 | |
| 
 | |
| 		*key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
 | |
| 		icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
 | |
| 		swkey->ipv4.tp.src = htons(icmp_key->icmp_type);
 | |
| 		swkey->ipv4.tp.dst = htons(icmp_key->icmp_code);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int ipv6_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_len,
 | |
| 				  const struct nlattr *a[], u32 *attrs)
 | |
| {
 | |
| 	const struct ovs_key_icmpv6 *icmpv6_key;
 | |
| 	const struct ovs_key_tcp *tcp_key;
 | |
| 	const struct ovs_key_udp *udp_key;
 | |
| 
 | |
| 	switch (swkey->ip.proto) {
 | |
| 	case IPPROTO_TCP:
 | |
| 		if (!(*attrs & (1 << OVS_KEY_ATTR_TCP)))
 | |
| 			return -EINVAL;
 | |
| 		*attrs &= ~(1 << OVS_KEY_ATTR_TCP);
 | |
| 
 | |
| 		*key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
 | |
| 		tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
 | |
| 		swkey->ipv6.tp.src = tcp_key->tcp_src;
 | |
| 		swkey->ipv6.tp.dst = tcp_key->tcp_dst;
 | |
| 		break;
 | |
| 
 | |
| 	case IPPROTO_UDP:
 | |
| 		if (!(*attrs & (1 << OVS_KEY_ATTR_UDP)))
 | |
| 			return -EINVAL;
 | |
| 		*attrs &= ~(1 << OVS_KEY_ATTR_UDP);
 | |
| 
 | |
| 		*key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
 | |
| 		udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
 | |
| 		swkey->ipv6.tp.src = udp_key->udp_src;
 | |
| 		swkey->ipv6.tp.dst = udp_key->udp_dst;
 | |
| 		break;
 | |
| 
 | |
| 	case IPPROTO_ICMPV6:
 | |
| 		if (!(*attrs & (1 << OVS_KEY_ATTR_ICMPV6)))
 | |
| 			return -EINVAL;
 | |
| 		*attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
 | |
| 
 | |
| 		*key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
 | |
| 		icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
 | |
| 		swkey->ipv6.tp.src = htons(icmpv6_key->icmpv6_type);
 | |
| 		swkey->ipv6.tp.dst = htons(icmpv6_key->icmpv6_code);
 | |
| 
 | |
| 		if (swkey->ipv6.tp.src == htons(NDISC_NEIGHBOUR_SOLICITATION) ||
 | |
| 		    swkey->ipv6.tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
 | |
| 			const struct ovs_key_nd *nd_key;
 | |
| 
 | |
| 			if (!(*attrs & (1 << OVS_KEY_ATTR_ND)))
 | |
| 				return -EINVAL;
 | |
| 			*attrs &= ~(1 << OVS_KEY_ATTR_ND);
 | |
| 
 | |
| 			*key_len = SW_FLOW_KEY_OFFSET(ipv6.nd);
 | |
| 			nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
 | |
| 			memcpy(&swkey->ipv6.nd.target, nd_key->nd_target,
 | |
| 			       sizeof(swkey->ipv6.nd.target));
 | |
| 			memcpy(swkey->ipv6.nd.sll, nd_key->nd_sll, ETH_ALEN);
 | |
| 			memcpy(swkey->ipv6.nd.tll, nd_key->nd_tll, ETH_ALEN);
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int parse_flow_nlattrs(const struct nlattr *attr,
 | |
| 			      const struct nlattr *a[], u32 *attrsp)
 | |
| {
 | |
| 	const struct nlattr *nla;
 | |
| 	u32 attrs;
 | |
| 	int rem;
 | |
| 
 | |
| 	attrs = 0;
 | |
| 	nla_for_each_nested(nla, attr, rem) {
 | |
| 		u16 type = nla_type(nla);
 | |
| 		int expected_len;
 | |
| 
 | |
| 		if (type > OVS_KEY_ATTR_MAX || attrs & (1 << type))
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		expected_len = ovs_key_lens[type];
 | |
| 		if (nla_len(nla) != expected_len && expected_len != -1)
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		attrs |= 1 << type;
 | |
| 		a[type] = nla;
 | |
| 	}
 | |
| 	if (rem)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	*attrsp = attrs;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int ovs_ipv4_tun_from_nlattr(const struct nlattr *attr,
 | |
| 			     struct ovs_key_ipv4_tunnel *tun_key)
 | |
| {
 | |
| 	struct nlattr *a;
 | |
| 	int rem;
 | |
| 	bool ttl = false;
 | |
| 
 | |
| 	memset(tun_key, 0, sizeof(*tun_key));
 | |
| 
 | |
| 	nla_for_each_nested(a, attr, rem) {
 | |
| 		int type = nla_type(a);
 | |
| 		static const u32 ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = {
 | |
| 			[OVS_TUNNEL_KEY_ATTR_ID] = sizeof(u64),
 | |
| 			[OVS_TUNNEL_KEY_ATTR_IPV4_SRC] = sizeof(u32),
 | |
| 			[OVS_TUNNEL_KEY_ATTR_IPV4_DST] = sizeof(u32),
 | |
| 			[OVS_TUNNEL_KEY_ATTR_TOS] = 1,
 | |
| 			[OVS_TUNNEL_KEY_ATTR_TTL] = 1,
 | |
| 			[OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = 0,
 | |
| 			[OVS_TUNNEL_KEY_ATTR_CSUM] = 0,
 | |
| 		};
 | |
| 
 | |
| 		if (type > OVS_TUNNEL_KEY_ATTR_MAX ||
 | |
| 			ovs_tunnel_key_lens[type] != nla_len(a))
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		switch (type) {
 | |
| 		case OVS_TUNNEL_KEY_ATTR_ID:
 | |
| 			tun_key->tun_id = nla_get_be64(a);
 | |
| 			tun_key->tun_flags |= TUNNEL_KEY;
 | |
| 			break;
 | |
| 		case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
 | |
| 			tun_key->ipv4_src = nla_get_be32(a);
 | |
| 			break;
 | |
| 		case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
 | |
| 			tun_key->ipv4_dst = nla_get_be32(a);
 | |
| 			break;
 | |
| 		case OVS_TUNNEL_KEY_ATTR_TOS:
 | |
| 			tun_key->ipv4_tos = nla_get_u8(a);
 | |
| 			break;
 | |
| 		case OVS_TUNNEL_KEY_ATTR_TTL:
 | |
| 			tun_key->ipv4_ttl = nla_get_u8(a);
 | |
| 			ttl = true;
 | |
| 			break;
 | |
| 		case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
 | |
| 			tun_key->tun_flags |= TUNNEL_DONT_FRAGMENT;
 | |
| 			break;
 | |
| 		case OVS_TUNNEL_KEY_ATTR_CSUM:
 | |
| 			tun_key->tun_flags |= TUNNEL_CSUM;
 | |
| 			break;
 | |
| 		default:
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		}
 | |
| 	}
 | |
| 	if (rem > 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!tun_key->ipv4_dst)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!ttl)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int ovs_ipv4_tun_to_nlattr(struct sk_buff *skb,
 | |
| 			   const struct ovs_key_ipv4_tunnel *tun_key)
 | |
| {
 | |
| 	struct nlattr *nla;
 | |
| 
 | |
| 	nla = nla_nest_start(skb, OVS_KEY_ATTR_TUNNEL);
 | |
| 	if (!nla)
 | |
| 		return -EMSGSIZE;
 | |
| 
 | |
| 	if (tun_key->tun_flags & TUNNEL_KEY &&
 | |
| 	    nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, tun_key->tun_id))
 | |
| 		return -EMSGSIZE;
 | |
| 	if (tun_key->ipv4_src &&
 | |
| 	    nla_put_be32(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC, tun_key->ipv4_src))
 | |
| 		return -EMSGSIZE;
 | |
| 	if (nla_put_be32(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST, tun_key->ipv4_dst))
 | |
| 		return -EMSGSIZE;
 | |
| 	if (tun_key->ipv4_tos &&
 | |
| 	    nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, tun_key->ipv4_tos))
 | |
| 		return -EMSGSIZE;
 | |
| 	if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, tun_key->ipv4_ttl))
 | |
| 		return -EMSGSIZE;
 | |
| 	if ((tun_key->tun_flags & TUNNEL_DONT_FRAGMENT) &&
 | |
| 		nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT))
 | |
| 		return -EMSGSIZE;
 | |
| 	if ((tun_key->tun_flags & TUNNEL_CSUM) &&
 | |
| 		nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM))
 | |
| 		return -EMSGSIZE;
 | |
| 
 | |
| 	nla_nest_end(skb, nla);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ovs_flow_from_nlattrs - parses Netlink attributes into a flow key.
 | |
|  * @swkey: receives the extracted flow key.
 | |
|  * @key_lenp: number of bytes used in @swkey.
 | |
|  * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
 | |
|  * sequence.
 | |
|  */
 | |
| int ovs_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_lenp,
 | |
| 		      const struct nlattr *attr)
 | |
| {
 | |
| 	const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
 | |
| 	const struct ovs_key_ethernet *eth_key;
 | |
| 	int key_len;
 | |
| 	u32 attrs;
 | |
| 	int err;
 | |
| 
 | |
| 	memset(swkey, 0, sizeof(struct sw_flow_key));
 | |
| 	key_len = SW_FLOW_KEY_OFFSET(eth);
 | |
| 
 | |
| 	err = parse_flow_nlattrs(attr, a, &attrs);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	/* Metadata attributes. */
 | |
| 	if (attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
 | |
| 		swkey->phy.priority = nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]);
 | |
| 		attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
 | |
| 	}
 | |
| 	if (attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
 | |
| 		u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
 | |
| 		if (in_port >= DP_MAX_PORTS)
 | |
| 			return -EINVAL;
 | |
| 		swkey->phy.in_port = in_port;
 | |
| 		attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
 | |
| 	} else {
 | |
| 		swkey->phy.in_port = DP_MAX_PORTS;
 | |
| 	}
 | |
| 	if (attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) {
 | |
| 		swkey->phy.skb_mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);
 | |
| 		attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK);
 | |
| 	}
 | |
| 
 | |
| 	if (attrs & (1 << OVS_KEY_ATTR_TUNNEL)) {
 | |
| 		err = ovs_ipv4_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], &swkey->tun_key);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 
 | |
| 		attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL);
 | |
| 	}
 | |
| 
 | |
| 	/* Data attributes. */
 | |
| 	if (!(attrs & (1 << OVS_KEY_ATTR_ETHERNET)))
 | |
| 		return -EINVAL;
 | |
| 	attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
 | |
| 
 | |
| 	eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
 | |
| 	memcpy(swkey->eth.src, eth_key->eth_src, ETH_ALEN);
 | |
| 	memcpy(swkey->eth.dst, eth_key->eth_dst, ETH_ALEN);
 | |
| 
 | |
| 	if (attrs & (1u << OVS_KEY_ATTR_ETHERTYPE) &&
 | |
| 	    nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]) == htons(ETH_P_8021Q)) {
 | |
| 		const struct nlattr *encap;
 | |
| 		__be16 tci;
 | |
| 
 | |
| 		if (attrs != ((1 << OVS_KEY_ATTR_VLAN) |
 | |
| 			      (1 << OVS_KEY_ATTR_ETHERTYPE) |
 | |
| 			      (1 << OVS_KEY_ATTR_ENCAP)))
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		encap = a[OVS_KEY_ATTR_ENCAP];
 | |
| 		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
 | |
| 		if (tci & htons(VLAN_TAG_PRESENT)) {
 | |
| 			swkey->eth.tci = tci;
 | |
| 
 | |
| 			err = parse_flow_nlattrs(encap, a, &attrs);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 		} else if (!tci) {
 | |
| 			/* Corner case for truncated 802.1Q header. */
 | |
| 			if (nla_len(encap))
 | |
| 				return -EINVAL;
 | |
| 
 | |
| 			swkey->eth.type = htons(ETH_P_8021Q);
 | |
| 			*key_lenp = key_len;
 | |
| 			return 0;
 | |
| 		} else {
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
 | |
| 		swkey->eth.type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
 | |
| 		if (ntohs(swkey->eth.type) < ETH_P_802_3_MIN)
 | |
| 			return -EINVAL;
 | |
| 		attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
 | |
| 	} else {
 | |
| 		swkey->eth.type = htons(ETH_P_802_2);
 | |
| 	}
 | |
| 
 | |
| 	if (swkey->eth.type == htons(ETH_P_IP)) {
 | |
| 		const struct ovs_key_ipv4 *ipv4_key;
 | |
| 
 | |
| 		if (!(attrs & (1 << OVS_KEY_ATTR_IPV4)))
 | |
| 			return -EINVAL;
 | |
| 		attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
 | |
| 
 | |
| 		key_len = SW_FLOW_KEY_OFFSET(ipv4.addr);
 | |
| 		ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
 | |
| 		if (ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX)
 | |
| 			return -EINVAL;
 | |
| 		swkey->ip.proto = ipv4_key->ipv4_proto;
 | |
| 		swkey->ip.tos = ipv4_key->ipv4_tos;
 | |
| 		swkey->ip.ttl = ipv4_key->ipv4_ttl;
 | |
| 		swkey->ip.frag = ipv4_key->ipv4_frag;
 | |
| 		swkey->ipv4.addr.src = ipv4_key->ipv4_src;
 | |
| 		swkey->ipv4.addr.dst = ipv4_key->ipv4_dst;
 | |
| 
 | |
| 		if (swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
 | |
| 			err = ipv4_flow_from_nlattrs(swkey, &key_len, a, &attrs);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 		}
 | |
| 	} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
 | |
| 		const struct ovs_key_ipv6 *ipv6_key;
 | |
| 
 | |
| 		if (!(attrs & (1 << OVS_KEY_ATTR_IPV6)))
 | |
| 			return -EINVAL;
 | |
| 		attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
 | |
| 
 | |
| 		key_len = SW_FLOW_KEY_OFFSET(ipv6.label);
 | |
| 		ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
 | |
| 		if (ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX)
 | |
| 			return -EINVAL;
 | |
| 		swkey->ipv6.label = ipv6_key->ipv6_label;
 | |
| 		swkey->ip.proto = ipv6_key->ipv6_proto;
 | |
| 		swkey->ip.tos = ipv6_key->ipv6_tclass;
 | |
| 		swkey->ip.ttl = ipv6_key->ipv6_hlimit;
 | |
| 		swkey->ip.frag = ipv6_key->ipv6_frag;
 | |
| 		memcpy(&swkey->ipv6.addr.src, ipv6_key->ipv6_src,
 | |
| 		       sizeof(swkey->ipv6.addr.src));
 | |
| 		memcpy(&swkey->ipv6.addr.dst, ipv6_key->ipv6_dst,
 | |
| 		       sizeof(swkey->ipv6.addr.dst));
 | |
| 
 | |
| 		if (swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
 | |
| 			err = ipv6_flow_from_nlattrs(swkey, &key_len, a, &attrs);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 		}
 | |
| 	} else if (swkey->eth.type == htons(ETH_P_ARP) ||
 | |
| 		   swkey->eth.type == htons(ETH_P_RARP)) {
 | |
| 		const struct ovs_key_arp *arp_key;
 | |
| 
 | |
| 		if (!(attrs & (1 << OVS_KEY_ATTR_ARP)))
 | |
| 			return -EINVAL;
 | |
| 		attrs &= ~(1 << OVS_KEY_ATTR_ARP);
 | |
| 
 | |
| 		key_len = SW_FLOW_KEY_OFFSET(ipv4.arp);
 | |
| 		arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
 | |
| 		swkey->ipv4.addr.src = arp_key->arp_sip;
 | |
| 		swkey->ipv4.addr.dst = arp_key->arp_tip;
 | |
| 		if (arp_key->arp_op & htons(0xff00))
 | |
| 			return -EINVAL;
 | |
| 		swkey->ip.proto = ntohs(arp_key->arp_op);
 | |
| 		memcpy(swkey->ipv4.arp.sha, arp_key->arp_sha, ETH_ALEN);
 | |
| 		memcpy(swkey->ipv4.arp.tha, arp_key->arp_tha, ETH_ALEN);
 | |
| 	}
 | |
| 
 | |
| 	if (attrs)
 | |
| 		return -EINVAL;
 | |
| 	*key_lenp = key_len;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ovs_flow_metadata_from_nlattrs - parses Netlink attributes into a flow key.
 | |
|  * @flow: Receives extracted in_port, priority, tun_key and skb_mark.
 | |
|  * @key_len: Length of key in @flow.  Used for calculating flow hash.
 | |
|  * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
 | |
|  * sequence.
 | |
|  *
 | |
|  * This parses a series of Netlink attributes that form a flow key, which must
 | |
|  * take the same form accepted by flow_from_nlattrs(), but only enough of it to
 | |
|  * get the metadata, that is, the parts of the flow key that cannot be
 | |
|  * extracted from the packet itself.
 | |
|  */
 | |
| int ovs_flow_metadata_from_nlattrs(struct sw_flow *flow, int key_len,
 | |
| 				   const struct nlattr *attr)
 | |
| {
 | |
| 	struct ovs_key_ipv4_tunnel *tun_key = &flow->key.tun_key;
 | |
| 	const struct nlattr *nla;
 | |
| 	int rem;
 | |
| 
 | |
| 	flow->key.phy.in_port = DP_MAX_PORTS;
 | |
| 	flow->key.phy.priority = 0;
 | |
| 	flow->key.phy.skb_mark = 0;
 | |
| 	memset(tun_key, 0, sizeof(flow->key.tun_key));
 | |
| 
 | |
| 	nla_for_each_nested(nla, attr, rem) {
 | |
| 		int type = nla_type(nla);
 | |
| 
 | |
| 		if (type <= OVS_KEY_ATTR_MAX && ovs_key_lens[type] > 0) {
 | |
| 			int err;
 | |
| 
 | |
| 			if (nla_len(nla) != ovs_key_lens[type])
 | |
| 				return -EINVAL;
 | |
| 
 | |
| 			switch (type) {
 | |
| 			case OVS_KEY_ATTR_PRIORITY:
 | |
| 				flow->key.phy.priority = nla_get_u32(nla);
 | |
| 				break;
 | |
| 
 | |
| 			case OVS_KEY_ATTR_TUNNEL:
 | |
| 				err = ovs_ipv4_tun_from_nlattr(nla, tun_key);
 | |
| 				if (err)
 | |
| 					return err;
 | |
| 				break;
 | |
| 
 | |
| 			case OVS_KEY_ATTR_IN_PORT:
 | |
| 				if (nla_get_u32(nla) >= DP_MAX_PORTS)
 | |
| 					return -EINVAL;
 | |
| 				flow->key.phy.in_port = nla_get_u32(nla);
 | |
| 				break;
 | |
| 
 | |
| 			case OVS_KEY_ATTR_SKB_MARK:
 | |
| 				flow->key.phy.skb_mark = nla_get_u32(nla);
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	if (rem)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	flow->hash = ovs_flow_hash(&flow->key,
 | |
| 				   flow_key_start(&flow->key), key_len);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int ovs_flow_to_nlattrs(const struct sw_flow_key *swkey, struct sk_buff *skb)
 | |
| {
 | |
| 	struct ovs_key_ethernet *eth_key;
 | |
| 	struct nlattr *nla, *encap;
 | |
| 
 | |
| 	if (swkey->phy.priority &&
 | |
| 	    nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, swkey->phy.priority))
 | |
| 		goto nla_put_failure;
 | |
| 
 | |
| 	if (swkey->tun_key.ipv4_dst &&
 | |
| 	    ovs_ipv4_tun_to_nlattr(skb, &swkey->tun_key))
 | |
| 		goto nla_put_failure;
 | |
| 
 | |
| 	if (swkey->phy.in_port != DP_MAX_PORTS &&
 | |
| 	    nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, swkey->phy.in_port))
 | |
| 		goto nla_put_failure;
 | |
| 
 | |
| 	if (swkey->phy.skb_mark &&
 | |
| 	    nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, swkey->phy.skb_mark))
 | |
| 		goto nla_put_failure;
 | |
| 
 | |
| 	nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
 | |
| 	if (!nla)
 | |
| 		goto nla_put_failure;
 | |
| 	eth_key = nla_data(nla);
 | |
| 	memcpy(eth_key->eth_src, swkey->eth.src, ETH_ALEN);
 | |
| 	memcpy(eth_key->eth_dst, swkey->eth.dst, ETH_ALEN);
 | |
| 
 | |
| 	if (swkey->eth.tci || swkey->eth.type == htons(ETH_P_8021Q)) {
 | |
| 		if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, htons(ETH_P_8021Q)) ||
 | |
| 		    nla_put_be16(skb, OVS_KEY_ATTR_VLAN, swkey->eth.tci))
 | |
| 			goto nla_put_failure;
 | |
| 		encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
 | |
| 		if (!swkey->eth.tci)
 | |
| 			goto unencap;
 | |
| 	} else {
 | |
| 		encap = NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (swkey->eth.type == htons(ETH_P_802_2))
 | |
| 		goto unencap;
 | |
| 
 | |
| 	if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, swkey->eth.type))
 | |
| 		goto nla_put_failure;
 | |
| 
 | |
| 	if (swkey->eth.type == htons(ETH_P_IP)) {
 | |
| 		struct ovs_key_ipv4 *ipv4_key;
 | |
| 
 | |
| 		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
 | |
| 		if (!nla)
 | |
| 			goto nla_put_failure;
 | |
| 		ipv4_key = nla_data(nla);
 | |
| 		ipv4_key->ipv4_src = swkey->ipv4.addr.src;
 | |
| 		ipv4_key->ipv4_dst = swkey->ipv4.addr.dst;
 | |
| 		ipv4_key->ipv4_proto = swkey->ip.proto;
 | |
| 		ipv4_key->ipv4_tos = swkey->ip.tos;
 | |
| 		ipv4_key->ipv4_ttl = swkey->ip.ttl;
 | |
| 		ipv4_key->ipv4_frag = swkey->ip.frag;
 | |
| 	} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
 | |
| 		struct ovs_key_ipv6 *ipv6_key;
 | |
| 
 | |
| 		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
 | |
| 		if (!nla)
 | |
| 			goto nla_put_failure;
 | |
| 		ipv6_key = nla_data(nla);
 | |
| 		memcpy(ipv6_key->ipv6_src, &swkey->ipv6.addr.src,
 | |
| 				sizeof(ipv6_key->ipv6_src));
 | |
| 		memcpy(ipv6_key->ipv6_dst, &swkey->ipv6.addr.dst,
 | |
| 				sizeof(ipv6_key->ipv6_dst));
 | |
| 		ipv6_key->ipv6_label = swkey->ipv6.label;
 | |
| 		ipv6_key->ipv6_proto = swkey->ip.proto;
 | |
| 		ipv6_key->ipv6_tclass = swkey->ip.tos;
 | |
| 		ipv6_key->ipv6_hlimit = swkey->ip.ttl;
 | |
| 		ipv6_key->ipv6_frag = swkey->ip.frag;
 | |
| 	} else if (swkey->eth.type == htons(ETH_P_ARP) ||
 | |
| 		   swkey->eth.type == htons(ETH_P_RARP)) {
 | |
| 		struct ovs_key_arp *arp_key;
 | |
| 
 | |
| 		nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
 | |
| 		if (!nla)
 | |
| 			goto nla_put_failure;
 | |
| 		arp_key = nla_data(nla);
 | |
| 		memset(arp_key, 0, sizeof(struct ovs_key_arp));
 | |
| 		arp_key->arp_sip = swkey->ipv4.addr.src;
 | |
| 		arp_key->arp_tip = swkey->ipv4.addr.dst;
 | |
| 		arp_key->arp_op = htons(swkey->ip.proto);
 | |
| 		memcpy(arp_key->arp_sha, swkey->ipv4.arp.sha, ETH_ALEN);
 | |
| 		memcpy(arp_key->arp_tha, swkey->ipv4.arp.tha, ETH_ALEN);
 | |
| 	}
 | |
| 
 | |
| 	if ((swkey->eth.type == htons(ETH_P_IP) ||
 | |
| 	     swkey->eth.type == htons(ETH_P_IPV6)) &&
 | |
| 	     swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
 | |
| 
 | |
| 		if (swkey->ip.proto == IPPROTO_TCP) {
 | |
| 			struct ovs_key_tcp *tcp_key;
 | |
| 
 | |
| 			nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
 | |
| 			if (!nla)
 | |
| 				goto nla_put_failure;
 | |
| 			tcp_key = nla_data(nla);
 | |
| 			if (swkey->eth.type == htons(ETH_P_IP)) {
 | |
| 				tcp_key->tcp_src = swkey->ipv4.tp.src;
 | |
| 				tcp_key->tcp_dst = swkey->ipv4.tp.dst;
 | |
| 			} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
 | |
| 				tcp_key->tcp_src = swkey->ipv6.tp.src;
 | |
| 				tcp_key->tcp_dst = swkey->ipv6.tp.dst;
 | |
| 			}
 | |
| 		} else if (swkey->ip.proto == IPPROTO_UDP) {
 | |
| 			struct ovs_key_udp *udp_key;
 | |
| 
 | |
| 			nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
 | |
| 			if (!nla)
 | |
| 				goto nla_put_failure;
 | |
| 			udp_key = nla_data(nla);
 | |
| 			if (swkey->eth.type == htons(ETH_P_IP)) {
 | |
| 				udp_key->udp_src = swkey->ipv4.tp.src;
 | |
| 				udp_key->udp_dst = swkey->ipv4.tp.dst;
 | |
| 			} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
 | |
| 				udp_key->udp_src = swkey->ipv6.tp.src;
 | |
| 				udp_key->udp_dst = swkey->ipv6.tp.dst;
 | |
| 			}
 | |
| 		} else if (swkey->eth.type == htons(ETH_P_IP) &&
 | |
| 			   swkey->ip.proto == IPPROTO_ICMP) {
 | |
| 			struct ovs_key_icmp *icmp_key;
 | |
| 
 | |
| 			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
 | |
| 			if (!nla)
 | |
| 				goto nla_put_failure;
 | |
| 			icmp_key = nla_data(nla);
 | |
| 			icmp_key->icmp_type = ntohs(swkey->ipv4.tp.src);
 | |
| 			icmp_key->icmp_code = ntohs(swkey->ipv4.tp.dst);
 | |
| 		} else if (swkey->eth.type == htons(ETH_P_IPV6) &&
 | |
| 			   swkey->ip.proto == IPPROTO_ICMPV6) {
 | |
| 			struct ovs_key_icmpv6 *icmpv6_key;
 | |
| 
 | |
| 			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
 | |
| 						sizeof(*icmpv6_key));
 | |
| 			if (!nla)
 | |
| 				goto nla_put_failure;
 | |
| 			icmpv6_key = nla_data(nla);
 | |
| 			icmpv6_key->icmpv6_type = ntohs(swkey->ipv6.tp.src);
 | |
| 			icmpv6_key->icmpv6_code = ntohs(swkey->ipv6.tp.dst);
 | |
| 
 | |
| 			if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
 | |
| 			    icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
 | |
| 				struct ovs_key_nd *nd_key;
 | |
| 
 | |
| 				nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
 | |
| 				if (!nla)
 | |
| 					goto nla_put_failure;
 | |
| 				nd_key = nla_data(nla);
 | |
| 				memcpy(nd_key->nd_target, &swkey->ipv6.nd.target,
 | |
| 							sizeof(nd_key->nd_target));
 | |
| 				memcpy(nd_key->nd_sll, swkey->ipv6.nd.sll, ETH_ALEN);
 | |
| 				memcpy(nd_key->nd_tll, swkey->ipv6.nd.tll, ETH_ALEN);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| unencap:
 | |
| 	if (encap)
 | |
| 		nla_nest_end(skb, encap);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| nla_put_failure:
 | |
| 	return -EMSGSIZE;
 | |
| }
 | |
| 
 | |
| /* Initializes the flow module.
 | |
|  * Returns zero if successful or a negative error code. */
 | |
| int ovs_flow_init(void)
 | |
| {
 | |
| 	flow_cache = kmem_cache_create("sw_flow", sizeof(struct sw_flow), 0,
 | |
| 					0, NULL);
 | |
| 	if (flow_cache == NULL)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Uninitializes the flow module. */
 | |
| void ovs_flow_exit(void)
 | |
| {
 | |
| 	kmem_cache_destroy(flow_cache);
 | |
| }
 |