840 lines
		
	
	
	
		
			20 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			840 lines
		
	
	
	
		
			20 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 *  Copyright (C) 1995  Linus Torvalds
 | 
						|
 *
 | 
						|
 *  Pentium III FXSR, SSE support
 | 
						|
 *	Gareth Hughes <gareth@valinux.com>, May 2000
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * This file handles the architecture-dependent parts of process handling..
 | 
						|
 */
 | 
						|
 | 
						|
#include <stdarg.h>
 | 
						|
 | 
						|
#include <linux/cpu.h>
 | 
						|
#include <linux/errno.h>
 | 
						|
#include <linux/sched.h>
 | 
						|
#include <linux/fs.h>
 | 
						|
#include <linux/kernel.h>
 | 
						|
#include <linux/mm.h>
 | 
						|
#include <linux/elfcore.h>
 | 
						|
#include <linux/smp.h>
 | 
						|
#include <linux/stddef.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
#include <linux/vmalloc.h>
 | 
						|
#include <linux/user.h>
 | 
						|
#include <linux/interrupt.h>
 | 
						|
#include <linux/utsname.h>
 | 
						|
#include <linux/delay.h>
 | 
						|
#include <linux/reboot.h>
 | 
						|
#include <linux/init.h>
 | 
						|
#include <linux/mc146818rtc.h>
 | 
						|
#include <linux/module.h>
 | 
						|
#include <linux/kallsyms.h>
 | 
						|
#include <linux/ptrace.h>
 | 
						|
#include <linux/random.h>
 | 
						|
#include <linux/personality.h>
 | 
						|
#include <linux/tick.h>
 | 
						|
#include <linux/percpu.h>
 | 
						|
 | 
						|
#include <asm/uaccess.h>
 | 
						|
#include <asm/pgtable.h>
 | 
						|
#include <asm/system.h>
 | 
						|
#include <asm/io.h>
 | 
						|
#include <asm/ldt.h>
 | 
						|
#include <asm/processor.h>
 | 
						|
#include <asm/i387.h>
 | 
						|
#include <asm/desc.h>
 | 
						|
#include <asm/vm86.h>
 | 
						|
#ifdef CONFIG_MATH_EMULATION
 | 
						|
#include <asm/math_emu.h>
 | 
						|
#endif
 | 
						|
 | 
						|
#include <linux/err.h>
 | 
						|
 | 
						|
#include <asm/tlbflush.h>
 | 
						|
#include <asm/cpu.h>
 | 
						|
#include <asm/kdebug.h>
 | 
						|
 | 
						|
asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
 | 
						|
 | 
						|
static int hlt_counter;
 | 
						|
 | 
						|
unsigned long boot_option_idle_override = 0;
 | 
						|
EXPORT_SYMBOL(boot_option_idle_override);
 | 
						|
 | 
						|
DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
 | 
						|
EXPORT_PER_CPU_SYMBOL(current_task);
 | 
						|
 | 
						|
DEFINE_PER_CPU(int, cpu_number);
 | 
						|
EXPORT_PER_CPU_SYMBOL(cpu_number);
 | 
						|
 | 
						|
/*
 | 
						|
 * Return saved PC of a blocked thread.
 | 
						|
 */
 | 
						|
unsigned long thread_saved_pc(struct task_struct *tsk)
 | 
						|
{
 | 
						|
	return ((unsigned long *)tsk->thread.sp)[3];
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Powermanagement idle function, if any..
 | 
						|
 */
 | 
						|
void (*pm_idle)(void);
 | 
						|
EXPORT_SYMBOL(pm_idle);
 | 
						|
 | 
						|
void disable_hlt(void)
 | 
						|
{
 | 
						|
	hlt_counter++;
 | 
						|
}
 | 
						|
 | 
						|
EXPORT_SYMBOL(disable_hlt);
 | 
						|
 | 
						|
void enable_hlt(void)
 | 
						|
{
 | 
						|
	hlt_counter--;
 | 
						|
}
 | 
						|
 | 
						|
EXPORT_SYMBOL(enable_hlt);
 | 
						|
 | 
						|
/*
 | 
						|
 * We use this if we don't have any better
 | 
						|
 * idle routine..
 | 
						|
 */
 | 
						|
void default_idle(void)
 | 
						|
{
 | 
						|
	if (!hlt_counter && boot_cpu_data.hlt_works_ok) {
 | 
						|
		current_thread_info()->status &= ~TS_POLLING;
 | 
						|
		/*
 | 
						|
		 * TS_POLLING-cleared state must be visible before we
 | 
						|
		 * test NEED_RESCHED:
 | 
						|
		 */
 | 
						|
		smp_mb();
 | 
						|
 | 
						|
		local_irq_disable();
 | 
						|
		if (!need_resched()) {
 | 
						|
			ktime_t t0, t1;
 | 
						|
			u64 t0n, t1n;
 | 
						|
 | 
						|
			t0 = ktime_get();
 | 
						|
			t0n = ktime_to_ns(t0);
 | 
						|
			safe_halt();	/* enables interrupts racelessly */
 | 
						|
			local_irq_disable();
 | 
						|
			t1 = ktime_get();
 | 
						|
			t1n = ktime_to_ns(t1);
 | 
						|
			sched_clock_idle_wakeup_event(t1n - t0n);
 | 
						|
		}
 | 
						|
		local_irq_enable();
 | 
						|
		current_thread_info()->status |= TS_POLLING;
 | 
						|
	} else {
 | 
						|
		/* loop is done by the caller */
 | 
						|
		cpu_relax();
 | 
						|
	}
 | 
						|
}
 | 
						|
#ifdef CONFIG_APM_MODULE
 | 
						|
EXPORT_SYMBOL(default_idle);
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * On SMP it's slightly faster (but much more power-consuming!)
 | 
						|
 * to poll the ->work.need_resched flag instead of waiting for the
 | 
						|
 * cross-CPU IPI to arrive. Use this option with caution.
 | 
						|
 */
 | 
						|
static void poll_idle(void)
 | 
						|
{
 | 
						|
	cpu_relax();
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_HOTPLUG_CPU
 | 
						|
#include <asm/nmi.h>
 | 
						|
/* We don't actually take CPU down, just spin without interrupts. */
 | 
						|
static inline void play_dead(void)
 | 
						|
{
 | 
						|
	/* This must be done before dead CPU ack */
 | 
						|
	cpu_exit_clear();
 | 
						|
	wbinvd();
 | 
						|
	mb();
 | 
						|
	/* Ack it */
 | 
						|
	__get_cpu_var(cpu_state) = CPU_DEAD;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * With physical CPU hotplug, we should halt the cpu
 | 
						|
	 */
 | 
						|
	local_irq_disable();
 | 
						|
	while (1)
 | 
						|
		halt();
 | 
						|
}
 | 
						|
#else
 | 
						|
static inline void play_dead(void)
 | 
						|
{
 | 
						|
	BUG();
 | 
						|
}
 | 
						|
#endif /* CONFIG_HOTPLUG_CPU */
 | 
						|
 | 
						|
/*
 | 
						|
 * The idle thread. There's no useful work to be
 | 
						|
 * done, so just try to conserve power and have a
 | 
						|
 * low exit latency (ie sit in a loop waiting for
 | 
						|
 * somebody to say that they'd like to reschedule)
 | 
						|
 */
 | 
						|
void cpu_idle(void)
 | 
						|
{
 | 
						|
	int cpu = smp_processor_id();
 | 
						|
 | 
						|
	current_thread_info()->status |= TS_POLLING;
 | 
						|
 | 
						|
	/* endless idle loop with no priority at all */
 | 
						|
	while (1) {
 | 
						|
		tick_nohz_stop_sched_tick();
 | 
						|
		while (!need_resched()) {
 | 
						|
			void (*idle)(void);
 | 
						|
 | 
						|
			check_pgt_cache();
 | 
						|
			rmb();
 | 
						|
			idle = pm_idle;
 | 
						|
 | 
						|
			if (rcu_pending(cpu))
 | 
						|
				rcu_check_callbacks(cpu, 0);
 | 
						|
 | 
						|
			if (!idle)
 | 
						|
				idle = default_idle;
 | 
						|
 | 
						|
			if (cpu_is_offline(cpu))
 | 
						|
				play_dead();
 | 
						|
 | 
						|
			__get_cpu_var(irq_stat).idle_timestamp = jiffies;
 | 
						|
			idle();
 | 
						|
		}
 | 
						|
		tick_nohz_restart_sched_tick();
 | 
						|
		preempt_enable_no_resched();
 | 
						|
		schedule();
 | 
						|
		preempt_disable();
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void do_nothing(void *unused)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
 | 
						|
 * pm_idle and update to new pm_idle value. Required while changing pm_idle
 | 
						|
 * handler on SMP systems.
 | 
						|
 *
 | 
						|
 * Caller must have changed pm_idle to the new value before the call. Old
 | 
						|
 * pm_idle value will not be used by any CPU after the return of this function.
 | 
						|
 */
 | 
						|
void cpu_idle_wait(void)
 | 
						|
{
 | 
						|
	smp_mb();
 | 
						|
	/* kick all the CPUs so that they exit out of pm_idle */
 | 
						|
	smp_call_function(do_nothing, NULL, 0, 1);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(cpu_idle_wait);
 | 
						|
 | 
						|
/*
 | 
						|
 * This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
 | 
						|
 * which can obviate IPI to trigger checking of need_resched.
 | 
						|
 * We execute MONITOR against need_resched and enter optimized wait state
 | 
						|
 * through MWAIT. Whenever someone changes need_resched, we would be woken
 | 
						|
 * up from MWAIT (without an IPI).
 | 
						|
 *
 | 
						|
 * New with Core Duo processors, MWAIT can take some hints based on CPU
 | 
						|
 * capability.
 | 
						|
 */
 | 
						|
void mwait_idle_with_hints(unsigned long ax, unsigned long cx)
 | 
						|
{
 | 
						|
	if (!need_resched()) {
 | 
						|
		__monitor((void *)¤t_thread_info()->flags, 0, 0);
 | 
						|
		smp_mb();
 | 
						|
		if (!need_resched())
 | 
						|
			__mwait(ax, cx);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* Default MONITOR/MWAIT with no hints, used for default C1 state */
 | 
						|
static void mwait_idle(void)
 | 
						|
{
 | 
						|
	local_irq_enable();
 | 
						|
	mwait_idle_with_hints(0, 0);
 | 
						|
}
 | 
						|
 | 
						|
static int __cpuinit mwait_usable(const struct cpuinfo_x86 *c)
 | 
						|
{
 | 
						|
	if (force_mwait)
 | 
						|
		return 1;
 | 
						|
	/* Any C1 states supported? */
 | 
						|
	return c->cpuid_level >= 5 && ((cpuid_edx(5) >> 4) & 0xf) > 0;
 | 
						|
}
 | 
						|
 | 
						|
void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
 | 
						|
{
 | 
						|
	static int selected;
 | 
						|
 | 
						|
	if (selected)
 | 
						|
		return;
 | 
						|
#ifdef CONFIG_X86_SMP
 | 
						|
	if (pm_idle == poll_idle && smp_num_siblings > 1) {
 | 
						|
		printk(KERN_WARNING "WARNING: polling idle and HT enabled,"
 | 
						|
			" performance may degrade.\n");
 | 
						|
	}
 | 
						|
#endif
 | 
						|
	if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
 | 
						|
		/*
 | 
						|
		 * Skip, if setup has overridden idle.
 | 
						|
		 * One CPU supports mwait => All CPUs supports mwait
 | 
						|
		 */
 | 
						|
		if (!pm_idle) {
 | 
						|
			printk(KERN_INFO "using mwait in idle threads.\n");
 | 
						|
			pm_idle = mwait_idle;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	selected = 1;
 | 
						|
}
 | 
						|
 | 
						|
static int __init idle_setup(char *str)
 | 
						|
{
 | 
						|
	if (!strcmp(str, "poll")) {
 | 
						|
		printk("using polling idle threads.\n");
 | 
						|
		pm_idle = poll_idle;
 | 
						|
	} else if (!strcmp(str, "mwait"))
 | 
						|
		force_mwait = 1;
 | 
						|
	else
 | 
						|
		return -1;
 | 
						|
 | 
						|
	boot_option_idle_override = 1;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
early_param("idle", idle_setup);
 | 
						|
 | 
						|
void __show_registers(struct pt_regs *regs, int all)
 | 
						|
{
 | 
						|
	unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
 | 
						|
	unsigned long d0, d1, d2, d3, d6, d7;
 | 
						|
	unsigned long sp;
 | 
						|
	unsigned short ss, gs;
 | 
						|
 | 
						|
	if (user_mode_vm(regs)) {
 | 
						|
		sp = regs->sp;
 | 
						|
		ss = regs->ss & 0xffff;
 | 
						|
		savesegment(gs, gs);
 | 
						|
	} else {
 | 
						|
		sp = (unsigned long) (®s->sp);
 | 
						|
		savesegment(ss, ss);
 | 
						|
		savesegment(gs, gs);
 | 
						|
	}
 | 
						|
 | 
						|
	printk("\n");
 | 
						|
	printk("Pid: %d, comm: %s %s (%s %.*s)\n",
 | 
						|
			task_pid_nr(current), current->comm,
 | 
						|
			print_tainted(), init_utsname()->release,
 | 
						|
			(int)strcspn(init_utsname()->version, " "),
 | 
						|
			init_utsname()->version);
 | 
						|
 | 
						|
	printk("EIP: %04x:[<%08lx>] EFLAGS: %08lx CPU: %d\n",
 | 
						|
			(u16)regs->cs, regs->ip, regs->flags,
 | 
						|
			smp_processor_id());
 | 
						|
	print_symbol("EIP is at %s\n", regs->ip);
 | 
						|
 | 
						|
	printk("EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
 | 
						|
		regs->ax, regs->bx, regs->cx, regs->dx);
 | 
						|
	printk("ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n",
 | 
						|
		regs->si, regs->di, regs->bp, sp);
 | 
						|
	printk(" DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x\n",
 | 
						|
	       (u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, ss);
 | 
						|
 | 
						|
	if (!all)
 | 
						|
		return;
 | 
						|
 | 
						|
	cr0 = read_cr0();
 | 
						|
	cr2 = read_cr2();
 | 
						|
	cr3 = read_cr3();
 | 
						|
	cr4 = read_cr4_safe();
 | 
						|
	printk("CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n",
 | 
						|
			cr0, cr2, cr3, cr4);
 | 
						|
 | 
						|
	get_debugreg(d0, 0);
 | 
						|
	get_debugreg(d1, 1);
 | 
						|
	get_debugreg(d2, 2);
 | 
						|
	get_debugreg(d3, 3);
 | 
						|
	printk("DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
 | 
						|
			d0, d1, d2, d3);
 | 
						|
 | 
						|
	get_debugreg(d6, 6);
 | 
						|
	get_debugreg(d7, 7);
 | 
						|
	printk("DR6: %08lx DR7: %08lx\n",
 | 
						|
			d6, d7);
 | 
						|
}
 | 
						|
 | 
						|
void show_regs(struct pt_regs *regs)
 | 
						|
{
 | 
						|
	__show_registers(regs, 1);
 | 
						|
	show_trace(NULL, regs, ®s->sp, regs->bp);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This gets run with %bx containing the
 | 
						|
 * function to call, and %dx containing
 | 
						|
 * the "args".
 | 
						|
 */
 | 
						|
extern void kernel_thread_helper(void);
 | 
						|
 | 
						|
/*
 | 
						|
 * Create a kernel thread
 | 
						|
 */
 | 
						|
int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
 | 
						|
{
 | 
						|
	struct pt_regs regs;
 | 
						|
 | 
						|
	memset(®s, 0, sizeof(regs));
 | 
						|
 | 
						|
	regs.bx = (unsigned long) fn;
 | 
						|
	regs.dx = (unsigned long) arg;
 | 
						|
 | 
						|
	regs.ds = __USER_DS;
 | 
						|
	regs.es = __USER_DS;
 | 
						|
	regs.fs = __KERNEL_PERCPU;
 | 
						|
	regs.orig_ax = -1;
 | 
						|
	regs.ip = (unsigned long) kernel_thread_helper;
 | 
						|
	regs.cs = __KERNEL_CS | get_kernel_rpl();
 | 
						|
	regs.flags = X86_EFLAGS_IF | X86_EFLAGS_SF | X86_EFLAGS_PF | 0x2;
 | 
						|
 | 
						|
	/* Ok, create the new process.. */
 | 
						|
	return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, ®s, 0, NULL, NULL);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(kernel_thread);
 | 
						|
 | 
						|
/*
 | 
						|
 * Free current thread data structures etc..
 | 
						|
 */
 | 
						|
void exit_thread(void)
 | 
						|
{
 | 
						|
	/* The process may have allocated an io port bitmap... nuke it. */
 | 
						|
	if (unlikely(test_thread_flag(TIF_IO_BITMAP))) {
 | 
						|
		struct task_struct *tsk = current;
 | 
						|
		struct thread_struct *t = &tsk->thread;
 | 
						|
		int cpu = get_cpu();
 | 
						|
		struct tss_struct *tss = &per_cpu(init_tss, cpu);
 | 
						|
 | 
						|
		kfree(t->io_bitmap_ptr);
 | 
						|
		t->io_bitmap_ptr = NULL;
 | 
						|
		clear_thread_flag(TIF_IO_BITMAP);
 | 
						|
		/*
 | 
						|
		 * Careful, clear this in the TSS too:
 | 
						|
		 */
 | 
						|
		memset(tss->io_bitmap, 0xff, tss->io_bitmap_max);
 | 
						|
		t->io_bitmap_max = 0;
 | 
						|
		tss->io_bitmap_owner = NULL;
 | 
						|
		tss->io_bitmap_max = 0;
 | 
						|
		tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
 | 
						|
		put_cpu();
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void flush_thread(void)
 | 
						|
{
 | 
						|
	struct task_struct *tsk = current;
 | 
						|
 | 
						|
	tsk->thread.debugreg0 = 0;
 | 
						|
	tsk->thread.debugreg1 = 0;
 | 
						|
	tsk->thread.debugreg2 = 0;
 | 
						|
	tsk->thread.debugreg3 = 0;
 | 
						|
	tsk->thread.debugreg6 = 0;
 | 
						|
	tsk->thread.debugreg7 = 0;
 | 
						|
	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));	
 | 
						|
	clear_tsk_thread_flag(tsk, TIF_DEBUG);
 | 
						|
	/*
 | 
						|
	 * Forget coprocessor state..
 | 
						|
	 */
 | 
						|
	clear_fpu(tsk);
 | 
						|
	clear_used_math();
 | 
						|
}
 | 
						|
 | 
						|
void release_thread(struct task_struct *dead_task)
 | 
						|
{
 | 
						|
	BUG_ON(dead_task->mm);
 | 
						|
	release_vm86_irqs(dead_task);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This gets called before we allocate a new thread and copy
 | 
						|
 * the current task into it.
 | 
						|
 */
 | 
						|
void prepare_to_copy(struct task_struct *tsk)
 | 
						|
{
 | 
						|
	unlazy_fpu(tsk);
 | 
						|
}
 | 
						|
 | 
						|
int copy_thread(int nr, unsigned long clone_flags, unsigned long sp,
 | 
						|
	unsigned long unused,
 | 
						|
	struct task_struct * p, struct pt_regs * regs)
 | 
						|
{
 | 
						|
	struct pt_regs * childregs;
 | 
						|
	struct task_struct *tsk;
 | 
						|
	int err;
 | 
						|
 | 
						|
	childregs = task_pt_regs(p);
 | 
						|
	*childregs = *regs;
 | 
						|
	childregs->ax = 0;
 | 
						|
	childregs->sp = sp;
 | 
						|
 | 
						|
	p->thread.sp = (unsigned long) childregs;
 | 
						|
	p->thread.sp0 = (unsigned long) (childregs+1);
 | 
						|
 | 
						|
	p->thread.ip = (unsigned long) ret_from_fork;
 | 
						|
 | 
						|
	savesegment(gs, p->thread.gs);
 | 
						|
 | 
						|
	tsk = current;
 | 
						|
	if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
 | 
						|
		p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
 | 
						|
						IO_BITMAP_BYTES, GFP_KERNEL);
 | 
						|
		if (!p->thread.io_bitmap_ptr) {
 | 
						|
			p->thread.io_bitmap_max = 0;
 | 
						|
			return -ENOMEM;
 | 
						|
		}
 | 
						|
		set_tsk_thread_flag(p, TIF_IO_BITMAP);
 | 
						|
	}
 | 
						|
 | 
						|
	err = 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Set a new TLS for the child thread?
 | 
						|
	 */
 | 
						|
	if (clone_flags & CLONE_SETTLS)
 | 
						|
		err = do_set_thread_area(p, -1,
 | 
						|
			(struct user_desc __user *)childregs->si, 0);
 | 
						|
 | 
						|
	if (err && p->thread.io_bitmap_ptr) {
 | 
						|
		kfree(p->thread.io_bitmap_ptr);
 | 
						|
		p->thread.io_bitmap_max = 0;
 | 
						|
	}
 | 
						|
	return err;
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
 | 
						|
{
 | 
						|
	__asm__("movl %0, %%gs" :: "r"(0));
 | 
						|
	regs->fs		= 0;
 | 
						|
	set_fs(USER_DS);
 | 
						|
	regs->ds		= __USER_DS;
 | 
						|
	regs->es		= __USER_DS;
 | 
						|
	regs->ss		= __USER_DS;
 | 
						|
	regs->cs		= __USER_CS;
 | 
						|
	regs->ip		= new_ip;
 | 
						|
	regs->sp		= new_sp;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(start_thread);
 | 
						|
 | 
						|
#ifdef CONFIG_SECCOMP
 | 
						|
static void hard_disable_TSC(void)
 | 
						|
{
 | 
						|
	write_cr4(read_cr4() | X86_CR4_TSD);
 | 
						|
}
 | 
						|
void disable_TSC(void)
 | 
						|
{
 | 
						|
	preempt_disable();
 | 
						|
	if (!test_and_set_thread_flag(TIF_NOTSC))
 | 
						|
		/*
 | 
						|
		 * Must flip the CPU state synchronously with
 | 
						|
		 * TIF_NOTSC in the current running context.
 | 
						|
		 */
 | 
						|
		hard_disable_TSC();
 | 
						|
	preempt_enable();
 | 
						|
}
 | 
						|
static void hard_enable_TSC(void)
 | 
						|
{
 | 
						|
	write_cr4(read_cr4() & ~X86_CR4_TSD);
 | 
						|
}
 | 
						|
#endif /* CONFIG_SECCOMP */
 | 
						|
 | 
						|
static noinline void
 | 
						|
__switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
 | 
						|
		 struct tss_struct *tss)
 | 
						|
{
 | 
						|
	struct thread_struct *prev, *next;
 | 
						|
	unsigned long debugctl;
 | 
						|
 | 
						|
	prev = &prev_p->thread;
 | 
						|
	next = &next_p->thread;
 | 
						|
 | 
						|
	debugctl = prev->debugctlmsr;
 | 
						|
	if (next->ds_area_msr != prev->ds_area_msr) {
 | 
						|
		/* we clear debugctl to make sure DS
 | 
						|
		 * is not in use when we change it */
 | 
						|
		debugctl = 0;
 | 
						|
		wrmsrl(MSR_IA32_DEBUGCTLMSR, 0);
 | 
						|
		wrmsr(MSR_IA32_DS_AREA, next->ds_area_msr, 0);
 | 
						|
	}
 | 
						|
 | 
						|
	if (next->debugctlmsr != debugctl)
 | 
						|
		wrmsr(MSR_IA32_DEBUGCTLMSR, next->debugctlmsr, 0);
 | 
						|
 | 
						|
	if (test_tsk_thread_flag(next_p, TIF_DEBUG)) {
 | 
						|
		set_debugreg(next->debugreg0, 0);
 | 
						|
		set_debugreg(next->debugreg1, 1);
 | 
						|
		set_debugreg(next->debugreg2, 2);
 | 
						|
		set_debugreg(next->debugreg3, 3);
 | 
						|
		/* no 4 and 5 */
 | 
						|
		set_debugreg(next->debugreg6, 6);
 | 
						|
		set_debugreg(next->debugreg7, 7);
 | 
						|
	}
 | 
						|
 | 
						|
#ifdef CONFIG_SECCOMP
 | 
						|
	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
 | 
						|
	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
 | 
						|
		/* prev and next are different */
 | 
						|
		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
 | 
						|
			hard_disable_TSC();
 | 
						|
		else
 | 
						|
			hard_enable_TSC();
 | 
						|
	}
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef X86_BTS
 | 
						|
	if (test_tsk_thread_flag(prev_p, TIF_BTS_TRACE_TS))
 | 
						|
		ptrace_bts_take_timestamp(prev_p, BTS_TASK_DEPARTS);
 | 
						|
 | 
						|
	if (test_tsk_thread_flag(next_p, TIF_BTS_TRACE_TS))
 | 
						|
		ptrace_bts_take_timestamp(next_p, BTS_TASK_ARRIVES);
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
	if (!test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
 | 
						|
		/*
 | 
						|
		 * Disable the bitmap via an invalid offset. We still cache
 | 
						|
		 * the previous bitmap owner and the IO bitmap contents:
 | 
						|
		 */
 | 
						|
		tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	if (likely(next == tss->io_bitmap_owner)) {
 | 
						|
		/*
 | 
						|
		 * Previous owner of the bitmap (hence the bitmap content)
 | 
						|
		 * matches the next task, we dont have to do anything but
 | 
						|
		 * to set a valid offset in the TSS:
 | 
						|
		 */
 | 
						|
		tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
 | 
						|
		return;
 | 
						|
	}
 | 
						|
	/*
 | 
						|
	 * Lazy TSS's I/O bitmap copy. We set an invalid offset here
 | 
						|
	 * and we let the task to get a GPF in case an I/O instruction
 | 
						|
	 * is performed.  The handler of the GPF will verify that the
 | 
						|
	 * faulting task has a valid I/O bitmap and, it true, does the
 | 
						|
	 * real copy and restart the instruction.  This will save us
 | 
						|
	 * redundant copies when the currently switched task does not
 | 
						|
	 * perform any I/O during its timeslice.
 | 
						|
	 */
 | 
						|
	tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET_LAZY;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *	switch_to(x,yn) should switch tasks from x to y.
 | 
						|
 *
 | 
						|
 * We fsave/fwait so that an exception goes off at the right time
 | 
						|
 * (as a call from the fsave or fwait in effect) rather than to
 | 
						|
 * the wrong process. Lazy FP saving no longer makes any sense
 | 
						|
 * with modern CPU's, and this simplifies a lot of things (SMP
 | 
						|
 * and UP become the same).
 | 
						|
 *
 | 
						|
 * NOTE! We used to use the x86 hardware context switching. The
 | 
						|
 * reason for not using it any more becomes apparent when you
 | 
						|
 * try to recover gracefully from saved state that is no longer
 | 
						|
 * valid (stale segment register values in particular). With the
 | 
						|
 * hardware task-switch, there is no way to fix up bad state in
 | 
						|
 * a reasonable manner.
 | 
						|
 *
 | 
						|
 * The fact that Intel documents the hardware task-switching to
 | 
						|
 * be slow is a fairly red herring - this code is not noticeably
 | 
						|
 * faster. However, there _is_ some room for improvement here,
 | 
						|
 * so the performance issues may eventually be a valid point.
 | 
						|
 * More important, however, is the fact that this allows us much
 | 
						|
 * more flexibility.
 | 
						|
 *
 | 
						|
 * The return value (in %ax) will be the "prev" task after
 | 
						|
 * the task-switch, and shows up in ret_from_fork in entry.S,
 | 
						|
 * for example.
 | 
						|
 */
 | 
						|
struct task_struct * __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
 | 
						|
{
 | 
						|
	struct thread_struct *prev = &prev_p->thread,
 | 
						|
				 *next = &next_p->thread;
 | 
						|
	int cpu = smp_processor_id();
 | 
						|
	struct tss_struct *tss = &per_cpu(init_tss, cpu);
 | 
						|
 | 
						|
	/* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
 | 
						|
 | 
						|
	__unlazy_fpu(prev_p);
 | 
						|
 | 
						|
 | 
						|
	/* we're going to use this soon, after a few expensive things */
 | 
						|
	if (next_p->fpu_counter > 5)
 | 
						|
		prefetch(&next->i387.fxsave);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Reload esp0.
 | 
						|
	 */
 | 
						|
	load_sp0(tss, next);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Save away %gs. No need to save %fs, as it was saved on the
 | 
						|
	 * stack on entry.  No need to save %es and %ds, as those are
 | 
						|
	 * always kernel segments while inside the kernel.  Doing this
 | 
						|
	 * before setting the new TLS descriptors avoids the situation
 | 
						|
	 * where we temporarily have non-reloadable segments in %fs
 | 
						|
	 * and %gs.  This could be an issue if the NMI handler ever
 | 
						|
	 * used %fs or %gs (it does not today), or if the kernel is
 | 
						|
	 * running inside of a hypervisor layer.
 | 
						|
	 */
 | 
						|
	savesegment(gs, prev->gs);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Load the per-thread Thread-Local Storage descriptor.
 | 
						|
	 */
 | 
						|
	load_TLS(next, cpu);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Restore IOPL if needed.  In normal use, the flags restore
 | 
						|
	 * in the switch assembly will handle this.  But if the kernel
 | 
						|
	 * is running virtualized at a non-zero CPL, the popf will
 | 
						|
	 * not restore flags, so it must be done in a separate step.
 | 
						|
	 */
 | 
						|
	if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
 | 
						|
		set_iopl_mask(next->iopl);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Now maybe handle debug registers and/or IO bitmaps
 | 
						|
	 */
 | 
						|
	if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV ||
 | 
						|
		     task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT))
 | 
						|
		__switch_to_xtra(prev_p, next_p, tss);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Leave lazy mode, flushing any hypercalls made here.
 | 
						|
	 * This must be done before restoring TLS segments so
 | 
						|
	 * the GDT and LDT are properly updated, and must be
 | 
						|
	 * done before math_state_restore, so the TS bit is up
 | 
						|
	 * to date.
 | 
						|
	 */
 | 
						|
	arch_leave_lazy_cpu_mode();
 | 
						|
 | 
						|
	/* If the task has used fpu the last 5 timeslices, just do a full
 | 
						|
	 * restore of the math state immediately to avoid the trap; the
 | 
						|
	 * chances of needing FPU soon are obviously high now
 | 
						|
	 */
 | 
						|
	if (next_p->fpu_counter > 5)
 | 
						|
		math_state_restore();
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Restore %gs if needed (which is common)
 | 
						|
	 */
 | 
						|
	if (prev->gs | next->gs)
 | 
						|
		loadsegment(gs, next->gs);
 | 
						|
 | 
						|
	x86_write_percpu(current_task, next_p);
 | 
						|
 | 
						|
	return prev_p;
 | 
						|
}
 | 
						|
 | 
						|
asmlinkage int sys_fork(struct pt_regs regs)
 | 
						|
{
 | 
						|
	return do_fork(SIGCHLD, regs.sp, ®s, 0, NULL, NULL);
 | 
						|
}
 | 
						|
 | 
						|
asmlinkage int sys_clone(struct pt_regs regs)
 | 
						|
{
 | 
						|
	unsigned long clone_flags;
 | 
						|
	unsigned long newsp;
 | 
						|
	int __user *parent_tidptr, *child_tidptr;
 | 
						|
 | 
						|
	clone_flags = regs.bx;
 | 
						|
	newsp = regs.cx;
 | 
						|
	parent_tidptr = (int __user *)regs.dx;
 | 
						|
	child_tidptr = (int __user *)regs.di;
 | 
						|
	if (!newsp)
 | 
						|
		newsp = regs.sp;
 | 
						|
	return do_fork(clone_flags, newsp, ®s, 0, parent_tidptr, child_tidptr);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This is trivial, and on the face of it looks like it
 | 
						|
 * could equally well be done in user mode.
 | 
						|
 *
 | 
						|
 * Not so, for quite unobvious reasons - register pressure.
 | 
						|
 * In user mode vfork() cannot have a stack frame, and if
 | 
						|
 * done by calling the "clone()" system call directly, you
 | 
						|
 * do not have enough call-clobbered registers to hold all
 | 
						|
 * the information you need.
 | 
						|
 */
 | 
						|
asmlinkage int sys_vfork(struct pt_regs regs)
 | 
						|
{
 | 
						|
	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs.sp, ®s, 0, NULL, NULL);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * sys_execve() executes a new program.
 | 
						|
 */
 | 
						|
asmlinkage int sys_execve(struct pt_regs regs)
 | 
						|
{
 | 
						|
	int error;
 | 
						|
	char * filename;
 | 
						|
 | 
						|
	filename = getname((char __user *) regs.bx);
 | 
						|
	error = PTR_ERR(filename);
 | 
						|
	if (IS_ERR(filename))
 | 
						|
		goto out;
 | 
						|
	error = do_execve(filename,
 | 
						|
			(char __user * __user *) regs.cx,
 | 
						|
			(char __user * __user *) regs.dx,
 | 
						|
			®s);
 | 
						|
	if (error == 0) {
 | 
						|
		/* Make sure we don't return using sysenter.. */
 | 
						|
		set_thread_flag(TIF_IRET);
 | 
						|
	}
 | 
						|
	putname(filename);
 | 
						|
out:
 | 
						|
	return error;
 | 
						|
}
 | 
						|
 | 
						|
#define top_esp                (THREAD_SIZE - sizeof(unsigned long))
 | 
						|
#define top_ebp                (THREAD_SIZE - 2*sizeof(unsigned long))
 | 
						|
 | 
						|
unsigned long get_wchan(struct task_struct *p)
 | 
						|
{
 | 
						|
	unsigned long bp, sp, ip;
 | 
						|
	unsigned long stack_page;
 | 
						|
	int count = 0;
 | 
						|
	if (!p || p == current || p->state == TASK_RUNNING)
 | 
						|
		return 0;
 | 
						|
	stack_page = (unsigned long)task_stack_page(p);
 | 
						|
	sp = p->thread.sp;
 | 
						|
	if (!stack_page || sp < stack_page || sp > top_esp+stack_page)
 | 
						|
		return 0;
 | 
						|
	/* include/asm-i386/system.h:switch_to() pushes bp last. */
 | 
						|
	bp = *(unsigned long *) sp;
 | 
						|
	do {
 | 
						|
		if (bp < stack_page || bp > top_ebp+stack_page)
 | 
						|
			return 0;
 | 
						|
		ip = *(unsigned long *) (bp+4);
 | 
						|
		if (!in_sched_functions(ip))
 | 
						|
			return ip;
 | 
						|
		bp = *(unsigned long *) bp;
 | 
						|
	} while (count++ < 16);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
unsigned long arch_align_stack(unsigned long sp)
 | 
						|
{
 | 
						|
	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
 | 
						|
		sp -= get_random_int() % 8192;
 | 
						|
	return sp & ~0xf;
 | 
						|
}
 | 
						|
 | 
						|
unsigned long arch_randomize_brk(struct mm_struct *mm)
 | 
						|
{
 | 
						|
	unsigned long range_end = mm->brk + 0x02000000;
 | 
						|
	return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
 | 
						|
}
 |