 7ff6764061
			
		
	
	
	7ff6764061
	
	
	
		
			
			__orderly_poweroff() does argv_free() if call_usermodehelper_fns()
returns -ENOMEM.  As Lucas pointed out, this can be wrong if -ENOMEM was
not triggered by the failing call_usermodehelper_setup(), in this case
both __orderly_poweroff() and argv_cleanup() can do kfree().
Kill argv_cleanup() and change __orderly_poweroff() to call argv_free()
unconditionally like do_coredump() does.  This info->cleanup() is not
needed (and wrong) since 6c0c0d4d "fix bug in orderly_poweroff() which
did the UMH_NO_WAIT => UMH_WAIT_EXEC change, we can rely on the fact
that CLONE_VFORK can't return until do_execve() succeeds/fails.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reported-by: Lucas De Marchi <lucas.demarchi@profusion.mobi>
Cc: David Howells <dhowells@redhat.com>
Cc: James Morris <james.l.morris@oracle.com>
Cc: hongfeng <hongfeng@marvell.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
	
			
		
			
				
	
	
		
			2239 lines
		
	
	
	
		
			52 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2239 lines
		
	
	
	
		
			52 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  linux/kernel/sys.c
 | |
|  *
 | |
|  *  Copyright (C) 1991, 1992  Linus Torvalds
 | |
|  */
 | |
| 
 | |
| #include <linux/export.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/utsname.h>
 | |
| #include <linux/mman.h>
 | |
| #include <linux/reboot.h>
 | |
| #include <linux/prctl.h>
 | |
| #include <linux/highuid.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/kmod.h>
 | |
| #include <linux/perf_event.h>
 | |
| #include <linux/resource.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/kexec.h>
 | |
| #include <linux/workqueue.h>
 | |
| #include <linux/capability.h>
 | |
| #include <linux/device.h>
 | |
| #include <linux/key.h>
 | |
| #include <linux/times.h>
 | |
| #include <linux/posix-timers.h>
 | |
| #include <linux/security.h>
 | |
| #include <linux/dcookies.h>
 | |
| #include <linux/suspend.h>
 | |
| #include <linux/tty.h>
 | |
| #include <linux/signal.h>
 | |
| #include <linux/cn_proc.h>
 | |
| #include <linux/getcpu.h>
 | |
| #include <linux/task_io_accounting_ops.h>
 | |
| #include <linux/seccomp.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/personality.h>
 | |
| #include <linux/ptrace.h>
 | |
| #include <linux/fs_struct.h>
 | |
| #include <linux/file.h>
 | |
| #include <linux/mount.h>
 | |
| #include <linux/gfp.h>
 | |
| #include <linux/syscore_ops.h>
 | |
| #include <linux/version.h>
 | |
| #include <linux/ctype.h>
 | |
| 
 | |
| #include <linux/compat.h>
 | |
| #include <linux/syscalls.h>
 | |
| #include <linux/kprobes.h>
 | |
| #include <linux/user_namespace.h>
 | |
| #include <linux/binfmts.h>
 | |
| 
 | |
| #include <linux/kmsg_dump.h>
 | |
| /* Move somewhere else to avoid recompiling? */
 | |
| #include <generated/utsrelease.h>
 | |
| 
 | |
| #include <asm/uaccess.h>
 | |
| #include <asm/io.h>
 | |
| #include <asm/unistd.h>
 | |
| 
 | |
| #ifndef SET_UNALIGN_CTL
 | |
| # define SET_UNALIGN_CTL(a,b)	(-EINVAL)
 | |
| #endif
 | |
| #ifndef GET_UNALIGN_CTL
 | |
| # define GET_UNALIGN_CTL(a,b)	(-EINVAL)
 | |
| #endif
 | |
| #ifndef SET_FPEMU_CTL
 | |
| # define SET_FPEMU_CTL(a,b)	(-EINVAL)
 | |
| #endif
 | |
| #ifndef GET_FPEMU_CTL
 | |
| # define GET_FPEMU_CTL(a,b)	(-EINVAL)
 | |
| #endif
 | |
| #ifndef SET_FPEXC_CTL
 | |
| # define SET_FPEXC_CTL(a,b)	(-EINVAL)
 | |
| #endif
 | |
| #ifndef GET_FPEXC_CTL
 | |
| # define GET_FPEXC_CTL(a,b)	(-EINVAL)
 | |
| #endif
 | |
| #ifndef GET_ENDIAN
 | |
| # define GET_ENDIAN(a,b)	(-EINVAL)
 | |
| #endif
 | |
| #ifndef SET_ENDIAN
 | |
| # define SET_ENDIAN(a,b)	(-EINVAL)
 | |
| #endif
 | |
| #ifndef GET_TSC_CTL
 | |
| # define GET_TSC_CTL(a)		(-EINVAL)
 | |
| #endif
 | |
| #ifndef SET_TSC_CTL
 | |
| # define SET_TSC_CTL(a)		(-EINVAL)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * this is where the system-wide overflow UID and GID are defined, for
 | |
|  * architectures that now have 32-bit UID/GID but didn't in the past
 | |
|  */
 | |
| 
 | |
| int overflowuid = DEFAULT_OVERFLOWUID;
 | |
| int overflowgid = DEFAULT_OVERFLOWGID;
 | |
| 
 | |
| EXPORT_SYMBOL(overflowuid);
 | |
| EXPORT_SYMBOL(overflowgid);
 | |
| 
 | |
| /*
 | |
|  * the same as above, but for filesystems which can only store a 16-bit
 | |
|  * UID and GID. as such, this is needed on all architectures
 | |
|  */
 | |
| 
 | |
| int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
 | |
| int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
 | |
| 
 | |
| EXPORT_SYMBOL(fs_overflowuid);
 | |
| EXPORT_SYMBOL(fs_overflowgid);
 | |
| 
 | |
| /*
 | |
|  * this indicates whether you can reboot with ctrl-alt-del: the default is yes
 | |
|  */
 | |
| 
 | |
| int C_A_D = 1;
 | |
| struct pid *cad_pid;
 | |
| EXPORT_SYMBOL(cad_pid);
 | |
| 
 | |
| /*
 | |
|  * If set, this is used for preparing the system to power off.
 | |
|  */
 | |
| 
 | |
| void (*pm_power_off_prepare)(void);
 | |
| 
 | |
| /*
 | |
|  * Returns true if current's euid is same as p's uid or euid,
 | |
|  * or has CAP_SYS_NICE to p's user_ns.
 | |
|  *
 | |
|  * Called with rcu_read_lock, creds are safe
 | |
|  */
 | |
| static bool set_one_prio_perm(struct task_struct *p)
 | |
| {
 | |
| 	const struct cred *cred = current_cred(), *pcred = __task_cred(p);
 | |
| 
 | |
| 	if (uid_eq(pcred->uid,  cred->euid) ||
 | |
| 	    uid_eq(pcred->euid, cred->euid))
 | |
| 		return true;
 | |
| 	if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
 | |
| 		return true;
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * set the priority of a task
 | |
|  * - the caller must hold the RCU read lock
 | |
|  */
 | |
| static int set_one_prio(struct task_struct *p, int niceval, int error)
 | |
| {
 | |
| 	int no_nice;
 | |
| 
 | |
| 	if (!set_one_prio_perm(p)) {
 | |
| 		error = -EPERM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	if (niceval < task_nice(p) && !can_nice(p, niceval)) {
 | |
| 		error = -EACCES;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	no_nice = security_task_setnice(p, niceval);
 | |
| 	if (no_nice) {
 | |
| 		error = no_nice;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	if (error == -ESRCH)
 | |
| 		error = 0;
 | |
| 	set_user_nice(p, niceval);
 | |
| out:
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
 | |
| {
 | |
| 	struct task_struct *g, *p;
 | |
| 	struct user_struct *user;
 | |
| 	const struct cred *cred = current_cred();
 | |
| 	int error = -EINVAL;
 | |
| 	struct pid *pgrp;
 | |
| 	kuid_t uid;
 | |
| 
 | |
| 	if (which > PRIO_USER || which < PRIO_PROCESS)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* normalize: avoid signed division (rounding problems) */
 | |
| 	error = -ESRCH;
 | |
| 	if (niceval < -20)
 | |
| 		niceval = -20;
 | |
| 	if (niceval > 19)
 | |
| 		niceval = 19;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	read_lock(&tasklist_lock);
 | |
| 	switch (which) {
 | |
| 		case PRIO_PROCESS:
 | |
| 			if (who)
 | |
| 				p = find_task_by_vpid(who);
 | |
| 			else
 | |
| 				p = current;
 | |
| 			if (p)
 | |
| 				error = set_one_prio(p, niceval, error);
 | |
| 			break;
 | |
| 		case PRIO_PGRP:
 | |
| 			if (who)
 | |
| 				pgrp = find_vpid(who);
 | |
| 			else
 | |
| 				pgrp = task_pgrp(current);
 | |
| 			do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
 | |
| 				error = set_one_prio(p, niceval, error);
 | |
| 			} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
 | |
| 			break;
 | |
| 		case PRIO_USER:
 | |
| 			uid = make_kuid(cred->user_ns, who);
 | |
| 			user = cred->user;
 | |
| 			if (!who)
 | |
| 				uid = cred->uid;
 | |
| 			else if (!uid_eq(uid, cred->uid) &&
 | |
| 				 !(user = find_user(uid)))
 | |
| 				goto out_unlock;	/* No processes for this user */
 | |
| 
 | |
| 			do_each_thread(g, p) {
 | |
| 				if (uid_eq(task_uid(p), uid))
 | |
| 					error = set_one_prio(p, niceval, error);
 | |
| 			} while_each_thread(g, p);
 | |
| 			if (!uid_eq(uid, cred->uid))
 | |
| 				free_uid(user);		/* For find_user() */
 | |
| 			break;
 | |
| 	}
 | |
| out_unlock:
 | |
| 	read_unlock(&tasklist_lock);
 | |
| 	rcu_read_unlock();
 | |
| out:
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Ugh. To avoid negative return values, "getpriority()" will
 | |
|  * not return the normal nice-value, but a negated value that
 | |
|  * has been offset by 20 (ie it returns 40..1 instead of -20..19)
 | |
|  * to stay compatible.
 | |
|  */
 | |
| SYSCALL_DEFINE2(getpriority, int, which, int, who)
 | |
| {
 | |
| 	struct task_struct *g, *p;
 | |
| 	struct user_struct *user;
 | |
| 	const struct cred *cred = current_cred();
 | |
| 	long niceval, retval = -ESRCH;
 | |
| 	struct pid *pgrp;
 | |
| 	kuid_t uid;
 | |
| 
 | |
| 	if (which > PRIO_USER || which < PRIO_PROCESS)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	read_lock(&tasklist_lock);
 | |
| 	switch (which) {
 | |
| 		case PRIO_PROCESS:
 | |
| 			if (who)
 | |
| 				p = find_task_by_vpid(who);
 | |
| 			else
 | |
| 				p = current;
 | |
| 			if (p) {
 | |
| 				niceval = 20 - task_nice(p);
 | |
| 				if (niceval > retval)
 | |
| 					retval = niceval;
 | |
| 			}
 | |
| 			break;
 | |
| 		case PRIO_PGRP:
 | |
| 			if (who)
 | |
| 				pgrp = find_vpid(who);
 | |
| 			else
 | |
| 				pgrp = task_pgrp(current);
 | |
| 			do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
 | |
| 				niceval = 20 - task_nice(p);
 | |
| 				if (niceval > retval)
 | |
| 					retval = niceval;
 | |
| 			} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
 | |
| 			break;
 | |
| 		case PRIO_USER:
 | |
| 			uid = make_kuid(cred->user_ns, who);
 | |
| 			user = cred->user;
 | |
| 			if (!who)
 | |
| 				uid = cred->uid;
 | |
| 			else if (!uid_eq(uid, cred->uid) &&
 | |
| 				 !(user = find_user(uid)))
 | |
| 				goto out_unlock;	/* No processes for this user */
 | |
| 
 | |
| 			do_each_thread(g, p) {
 | |
| 				if (uid_eq(task_uid(p), uid)) {
 | |
| 					niceval = 20 - task_nice(p);
 | |
| 					if (niceval > retval)
 | |
| 						retval = niceval;
 | |
| 				}
 | |
| 			} while_each_thread(g, p);
 | |
| 			if (!uid_eq(uid, cred->uid))
 | |
| 				free_uid(user);		/* for find_user() */
 | |
| 			break;
 | |
| 	}
 | |
| out_unlock:
 | |
| 	read_unlock(&tasklist_lock);
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	emergency_restart - reboot the system
 | |
|  *
 | |
|  *	Without shutting down any hardware or taking any locks
 | |
|  *	reboot the system.  This is called when we know we are in
 | |
|  *	trouble so this is our best effort to reboot.  This is
 | |
|  *	safe to call in interrupt context.
 | |
|  */
 | |
| void emergency_restart(void)
 | |
| {
 | |
| 	kmsg_dump(KMSG_DUMP_EMERG);
 | |
| 	machine_emergency_restart();
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(emergency_restart);
 | |
| 
 | |
| void kernel_restart_prepare(char *cmd)
 | |
| {
 | |
| 	blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
 | |
| 	system_state = SYSTEM_RESTART;
 | |
| 	usermodehelper_disable();
 | |
| 	device_shutdown();
 | |
| 	syscore_shutdown();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	register_reboot_notifier - Register function to be called at reboot time
 | |
|  *	@nb: Info about notifier function to be called
 | |
|  *
 | |
|  *	Registers a function with the list of functions
 | |
|  *	to be called at reboot time.
 | |
|  *
 | |
|  *	Currently always returns zero, as blocking_notifier_chain_register()
 | |
|  *	always returns zero.
 | |
|  */
 | |
| int register_reboot_notifier(struct notifier_block *nb)
 | |
| {
 | |
| 	return blocking_notifier_chain_register(&reboot_notifier_list, nb);
 | |
| }
 | |
| EXPORT_SYMBOL(register_reboot_notifier);
 | |
| 
 | |
| /**
 | |
|  *	unregister_reboot_notifier - Unregister previously registered reboot notifier
 | |
|  *	@nb: Hook to be unregistered
 | |
|  *
 | |
|  *	Unregisters a previously registered reboot
 | |
|  *	notifier function.
 | |
|  *
 | |
|  *	Returns zero on success, or %-ENOENT on failure.
 | |
|  */
 | |
| int unregister_reboot_notifier(struct notifier_block *nb)
 | |
| {
 | |
| 	return blocking_notifier_chain_unregister(&reboot_notifier_list, nb);
 | |
| }
 | |
| EXPORT_SYMBOL(unregister_reboot_notifier);
 | |
| 
 | |
| /**
 | |
|  *	kernel_restart - reboot the system
 | |
|  *	@cmd: pointer to buffer containing command to execute for restart
 | |
|  *		or %NULL
 | |
|  *
 | |
|  *	Shutdown everything and perform a clean reboot.
 | |
|  *	This is not safe to call in interrupt context.
 | |
|  */
 | |
| void kernel_restart(char *cmd)
 | |
| {
 | |
| 	kernel_restart_prepare(cmd);
 | |
| 	disable_nonboot_cpus();
 | |
| 	if (!cmd)
 | |
| 		printk(KERN_EMERG "Restarting system.\n");
 | |
| 	else
 | |
| 		printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
 | |
| 	kmsg_dump(KMSG_DUMP_RESTART);
 | |
| 	machine_restart(cmd);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kernel_restart);
 | |
| 
 | |
| static void kernel_shutdown_prepare(enum system_states state)
 | |
| {
 | |
| 	blocking_notifier_call_chain(&reboot_notifier_list,
 | |
| 		(state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
 | |
| 	system_state = state;
 | |
| 	usermodehelper_disable();
 | |
| 	device_shutdown();
 | |
| }
 | |
| /**
 | |
|  *	kernel_halt - halt the system
 | |
|  *
 | |
|  *	Shutdown everything and perform a clean system halt.
 | |
|  */
 | |
| void kernel_halt(void)
 | |
| {
 | |
| 	kernel_shutdown_prepare(SYSTEM_HALT);
 | |
| 	syscore_shutdown();
 | |
| 	printk(KERN_EMERG "System halted.\n");
 | |
| 	kmsg_dump(KMSG_DUMP_HALT);
 | |
| 	machine_halt();
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL_GPL(kernel_halt);
 | |
| 
 | |
| /**
 | |
|  *	kernel_power_off - power_off the system
 | |
|  *
 | |
|  *	Shutdown everything and perform a clean system power_off.
 | |
|  */
 | |
| void kernel_power_off(void)
 | |
| {
 | |
| 	kernel_shutdown_prepare(SYSTEM_POWER_OFF);
 | |
| 	if (pm_power_off_prepare)
 | |
| 		pm_power_off_prepare();
 | |
| 	disable_nonboot_cpus();
 | |
| 	syscore_shutdown();
 | |
| 	printk(KERN_EMERG "Power down.\n");
 | |
| 	kmsg_dump(KMSG_DUMP_POWEROFF);
 | |
| 	machine_power_off();
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kernel_power_off);
 | |
| 
 | |
| static DEFINE_MUTEX(reboot_mutex);
 | |
| 
 | |
| /*
 | |
|  * Reboot system call: for obvious reasons only root may call it,
 | |
|  * and even root needs to set up some magic numbers in the registers
 | |
|  * so that some mistake won't make this reboot the whole machine.
 | |
|  * You can also set the meaning of the ctrl-alt-del-key here.
 | |
|  *
 | |
|  * reboot doesn't sync: do that yourself before calling this.
 | |
|  */
 | |
| SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,
 | |
| 		void __user *, arg)
 | |
| {
 | |
| 	struct pid_namespace *pid_ns = task_active_pid_ns(current);
 | |
| 	char buffer[256];
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	/* We only trust the superuser with rebooting the system. */
 | |
| 	if (!ns_capable(pid_ns->user_ns, CAP_SYS_BOOT))
 | |
| 		return -EPERM;
 | |
| 
 | |
| 	/* For safety, we require "magic" arguments. */
 | |
| 	if (magic1 != LINUX_REBOOT_MAGIC1 ||
 | |
| 	    (magic2 != LINUX_REBOOT_MAGIC2 &&
 | |
| 	                magic2 != LINUX_REBOOT_MAGIC2A &&
 | |
| 			magic2 != LINUX_REBOOT_MAGIC2B &&
 | |
| 	                magic2 != LINUX_REBOOT_MAGIC2C))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * If pid namespaces are enabled and the current task is in a child
 | |
| 	 * pid_namespace, the command is handled by reboot_pid_ns() which will
 | |
| 	 * call do_exit().
 | |
| 	 */
 | |
| 	ret = reboot_pid_ns(pid_ns, cmd);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/* Instead of trying to make the power_off code look like
 | |
| 	 * halt when pm_power_off is not set do it the easy way.
 | |
| 	 */
 | |
| 	if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
 | |
| 		cmd = LINUX_REBOOT_CMD_HALT;
 | |
| 
 | |
| 	mutex_lock(&reboot_mutex);
 | |
| 	switch (cmd) {
 | |
| 	case LINUX_REBOOT_CMD_RESTART:
 | |
| 		kernel_restart(NULL);
 | |
| 		break;
 | |
| 
 | |
| 	case LINUX_REBOOT_CMD_CAD_ON:
 | |
| 		C_A_D = 1;
 | |
| 		break;
 | |
| 
 | |
| 	case LINUX_REBOOT_CMD_CAD_OFF:
 | |
| 		C_A_D = 0;
 | |
| 		break;
 | |
| 
 | |
| 	case LINUX_REBOOT_CMD_HALT:
 | |
| 		kernel_halt();
 | |
| 		do_exit(0);
 | |
| 		panic("cannot halt");
 | |
| 
 | |
| 	case LINUX_REBOOT_CMD_POWER_OFF:
 | |
| 		kernel_power_off();
 | |
| 		do_exit(0);
 | |
| 		break;
 | |
| 
 | |
| 	case LINUX_REBOOT_CMD_RESTART2:
 | |
| 		if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
 | |
| 			ret = -EFAULT;
 | |
| 			break;
 | |
| 		}
 | |
| 		buffer[sizeof(buffer) - 1] = '\0';
 | |
| 
 | |
| 		kernel_restart(buffer);
 | |
| 		break;
 | |
| 
 | |
| #ifdef CONFIG_KEXEC
 | |
| 	case LINUX_REBOOT_CMD_KEXEC:
 | |
| 		ret = kernel_kexec();
 | |
| 		break;
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_HIBERNATION
 | |
| 	case LINUX_REBOOT_CMD_SW_SUSPEND:
 | |
| 		ret = hibernate();
 | |
| 		break;
 | |
| #endif
 | |
| 
 | |
| 	default:
 | |
| 		ret = -EINVAL;
 | |
| 		break;
 | |
| 	}
 | |
| 	mutex_unlock(&reboot_mutex);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void deferred_cad(struct work_struct *dummy)
 | |
| {
 | |
| 	kernel_restart(NULL);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
 | |
|  * As it's called within an interrupt, it may NOT sync: the only choice
 | |
|  * is whether to reboot at once, or just ignore the ctrl-alt-del.
 | |
|  */
 | |
| void ctrl_alt_del(void)
 | |
| {
 | |
| 	static DECLARE_WORK(cad_work, deferred_cad);
 | |
| 
 | |
| 	if (C_A_D)
 | |
| 		schedule_work(&cad_work);
 | |
| 	else
 | |
| 		kill_cad_pid(SIGINT, 1);
 | |
| }
 | |
| 	
 | |
| /*
 | |
|  * Unprivileged users may change the real gid to the effective gid
 | |
|  * or vice versa.  (BSD-style)
 | |
|  *
 | |
|  * If you set the real gid at all, or set the effective gid to a value not
 | |
|  * equal to the real gid, then the saved gid is set to the new effective gid.
 | |
|  *
 | |
|  * This makes it possible for a setgid program to completely drop its
 | |
|  * privileges, which is often a useful assertion to make when you are doing
 | |
|  * a security audit over a program.
 | |
|  *
 | |
|  * The general idea is that a program which uses just setregid() will be
 | |
|  * 100% compatible with BSD.  A program which uses just setgid() will be
 | |
|  * 100% compatible with POSIX with saved IDs. 
 | |
|  *
 | |
|  * SMP: There are not races, the GIDs are checked only by filesystem
 | |
|  *      operations (as far as semantic preservation is concerned).
 | |
|  */
 | |
| SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
 | |
| {
 | |
| 	struct user_namespace *ns = current_user_ns();
 | |
| 	const struct cred *old;
 | |
| 	struct cred *new;
 | |
| 	int retval;
 | |
| 	kgid_t krgid, kegid;
 | |
| 
 | |
| 	krgid = make_kgid(ns, rgid);
 | |
| 	kegid = make_kgid(ns, egid);
 | |
| 
 | |
| 	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
 | |
| 		return -EINVAL;
 | |
| 	if ((egid != (gid_t) -1) && !gid_valid(kegid))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	new = prepare_creds();
 | |
| 	if (!new)
 | |
| 		return -ENOMEM;
 | |
| 	old = current_cred();
 | |
| 
 | |
| 	retval = -EPERM;
 | |
| 	if (rgid != (gid_t) -1) {
 | |
| 		if (gid_eq(old->gid, krgid) ||
 | |
| 		    gid_eq(old->egid, krgid) ||
 | |
| 		    nsown_capable(CAP_SETGID))
 | |
| 			new->gid = krgid;
 | |
| 		else
 | |
| 			goto error;
 | |
| 	}
 | |
| 	if (egid != (gid_t) -1) {
 | |
| 		if (gid_eq(old->gid, kegid) ||
 | |
| 		    gid_eq(old->egid, kegid) ||
 | |
| 		    gid_eq(old->sgid, kegid) ||
 | |
| 		    nsown_capable(CAP_SETGID))
 | |
| 			new->egid = kegid;
 | |
| 		else
 | |
| 			goto error;
 | |
| 	}
 | |
| 
 | |
| 	if (rgid != (gid_t) -1 ||
 | |
| 	    (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
 | |
| 		new->sgid = new->egid;
 | |
| 	new->fsgid = new->egid;
 | |
| 
 | |
| 	return commit_creds(new);
 | |
| 
 | |
| error:
 | |
| 	abort_creds(new);
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * setgid() is implemented like SysV w/ SAVED_IDS 
 | |
|  *
 | |
|  * SMP: Same implicit races as above.
 | |
|  */
 | |
| SYSCALL_DEFINE1(setgid, gid_t, gid)
 | |
| {
 | |
| 	struct user_namespace *ns = current_user_ns();
 | |
| 	const struct cred *old;
 | |
| 	struct cred *new;
 | |
| 	int retval;
 | |
| 	kgid_t kgid;
 | |
| 
 | |
| 	kgid = make_kgid(ns, gid);
 | |
| 	if (!gid_valid(kgid))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	new = prepare_creds();
 | |
| 	if (!new)
 | |
| 		return -ENOMEM;
 | |
| 	old = current_cred();
 | |
| 
 | |
| 	retval = -EPERM;
 | |
| 	if (nsown_capable(CAP_SETGID))
 | |
| 		new->gid = new->egid = new->sgid = new->fsgid = kgid;
 | |
| 	else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
 | |
| 		new->egid = new->fsgid = kgid;
 | |
| 	else
 | |
| 		goto error;
 | |
| 
 | |
| 	return commit_creds(new);
 | |
| 
 | |
| error:
 | |
| 	abort_creds(new);
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * change the user struct in a credentials set to match the new UID
 | |
|  */
 | |
| static int set_user(struct cred *new)
 | |
| {
 | |
| 	struct user_struct *new_user;
 | |
| 
 | |
| 	new_user = alloc_uid(new->uid);
 | |
| 	if (!new_user)
 | |
| 		return -EAGAIN;
 | |
| 
 | |
| 	/*
 | |
| 	 * We don't fail in case of NPROC limit excess here because too many
 | |
| 	 * poorly written programs don't check set*uid() return code, assuming
 | |
| 	 * it never fails if called by root.  We may still enforce NPROC limit
 | |
| 	 * for programs doing set*uid()+execve() by harmlessly deferring the
 | |
| 	 * failure to the execve() stage.
 | |
| 	 */
 | |
| 	if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
 | |
| 			new_user != INIT_USER)
 | |
| 		current->flags |= PF_NPROC_EXCEEDED;
 | |
| 	else
 | |
| 		current->flags &= ~PF_NPROC_EXCEEDED;
 | |
| 
 | |
| 	free_uid(new->user);
 | |
| 	new->user = new_user;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Unprivileged users may change the real uid to the effective uid
 | |
|  * or vice versa.  (BSD-style)
 | |
|  *
 | |
|  * If you set the real uid at all, or set the effective uid to a value not
 | |
|  * equal to the real uid, then the saved uid is set to the new effective uid.
 | |
|  *
 | |
|  * This makes it possible for a setuid program to completely drop its
 | |
|  * privileges, which is often a useful assertion to make when you are doing
 | |
|  * a security audit over a program.
 | |
|  *
 | |
|  * The general idea is that a program which uses just setreuid() will be
 | |
|  * 100% compatible with BSD.  A program which uses just setuid() will be
 | |
|  * 100% compatible with POSIX with saved IDs. 
 | |
|  */
 | |
| SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
 | |
| {
 | |
| 	struct user_namespace *ns = current_user_ns();
 | |
| 	const struct cred *old;
 | |
| 	struct cred *new;
 | |
| 	int retval;
 | |
| 	kuid_t kruid, keuid;
 | |
| 
 | |
| 	kruid = make_kuid(ns, ruid);
 | |
| 	keuid = make_kuid(ns, euid);
 | |
| 
 | |
| 	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
 | |
| 		return -EINVAL;
 | |
| 	if ((euid != (uid_t) -1) && !uid_valid(keuid))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	new = prepare_creds();
 | |
| 	if (!new)
 | |
| 		return -ENOMEM;
 | |
| 	old = current_cred();
 | |
| 
 | |
| 	retval = -EPERM;
 | |
| 	if (ruid != (uid_t) -1) {
 | |
| 		new->uid = kruid;
 | |
| 		if (!uid_eq(old->uid, kruid) &&
 | |
| 		    !uid_eq(old->euid, kruid) &&
 | |
| 		    !nsown_capable(CAP_SETUID))
 | |
| 			goto error;
 | |
| 	}
 | |
| 
 | |
| 	if (euid != (uid_t) -1) {
 | |
| 		new->euid = keuid;
 | |
| 		if (!uid_eq(old->uid, keuid) &&
 | |
| 		    !uid_eq(old->euid, keuid) &&
 | |
| 		    !uid_eq(old->suid, keuid) &&
 | |
| 		    !nsown_capable(CAP_SETUID))
 | |
| 			goto error;
 | |
| 	}
 | |
| 
 | |
| 	if (!uid_eq(new->uid, old->uid)) {
 | |
| 		retval = set_user(new);
 | |
| 		if (retval < 0)
 | |
| 			goto error;
 | |
| 	}
 | |
| 	if (ruid != (uid_t) -1 ||
 | |
| 	    (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
 | |
| 		new->suid = new->euid;
 | |
| 	new->fsuid = new->euid;
 | |
| 
 | |
| 	retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
 | |
| 	if (retval < 0)
 | |
| 		goto error;
 | |
| 
 | |
| 	return commit_creds(new);
 | |
| 
 | |
| error:
 | |
| 	abort_creds(new);
 | |
| 	return retval;
 | |
| }
 | |
| 		
 | |
| /*
 | |
|  * setuid() is implemented like SysV with SAVED_IDS 
 | |
|  * 
 | |
|  * Note that SAVED_ID's is deficient in that a setuid root program
 | |
|  * like sendmail, for example, cannot set its uid to be a normal 
 | |
|  * user and then switch back, because if you're root, setuid() sets
 | |
|  * the saved uid too.  If you don't like this, blame the bright people
 | |
|  * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
 | |
|  * will allow a root program to temporarily drop privileges and be able to
 | |
|  * regain them by swapping the real and effective uid.  
 | |
|  */
 | |
| SYSCALL_DEFINE1(setuid, uid_t, uid)
 | |
| {
 | |
| 	struct user_namespace *ns = current_user_ns();
 | |
| 	const struct cred *old;
 | |
| 	struct cred *new;
 | |
| 	int retval;
 | |
| 	kuid_t kuid;
 | |
| 
 | |
| 	kuid = make_kuid(ns, uid);
 | |
| 	if (!uid_valid(kuid))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	new = prepare_creds();
 | |
| 	if (!new)
 | |
| 		return -ENOMEM;
 | |
| 	old = current_cred();
 | |
| 
 | |
| 	retval = -EPERM;
 | |
| 	if (nsown_capable(CAP_SETUID)) {
 | |
| 		new->suid = new->uid = kuid;
 | |
| 		if (!uid_eq(kuid, old->uid)) {
 | |
| 			retval = set_user(new);
 | |
| 			if (retval < 0)
 | |
| 				goto error;
 | |
| 		}
 | |
| 	} else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
 | |
| 		goto error;
 | |
| 	}
 | |
| 
 | |
| 	new->fsuid = new->euid = kuid;
 | |
| 
 | |
| 	retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
 | |
| 	if (retval < 0)
 | |
| 		goto error;
 | |
| 
 | |
| 	return commit_creds(new);
 | |
| 
 | |
| error:
 | |
| 	abort_creds(new);
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * This function implements a generic ability to update ruid, euid,
 | |
|  * and suid.  This allows you to implement the 4.4 compatible seteuid().
 | |
|  */
 | |
| SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
 | |
| {
 | |
| 	struct user_namespace *ns = current_user_ns();
 | |
| 	const struct cred *old;
 | |
| 	struct cred *new;
 | |
| 	int retval;
 | |
| 	kuid_t kruid, keuid, ksuid;
 | |
| 
 | |
| 	kruid = make_kuid(ns, ruid);
 | |
| 	keuid = make_kuid(ns, euid);
 | |
| 	ksuid = make_kuid(ns, suid);
 | |
| 
 | |
| 	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if ((euid != (uid_t) -1) && !uid_valid(keuid))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if ((suid != (uid_t) -1) && !uid_valid(ksuid))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	new = prepare_creds();
 | |
| 	if (!new)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	old = current_cred();
 | |
| 
 | |
| 	retval = -EPERM;
 | |
| 	if (!nsown_capable(CAP_SETUID)) {
 | |
| 		if (ruid != (uid_t) -1        && !uid_eq(kruid, old->uid) &&
 | |
| 		    !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
 | |
| 			goto error;
 | |
| 		if (euid != (uid_t) -1        && !uid_eq(keuid, old->uid) &&
 | |
| 		    !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
 | |
| 			goto error;
 | |
| 		if (suid != (uid_t) -1        && !uid_eq(ksuid, old->uid) &&
 | |
| 		    !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
 | |
| 			goto error;
 | |
| 	}
 | |
| 
 | |
| 	if (ruid != (uid_t) -1) {
 | |
| 		new->uid = kruid;
 | |
| 		if (!uid_eq(kruid, old->uid)) {
 | |
| 			retval = set_user(new);
 | |
| 			if (retval < 0)
 | |
| 				goto error;
 | |
| 		}
 | |
| 	}
 | |
| 	if (euid != (uid_t) -1)
 | |
| 		new->euid = keuid;
 | |
| 	if (suid != (uid_t) -1)
 | |
| 		new->suid = ksuid;
 | |
| 	new->fsuid = new->euid;
 | |
| 
 | |
| 	retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
 | |
| 	if (retval < 0)
 | |
| 		goto error;
 | |
| 
 | |
| 	return commit_creds(new);
 | |
| 
 | |
| error:
 | |
| 	abort_creds(new);
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
 | |
| {
 | |
| 	const struct cred *cred = current_cred();
 | |
| 	int retval;
 | |
| 	uid_t ruid, euid, suid;
 | |
| 
 | |
| 	ruid = from_kuid_munged(cred->user_ns, cred->uid);
 | |
| 	euid = from_kuid_munged(cred->user_ns, cred->euid);
 | |
| 	suid = from_kuid_munged(cred->user_ns, cred->suid);
 | |
| 
 | |
| 	if (!(retval   = put_user(ruid, ruidp)) &&
 | |
| 	    !(retval   = put_user(euid, euidp)))
 | |
| 		retval = put_user(suid, suidp);
 | |
| 
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Same as above, but for rgid, egid, sgid.
 | |
|  */
 | |
| SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
 | |
| {
 | |
| 	struct user_namespace *ns = current_user_ns();
 | |
| 	const struct cred *old;
 | |
| 	struct cred *new;
 | |
| 	int retval;
 | |
| 	kgid_t krgid, kegid, ksgid;
 | |
| 
 | |
| 	krgid = make_kgid(ns, rgid);
 | |
| 	kegid = make_kgid(ns, egid);
 | |
| 	ksgid = make_kgid(ns, sgid);
 | |
| 
 | |
| 	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
 | |
| 		return -EINVAL;
 | |
| 	if ((egid != (gid_t) -1) && !gid_valid(kegid))
 | |
| 		return -EINVAL;
 | |
| 	if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	new = prepare_creds();
 | |
| 	if (!new)
 | |
| 		return -ENOMEM;
 | |
| 	old = current_cred();
 | |
| 
 | |
| 	retval = -EPERM;
 | |
| 	if (!nsown_capable(CAP_SETGID)) {
 | |
| 		if (rgid != (gid_t) -1        && !gid_eq(krgid, old->gid) &&
 | |
| 		    !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
 | |
| 			goto error;
 | |
| 		if (egid != (gid_t) -1        && !gid_eq(kegid, old->gid) &&
 | |
| 		    !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
 | |
| 			goto error;
 | |
| 		if (sgid != (gid_t) -1        && !gid_eq(ksgid, old->gid) &&
 | |
| 		    !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
 | |
| 			goto error;
 | |
| 	}
 | |
| 
 | |
| 	if (rgid != (gid_t) -1)
 | |
| 		new->gid = krgid;
 | |
| 	if (egid != (gid_t) -1)
 | |
| 		new->egid = kegid;
 | |
| 	if (sgid != (gid_t) -1)
 | |
| 		new->sgid = ksgid;
 | |
| 	new->fsgid = new->egid;
 | |
| 
 | |
| 	return commit_creds(new);
 | |
| 
 | |
| error:
 | |
| 	abort_creds(new);
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
 | |
| {
 | |
| 	const struct cred *cred = current_cred();
 | |
| 	int retval;
 | |
| 	gid_t rgid, egid, sgid;
 | |
| 
 | |
| 	rgid = from_kgid_munged(cred->user_ns, cred->gid);
 | |
| 	egid = from_kgid_munged(cred->user_ns, cred->egid);
 | |
| 	sgid = from_kgid_munged(cred->user_ns, cred->sgid);
 | |
| 
 | |
| 	if (!(retval   = put_user(rgid, rgidp)) &&
 | |
| 	    !(retval   = put_user(egid, egidp)))
 | |
| 		retval = put_user(sgid, sgidp);
 | |
| 
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
 | |
|  * is used for "access()" and for the NFS daemon (letting nfsd stay at
 | |
|  * whatever uid it wants to). It normally shadows "euid", except when
 | |
|  * explicitly set by setfsuid() or for access..
 | |
|  */
 | |
| SYSCALL_DEFINE1(setfsuid, uid_t, uid)
 | |
| {
 | |
| 	const struct cred *old;
 | |
| 	struct cred *new;
 | |
| 	uid_t old_fsuid;
 | |
| 	kuid_t kuid;
 | |
| 
 | |
| 	old = current_cred();
 | |
| 	old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
 | |
| 
 | |
| 	kuid = make_kuid(old->user_ns, uid);
 | |
| 	if (!uid_valid(kuid))
 | |
| 		return old_fsuid;
 | |
| 
 | |
| 	new = prepare_creds();
 | |
| 	if (!new)
 | |
| 		return old_fsuid;
 | |
| 
 | |
| 	if (uid_eq(kuid, old->uid)  || uid_eq(kuid, old->euid)  ||
 | |
| 	    uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
 | |
| 	    nsown_capable(CAP_SETUID)) {
 | |
| 		if (!uid_eq(kuid, old->fsuid)) {
 | |
| 			new->fsuid = kuid;
 | |
| 			if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
 | |
| 				goto change_okay;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	abort_creds(new);
 | |
| 	return old_fsuid;
 | |
| 
 | |
| change_okay:
 | |
| 	commit_creds(new);
 | |
| 	return old_fsuid;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Samma på svenska..
 | |
|  */
 | |
| SYSCALL_DEFINE1(setfsgid, gid_t, gid)
 | |
| {
 | |
| 	const struct cred *old;
 | |
| 	struct cred *new;
 | |
| 	gid_t old_fsgid;
 | |
| 	kgid_t kgid;
 | |
| 
 | |
| 	old = current_cred();
 | |
| 	old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
 | |
| 
 | |
| 	kgid = make_kgid(old->user_ns, gid);
 | |
| 	if (!gid_valid(kgid))
 | |
| 		return old_fsgid;
 | |
| 
 | |
| 	new = prepare_creds();
 | |
| 	if (!new)
 | |
| 		return old_fsgid;
 | |
| 
 | |
| 	if (gid_eq(kgid, old->gid)  || gid_eq(kgid, old->egid)  ||
 | |
| 	    gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
 | |
| 	    nsown_capable(CAP_SETGID)) {
 | |
| 		if (!gid_eq(kgid, old->fsgid)) {
 | |
| 			new->fsgid = kgid;
 | |
| 			goto change_okay;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	abort_creds(new);
 | |
| 	return old_fsgid;
 | |
| 
 | |
| change_okay:
 | |
| 	commit_creds(new);
 | |
| 	return old_fsgid;
 | |
| }
 | |
| 
 | |
| void do_sys_times(struct tms *tms)
 | |
| {
 | |
| 	cputime_t tgutime, tgstime, cutime, cstime;
 | |
| 
 | |
| 	spin_lock_irq(¤t->sighand->siglock);
 | |
| 	thread_group_cputime_adjusted(current, &tgutime, &tgstime);
 | |
| 	cutime = current->signal->cutime;
 | |
| 	cstime = current->signal->cstime;
 | |
| 	spin_unlock_irq(¤t->sighand->siglock);
 | |
| 	tms->tms_utime = cputime_to_clock_t(tgutime);
 | |
| 	tms->tms_stime = cputime_to_clock_t(tgstime);
 | |
| 	tms->tms_cutime = cputime_to_clock_t(cutime);
 | |
| 	tms->tms_cstime = cputime_to_clock_t(cstime);
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
 | |
| {
 | |
| 	if (tbuf) {
 | |
| 		struct tms tmp;
 | |
| 
 | |
| 		do_sys_times(&tmp);
 | |
| 		if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
 | |
| 			return -EFAULT;
 | |
| 	}
 | |
| 	force_successful_syscall_return();
 | |
| 	return (long) jiffies_64_to_clock_t(get_jiffies_64());
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This needs some heavy checking ...
 | |
|  * I just haven't the stomach for it. I also don't fully
 | |
|  * understand sessions/pgrp etc. Let somebody who does explain it.
 | |
|  *
 | |
|  * OK, I think I have the protection semantics right.... this is really
 | |
|  * only important on a multi-user system anyway, to make sure one user
 | |
|  * can't send a signal to a process owned by another.  -TYT, 12/12/91
 | |
|  *
 | |
|  * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
 | |
|  * LBT 04.03.94
 | |
|  */
 | |
| SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
 | |
| {
 | |
| 	struct task_struct *p;
 | |
| 	struct task_struct *group_leader = current->group_leader;
 | |
| 	struct pid *pgrp;
 | |
| 	int err;
 | |
| 
 | |
| 	if (!pid)
 | |
| 		pid = task_pid_vnr(group_leader);
 | |
| 	if (!pgid)
 | |
| 		pgid = pid;
 | |
| 	if (pgid < 0)
 | |
| 		return -EINVAL;
 | |
| 	rcu_read_lock();
 | |
| 
 | |
| 	/* From this point forward we keep holding onto the tasklist lock
 | |
| 	 * so that our parent does not change from under us. -DaveM
 | |
| 	 */
 | |
| 	write_lock_irq(&tasklist_lock);
 | |
| 
 | |
| 	err = -ESRCH;
 | |
| 	p = find_task_by_vpid(pid);
 | |
| 	if (!p)
 | |
| 		goto out;
 | |
| 
 | |
| 	err = -EINVAL;
 | |
| 	if (!thread_group_leader(p))
 | |
| 		goto out;
 | |
| 
 | |
| 	if (same_thread_group(p->real_parent, group_leader)) {
 | |
| 		err = -EPERM;
 | |
| 		if (task_session(p) != task_session(group_leader))
 | |
| 			goto out;
 | |
| 		err = -EACCES;
 | |
| 		if (p->did_exec)
 | |
| 			goto out;
 | |
| 	} else {
 | |
| 		err = -ESRCH;
 | |
| 		if (p != group_leader)
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	err = -EPERM;
 | |
| 	if (p->signal->leader)
 | |
| 		goto out;
 | |
| 
 | |
| 	pgrp = task_pid(p);
 | |
| 	if (pgid != pid) {
 | |
| 		struct task_struct *g;
 | |
| 
 | |
| 		pgrp = find_vpid(pgid);
 | |
| 		g = pid_task(pgrp, PIDTYPE_PGID);
 | |
| 		if (!g || task_session(g) != task_session(group_leader))
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	err = security_task_setpgid(p, pgid);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (task_pgrp(p) != pgrp)
 | |
| 		change_pid(p, PIDTYPE_PGID, pgrp);
 | |
| 
 | |
| 	err = 0;
 | |
| out:
 | |
| 	/* All paths lead to here, thus we are safe. -DaveM */
 | |
| 	write_unlock_irq(&tasklist_lock);
 | |
| 	rcu_read_unlock();
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE1(getpgid, pid_t, pid)
 | |
| {
 | |
| 	struct task_struct *p;
 | |
| 	struct pid *grp;
 | |
| 	int retval;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	if (!pid)
 | |
| 		grp = task_pgrp(current);
 | |
| 	else {
 | |
| 		retval = -ESRCH;
 | |
| 		p = find_task_by_vpid(pid);
 | |
| 		if (!p)
 | |
| 			goto out;
 | |
| 		grp = task_pgrp(p);
 | |
| 		if (!grp)
 | |
| 			goto out;
 | |
| 
 | |
| 		retval = security_task_getpgid(p);
 | |
| 		if (retval)
 | |
| 			goto out;
 | |
| 	}
 | |
| 	retval = pid_vnr(grp);
 | |
| out:
 | |
| 	rcu_read_unlock();
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| #ifdef __ARCH_WANT_SYS_GETPGRP
 | |
| 
 | |
| SYSCALL_DEFINE0(getpgrp)
 | |
| {
 | |
| 	return sys_getpgid(0);
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| SYSCALL_DEFINE1(getsid, pid_t, pid)
 | |
| {
 | |
| 	struct task_struct *p;
 | |
| 	struct pid *sid;
 | |
| 	int retval;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	if (!pid)
 | |
| 		sid = task_session(current);
 | |
| 	else {
 | |
| 		retval = -ESRCH;
 | |
| 		p = find_task_by_vpid(pid);
 | |
| 		if (!p)
 | |
| 			goto out;
 | |
| 		sid = task_session(p);
 | |
| 		if (!sid)
 | |
| 			goto out;
 | |
| 
 | |
| 		retval = security_task_getsid(p);
 | |
| 		if (retval)
 | |
| 			goto out;
 | |
| 	}
 | |
| 	retval = pid_vnr(sid);
 | |
| out:
 | |
| 	rcu_read_unlock();
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE0(setsid)
 | |
| {
 | |
| 	struct task_struct *group_leader = current->group_leader;
 | |
| 	struct pid *sid = task_pid(group_leader);
 | |
| 	pid_t session = pid_vnr(sid);
 | |
| 	int err = -EPERM;
 | |
| 
 | |
| 	write_lock_irq(&tasklist_lock);
 | |
| 	/* Fail if I am already a session leader */
 | |
| 	if (group_leader->signal->leader)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* Fail if a process group id already exists that equals the
 | |
| 	 * proposed session id.
 | |
| 	 */
 | |
| 	if (pid_task(sid, PIDTYPE_PGID))
 | |
| 		goto out;
 | |
| 
 | |
| 	group_leader->signal->leader = 1;
 | |
| 	__set_special_pids(sid);
 | |
| 
 | |
| 	proc_clear_tty(group_leader);
 | |
| 
 | |
| 	err = session;
 | |
| out:
 | |
| 	write_unlock_irq(&tasklist_lock);
 | |
| 	if (err > 0) {
 | |
| 		proc_sid_connector(group_leader);
 | |
| 		sched_autogroup_create_attach(group_leader);
 | |
| 	}
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| DECLARE_RWSEM(uts_sem);
 | |
| 
 | |
| #ifdef COMPAT_UTS_MACHINE
 | |
| #define override_architecture(name) \
 | |
| 	(personality(current->personality) == PER_LINUX32 && \
 | |
| 	 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
 | |
| 		      sizeof(COMPAT_UTS_MACHINE)))
 | |
| #else
 | |
| #define override_architecture(name)	0
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Work around broken programs that cannot handle "Linux 3.0".
 | |
|  * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
 | |
|  */
 | |
| static int override_release(char __user *release, size_t len)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (current->personality & UNAME26) {
 | |
| 		const char *rest = UTS_RELEASE;
 | |
| 		char buf[65] = { 0 };
 | |
| 		int ndots = 0;
 | |
| 		unsigned v;
 | |
| 		size_t copy;
 | |
| 
 | |
| 		while (*rest) {
 | |
| 			if (*rest == '.' && ++ndots >= 3)
 | |
| 				break;
 | |
| 			if (!isdigit(*rest) && *rest != '.')
 | |
| 				break;
 | |
| 			rest++;
 | |
| 		}
 | |
| 		v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 40;
 | |
| 		copy = clamp_t(size_t, len, 1, sizeof(buf));
 | |
| 		copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
 | |
| 		ret = copy_to_user(release, buf, copy + 1);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
 | |
| {
 | |
| 	int errno = 0;
 | |
| 
 | |
| 	down_read(&uts_sem);
 | |
| 	if (copy_to_user(name, utsname(), sizeof *name))
 | |
| 		errno = -EFAULT;
 | |
| 	up_read(&uts_sem);
 | |
| 
 | |
| 	if (!errno && override_release(name->release, sizeof(name->release)))
 | |
| 		errno = -EFAULT;
 | |
| 	if (!errno && override_architecture(name))
 | |
| 		errno = -EFAULT;
 | |
| 	return errno;
 | |
| }
 | |
| 
 | |
| #ifdef __ARCH_WANT_SYS_OLD_UNAME
 | |
| /*
 | |
|  * Old cruft
 | |
|  */
 | |
| SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
 | |
| {
 | |
| 	int error = 0;
 | |
| 
 | |
| 	if (!name)
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	down_read(&uts_sem);
 | |
| 	if (copy_to_user(name, utsname(), sizeof(*name)))
 | |
| 		error = -EFAULT;
 | |
| 	up_read(&uts_sem);
 | |
| 
 | |
| 	if (!error && override_release(name->release, sizeof(name->release)))
 | |
| 		error = -EFAULT;
 | |
| 	if (!error && override_architecture(name))
 | |
| 		error = -EFAULT;
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
 | |
| {
 | |
| 	int error;
 | |
| 
 | |
| 	if (!name)
 | |
| 		return -EFAULT;
 | |
| 	if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	down_read(&uts_sem);
 | |
| 	error = __copy_to_user(&name->sysname, &utsname()->sysname,
 | |
| 			       __OLD_UTS_LEN);
 | |
| 	error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
 | |
| 	error |= __copy_to_user(&name->nodename, &utsname()->nodename,
 | |
| 				__OLD_UTS_LEN);
 | |
| 	error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
 | |
| 	error |= __copy_to_user(&name->release, &utsname()->release,
 | |
| 				__OLD_UTS_LEN);
 | |
| 	error |= __put_user(0, name->release + __OLD_UTS_LEN);
 | |
| 	error |= __copy_to_user(&name->version, &utsname()->version,
 | |
| 				__OLD_UTS_LEN);
 | |
| 	error |= __put_user(0, name->version + __OLD_UTS_LEN);
 | |
| 	error |= __copy_to_user(&name->machine, &utsname()->machine,
 | |
| 				__OLD_UTS_LEN);
 | |
| 	error |= __put_user(0, name->machine + __OLD_UTS_LEN);
 | |
| 	up_read(&uts_sem);
 | |
| 
 | |
| 	if (!error && override_architecture(name))
 | |
| 		error = -EFAULT;
 | |
| 	if (!error && override_release(name->release, sizeof(name->release)))
 | |
| 		error = -EFAULT;
 | |
| 	return error ? -EFAULT : 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
 | |
| {
 | |
| 	int errno;
 | |
| 	char tmp[__NEW_UTS_LEN];
 | |
| 
 | |
| 	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
 | |
| 		return -EPERM;
 | |
| 
 | |
| 	if (len < 0 || len > __NEW_UTS_LEN)
 | |
| 		return -EINVAL;
 | |
| 	down_write(&uts_sem);
 | |
| 	errno = -EFAULT;
 | |
| 	if (!copy_from_user(tmp, name, len)) {
 | |
| 		struct new_utsname *u = utsname();
 | |
| 
 | |
| 		memcpy(u->nodename, tmp, len);
 | |
| 		memset(u->nodename + len, 0, sizeof(u->nodename) - len);
 | |
| 		errno = 0;
 | |
| 		uts_proc_notify(UTS_PROC_HOSTNAME);
 | |
| 	}
 | |
| 	up_write(&uts_sem);
 | |
| 	return errno;
 | |
| }
 | |
| 
 | |
| #ifdef __ARCH_WANT_SYS_GETHOSTNAME
 | |
| 
 | |
| SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
 | |
| {
 | |
| 	int i, errno;
 | |
| 	struct new_utsname *u;
 | |
| 
 | |
| 	if (len < 0)
 | |
| 		return -EINVAL;
 | |
| 	down_read(&uts_sem);
 | |
| 	u = utsname();
 | |
| 	i = 1 + strlen(u->nodename);
 | |
| 	if (i > len)
 | |
| 		i = len;
 | |
| 	errno = 0;
 | |
| 	if (copy_to_user(name, u->nodename, i))
 | |
| 		errno = -EFAULT;
 | |
| 	up_read(&uts_sem);
 | |
| 	return errno;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Only setdomainname; getdomainname can be implemented by calling
 | |
|  * uname()
 | |
|  */
 | |
| SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
 | |
| {
 | |
| 	int errno;
 | |
| 	char tmp[__NEW_UTS_LEN];
 | |
| 
 | |
| 	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
 | |
| 		return -EPERM;
 | |
| 	if (len < 0 || len > __NEW_UTS_LEN)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	down_write(&uts_sem);
 | |
| 	errno = -EFAULT;
 | |
| 	if (!copy_from_user(tmp, name, len)) {
 | |
| 		struct new_utsname *u = utsname();
 | |
| 
 | |
| 		memcpy(u->domainname, tmp, len);
 | |
| 		memset(u->domainname + len, 0, sizeof(u->domainname) - len);
 | |
| 		errno = 0;
 | |
| 		uts_proc_notify(UTS_PROC_DOMAINNAME);
 | |
| 	}
 | |
| 	up_write(&uts_sem);
 | |
| 	return errno;
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
 | |
| {
 | |
| 	struct rlimit value;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = do_prlimit(current, resource, NULL, &value);
 | |
| 	if (!ret)
 | |
| 		ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
 | |
| 
 | |
| /*
 | |
|  *	Back compatibility for getrlimit. Needed for some apps.
 | |
|  */
 | |
|  
 | |
| SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
 | |
| 		struct rlimit __user *, rlim)
 | |
| {
 | |
| 	struct rlimit x;
 | |
| 	if (resource >= RLIM_NLIMITS)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	task_lock(current->group_leader);
 | |
| 	x = current->signal->rlim[resource];
 | |
| 	task_unlock(current->group_leader);
 | |
| 	if (x.rlim_cur > 0x7FFFFFFF)
 | |
| 		x.rlim_cur = 0x7FFFFFFF;
 | |
| 	if (x.rlim_max > 0x7FFFFFFF)
 | |
| 		x.rlim_max = 0x7FFFFFFF;
 | |
| 	return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| static inline bool rlim64_is_infinity(__u64 rlim64)
 | |
| {
 | |
| #if BITS_PER_LONG < 64
 | |
| 	return rlim64 >= ULONG_MAX;
 | |
| #else
 | |
| 	return rlim64 == RLIM64_INFINITY;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
 | |
| {
 | |
| 	if (rlim->rlim_cur == RLIM_INFINITY)
 | |
| 		rlim64->rlim_cur = RLIM64_INFINITY;
 | |
| 	else
 | |
| 		rlim64->rlim_cur = rlim->rlim_cur;
 | |
| 	if (rlim->rlim_max == RLIM_INFINITY)
 | |
| 		rlim64->rlim_max = RLIM64_INFINITY;
 | |
| 	else
 | |
| 		rlim64->rlim_max = rlim->rlim_max;
 | |
| }
 | |
| 
 | |
| static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
 | |
| {
 | |
| 	if (rlim64_is_infinity(rlim64->rlim_cur))
 | |
| 		rlim->rlim_cur = RLIM_INFINITY;
 | |
| 	else
 | |
| 		rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
 | |
| 	if (rlim64_is_infinity(rlim64->rlim_max))
 | |
| 		rlim->rlim_max = RLIM_INFINITY;
 | |
| 	else
 | |
| 		rlim->rlim_max = (unsigned long)rlim64->rlim_max;
 | |
| }
 | |
| 
 | |
| /* make sure you are allowed to change @tsk limits before calling this */
 | |
| int do_prlimit(struct task_struct *tsk, unsigned int resource,
 | |
| 		struct rlimit *new_rlim, struct rlimit *old_rlim)
 | |
| {
 | |
| 	struct rlimit *rlim;
 | |
| 	int retval = 0;
 | |
| 
 | |
| 	if (resource >= RLIM_NLIMITS)
 | |
| 		return -EINVAL;
 | |
| 	if (new_rlim) {
 | |
| 		if (new_rlim->rlim_cur > new_rlim->rlim_max)
 | |
| 			return -EINVAL;
 | |
| 		if (resource == RLIMIT_NOFILE &&
 | |
| 				new_rlim->rlim_max > sysctl_nr_open)
 | |
| 			return -EPERM;
 | |
| 	}
 | |
| 
 | |
| 	/* protect tsk->signal and tsk->sighand from disappearing */
 | |
| 	read_lock(&tasklist_lock);
 | |
| 	if (!tsk->sighand) {
 | |
| 		retval = -ESRCH;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	rlim = tsk->signal->rlim + resource;
 | |
| 	task_lock(tsk->group_leader);
 | |
| 	if (new_rlim) {
 | |
| 		/* Keep the capable check against init_user_ns until
 | |
| 		   cgroups can contain all limits */
 | |
| 		if (new_rlim->rlim_max > rlim->rlim_max &&
 | |
| 				!capable(CAP_SYS_RESOURCE))
 | |
| 			retval = -EPERM;
 | |
| 		if (!retval)
 | |
| 			retval = security_task_setrlimit(tsk->group_leader,
 | |
| 					resource, new_rlim);
 | |
| 		if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
 | |
| 			/*
 | |
| 			 * The caller is asking for an immediate RLIMIT_CPU
 | |
| 			 * expiry.  But we use the zero value to mean "it was
 | |
| 			 * never set".  So let's cheat and make it one second
 | |
| 			 * instead
 | |
| 			 */
 | |
| 			new_rlim->rlim_cur = 1;
 | |
| 		}
 | |
| 	}
 | |
| 	if (!retval) {
 | |
| 		if (old_rlim)
 | |
| 			*old_rlim = *rlim;
 | |
| 		if (new_rlim)
 | |
| 			*rlim = *new_rlim;
 | |
| 	}
 | |
| 	task_unlock(tsk->group_leader);
 | |
| 
 | |
| 	/*
 | |
| 	 * RLIMIT_CPU handling.   Note that the kernel fails to return an error
 | |
| 	 * code if it rejected the user's attempt to set RLIMIT_CPU.  This is a
 | |
| 	 * very long-standing error, and fixing it now risks breakage of
 | |
| 	 * applications, so we live with it
 | |
| 	 */
 | |
| 	 if (!retval && new_rlim && resource == RLIMIT_CPU &&
 | |
| 			 new_rlim->rlim_cur != RLIM_INFINITY)
 | |
| 		update_rlimit_cpu(tsk, new_rlim->rlim_cur);
 | |
| out:
 | |
| 	read_unlock(&tasklist_lock);
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| /* rcu lock must be held */
 | |
| static int check_prlimit_permission(struct task_struct *task)
 | |
| {
 | |
| 	const struct cred *cred = current_cred(), *tcred;
 | |
| 
 | |
| 	if (current == task)
 | |
| 		return 0;
 | |
| 
 | |
| 	tcred = __task_cred(task);
 | |
| 	if (uid_eq(cred->uid, tcred->euid) &&
 | |
| 	    uid_eq(cred->uid, tcred->suid) &&
 | |
| 	    uid_eq(cred->uid, tcred->uid)  &&
 | |
| 	    gid_eq(cred->gid, tcred->egid) &&
 | |
| 	    gid_eq(cred->gid, tcred->sgid) &&
 | |
| 	    gid_eq(cred->gid, tcred->gid))
 | |
| 		return 0;
 | |
| 	if (ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
 | |
| 		return 0;
 | |
| 
 | |
| 	return -EPERM;
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
 | |
| 		const struct rlimit64 __user *, new_rlim,
 | |
| 		struct rlimit64 __user *, old_rlim)
 | |
| {
 | |
| 	struct rlimit64 old64, new64;
 | |
| 	struct rlimit old, new;
 | |
| 	struct task_struct *tsk;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (new_rlim) {
 | |
| 		if (copy_from_user(&new64, new_rlim, sizeof(new64)))
 | |
| 			return -EFAULT;
 | |
| 		rlim64_to_rlim(&new64, &new);
 | |
| 	}
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	tsk = pid ? find_task_by_vpid(pid) : current;
 | |
| 	if (!tsk) {
 | |
| 		rcu_read_unlock();
 | |
| 		return -ESRCH;
 | |
| 	}
 | |
| 	ret = check_prlimit_permission(tsk);
 | |
| 	if (ret) {
 | |
| 		rcu_read_unlock();
 | |
| 		return ret;
 | |
| 	}
 | |
| 	get_task_struct(tsk);
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
 | |
| 			old_rlim ? &old : NULL);
 | |
| 
 | |
| 	if (!ret && old_rlim) {
 | |
| 		rlim_to_rlim64(&old, &old64);
 | |
| 		if (copy_to_user(old_rlim, &old64, sizeof(old64)))
 | |
| 			ret = -EFAULT;
 | |
| 	}
 | |
| 
 | |
| 	put_task_struct(tsk);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
 | |
| {
 | |
| 	struct rlimit new_rlim;
 | |
| 
 | |
| 	if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
 | |
| 		return -EFAULT;
 | |
| 	return do_prlimit(current, resource, &new_rlim, NULL);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * It would make sense to put struct rusage in the task_struct,
 | |
|  * except that would make the task_struct be *really big*.  After
 | |
|  * task_struct gets moved into malloc'ed memory, it would
 | |
|  * make sense to do this.  It will make moving the rest of the information
 | |
|  * a lot simpler!  (Which we're not doing right now because we're not
 | |
|  * measuring them yet).
 | |
|  *
 | |
|  * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
 | |
|  * races with threads incrementing their own counters.  But since word
 | |
|  * reads are atomic, we either get new values or old values and we don't
 | |
|  * care which for the sums.  We always take the siglock to protect reading
 | |
|  * the c* fields from p->signal from races with exit.c updating those
 | |
|  * fields when reaping, so a sample either gets all the additions of a
 | |
|  * given child after it's reaped, or none so this sample is before reaping.
 | |
|  *
 | |
|  * Locking:
 | |
|  * We need to take the siglock for CHILDEREN, SELF and BOTH
 | |
|  * for  the cases current multithreaded, non-current single threaded
 | |
|  * non-current multithreaded.  Thread traversal is now safe with
 | |
|  * the siglock held.
 | |
|  * Strictly speaking, we donot need to take the siglock if we are current and
 | |
|  * single threaded,  as no one else can take our signal_struct away, no one
 | |
|  * else can  reap the  children to update signal->c* counters, and no one else
 | |
|  * can race with the signal-> fields. If we do not take any lock, the
 | |
|  * signal-> fields could be read out of order while another thread was just
 | |
|  * exiting. So we should  place a read memory barrier when we avoid the lock.
 | |
|  * On the writer side,  write memory barrier is implied in  __exit_signal
 | |
|  * as __exit_signal releases  the siglock spinlock after updating the signal->
 | |
|  * fields. But we don't do this yet to keep things simple.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
 | |
| {
 | |
| 	r->ru_nvcsw += t->nvcsw;
 | |
| 	r->ru_nivcsw += t->nivcsw;
 | |
| 	r->ru_minflt += t->min_flt;
 | |
| 	r->ru_majflt += t->maj_flt;
 | |
| 	r->ru_inblock += task_io_get_inblock(t);
 | |
| 	r->ru_oublock += task_io_get_oublock(t);
 | |
| }
 | |
| 
 | |
| static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
 | |
| {
 | |
| 	struct task_struct *t;
 | |
| 	unsigned long flags;
 | |
| 	cputime_t tgutime, tgstime, utime, stime;
 | |
| 	unsigned long maxrss = 0;
 | |
| 
 | |
| 	memset((char *) r, 0, sizeof *r);
 | |
| 	utime = stime = 0;
 | |
| 
 | |
| 	if (who == RUSAGE_THREAD) {
 | |
| 		task_cputime_adjusted(current, &utime, &stime);
 | |
| 		accumulate_thread_rusage(p, r);
 | |
| 		maxrss = p->signal->maxrss;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (!lock_task_sighand(p, &flags))
 | |
| 		return;
 | |
| 
 | |
| 	switch (who) {
 | |
| 		case RUSAGE_BOTH:
 | |
| 		case RUSAGE_CHILDREN:
 | |
| 			utime = p->signal->cutime;
 | |
| 			stime = p->signal->cstime;
 | |
| 			r->ru_nvcsw = p->signal->cnvcsw;
 | |
| 			r->ru_nivcsw = p->signal->cnivcsw;
 | |
| 			r->ru_minflt = p->signal->cmin_flt;
 | |
| 			r->ru_majflt = p->signal->cmaj_flt;
 | |
| 			r->ru_inblock = p->signal->cinblock;
 | |
| 			r->ru_oublock = p->signal->coublock;
 | |
| 			maxrss = p->signal->cmaxrss;
 | |
| 
 | |
| 			if (who == RUSAGE_CHILDREN)
 | |
| 				break;
 | |
| 
 | |
| 		case RUSAGE_SELF:
 | |
| 			thread_group_cputime_adjusted(p, &tgutime, &tgstime);
 | |
| 			utime += tgutime;
 | |
| 			stime += tgstime;
 | |
| 			r->ru_nvcsw += p->signal->nvcsw;
 | |
| 			r->ru_nivcsw += p->signal->nivcsw;
 | |
| 			r->ru_minflt += p->signal->min_flt;
 | |
| 			r->ru_majflt += p->signal->maj_flt;
 | |
| 			r->ru_inblock += p->signal->inblock;
 | |
| 			r->ru_oublock += p->signal->oublock;
 | |
| 			if (maxrss < p->signal->maxrss)
 | |
| 				maxrss = p->signal->maxrss;
 | |
| 			t = p;
 | |
| 			do {
 | |
| 				accumulate_thread_rusage(t, r);
 | |
| 				t = next_thread(t);
 | |
| 			} while (t != p);
 | |
| 			break;
 | |
| 
 | |
| 		default:
 | |
| 			BUG();
 | |
| 	}
 | |
| 	unlock_task_sighand(p, &flags);
 | |
| 
 | |
| out:
 | |
| 	cputime_to_timeval(utime, &r->ru_utime);
 | |
| 	cputime_to_timeval(stime, &r->ru_stime);
 | |
| 
 | |
| 	if (who != RUSAGE_CHILDREN) {
 | |
| 		struct mm_struct *mm = get_task_mm(p);
 | |
| 		if (mm) {
 | |
| 			setmax_mm_hiwater_rss(&maxrss, mm);
 | |
| 			mmput(mm);
 | |
| 		}
 | |
| 	}
 | |
| 	r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
 | |
| }
 | |
| 
 | |
| int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
 | |
| {
 | |
| 	struct rusage r;
 | |
| 	k_getrusage(p, who, &r);
 | |
| 	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
 | |
| {
 | |
| 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
 | |
| 	    who != RUSAGE_THREAD)
 | |
| 		return -EINVAL;
 | |
| 	return getrusage(current, who, ru);
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE1(umask, int, mask)
 | |
| {
 | |
| 	mask = xchg(¤t->fs->umask, mask & S_IRWXUGO);
 | |
| 	return mask;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_CHECKPOINT_RESTORE
 | |
| static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
 | |
| {
 | |
| 	struct fd exe;
 | |
| 	struct inode *inode;
 | |
| 	int err;
 | |
| 
 | |
| 	exe = fdget(fd);
 | |
| 	if (!exe.file)
 | |
| 		return -EBADF;
 | |
| 
 | |
| 	inode = file_inode(exe.file);
 | |
| 
 | |
| 	/*
 | |
| 	 * Because the original mm->exe_file points to executable file, make
 | |
| 	 * sure that this one is executable as well, to avoid breaking an
 | |
| 	 * overall picture.
 | |
| 	 */
 | |
| 	err = -EACCES;
 | |
| 	if (!S_ISREG(inode->i_mode)	||
 | |
| 	    exe.file->f_path.mnt->mnt_flags & MNT_NOEXEC)
 | |
| 		goto exit;
 | |
| 
 | |
| 	err = inode_permission(inode, MAY_EXEC);
 | |
| 	if (err)
 | |
| 		goto exit;
 | |
| 
 | |
| 	down_write(&mm->mmap_sem);
 | |
| 
 | |
| 	/*
 | |
| 	 * Forbid mm->exe_file change if old file still mapped.
 | |
| 	 */
 | |
| 	err = -EBUSY;
 | |
| 	if (mm->exe_file) {
 | |
| 		struct vm_area_struct *vma;
 | |
| 
 | |
| 		for (vma = mm->mmap; vma; vma = vma->vm_next)
 | |
| 			if (vma->vm_file &&
 | |
| 			    path_equal(&vma->vm_file->f_path,
 | |
| 				       &mm->exe_file->f_path))
 | |
| 				goto exit_unlock;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The symlink can be changed only once, just to disallow arbitrary
 | |
| 	 * transitions malicious software might bring in. This means one
 | |
| 	 * could make a snapshot over all processes running and monitor
 | |
| 	 * /proc/pid/exe changes to notice unusual activity if needed.
 | |
| 	 */
 | |
| 	err = -EPERM;
 | |
| 	if (test_and_set_bit(MMF_EXE_FILE_CHANGED, &mm->flags))
 | |
| 		goto exit_unlock;
 | |
| 
 | |
| 	err = 0;
 | |
| 	set_mm_exe_file(mm, exe.file);	/* this grabs a reference to exe.file */
 | |
| exit_unlock:
 | |
| 	up_write(&mm->mmap_sem);
 | |
| 
 | |
| exit:
 | |
| 	fdput(exe);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int prctl_set_mm(int opt, unsigned long addr,
 | |
| 			unsigned long arg4, unsigned long arg5)
 | |
| {
 | |
| 	unsigned long rlim = rlimit(RLIMIT_DATA);
 | |
| 	struct mm_struct *mm = current->mm;
 | |
| 	struct vm_area_struct *vma;
 | |
| 	int error;
 | |
| 
 | |
| 	if (arg5 || (arg4 && opt != PR_SET_MM_AUXV))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!capable(CAP_SYS_RESOURCE))
 | |
| 		return -EPERM;
 | |
| 
 | |
| 	if (opt == PR_SET_MM_EXE_FILE)
 | |
| 		return prctl_set_mm_exe_file(mm, (unsigned int)addr);
 | |
| 
 | |
| 	if (addr >= TASK_SIZE || addr < mmap_min_addr)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	error = -EINVAL;
 | |
| 
 | |
| 	down_read(&mm->mmap_sem);
 | |
| 	vma = find_vma(mm, addr);
 | |
| 
 | |
| 	switch (opt) {
 | |
| 	case PR_SET_MM_START_CODE:
 | |
| 		mm->start_code = addr;
 | |
| 		break;
 | |
| 	case PR_SET_MM_END_CODE:
 | |
| 		mm->end_code = addr;
 | |
| 		break;
 | |
| 	case PR_SET_MM_START_DATA:
 | |
| 		mm->start_data = addr;
 | |
| 		break;
 | |
| 	case PR_SET_MM_END_DATA:
 | |
| 		mm->end_data = addr;
 | |
| 		break;
 | |
| 
 | |
| 	case PR_SET_MM_START_BRK:
 | |
| 		if (addr <= mm->end_data)
 | |
| 			goto out;
 | |
| 
 | |
| 		if (rlim < RLIM_INFINITY &&
 | |
| 		    (mm->brk - addr) +
 | |
| 		    (mm->end_data - mm->start_data) > rlim)
 | |
| 			goto out;
 | |
| 
 | |
| 		mm->start_brk = addr;
 | |
| 		break;
 | |
| 
 | |
| 	case PR_SET_MM_BRK:
 | |
| 		if (addr <= mm->end_data)
 | |
| 			goto out;
 | |
| 
 | |
| 		if (rlim < RLIM_INFINITY &&
 | |
| 		    (addr - mm->start_brk) +
 | |
| 		    (mm->end_data - mm->start_data) > rlim)
 | |
| 			goto out;
 | |
| 
 | |
| 		mm->brk = addr;
 | |
| 		break;
 | |
| 
 | |
| 	/*
 | |
| 	 * If command line arguments and environment
 | |
| 	 * are placed somewhere else on stack, we can
 | |
| 	 * set them up here, ARG_START/END to setup
 | |
| 	 * command line argumets and ENV_START/END
 | |
| 	 * for environment.
 | |
| 	 */
 | |
| 	case PR_SET_MM_START_STACK:
 | |
| 	case PR_SET_MM_ARG_START:
 | |
| 	case PR_SET_MM_ARG_END:
 | |
| 	case PR_SET_MM_ENV_START:
 | |
| 	case PR_SET_MM_ENV_END:
 | |
| 		if (!vma) {
 | |
| 			error = -EFAULT;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		if (opt == PR_SET_MM_START_STACK)
 | |
| 			mm->start_stack = addr;
 | |
| 		else if (opt == PR_SET_MM_ARG_START)
 | |
| 			mm->arg_start = addr;
 | |
| 		else if (opt == PR_SET_MM_ARG_END)
 | |
| 			mm->arg_end = addr;
 | |
| 		else if (opt == PR_SET_MM_ENV_START)
 | |
| 			mm->env_start = addr;
 | |
| 		else if (opt == PR_SET_MM_ENV_END)
 | |
| 			mm->env_end = addr;
 | |
| 		break;
 | |
| 
 | |
| 	/*
 | |
| 	 * This doesn't move auxiliary vector itself
 | |
| 	 * since it's pinned to mm_struct, but allow
 | |
| 	 * to fill vector with new values. It's up
 | |
| 	 * to a caller to provide sane values here
 | |
| 	 * otherwise user space tools which use this
 | |
| 	 * vector might be unhappy.
 | |
| 	 */
 | |
| 	case PR_SET_MM_AUXV: {
 | |
| 		unsigned long user_auxv[AT_VECTOR_SIZE];
 | |
| 
 | |
| 		if (arg4 > sizeof(user_auxv))
 | |
| 			goto out;
 | |
| 		up_read(&mm->mmap_sem);
 | |
| 
 | |
| 		if (copy_from_user(user_auxv, (const void __user *)addr, arg4))
 | |
| 			return -EFAULT;
 | |
| 
 | |
| 		/* Make sure the last entry is always AT_NULL */
 | |
| 		user_auxv[AT_VECTOR_SIZE - 2] = 0;
 | |
| 		user_auxv[AT_VECTOR_SIZE - 1] = 0;
 | |
| 
 | |
| 		BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
 | |
| 
 | |
| 		task_lock(current);
 | |
| 		memcpy(mm->saved_auxv, user_auxv, arg4);
 | |
| 		task_unlock(current);
 | |
| 
 | |
| 		return 0;
 | |
| 	}
 | |
| 	default:
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	error = 0;
 | |
| out:
 | |
| 	up_read(&mm->mmap_sem);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
 | |
| {
 | |
| 	return put_user(me->clear_child_tid, tid_addr);
 | |
| }
 | |
| 
 | |
| #else /* CONFIG_CHECKPOINT_RESTORE */
 | |
| static int prctl_set_mm(int opt, unsigned long addr,
 | |
| 			unsigned long arg4, unsigned long arg5)
 | |
| {
 | |
| 	return -EINVAL;
 | |
| }
 | |
| static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
 | |
| {
 | |
| 	return -EINVAL;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
 | |
| 		unsigned long, arg4, unsigned long, arg5)
 | |
| {
 | |
| 	struct task_struct *me = current;
 | |
| 	unsigned char comm[sizeof(me->comm)];
 | |
| 	long error;
 | |
| 
 | |
| 	error = security_task_prctl(option, arg2, arg3, arg4, arg5);
 | |
| 	if (error != -ENOSYS)
 | |
| 		return error;
 | |
| 
 | |
| 	error = 0;
 | |
| 	switch (option) {
 | |
| 	case PR_SET_PDEATHSIG:
 | |
| 		if (!valid_signal(arg2)) {
 | |
| 			error = -EINVAL;
 | |
| 			break;
 | |
| 		}
 | |
| 		me->pdeath_signal = arg2;
 | |
| 		break;
 | |
| 	case PR_GET_PDEATHSIG:
 | |
| 		error = put_user(me->pdeath_signal, (int __user *)arg2);
 | |
| 		break;
 | |
| 	case PR_GET_DUMPABLE:
 | |
| 		error = get_dumpable(me->mm);
 | |
| 		break;
 | |
| 	case PR_SET_DUMPABLE:
 | |
| 		if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
 | |
| 			error = -EINVAL;
 | |
| 			break;
 | |
| 		}
 | |
| 		set_dumpable(me->mm, arg2);
 | |
| 		break;
 | |
| 
 | |
| 	case PR_SET_UNALIGN:
 | |
| 		error = SET_UNALIGN_CTL(me, arg2);
 | |
| 		break;
 | |
| 	case PR_GET_UNALIGN:
 | |
| 		error = GET_UNALIGN_CTL(me, arg2);
 | |
| 		break;
 | |
| 	case PR_SET_FPEMU:
 | |
| 		error = SET_FPEMU_CTL(me, arg2);
 | |
| 		break;
 | |
| 	case PR_GET_FPEMU:
 | |
| 		error = GET_FPEMU_CTL(me, arg2);
 | |
| 		break;
 | |
| 	case PR_SET_FPEXC:
 | |
| 		error = SET_FPEXC_CTL(me, arg2);
 | |
| 		break;
 | |
| 	case PR_GET_FPEXC:
 | |
| 		error = GET_FPEXC_CTL(me, arg2);
 | |
| 		break;
 | |
| 	case PR_GET_TIMING:
 | |
| 		error = PR_TIMING_STATISTICAL;
 | |
| 		break;
 | |
| 	case PR_SET_TIMING:
 | |
| 		if (arg2 != PR_TIMING_STATISTICAL)
 | |
| 			error = -EINVAL;
 | |
| 		break;
 | |
| 	case PR_SET_NAME:
 | |
| 		comm[sizeof(me->comm) - 1] = 0;
 | |
| 		if (strncpy_from_user(comm, (char __user *)arg2,
 | |
| 				      sizeof(me->comm) - 1) < 0)
 | |
| 			return -EFAULT;
 | |
| 		set_task_comm(me, comm);
 | |
| 		proc_comm_connector(me);
 | |
| 		break;
 | |
| 	case PR_GET_NAME:
 | |
| 		get_task_comm(comm, me);
 | |
| 		if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
 | |
| 			return -EFAULT;
 | |
| 		break;
 | |
| 	case PR_GET_ENDIAN:
 | |
| 		error = GET_ENDIAN(me, arg2);
 | |
| 		break;
 | |
| 	case PR_SET_ENDIAN:
 | |
| 		error = SET_ENDIAN(me, arg2);
 | |
| 		break;
 | |
| 	case PR_GET_SECCOMP:
 | |
| 		error = prctl_get_seccomp();
 | |
| 		break;
 | |
| 	case PR_SET_SECCOMP:
 | |
| 		error = prctl_set_seccomp(arg2, (char __user *)arg3);
 | |
| 		break;
 | |
| 	case PR_GET_TSC:
 | |
| 		error = GET_TSC_CTL(arg2);
 | |
| 		break;
 | |
| 	case PR_SET_TSC:
 | |
| 		error = SET_TSC_CTL(arg2);
 | |
| 		break;
 | |
| 	case PR_TASK_PERF_EVENTS_DISABLE:
 | |
| 		error = perf_event_task_disable();
 | |
| 		break;
 | |
| 	case PR_TASK_PERF_EVENTS_ENABLE:
 | |
| 		error = perf_event_task_enable();
 | |
| 		break;
 | |
| 	case PR_GET_TIMERSLACK:
 | |
| 		error = current->timer_slack_ns;
 | |
| 		break;
 | |
| 	case PR_SET_TIMERSLACK:
 | |
| 		if (arg2 <= 0)
 | |
| 			current->timer_slack_ns =
 | |
| 					current->default_timer_slack_ns;
 | |
| 		else
 | |
| 			current->timer_slack_ns = arg2;
 | |
| 		break;
 | |
| 	case PR_MCE_KILL:
 | |
| 		if (arg4 | arg5)
 | |
| 			return -EINVAL;
 | |
| 		switch (arg2) {
 | |
| 		case PR_MCE_KILL_CLEAR:
 | |
| 			if (arg3 != 0)
 | |
| 				return -EINVAL;
 | |
| 			current->flags &= ~PF_MCE_PROCESS;
 | |
| 			break;
 | |
| 		case PR_MCE_KILL_SET:
 | |
| 			current->flags |= PF_MCE_PROCESS;
 | |
| 			if (arg3 == PR_MCE_KILL_EARLY)
 | |
| 				current->flags |= PF_MCE_EARLY;
 | |
| 			else if (arg3 == PR_MCE_KILL_LATE)
 | |
| 				current->flags &= ~PF_MCE_EARLY;
 | |
| 			else if (arg3 == PR_MCE_KILL_DEFAULT)
 | |
| 				current->flags &=
 | |
| 						~(PF_MCE_EARLY|PF_MCE_PROCESS);
 | |
| 			else
 | |
| 				return -EINVAL;
 | |
| 			break;
 | |
| 		default:
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		break;
 | |
| 	case PR_MCE_KILL_GET:
 | |
| 		if (arg2 | arg3 | arg4 | arg5)
 | |
| 			return -EINVAL;
 | |
| 		if (current->flags & PF_MCE_PROCESS)
 | |
| 			error = (current->flags & PF_MCE_EARLY) ?
 | |
| 				PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
 | |
| 		else
 | |
| 			error = PR_MCE_KILL_DEFAULT;
 | |
| 		break;
 | |
| 	case PR_SET_MM:
 | |
| 		error = prctl_set_mm(arg2, arg3, arg4, arg5);
 | |
| 		break;
 | |
| 	case PR_GET_TID_ADDRESS:
 | |
| 		error = prctl_get_tid_address(me, (int __user **)arg2);
 | |
| 		break;
 | |
| 	case PR_SET_CHILD_SUBREAPER:
 | |
| 		me->signal->is_child_subreaper = !!arg2;
 | |
| 		break;
 | |
| 	case PR_GET_CHILD_SUBREAPER:
 | |
| 		error = put_user(me->signal->is_child_subreaper,
 | |
| 				 (int __user *)arg2);
 | |
| 		break;
 | |
| 	case PR_SET_NO_NEW_PRIVS:
 | |
| 		if (arg2 != 1 || arg3 || arg4 || arg5)
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		current->no_new_privs = 1;
 | |
| 		break;
 | |
| 	case PR_GET_NO_NEW_PRIVS:
 | |
| 		if (arg2 || arg3 || arg4 || arg5)
 | |
| 			return -EINVAL;
 | |
| 		return current->no_new_privs ? 1 : 0;
 | |
| 	default:
 | |
| 		error = -EINVAL;
 | |
| 		break;
 | |
| 	}
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
 | |
| 		struct getcpu_cache __user *, unused)
 | |
| {
 | |
| 	int err = 0;
 | |
| 	int cpu = raw_smp_processor_id();
 | |
| 	if (cpup)
 | |
| 		err |= put_user(cpu, cpup);
 | |
| 	if (nodep)
 | |
| 		err |= put_user(cpu_to_node(cpu), nodep);
 | |
| 	return err ? -EFAULT : 0;
 | |
| }
 | |
| 
 | |
| char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
 | |
| 
 | |
| static int __orderly_poweroff(void)
 | |
| {
 | |
| 	int argc;
 | |
| 	char **argv;
 | |
| 	static char *envp[] = {
 | |
| 		"HOME=/",
 | |
| 		"PATH=/sbin:/bin:/usr/sbin:/usr/bin",
 | |
| 		NULL
 | |
| 	};
 | |
| 	int ret;
 | |
| 
 | |
| 	argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc);
 | |
| 	if (argv == NULL) {
 | |
| 		printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n",
 | |
| 		       __func__, poweroff_cmd);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	ret = call_usermodehelper_fns(argv[0], argv, envp, UMH_WAIT_EXEC,
 | |
| 				      NULL, NULL, NULL);
 | |
| 	argv_free(argv);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * orderly_poweroff - Trigger an orderly system poweroff
 | |
|  * @force: force poweroff if command execution fails
 | |
|  *
 | |
|  * This may be called from any context to trigger a system shutdown.
 | |
|  * If the orderly shutdown fails, it will force an immediate shutdown.
 | |
|  */
 | |
| int orderly_poweroff(bool force)
 | |
| {
 | |
| 	int ret = __orderly_poweroff();
 | |
| 
 | |
| 	if (ret && force) {
 | |
| 		printk(KERN_WARNING "Failed to start orderly shutdown: "
 | |
| 		       "forcing the issue\n");
 | |
| 
 | |
| 		/*
 | |
| 		 * I guess this should try to kick off some daemon to sync and
 | |
| 		 * poweroff asap.  Or not even bother syncing if we're doing an
 | |
| 		 * emergency shutdown?
 | |
| 		 */
 | |
| 		emergency_sync();
 | |
| 		kernel_power_off();
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(orderly_poweroff);
 |