 e66eded830
			
		
	
	
	e66eded830
	
	
	
		
			
			Don't allowing sharing the root directory with processes in a different user namespace. There doesn't seem to be any point, and to allow it would require the overhead of putting a user namespace reference in fs_struct (for permission checks) and incrementing that reference count on practically every call to fork. So just perform the inexpensive test of forbidding sharing fs_struct acrosss processes in different user namespaces. We already disallow other forms of threading when unsharing a user namespace so this should be no real burden in practice. This updates setns, clone, and unshare to disallow multiple user namespaces sharing an fs_struct. Cc: stable@vger.kernel.org Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			1935 lines
		
	
	
	
		
			46 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1935 lines
		
	
	
	
		
			46 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  linux/kernel/fork.c
 | |
|  *
 | |
|  *  Copyright (C) 1991, 1992  Linus Torvalds
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  *  'fork.c' contains the help-routines for the 'fork' system call
 | |
|  * (see also entry.S and others).
 | |
|  * Fork is rather simple, once you get the hang of it, but the memory
 | |
|  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
 | |
|  */
 | |
| 
 | |
| #include <linux/slab.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/unistd.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/completion.h>
 | |
| #include <linux/personality.h>
 | |
| #include <linux/mempolicy.h>
 | |
| #include <linux/sem.h>
 | |
| #include <linux/file.h>
 | |
| #include <linux/fdtable.h>
 | |
| #include <linux/iocontext.h>
 | |
| #include <linux/key.h>
 | |
| #include <linux/binfmts.h>
 | |
| #include <linux/mman.h>
 | |
| #include <linux/mmu_notifier.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/nsproxy.h>
 | |
| #include <linux/capability.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/cgroup.h>
 | |
| #include <linux/security.h>
 | |
| #include <linux/hugetlb.h>
 | |
| #include <linux/seccomp.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/syscalls.h>
 | |
| #include <linux/jiffies.h>
 | |
| #include <linux/futex.h>
 | |
| #include <linux/compat.h>
 | |
| #include <linux/kthread.h>
 | |
| #include <linux/task_io_accounting_ops.h>
 | |
| #include <linux/rcupdate.h>
 | |
| #include <linux/ptrace.h>
 | |
| #include <linux/mount.h>
 | |
| #include <linux/audit.h>
 | |
| #include <linux/memcontrol.h>
 | |
| #include <linux/ftrace.h>
 | |
| #include <linux/proc_fs.h>
 | |
| #include <linux/profile.h>
 | |
| #include <linux/rmap.h>
 | |
| #include <linux/ksm.h>
 | |
| #include <linux/acct.h>
 | |
| #include <linux/tsacct_kern.h>
 | |
| #include <linux/cn_proc.h>
 | |
| #include <linux/freezer.h>
 | |
| #include <linux/delayacct.h>
 | |
| #include <linux/taskstats_kern.h>
 | |
| #include <linux/random.h>
 | |
| #include <linux/tty.h>
 | |
| #include <linux/blkdev.h>
 | |
| #include <linux/fs_struct.h>
 | |
| #include <linux/magic.h>
 | |
| #include <linux/perf_event.h>
 | |
| #include <linux/posix-timers.h>
 | |
| #include <linux/user-return-notifier.h>
 | |
| #include <linux/oom.h>
 | |
| #include <linux/khugepaged.h>
 | |
| #include <linux/signalfd.h>
 | |
| #include <linux/uprobes.h>
 | |
| 
 | |
| #include <asm/pgtable.h>
 | |
| #include <asm/pgalloc.h>
 | |
| #include <asm/uaccess.h>
 | |
| #include <asm/mmu_context.h>
 | |
| #include <asm/cacheflush.h>
 | |
| #include <asm/tlbflush.h>
 | |
| 
 | |
| #include <trace/events/sched.h>
 | |
| 
 | |
| #define CREATE_TRACE_POINTS
 | |
| #include <trace/events/task.h>
 | |
| 
 | |
| /*
 | |
|  * Protected counters by write_lock_irq(&tasklist_lock)
 | |
|  */
 | |
| unsigned long total_forks;	/* Handle normal Linux uptimes. */
 | |
| int nr_threads;			/* The idle threads do not count.. */
 | |
| 
 | |
| int max_threads;		/* tunable limit on nr_threads */
 | |
| 
 | |
| DEFINE_PER_CPU(unsigned long, process_counts) = 0;
 | |
| 
 | |
| __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
 | |
| 
 | |
| #ifdef CONFIG_PROVE_RCU
 | |
| int lockdep_tasklist_lock_is_held(void)
 | |
| {
 | |
| 	return lockdep_is_held(&tasklist_lock);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
 | |
| #endif /* #ifdef CONFIG_PROVE_RCU */
 | |
| 
 | |
| int nr_processes(void)
 | |
| {
 | |
| 	int cpu;
 | |
| 	int total = 0;
 | |
| 
 | |
| 	for_each_possible_cpu(cpu)
 | |
| 		total += per_cpu(process_counts, cpu);
 | |
| 
 | |
| 	return total;
 | |
| }
 | |
| 
 | |
| void __weak arch_release_task_struct(struct task_struct *tsk)
 | |
| {
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
 | |
| static struct kmem_cache *task_struct_cachep;
 | |
| 
 | |
| static inline struct task_struct *alloc_task_struct_node(int node)
 | |
| {
 | |
| 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
 | |
| }
 | |
| 
 | |
| static inline void free_task_struct(struct task_struct *tsk)
 | |
| {
 | |
| 	kmem_cache_free(task_struct_cachep, tsk);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void __weak arch_release_thread_info(struct thread_info *ti)
 | |
| {
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
 | |
| 
 | |
| /*
 | |
|  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
 | |
|  * kmemcache based allocator.
 | |
|  */
 | |
| # if THREAD_SIZE >= PAGE_SIZE
 | |
| static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
 | |
| 						  int node)
 | |
| {
 | |
| 	struct page *page = alloc_pages_node(node, THREADINFO_GFP_ACCOUNTED,
 | |
| 					     THREAD_SIZE_ORDER);
 | |
| 
 | |
| 	return page ? page_address(page) : NULL;
 | |
| }
 | |
| 
 | |
| static inline void free_thread_info(struct thread_info *ti)
 | |
| {
 | |
| 	free_memcg_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER);
 | |
| }
 | |
| # else
 | |
| static struct kmem_cache *thread_info_cache;
 | |
| 
 | |
| static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
 | |
| 						  int node)
 | |
| {
 | |
| 	return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
 | |
| }
 | |
| 
 | |
| static void free_thread_info(struct thread_info *ti)
 | |
| {
 | |
| 	kmem_cache_free(thread_info_cache, ti);
 | |
| }
 | |
| 
 | |
| void thread_info_cache_init(void)
 | |
| {
 | |
| 	thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
 | |
| 					      THREAD_SIZE, 0, NULL);
 | |
| 	BUG_ON(thread_info_cache == NULL);
 | |
| }
 | |
| # endif
 | |
| #endif
 | |
| 
 | |
| /* SLAB cache for signal_struct structures (tsk->signal) */
 | |
| static struct kmem_cache *signal_cachep;
 | |
| 
 | |
| /* SLAB cache for sighand_struct structures (tsk->sighand) */
 | |
| struct kmem_cache *sighand_cachep;
 | |
| 
 | |
| /* SLAB cache for files_struct structures (tsk->files) */
 | |
| struct kmem_cache *files_cachep;
 | |
| 
 | |
| /* SLAB cache for fs_struct structures (tsk->fs) */
 | |
| struct kmem_cache *fs_cachep;
 | |
| 
 | |
| /* SLAB cache for vm_area_struct structures */
 | |
| struct kmem_cache *vm_area_cachep;
 | |
| 
 | |
| /* SLAB cache for mm_struct structures (tsk->mm) */
 | |
| static struct kmem_cache *mm_cachep;
 | |
| 
 | |
| static void account_kernel_stack(struct thread_info *ti, int account)
 | |
| {
 | |
| 	struct zone *zone = page_zone(virt_to_page(ti));
 | |
| 
 | |
| 	mod_zone_page_state(zone, NR_KERNEL_STACK, account);
 | |
| }
 | |
| 
 | |
| void free_task(struct task_struct *tsk)
 | |
| {
 | |
| 	account_kernel_stack(tsk->stack, -1);
 | |
| 	arch_release_thread_info(tsk->stack);
 | |
| 	free_thread_info(tsk->stack);
 | |
| 	rt_mutex_debug_task_free(tsk);
 | |
| 	ftrace_graph_exit_task(tsk);
 | |
| 	put_seccomp_filter(tsk);
 | |
| 	arch_release_task_struct(tsk);
 | |
| 	free_task_struct(tsk);
 | |
| }
 | |
| EXPORT_SYMBOL(free_task);
 | |
| 
 | |
| static inline void free_signal_struct(struct signal_struct *sig)
 | |
| {
 | |
| 	taskstats_tgid_free(sig);
 | |
| 	sched_autogroup_exit(sig);
 | |
| 	kmem_cache_free(signal_cachep, sig);
 | |
| }
 | |
| 
 | |
| static inline void put_signal_struct(struct signal_struct *sig)
 | |
| {
 | |
| 	if (atomic_dec_and_test(&sig->sigcnt))
 | |
| 		free_signal_struct(sig);
 | |
| }
 | |
| 
 | |
| void __put_task_struct(struct task_struct *tsk)
 | |
| {
 | |
| 	WARN_ON(!tsk->exit_state);
 | |
| 	WARN_ON(atomic_read(&tsk->usage));
 | |
| 	WARN_ON(tsk == current);
 | |
| 
 | |
| 	security_task_free(tsk);
 | |
| 	exit_creds(tsk);
 | |
| 	delayacct_tsk_free(tsk);
 | |
| 	put_signal_struct(tsk->signal);
 | |
| 
 | |
| 	if (!profile_handoff_task(tsk))
 | |
| 		free_task(tsk);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(__put_task_struct);
 | |
| 
 | |
| void __init __weak arch_task_cache_init(void) { }
 | |
| 
 | |
| void __init fork_init(unsigned long mempages)
 | |
| {
 | |
| #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
 | |
| #ifndef ARCH_MIN_TASKALIGN
 | |
| #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
 | |
| #endif
 | |
| 	/* create a slab on which task_structs can be allocated */
 | |
| 	task_struct_cachep =
 | |
| 		kmem_cache_create("task_struct", sizeof(struct task_struct),
 | |
| 			ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
 | |
| #endif
 | |
| 
 | |
| 	/* do the arch specific task caches init */
 | |
| 	arch_task_cache_init();
 | |
| 
 | |
| 	/*
 | |
| 	 * The default maximum number of threads is set to a safe
 | |
| 	 * value: the thread structures can take up at most half
 | |
| 	 * of memory.
 | |
| 	 */
 | |
| 	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
 | |
| 
 | |
| 	/*
 | |
| 	 * we need to allow at least 20 threads to boot a system
 | |
| 	 */
 | |
| 	if (max_threads < 20)
 | |
| 		max_threads = 20;
 | |
| 
 | |
| 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
 | |
| 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
 | |
| 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
 | |
| 		init_task.signal->rlim[RLIMIT_NPROC];
 | |
| }
 | |
| 
 | |
| int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
 | |
| 					       struct task_struct *src)
 | |
| {
 | |
| 	*dst = *src;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct task_struct *dup_task_struct(struct task_struct *orig)
 | |
| {
 | |
| 	struct task_struct *tsk;
 | |
| 	struct thread_info *ti;
 | |
| 	unsigned long *stackend;
 | |
| 	int node = tsk_fork_get_node(orig);
 | |
| 	int err;
 | |
| 
 | |
| 	tsk = alloc_task_struct_node(node);
 | |
| 	if (!tsk)
 | |
| 		return NULL;
 | |
| 
 | |
| 	ti = alloc_thread_info_node(tsk, node);
 | |
| 	if (!ti)
 | |
| 		goto free_tsk;
 | |
| 
 | |
| 	err = arch_dup_task_struct(tsk, orig);
 | |
| 	if (err)
 | |
| 		goto free_ti;
 | |
| 
 | |
| 	tsk->stack = ti;
 | |
| 
 | |
| 	setup_thread_stack(tsk, orig);
 | |
| 	clear_user_return_notifier(tsk);
 | |
| 	clear_tsk_need_resched(tsk);
 | |
| 	stackend = end_of_stack(tsk);
 | |
| 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
 | |
| 
 | |
| #ifdef CONFIG_CC_STACKPROTECTOR
 | |
| 	tsk->stack_canary = get_random_int();
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * One for us, one for whoever does the "release_task()" (usually
 | |
| 	 * parent)
 | |
| 	 */
 | |
| 	atomic_set(&tsk->usage, 2);
 | |
| #ifdef CONFIG_BLK_DEV_IO_TRACE
 | |
| 	tsk->btrace_seq = 0;
 | |
| #endif
 | |
| 	tsk->splice_pipe = NULL;
 | |
| 	tsk->task_frag.page = NULL;
 | |
| 
 | |
| 	account_kernel_stack(ti, 1);
 | |
| 
 | |
| 	return tsk;
 | |
| 
 | |
| free_ti:
 | |
| 	free_thread_info(ti);
 | |
| free_tsk:
 | |
| 	free_task_struct(tsk);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MMU
 | |
| static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
 | |
| {
 | |
| 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
 | |
| 	struct rb_node **rb_link, *rb_parent;
 | |
| 	int retval;
 | |
| 	unsigned long charge;
 | |
| 	struct mempolicy *pol;
 | |
| 
 | |
| 	uprobe_start_dup_mmap();
 | |
| 	down_write(&oldmm->mmap_sem);
 | |
| 	flush_cache_dup_mm(oldmm);
 | |
| 	uprobe_dup_mmap(oldmm, mm);
 | |
| 	/*
 | |
| 	 * Not linked in yet - no deadlock potential:
 | |
| 	 */
 | |
| 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
 | |
| 
 | |
| 	mm->locked_vm = 0;
 | |
| 	mm->mmap = NULL;
 | |
| 	mm->mmap_cache = NULL;
 | |
| 	mm->free_area_cache = oldmm->mmap_base;
 | |
| 	mm->cached_hole_size = ~0UL;
 | |
| 	mm->map_count = 0;
 | |
| 	cpumask_clear(mm_cpumask(mm));
 | |
| 	mm->mm_rb = RB_ROOT;
 | |
| 	rb_link = &mm->mm_rb.rb_node;
 | |
| 	rb_parent = NULL;
 | |
| 	pprev = &mm->mmap;
 | |
| 	retval = ksm_fork(mm, oldmm);
 | |
| 	if (retval)
 | |
| 		goto out;
 | |
| 	retval = khugepaged_fork(mm, oldmm);
 | |
| 	if (retval)
 | |
| 		goto out;
 | |
| 
 | |
| 	prev = NULL;
 | |
| 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
 | |
| 		struct file *file;
 | |
| 
 | |
| 		if (mpnt->vm_flags & VM_DONTCOPY) {
 | |
| 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
 | |
| 							-vma_pages(mpnt));
 | |
| 			continue;
 | |
| 		}
 | |
| 		charge = 0;
 | |
| 		if (mpnt->vm_flags & VM_ACCOUNT) {
 | |
| 			unsigned long len = vma_pages(mpnt);
 | |
| 
 | |
| 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
 | |
| 				goto fail_nomem;
 | |
| 			charge = len;
 | |
| 		}
 | |
| 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
 | |
| 		if (!tmp)
 | |
| 			goto fail_nomem;
 | |
| 		*tmp = *mpnt;
 | |
| 		INIT_LIST_HEAD(&tmp->anon_vma_chain);
 | |
| 		pol = mpol_dup(vma_policy(mpnt));
 | |
| 		retval = PTR_ERR(pol);
 | |
| 		if (IS_ERR(pol))
 | |
| 			goto fail_nomem_policy;
 | |
| 		vma_set_policy(tmp, pol);
 | |
| 		tmp->vm_mm = mm;
 | |
| 		if (anon_vma_fork(tmp, mpnt))
 | |
| 			goto fail_nomem_anon_vma_fork;
 | |
| 		tmp->vm_flags &= ~VM_LOCKED;
 | |
| 		tmp->vm_next = tmp->vm_prev = NULL;
 | |
| 		file = tmp->vm_file;
 | |
| 		if (file) {
 | |
| 			struct inode *inode = file_inode(file);
 | |
| 			struct address_space *mapping = file->f_mapping;
 | |
| 
 | |
| 			get_file(file);
 | |
| 			if (tmp->vm_flags & VM_DENYWRITE)
 | |
| 				atomic_dec(&inode->i_writecount);
 | |
| 			mutex_lock(&mapping->i_mmap_mutex);
 | |
| 			if (tmp->vm_flags & VM_SHARED)
 | |
| 				mapping->i_mmap_writable++;
 | |
| 			flush_dcache_mmap_lock(mapping);
 | |
| 			/* insert tmp into the share list, just after mpnt */
 | |
| 			if (unlikely(tmp->vm_flags & VM_NONLINEAR))
 | |
| 				vma_nonlinear_insert(tmp,
 | |
| 						&mapping->i_mmap_nonlinear);
 | |
| 			else
 | |
| 				vma_interval_tree_insert_after(tmp, mpnt,
 | |
| 							&mapping->i_mmap);
 | |
| 			flush_dcache_mmap_unlock(mapping);
 | |
| 			mutex_unlock(&mapping->i_mmap_mutex);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Clear hugetlb-related page reserves for children. This only
 | |
| 		 * affects MAP_PRIVATE mappings. Faults generated by the child
 | |
| 		 * are not guaranteed to succeed, even if read-only
 | |
| 		 */
 | |
| 		if (is_vm_hugetlb_page(tmp))
 | |
| 			reset_vma_resv_huge_pages(tmp);
 | |
| 
 | |
| 		/*
 | |
| 		 * Link in the new vma and copy the page table entries.
 | |
| 		 */
 | |
| 		*pprev = tmp;
 | |
| 		pprev = &tmp->vm_next;
 | |
| 		tmp->vm_prev = prev;
 | |
| 		prev = tmp;
 | |
| 
 | |
| 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
 | |
| 		rb_link = &tmp->vm_rb.rb_right;
 | |
| 		rb_parent = &tmp->vm_rb;
 | |
| 
 | |
| 		mm->map_count++;
 | |
| 		retval = copy_page_range(mm, oldmm, mpnt);
 | |
| 
 | |
| 		if (tmp->vm_ops && tmp->vm_ops->open)
 | |
| 			tmp->vm_ops->open(tmp);
 | |
| 
 | |
| 		if (retval)
 | |
| 			goto out;
 | |
| 	}
 | |
| 	/* a new mm has just been created */
 | |
| 	arch_dup_mmap(oldmm, mm);
 | |
| 	retval = 0;
 | |
| out:
 | |
| 	up_write(&mm->mmap_sem);
 | |
| 	flush_tlb_mm(oldmm);
 | |
| 	up_write(&oldmm->mmap_sem);
 | |
| 	uprobe_end_dup_mmap();
 | |
| 	return retval;
 | |
| fail_nomem_anon_vma_fork:
 | |
| 	mpol_put(pol);
 | |
| fail_nomem_policy:
 | |
| 	kmem_cache_free(vm_area_cachep, tmp);
 | |
| fail_nomem:
 | |
| 	retval = -ENOMEM;
 | |
| 	vm_unacct_memory(charge);
 | |
| 	goto out;
 | |
| }
 | |
| 
 | |
| static inline int mm_alloc_pgd(struct mm_struct *mm)
 | |
| {
 | |
| 	mm->pgd = pgd_alloc(mm);
 | |
| 	if (unlikely(!mm->pgd))
 | |
| 		return -ENOMEM;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline void mm_free_pgd(struct mm_struct *mm)
 | |
| {
 | |
| 	pgd_free(mm, mm->pgd);
 | |
| }
 | |
| #else
 | |
| #define dup_mmap(mm, oldmm)	(0)
 | |
| #define mm_alloc_pgd(mm)	(0)
 | |
| #define mm_free_pgd(mm)
 | |
| #endif /* CONFIG_MMU */
 | |
| 
 | |
| __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
 | |
| 
 | |
| #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
 | |
| #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
 | |
| 
 | |
| static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
 | |
| 
 | |
| static int __init coredump_filter_setup(char *s)
 | |
| {
 | |
| 	default_dump_filter =
 | |
| 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
 | |
| 		MMF_DUMP_FILTER_MASK;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| __setup("coredump_filter=", coredump_filter_setup);
 | |
| 
 | |
| #include <linux/init_task.h>
 | |
| 
 | |
| static void mm_init_aio(struct mm_struct *mm)
 | |
| {
 | |
| #ifdef CONFIG_AIO
 | |
| 	spin_lock_init(&mm->ioctx_lock);
 | |
| 	INIT_HLIST_HEAD(&mm->ioctx_list);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
 | |
| {
 | |
| 	atomic_set(&mm->mm_users, 1);
 | |
| 	atomic_set(&mm->mm_count, 1);
 | |
| 	init_rwsem(&mm->mmap_sem);
 | |
| 	INIT_LIST_HEAD(&mm->mmlist);
 | |
| 	mm->flags = (current->mm) ?
 | |
| 		(current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
 | |
| 	mm->core_state = NULL;
 | |
| 	mm->nr_ptes = 0;
 | |
| 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
 | |
| 	spin_lock_init(&mm->page_table_lock);
 | |
| 	mm->free_area_cache = TASK_UNMAPPED_BASE;
 | |
| 	mm->cached_hole_size = ~0UL;
 | |
| 	mm_init_aio(mm);
 | |
| 	mm_init_owner(mm, p);
 | |
| 
 | |
| 	if (likely(!mm_alloc_pgd(mm))) {
 | |
| 		mm->def_flags = 0;
 | |
| 		mmu_notifier_mm_init(mm);
 | |
| 		return mm;
 | |
| 	}
 | |
| 
 | |
| 	free_mm(mm);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void check_mm(struct mm_struct *mm)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < NR_MM_COUNTERS; i++) {
 | |
| 		long x = atomic_long_read(&mm->rss_stat.count[i]);
 | |
| 
 | |
| 		if (unlikely(x))
 | |
| 			printk(KERN_ALERT "BUG: Bad rss-counter state "
 | |
| 					  "mm:%p idx:%d val:%ld\n", mm, i, x);
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | |
| 	VM_BUG_ON(mm->pmd_huge_pte);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate and initialize an mm_struct.
 | |
|  */
 | |
| struct mm_struct *mm_alloc(void)
 | |
| {
 | |
| 	struct mm_struct *mm;
 | |
| 
 | |
| 	mm = allocate_mm();
 | |
| 	if (!mm)
 | |
| 		return NULL;
 | |
| 
 | |
| 	memset(mm, 0, sizeof(*mm));
 | |
| 	mm_init_cpumask(mm);
 | |
| 	return mm_init(mm, current);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called when the last reference to the mm
 | |
|  * is dropped: either by a lazy thread or by
 | |
|  * mmput. Free the page directory and the mm.
 | |
|  */
 | |
| void __mmdrop(struct mm_struct *mm)
 | |
| {
 | |
| 	BUG_ON(mm == &init_mm);
 | |
| 	mm_free_pgd(mm);
 | |
| 	destroy_context(mm);
 | |
| 	mmu_notifier_mm_destroy(mm);
 | |
| 	check_mm(mm);
 | |
| 	free_mm(mm);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(__mmdrop);
 | |
| 
 | |
| /*
 | |
|  * Decrement the use count and release all resources for an mm.
 | |
|  */
 | |
| void mmput(struct mm_struct *mm)
 | |
| {
 | |
| 	might_sleep();
 | |
| 
 | |
| 	if (atomic_dec_and_test(&mm->mm_users)) {
 | |
| 		uprobe_clear_state(mm);
 | |
| 		exit_aio(mm);
 | |
| 		ksm_exit(mm);
 | |
| 		khugepaged_exit(mm); /* must run before exit_mmap */
 | |
| 		exit_mmap(mm);
 | |
| 		set_mm_exe_file(mm, NULL);
 | |
| 		if (!list_empty(&mm->mmlist)) {
 | |
| 			spin_lock(&mmlist_lock);
 | |
| 			list_del(&mm->mmlist);
 | |
| 			spin_unlock(&mmlist_lock);
 | |
| 		}
 | |
| 		if (mm->binfmt)
 | |
| 			module_put(mm->binfmt->module);
 | |
| 		mmdrop(mm);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(mmput);
 | |
| 
 | |
| void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
 | |
| {
 | |
| 	if (new_exe_file)
 | |
| 		get_file(new_exe_file);
 | |
| 	if (mm->exe_file)
 | |
| 		fput(mm->exe_file);
 | |
| 	mm->exe_file = new_exe_file;
 | |
| }
 | |
| 
 | |
| struct file *get_mm_exe_file(struct mm_struct *mm)
 | |
| {
 | |
| 	struct file *exe_file;
 | |
| 
 | |
| 	/* We need mmap_sem to protect against races with removal of exe_file */
 | |
| 	down_read(&mm->mmap_sem);
 | |
| 	exe_file = mm->exe_file;
 | |
| 	if (exe_file)
 | |
| 		get_file(exe_file);
 | |
| 	up_read(&mm->mmap_sem);
 | |
| 	return exe_file;
 | |
| }
 | |
| 
 | |
| static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
 | |
| {
 | |
| 	/* It's safe to write the exe_file pointer without exe_file_lock because
 | |
| 	 * this is called during fork when the task is not yet in /proc */
 | |
| 	newmm->exe_file = get_mm_exe_file(oldmm);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * get_task_mm - acquire a reference to the task's mm
 | |
|  *
 | |
|  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
 | |
|  * this kernel workthread has transiently adopted a user mm with use_mm,
 | |
|  * to do its AIO) is not set and if so returns a reference to it, after
 | |
|  * bumping up the use count.  User must release the mm via mmput()
 | |
|  * after use.  Typically used by /proc and ptrace.
 | |
|  */
 | |
| struct mm_struct *get_task_mm(struct task_struct *task)
 | |
| {
 | |
| 	struct mm_struct *mm;
 | |
| 
 | |
| 	task_lock(task);
 | |
| 	mm = task->mm;
 | |
| 	if (mm) {
 | |
| 		if (task->flags & PF_KTHREAD)
 | |
| 			mm = NULL;
 | |
| 		else
 | |
| 			atomic_inc(&mm->mm_users);
 | |
| 	}
 | |
| 	task_unlock(task);
 | |
| 	return mm;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(get_task_mm);
 | |
| 
 | |
| struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
 | |
| {
 | |
| 	struct mm_struct *mm;
 | |
| 	int err;
 | |
| 
 | |
| 	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
 | |
| 	if (err)
 | |
| 		return ERR_PTR(err);
 | |
| 
 | |
| 	mm = get_task_mm(task);
 | |
| 	if (mm && mm != current->mm &&
 | |
| 			!ptrace_may_access(task, mode)) {
 | |
| 		mmput(mm);
 | |
| 		mm = ERR_PTR(-EACCES);
 | |
| 	}
 | |
| 	mutex_unlock(&task->signal->cred_guard_mutex);
 | |
| 
 | |
| 	return mm;
 | |
| }
 | |
| 
 | |
| static void complete_vfork_done(struct task_struct *tsk)
 | |
| {
 | |
| 	struct completion *vfork;
 | |
| 
 | |
| 	task_lock(tsk);
 | |
| 	vfork = tsk->vfork_done;
 | |
| 	if (likely(vfork)) {
 | |
| 		tsk->vfork_done = NULL;
 | |
| 		complete(vfork);
 | |
| 	}
 | |
| 	task_unlock(tsk);
 | |
| }
 | |
| 
 | |
| static int wait_for_vfork_done(struct task_struct *child,
 | |
| 				struct completion *vfork)
 | |
| {
 | |
| 	int killed;
 | |
| 
 | |
| 	freezer_do_not_count();
 | |
| 	killed = wait_for_completion_killable(vfork);
 | |
| 	freezer_count();
 | |
| 
 | |
| 	if (killed) {
 | |
| 		task_lock(child);
 | |
| 		child->vfork_done = NULL;
 | |
| 		task_unlock(child);
 | |
| 	}
 | |
| 
 | |
| 	put_task_struct(child);
 | |
| 	return killed;
 | |
| }
 | |
| 
 | |
| /* Please note the differences between mmput and mm_release.
 | |
|  * mmput is called whenever we stop holding onto a mm_struct,
 | |
|  * error success whatever.
 | |
|  *
 | |
|  * mm_release is called after a mm_struct has been removed
 | |
|  * from the current process.
 | |
|  *
 | |
|  * This difference is important for error handling, when we
 | |
|  * only half set up a mm_struct for a new process and need to restore
 | |
|  * the old one.  Because we mmput the new mm_struct before
 | |
|  * restoring the old one. . .
 | |
|  * Eric Biederman 10 January 1998
 | |
|  */
 | |
| void mm_release(struct task_struct *tsk, struct mm_struct *mm)
 | |
| {
 | |
| 	/* Get rid of any futexes when releasing the mm */
 | |
| #ifdef CONFIG_FUTEX
 | |
| 	if (unlikely(tsk->robust_list)) {
 | |
| 		exit_robust_list(tsk);
 | |
| 		tsk->robust_list = NULL;
 | |
| 	}
 | |
| #ifdef CONFIG_COMPAT
 | |
| 	if (unlikely(tsk->compat_robust_list)) {
 | |
| 		compat_exit_robust_list(tsk);
 | |
| 		tsk->compat_robust_list = NULL;
 | |
| 	}
 | |
| #endif
 | |
| 	if (unlikely(!list_empty(&tsk->pi_state_list)))
 | |
| 		exit_pi_state_list(tsk);
 | |
| #endif
 | |
| 
 | |
| 	uprobe_free_utask(tsk);
 | |
| 
 | |
| 	/* Get rid of any cached register state */
 | |
| 	deactivate_mm(tsk, mm);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we're exiting normally, clear a user-space tid field if
 | |
| 	 * requested.  We leave this alone when dying by signal, to leave
 | |
| 	 * the value intact in a core dump, and to save the unnecessary
 | |
| 	 * trouble, say, a killed vfork parent shouldn't touch this mm.
 | |
| 	 * Userland only wants this done for a sys_exit.
 | |
| 	 */
 | |
| 	if (tsk->clear_child_tid) {
 | |
| 		if (!(tsk->flags & PF_SIGNALED) &&
 | |
| 		    atomic_read(&mm->mm_users) > 1) {
 | |
| 			/*
 | |
| 			 * We don't check the error code - if userspace has
 | |
| 			 * not set up a proper pointer then tough luck.
 | |
| 			 */
 | |
| 			put_user(0, tsk->clear_child_tid);
 | |
| 			sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
 | |
| 					1, NULL, NULL, 0);
 | |
| 		}
 | |
| 		tsk->clear_child_tid = NULL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * All done, finally we can wake up parent and return this mm to him.
 | |
| 	 * Also kthread_stop() uses this completion for synchronization.
 | |
| 	 */
 | |
| 	if (tsk->vfork_done)
 | |
| 		complete_vfork_done(tsk);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate a new mm structure and copy contents from the
 | |
|  * mm structure of the passed in task structure.
 | |
|  */
 | |
| struct mm_struct *dup_mm(struct task_struct *tsk)
 | |
| {
 | |
| 	struct mm_struct *mm, *oldmm = current->mm;
 | |
| 	int err;
 | |
| 
 | |
| 	if (!oldmm)
 | |
| 		return NULL;
 | |
| 
 | |
| 	mm = allocate_mm();
 | |
| 	if (!mm)
 | |
| 		goto fail_nomem;
 | |
| 
 | |
| 	memcpy(mm, oldmm, sizeof(*mm));
 | |
| 	mm_init_cpumask(mm);
 | |
| 
 | |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | |
| 	mm->pmd_huge_pte = NULL;
 | |
| #endif
 | |
| #ifdef CONFIG_NUMA_BALANCING
 | |
| 	mm->first_nid = NUMA_PTE_SCAN_INIT;
 | |
| #endif
 | |
| 	if (!mm_init(mm, tsk))
 | |
| 		goto fail_nomem;
 | |
| 
 | |
| 	if (init_new_context(tsk, mm))
 | |
| 		goto fail_nocontext;
 | |
| 
 | |
| 	dup_mm_exe_file(oldmm, mm);
 | |
| 
 | |
| 	err = dup_mmap(mm, oldmm);
 | |
| 	if (err)
 | |
| 		goto free_pt;
 | |
| 
 | |
| 	mm->hiwater_rss = get_mm_rss(mm);
 | |
| 	mm->hiwater_vm = mm->total_vm;
 | |
| 
 | |
| 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
 | |
| 		goto free_pt;
 | |
| 
 | |
| 	return mm;
 | |
| 
 | |
| free_pt:
 | |
| 	/* don't put binfmt in mmput, we haven't got module yet */
 | |
| 	mm->binfmt = NULL;
 | |
| 	mmput(mm);
 | |
| 
 | |
| fail_nomem:
 | |
| 	return NULL;
 | |
| 
 | |
| fail_nocontext:
 | |
| 	/*
 | |
| 	 * If init_new_context() failed, we cannot use mmput() to free the mm
 | |
| 	 * because it calls destroy_context()
 | |
| 	 */
 | |
| 	mm_free_pgd(mm);
 | |
| 	free_mm(mm);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
 | |
| {
 | |
| 	struct mm_struct *mm, *oldmm;
 | |
| 	int retval;
 | |
| 
 | |
| 	tsk->min_flt = tsk->maj_flt = 0;
 | |
| 	tsk->nvcsw = tsk->nivcsw = 0;
 | |
| #ifdef CONFIG_DETECT_HUNG_TASK
 | |
| 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
 | |
| #endif
 | |
| 
 | |
| 	tsk->mm = NULL;
 | |
| 	tsk->active_mm = NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Are we cloning a kernel thread?
 | |
| 	 *
 | |
| 	 * We need to steal a active VM for that..
 | |
| 	 */
 | |
| 	oldmm = current->mm;
 | |
| 	if (!oldmm)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (clone_flags & CLONE_VM) {
 | |
| 		atomic_inc(&oldmm->mm_users);
 | |
| 		mm = oldmm;
 | |
| 		goto good_mm;
 | |
| 	}
 | |
| 
 | |
| 	retval = -ENOMEM;
 | |
| 	mm = dup_mm(tsk);
 | |
| 	if (!mm)
 | |
| 		goto fail_nomem;
 | |
| 
 | |
| good_mm:
 | |
| 	tsk->mm = mm;
 | |
| 	tsk->active_mm = mm;
 | |
| 	return 0;
 | |
| 
 | |
| fail_nomem:
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
 | |
| {
 | |
| 	struct fs_struct *fs = current->fs;
 | |
| 	if (clone_flags & CLONE_FS) {
 | |
| 		/* tsk->fs is already what we want */
 | |
| 		spin_lock(&fs->lock);
 | |
| 		if (fs->in_exec) {
 | |
| 			spin_unlock(&fs->lock);
 | |
| 			return -EAGAIN;
 | |
| 		}
 | |
| 		fs->users++;
 | |
| 		spin_unlock(&fs->lock);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	tsk->fs = copy_fs_struct(fs);
 | |
| 	if (!tsk->fs)
 | |
| 		return -ENOMEM;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
 | |
| {
 | |
| 	struct files_struct *oldf, *newf;
 | |
| 	int error = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * A background process may not have any files ...
 | |
| 	 */
 | |
| 	oldf = current->files;
 | |
| 	if (!oldf)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (clone_flags & CLONE_FILES) {
 | |
| 		atomic_inc(&oldf->count);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	newf = dup_fd(oldf, &error);
 | |
| 	if (!newf)
 | |
| 		goto out;
 | |
| 
 | |
| 	tsk->files = newf;
 | |
| 	error = 0;
 | |
| out:
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
 | |
| {
 | |
| #ifdef CONFIG_BLOCK
 | |
| 	struct io_context *ioc = current->io_context;
 | |
| 	struct io_context *new_ioc;
 | |
| 
 | |
| 	if (!ioc)
 | |
| 		return 0;
 | |
| 	/*
 | |
| 	 * Share io context with parent, if CLONE_IO is set
 | |
| 	 */
 | |
| 	if (clone_flags & CLONE_IO) {
 | |
| 		ioc_task_link(ioc);
 | |
| 		tsk->io_context = ioc;
 | |
| 	} else if (ioprio_valid(ioc->ioprio)) {
 | |
| 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
 | |
| 		if (unlikely(!new_ioc))
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		new_ioc->ioprio = ioc->ioprio;
 | |
| 		put_io_context(new_ioc);
 | |
| 	}
 | |
| #endif
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
 | |
| {
 | |
| 	struct sighand_struct *sig;
 | |
| 
 | |
| 	if (clone_flags & CLONE_SIGHAND) {
 | |
| 		atomic_inc(¤t->sighand->count);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
 | |
| 	rcu_assign_pointer(tsk->sighand, sig);
 | |
| 	if (!sig)
 | |
| 		return -ENOMEM;
 | |
| 	atomic_set(&sig->count, 1);
 | |
| 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void __cleanup_sighand(struct sighand_struct *sighand)
 | |
| {
 | |
| 	if (atomic_dec_and_test(&sighand->count)) {
 | |
| 		signalfd_cleanup(sighand);
 | |
| 		kmem_cache_free(sighand_cachep, sighand);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Initialize POSIX timer handling for a thread group.
 | |
|  */
 | |
| static void posix_cpu_timers_init_group(struct signal_struct *sig)
 | |
| {
 | |
| 	unsigned long cpu_limit;
 | |
| 
 | |
| 	/* Thread group counters. */
 | |
| 	thread_group_cputime_init(sig);
 | |
| 
 | |
| 	cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
 | |
| 	if (cpu_limit != RLIM_INFINITY) {
 | |
| 		sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
 | |
| 		sig->cputimer.running = 1;
 | |
| 	}
 | |
| 
 | |
| 	/* The timer lists. */
 | |
| 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
 | |
| 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
 | |
| 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
 | |
| }
 | |
| 
 | |
| static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
 | |
| {
 | |
| 	struct signal_struct *sig;
 | |
| 
 | |
| 	if (clone_flags & CLONE_THREAD)
 | |
| 		return 0;
 | |
| 
 | |
| 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
 | |
| 	tsk->signal = sig;
 | |
| 	if (!sig)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	sig->nr_threads = 1;
 | |
| 	atomic_set(&sig->live, 1);
 | |
| 	atomic_set(&sig->sigcnt, 1);
 | |
| 	init_waitqueue_head(&sig->wait_chldexit);
 | |
| 	sig->curr_target = tsk;
 | |
| 	init_sigpending(&sig->shared_pending);
 | |
| 	INIT_LIST_HEAD(&sig->posix_timers);
 | |
| 
 | |
| 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
 | |
| 	sig->real_timer.function = it_real_fn;
 | |
| 
 | |
| 	task_lock(current->group_leader);
 | |
| 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
 | |
| 	task_unlock(current->group_leader);
 | |
| 
 | |
| 	posix_cpu_timers_init_group(sig);
 | |
| 
 | |
| 	tty_audit_fork(sig);
 | |
| 	sched_autogroup_fork(sig);
 | |
| 
 | |
| #ifdef CONFIG_CGROUPS
 | |
| 	init_rwsem(&sig->group_rwsem);
 | |
| #endif
 | |
| 
 | |
| 	sig->oom_score_adj = current->signal->oom_score_adj;
 | |
| 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
 | |
| 
 | |
| 	sig->has_child_subreaper = current->signal->has_child_subreaper ||
 | |
| 				   current->signal->is_child_subreaper;
 | |
| 
 | |
| 	mutex_init(&sig->cred_guard_mutex);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void copy_flags(unsigned long clone_flags, struct task_struct *p)
 | |
| {
 | |
| 	unsigned long new_flags = p->flags;
 | |
| 
 | |
| 	new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
 | |
| 	new_flags |= PF_FORKNOEXEC;
 | |
| 	p->flags = new_flags;
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
 | |
| {
 | |
| 	current->clear_child_tid = tidptr;
 | |
| 
 | |
| 	return task_pid_vnr(current);
 | |
| }
 | |
| 
 | |
| static void rt_mutex_init_task(struct task_struct *p)
 | |
| {
 | |
| 	raw_spin_lock_init(&p->pi_lock);
 | |
| #ifdef CONFIG_RT_MUTEXES
 | |
| 	plist_head_init(&p->pi_waiters);
 | |
| 	p->pi_blocked_on = NULL;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MM_OWNER
 | |
| void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
 | |
| {
 | |
| 	mm->owner = p;
 | |
| }
 | |
| #endif /* CONFIG_MM_OWNER */
 | |
| 
 | |
| /*
 | |
|  * Initialize POSIX timer handling for a single task.
 | |
|  */
 | |
| static void posix_cpu_timers_init(struct task_struct *tsk)
 | |
| {
 | |
| 	tsk->cputime_expires.prof_exp = 0;
 | |
| 	tsk->cputime_expires.virt_exp = 0;
 | |
| 	tsk->cputime_expires.sched_exp = 0;
 | |
| 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
 | |
| 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
 | |
| 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This creates a new process as a copy of the old one,
 | |
|  * but does not actually start it yet.
 | |
|  *
 | |
|  * It copies the registers, and all the appropriate
 | |
|  * parts of the process environment (as per the clone
 | |
|  * flags). The actual kick-off is left to the caller.
 | |
|  */
 | |
| static struct task_struct *copy_process(unsigned long clone_flags,
 | |
| 					unsigned long stack_start,
 | |
| 					unsigned long stack_size,
 | |
| 					int __user *child_tidptr,
 | |
| 					struct pid *pid,
 | |
| 					int trace)
 | |
| {
 | |
| 	int retval;
 | |
| 	struct task_struct *p;
 | |
| 
 | |
| 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	/*
 | |
| 	 * Thread groups must share signals as well, and detached threads
 | |
| 	 * can only be started up within the thread group.
 | |
| 	 */
 | |
| 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	/*
 | |
| 	 * Shared signal handlers imply shared VM. By way of the above,
 | |
| 	 * thread groups also imply shared VM. Blocking this case allows
 | |
| 	 * for various simplifications in other code.
 | |
| 	 */
 | |
| 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	/*
 | |
| 	 * Siblings of global init remain as zombies on exit since they are
 | |
| 	 * not reaped by their parent (swapper). To solve this and to avoid
 | |
| 	 * multi-rooted process trees, prevent global and container-inits
 | |
| 	 * from creating siblings.
 | |
| 	 */
 | |
| 	if ((clone_flags & CLONE_PARENT) &&
 | |
| 				current->signal->flags & SIGNAL_UNKILLABLE)
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the new process will be in a different pid namespace
 | |
| 	 * don't allow the creation of threads.
 | |
| 	 */
 | |
| 	if ((clone_flags & (CLONE_VM|CLONE_NEWPID)) &&
 | |
| 	    (task_active_pid_ns(current) != current->nsproxy->pid_ns))
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	retval = security_task_create(clone_flags);
 | |
| 	if (retval)
 | |
| 		goto fork_out;
 | |
| 
 | |
| 	retval = -ENOMEM;
 | |
| 	p = dup_task_struct(current);
 | |
| 	if (!p)
 | |
| 		goto fork_out;
 | |
| 
 | |
| 	ftrace_graph_init_task(p);
 | |
| 	get_seccomp_filter(p);
 | |
| 
 | |
| 	rt_mutex_init_task(p);
 | |
| 
 | |
| #ifdef CONFIG_PROVE_LOCKING
 | |
| 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
 | |
| 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
 | |
| #endif
 | |
| 	retval = -EAGAIN;
 | |
| 	if (atomic_read(&p->real_cred->user->processes) >=
 | |
| 			task_rlimit(p, RLIMIT_NPROC)) {
 | |
| 		if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
 | |
| 		    p->real_cred->user != INIT_USER)
 | |
| 			goto bad_fork_free;
 | |
| 	}
 | |
| 	current->flags &= ~PF_NPROC_EXCEEDED;
 | |
| 
 | |
| 	retval = copy_creds(p, clone_flags);
 | |
| 	if (retval < 0)
 | |
| 		goto bad_fork_free;
 | |
| 
 | |
| 	/*
 | |
| 	 * If multiple threads are within copy_process(), then this check
 | |
| 	 * triggers too late. This doesn't hurt, the check is only there
 | |
| 	 * to stop root fork bombs.
 | |
| 	 */
 | |
| 	retval = -EAGAIN;
 | |
| 	if (nr_threads >= max_threads)
 | |
| 		goto bad_fork_cleanup_count;
 | |
| 
 | |
| 	if (!try_module_get(task_thread_info(p)->exec_domain->module))
 | |
| 		goto bad_fork_cleanup_count;
 | |
| 
 | |
| 	p->did_exec = 0;
 | |
| 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
 | |
| 	copy_flags(clone_flags, p);
 | |
| 	INIT_LIST_HEAD(&p->children);
 | |
| 	INIT_LIST_HEAD(&p->sibling);
 | |
| 	rcu_copy_process(p);
 | |
| 	p->vfork_done = NULL;
 | |
| 	spin_lock_init(&p->alloc_lock);
 | |
| 
 | |
| 	init_sigpending(&p->pending);
 | |
| 
 | |
| 	p->utime = p->stime = p->gtime = 0;
 | |
| 	p->utimescaled = p->stimescaled = 0;
 | |
| #ifndef CONFIG_VIRT_CPU_ACCOUNTING
 | |
| 	p->prev_cputime.utime = p->prev_cputime.stime = 0;
 | |
| #endif
 | |
| #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
 | |
| 	seqlock_init(&p->vtime_seqlock);
 | |
| 	p->vtime_snap = 0;
 | |
| 	p->vtime_snap_whence = VTIME_SLEEPING;
 | |
| #endif
 | |
| 
 | |
| #if defined(SPLIT_RSS_COUNTING)
 | |
| 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
 | |
| #endif
 | |
| 
 | |
| 	p->default_timer_slack_ns = current->timer_slack_ns;
 | |
| 
 | |
| 	task_io_accounting_init(&p->ioac);
 | |
| 	acct_clear_integrals(p);
 | |
| 
 | |
| 	posix_cpu_timers_init(p);
 | |
| 
 | |
| 	do_posix_clock_monotonic_gettime(&p->start_time);
 | |
| 	p->real_start_time = p->start_time;
 | |
| 	monotonic_to_bootbased(&p->real_start_time);
 | |
| 	p->io_context = NULL;
 | |
| 	p->audit_context = NULL;
 | |
| 	if (clone_flags & CLONE_THREAD)
 | |
| 		threadgroup_change_begin(current);
 | |
| 	cgroup_fork(p);
 | |
| #ifdef CONFIG_NUMA
 | |
| 	p->mempolicy = mpol_dup(p->mempolicy);
 | |
| 	if (IS_ERR(p->mempolicy)) {
 | |
| 		retval = PTR_ERR(p->mempolicy);
 | |
| 		p->mempolicy = NULL;
 | |
| 		goto bad_fork_cleanup_cgroup;
 | |
| 	}
 | |
| 	mpol_fix_fork_child_flag(p);
 | |
| #endif
 | |
| #ifdef CONFIG_CPUSETS
 | |
| 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
 | |
| 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
 | |
| 	seqcount_init(&p->mems_allowed_seq);
 | |
| #endif
 | |
| #ifdef CONFIG_TRACE_IRQFLAGS
 | |
| 	p->irq_events = 0;
 | |
| 	p->hardirqs_enabled = 0;
 | |
| 	p->hardirq_enable_ip = 0;
 | |
| 	p->hardirq_enable_event = 0;
 | |
| 	p->hardirq_disable_ip = _THIS_IP_;
 | |
| 	p->hardirq_disable_event = 0;
 | |
| 	p->softirqs_enabled = 1;
 | |
| 	p->softirq_enable_ip = _THIS_IP_;
 | |
| 	p->softirq_enable_event = 0;
 | |
| 	p->softirq_disable_ip = 0;
 | |
| 	p->softirq_disable_event = 0;
 | |
| 	p->hardirq_context = 0;
 | |
| 	p->softirq_context = 0;
 | |
| #endif
 | |
| #ifdef CONFIG_LOCKDEP
 | |
| 	p->lockdep_depth = 0; /* no locks held yet */
 | |
| 	p->curr_chain_key = 0;
 | |
| 	p->lockdep_recursion = 0;
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_MUTEXES
 | |
| 	p->blocked_on = NULL; /* not blocked yet */
 | |
| #endif
 | |
| #ifdef CONFIG_MEMCG
 | |
| 	p->memcg_batch.do_batch = 0;
 | |
| 	p->memcg_batch.memcg = NULL;
 | |
| #endif
 | |
| 
 | |
| 	/* Perform scheduler related setup. Assign this task to a CPU. */
 | |
| 	sched_fork(p);
 | |
| 
 | |
| 	retval = perf_event_init_task(p);
 | |
| 	if (retval)
 | |
| 		goto bad_fork_cleanup_policy;
 | |
| 	retval = audit_alloc(p);
 | |
| 	if (retval)
 | |
| 		goto bad_fork_cleanup_policy;
 | |
| 	/* copy all the process information */
 | |
| 	retval = copy_semundo(clone_flags, p);
 | |
| 	if (retval)
 | |
| 		goto bad_fork_cleanup_audit;
 | |
| 	retval = copy_files(clone_flags, p);
 | |
| 	if (retval)
 | |
| 		goto bad_fork_cleanup_semundo;
 | |
| 	retval = copy_fs(clone_flags, p);
 | |
| 	if (retval)
 | |
| 		goto bad_fork_cleanup_files;
 | |
| 	retval = copy_sighand(clone_flags, p);
 | |
| 	if (retval)
 | |
| 		goto bad_fork_cleanup_fs;
 | |
| 	retval = copy_signal(clone_flags, p);
 | |
| 	if (retval)
 | |
| 		goto bad_fork_cleanup_sighand;
 | |
| 	retval = copy_mm(clone_flags, p);
 | |
| 	if (retval)
 | |
| 		goto bad_fork_cleanup_signal;
 | |
| 	retval = copy_namespaces(clone_flags, p);
 | |
| 	if (retval)
 | |
| 		goto bad_fork_cleanup_mm;
 | |
| 	retval = copy_io(clone_flags, p);
 | |
| 	if (retval)
 | |
| 		goto bad_fork_cleanup_namespaces;
 | |
| 	retval = copy_thread(clone_flags, stack_start, stack_size, p);
 | |
| 	if (retval)
 | |
| 		goto bad_fork_cleanup_io;
 | |
| 
 | |
| 	if (pid != &init_struct_pid) {
 | |
| 		retval = -ENOMEM;
 | |
| 		pid = alloc_pid(p->nsproxy->pid_ns);
 | |
| 		if (!pid)
 | |
| 			goto bad_fork_cleanup_io;
 | |
| 	}
 | |
| 
 | |
| 	p->pid = pid_nr(pid);
 | |
| 	p->tgid = p->pid;
 | |
| 	if (clone_flags & CLONE_THREAD)
 | |
| 		p->tgid = current->tgid;
 | |
| 
 | |
| 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
 | |
| 	/*
 | |
| 	 * Clear TID on mm_release()?
 | |
| 	 */
 | |
| 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
 | |
| #ifdef CONFIG_BLOCK
 | |
| 	p->plug = NULL;
 | |
| #endif
 | |
| #ifdef CONFIG_FUTEX
 | |
| 	p->robust_list = NULL;
 | |
| #ifdef CONFIG_COMPAT
 | |
| 	p->compat_robust_list = NULL;
 | |
| #endif
 | |
| 	INIT_LIST_HEAD(&p->pi_state_list);
 | |
| 	p->pi_state_cache = NULL;
 | |
| #endif
 | |
| 	uprobe_copy_process(p);
 | |
| 	/*
 | |
| 	 * sigaltstack should be cleared when sharing the same VM
 | |
| 	 */
 | |
| 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
 | |
| 		p->sas_ss_sp = p->sas_ss_size = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Syscall tracing and stepping should be turned off in the
 | |
| 	 * child regardless of CLONE_PTRACE.
 | |
| 	 */
 | |
| 	user_disable_single_step(p);
 | |
| 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
 | |
| #ifdef TIF_SYSCALL_EMU
 | |
| 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
 | |
| #endif
 | |
| 	clear_all_latency_tracing(p);
 | |
| 
 | |
| 	/* ok, now we should be set up.. */
 | |
| 	if (clone_flags & CLONE_THREAD)
 | |
| 		p->exit_signal = -1;
 | |
| 	else if (clone_flags & CLONE_PARENT)
 | |
| 		p->exit_signal = current->group_leader->exit_signal;
 | |
| 	else
 | |
| 		p->exit_signal = (clone_flags & CSIGNAL);
 | |
| 
 | |
| 	p->pdeath_signal = 0;
 | |
| 	p->exit_state = 0;
 | |
| 
 | |
| 	p->nr_dirtied = 0;
 | |
| 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
 | |
| 	p->dirty_paused_when = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Ok, make it visible to the rest of the system.
 | |
| 	 * We dont wake it up yet.
 | |
| 	 */
 | |
| 	p->group_leader = p;
 | |
| 	INIT_LIST_HEAD(&p->thread_group);
 | |
| 	p->task_works = NULL;
 | |
| 
 | |
| 	/* Need tasklist lock for parent etc handling! */
 | |
| 	write_lock_irq(&tasklist_lock);
 | |
| 
 | |
| 	/* CLONE_PARENT re-uses the old parent */
 | |
| 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
 | |
| 		p->real_parent = current->real_parent;
 | |
| 		p->parent_exec_id = current->parent_exec_id;
 | |
| 	} else {
 | |
| 		p->real_parent = current;
 | |
| 		p->parent_exec_id = current->self_exec_id;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(¤t->sighand->siglock);
 | |
| 
 | |
| 	/*
 | |
| 	 * Process group and session signals need to be delivered to just the
 | |
| 	 * parent before the fork or both the parent and the child after the
 | |
| 	 * fork. Restart if a signal comes in before we add the new process to
 | |
| 	 * it's process group.
 | |
| 	 * A fatal signal pending means that current will exit, so the new
 | |
| 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
 | |
| 	*/
 | |
| 	recalc_sigpending();
 | |
| 	if (signal_pending(current)) {
 | |
| 		spin_unlock(¤t->sighand->siglock);
 | |
| 		write_unlock_irq(&tasklist_lock);
 | |
| 		retval = -ERESTARTNOINTR;
 | |
| 		goto bad_fork_free_pid;
 | |
| 	}
 | |
| 
 | |
| 	if (clone_flags & CLONE_THREAD) {
 | |
| 		current->signal->nr_threads++;
 | |
| 		atomic_inc(¤t->signal->live);
 | |
| 		atomic_inc(¤t->signal->sigcnt);
 | |
| 		p->group_leader = current->group_leader;
 | |
| 		list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
 | |
| 	}
 | |
| 
 | |
| 	if (likely(p->pid)) {
 | |
| 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
 | |
| 
 | |
| 		if (thread_group_leader(p)) {
 | |
| 			if (is_child_reaper(pid)) {
 | |
| 				ns_of_pid(pid)->child_reaper = p;
 | |
| 				p->signal->flags |= SIGNAL_UNKILLABLE;
 | |
| 			}
 | |
| 
 | |
| 			p->signal->leader_pid = pid;
 | |
| 			p->signal->tty = tty_kref_get(current->signal->tty);
 | |
| 			attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
 | |
| 			attach_pid(p, PIDTYPE_SID, task_session(current));
 | |
| 			list_add_tail(&p->sibling, &p->real_parent->children);
 | |
| 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
 | |
| 			__this_cpu_inc(process_counts);
 | |
| 		}
 | |
| 		attach_pid(p, PIDTYPE_PID, pid);
 | |
| 		nr_threads++;
 | |
| 	}
 | |
| 
 | |
| 	total_forks++;
 | |
| 	spin_unlock(¤t->sighand->siglock);
 | |
| 	write_unlock_irq(&tasklist_lock);
 | |
| 	proc_fork_connector(p);
 | |
| 	cgroup_post_fork(p);
 | |
| 	if (clone_flags & CLONE_THREAD)
 | |
| 		threadgroup_change_end(current);
 | |
| 	perf_event_fork(p);
 | |
| 
 | |
| 	trace_task_newtask(p, clone_flags);
 | |
| 
 | |
| 	return p;
 | |
| 
 | |
| bad_fork_free_pid:
 | |
| 	if (pid != &init_struct_pid)
 | |
| 		free_pid(pid);
 | |
| bad_fork_cleanup_io:
 | |
| 	if (p->io_context)
 | |
| 		exit_io_context(p);
 | |
| bad_fork_cleanup_namespaces:
 | |
| 	exit_task_namespaces(p);
 | |
| bad_fork_cleanup_mm:
 | |
| 	if (p->mm)
 | |
| 		mmput(p->mm);
 | |
| bad_fork_cleanup_signal:
 | |
| 	if (!(clone_flags & CLONE_THREAD))
 | |
| 		free_signal_struct(p->signal);
 | |
| bad_fork_cleanup_sighand:
 | |
| 	__cleanup_sighand(p->sighand);
 | |
| bad_fork_cleanup_fs:
 | |
| 	exit_fs(p); /* blocking */
 | |
| bad_fork_cleanup_files:
 | |
| 	exit_files(p); /* blocking */
 | |
| bad_fork_cleanup_semundo:
 | |
| 	exit_sem(p);
 | |
| bad_fork_cleanup_audit:
 | |
| 	audit_free(p);
 | |
| bad_fork_cleanup_policy:
 | |
| 	perf_event_free_task(p);
 | |
| #ifdef CONFIG_NUMA
 | |
| 	mpol_put(p->mempolicy);
 | |
| bad_fork_cleanup_cgroup:
 | |
| #endif
 | |
| 	if (clone_flags & CLONE_THREAD)
 | |
| 		threadgroup_change_end(current);
 | |
| 	cgroup_exit(p, 0);
 | |
| 	delayacct_tsk_free(p);
 | |
| 	module_put(task_thread_info(p)->exec_domain->module);
 | |
| bad_fork_cleanup_count:
 | |
| 	atomic_dec(&p->cred->user->processes);
 | |
| 	exit_creds(p);
 | |
| bad_fork_free:
 | |
| 	free_task(p);
 | |
| fork_out:
 | |
| 	return ERR_PTR(retval);
 | |
| }
 | |
| 
 | |
| static inline void init_idle_pids(struct pid_link *links)
 | |
| {
 | |
| 	enum pid_type type;
 | |
| 
 | |
| 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
 | |
| 		INIT_HLIST_NODE(&links[type].node); /* not really needed */
 | |
| 		links[type].pid = &init_struct_pid;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| struct task_struct * __cpuinit fork_idle(int cpu)
 | |
| {
 | |
| 	struct task_struct *task;
 | |
| 	task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0);
 | |
| 	if (!IS_ERR(task)) {
 | |
| 		init_idle_pids(task->pids);
 | |
| 		init_idle(task, cpu);
 | |
| 	}
 | |
| 
 | |
| 	return task;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  Ok, this is the main fork-routine.
 | |
|  *
 | |
|  * It copies the process, and if successful kick-starts
 | |
|  * it and waits for it to finish using the VM if required.
 | |
|  */
 | |
| long do_fork(unsigned long clone_flags,
 | |
| 	      unsigned long stack_start,
 | |
| 	      unsigned long stack_size,
 | |
| 	      int __user *parent_tidptr,
 | |
| 	      int __user *child_tidptr)
 | |
| {
 | |
| 	struct task_struct *p;
 | |
| 	int trace = 0;
 | |
| 	long nr;
 | |
| 
 | |
| 	/*
 | |
| 	 * Do some preliminary argument and permissions checking before we
 | |
| 	 * actually start allocating stuff
 | |
| 	 */
 | |
| 	if (clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) {
 | |
| 		if (clone_flags & (CLONE_THREAD|CLONE_PARENT))
 | |
| 			return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Determine whether and which event to report to ptracer.  When
 | |
| 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
 | |
| 	 * requested, no event is reported; otherwise, report if the event
 | |
| 	 * for the type of forking is enabled.
 | |
| 	 */
 | |
| 	if (!(clone_flags & CLONE_UNTRACED)) {
 | |
| 		if (clone_flags & CLONE_VFORK)
 | |
| 			trace = PTRACE_EVENT_VFORK;
 | |
| 		else if ((clone_flags & CSIGNAL) != SIGCHLD)
 | |
| 			trace = PTRACE_EVENT_CLONE;
 | |
| 		else
 | |
| 			trace = PTRACE_EVENT_FORK;
 | |
| 
 | |
| 		if (likely(!ptrace_event_enabled(current, trace)))
 | |
| 			trace = 0;
 | |
| 	}
 | |
| 
 | |
| 	p = copy_process(clone_flags, stack_start, stack_size,
 | |
| 			 child_tidptr, NULL, trace);
 | |
| 	/*
 | |
| 	 * Do this prior waking up the new thread - the thread pointer
 | |
| 	 * might get invalid after that point, if the thread exits quickly.
 | |
| 	 */
 | |
| 	if (!IS_ERR(p)) {
 | |
| 		struct completion vfork;
 | |
| 
 | |
| 		trace_sched_process_fork(current, p);
 | |
| 
 | |
| 		nr = task_pid_vnr(p);
 | |
| 
 | |
| 		if (clone_flags & CLONE_PARENT_SETTID)
 | |
| 			put_user(nr, parent_tidptr);
 | |
| 
 | |
| 		if (clone_flags & CLONE_VFORK) {
 | |
| 			p->vfork_done = &vfork;
 | |
| 			init_completion(&vfork);
 | |
| 			get_task_struct(p);
 | |
| 		}
 | |
| 
 | |
| 		wake_up_new_task(p);
 | |
| 
 | |
| 		/* forking complete and child started to run, tell ptracer */
 | |
| 		if (unlikely(trace))
 | |
| 			ptrace_event(trace, nr);
 | |
| 
 | |
| 		if (clone_flags & CLONE_VFORK) {
 | |
| 			if (!wait_for_vfork_done(p, &vfork))
 | |
| 				ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
 | |
| 		}
 | |
| 	} else {
 | |
| 		nr = PTR_ERR(p);
 | |
| 	}
 | |
| 	return nr;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Create a kernel thread.
 | |
|  */
 | |
| pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
 | |
| {
 | |
| 	return do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
 | |
| 		(unsigned long)arg, NULL, NULL);
 | |
| }
 | |
| 
 | |
| #ifdef __ARCH_WANT_SYS_FORK
 | |
| SYSCALL_DEFINE0(fork)
 | |
| {
 | |
| #ifdef CONFIG_MMU
 | |
| 	return do_fork(SIGCHLD, 0, 0, NULL, NULL);
 | |
| #else
 | |
| 	/* can not support in nommu mode */
 | |
| 	return(-EINVAL);
 | |
| #endif
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef __ARCH_WANT_SYS_VFORK
 | |
| SYSCALL_DEFINE0(vfork)
 | |
| {
 | |
| 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0, 
 | |
| 			0, NULL, NULL);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef __ARCH_WANT_SYS_CLONE
 | |
| #ifdef CONFIG_CLONE_BACKWARDS
 | |
| SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
 | |
| 		 int __user *, parent_tidptr,
 | |
| 		 int, tls_val,
 | |
| 		 int __user *, child_tidptr)
 | |
| #elif defined(CONFIG_CLONE_BACKWARDS2)
 | |
| SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
 | |
| 		 int __user *, parent_tidptr,
 | |
| 		 int __user *, child_tidptr,
 | |
| 		 int, tls_val)
 | |
| #else
 | |
| SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
 | |
| 		 int __user *, parent_tidptr,
 | |
| 		 int __user *, child_tidptr,
 | |
| 		 int, tls_val)
 | |
| #endif
 | |
| {
 | |
| 	long ret = do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr);
 | |
| 	asmlinkage_protect(5, ret, clone_flags, newsp,
 | |
| 			parent_tidptr, child_tidptr, tls_val);
 | |
| 	return ret;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef ARCH_MIN_MMSTRUCT_ALIGN
 | |
| #define ARCH_MIN_MMSTRUCT_ALIGN 0
 | |
| #endif
 | |
| 
 | |
| static void sighand_ctor(void *data)
 | |
| {
 | |
| 	struct sighand_struct *sighand = data;
 | |
| 
 | |
| 	spin_lock_init(&sighand->siglock);
 | |
| 	init_waitqueue_head(&sighand->signalfd_wqh);
 | |
| }
 | |
| 
 | |
| void __init proc_caches_init(void)
 | |
| {
 | |
| 	sighand_cachep = kmem_cache_create("sighand_cache",
 | |
| 			sizeof(struct sighand_struct), 0,
 | |
| 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
 | |
| 			SLAB_NOTRACK, sighand_ctor);
 | |
| 	signal_cachep = kmem_cache_create("signal_cache",
 | |
| 			sizeof(struct signal_struct), 0,
 | |
| 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
 | |
| 	files_cachep = kmem_cache_create("files_cache",
 | |
| 			sizeof(struct files_struct), 0,
 | |
| 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
 | |
| 	fs_cachep = kmem_cache_create("fs_cache",
 | |
| 			sizeof(struct fs_struct), 0,
 | |
| 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
 | |
| 	/*
 | |
| 	 * FIXME! The "sizeof(struct mm_struct)" currently includes the
 | |
| 	 * whole struct cpumask for the OFFSTACK case. We could change
 | |
| 	 * this to *only* allocate as much of it as required by the
 | |
| 	 * maximum number of CPU's we can ever have.  The cpumask_allocation
 | |
| 	 * is at the end of the structure, exactly for that reason.
 | |
| 	 */
 | |
| 	mm_cachep = kmem_cache_create("mm_struct",
 | |
| 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
 | |
| 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
 | |
| 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
 | |
| 	mmap_init();
 | |
| 	nsproxy_cache_init();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check constraints on flags passed to the unshare system call.
 | |
|  */
 | |
| static int check_unshare_flags(unsigned long unshare_flags)
 | |
| {
 | |
| 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
 | |
| 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
 | |
| 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
 | |
| 				CLONE_NEWUSER|CLONE_NEWPID))
 | |
| 		return -EINVAL;
 | |
| 	/*
 | |
| 	 * Not implemented, but pretend it works if there is nothing to
 | |
| 	 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
 | |
| 	 * needs to unshare vm.
 | |
| 	 */
 | |
| 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
 | |
| 		/* FIXME: get_task_mm() increments ->mm_users */
 | |
| 		if (atomic_read(¤t->mm->mm_users) > 1)
 | |
| 			return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Unshare the filesystem structure if it is being shared
 | |
|  */
 | |
| static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
 | |
| {
 | |
| 	struct fs_struct *fs = current->fs;
 | |
| 
 | |
| 	if (!(unshare_flags & CLONE_FS) || !fs)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* don't need lock here; in the worst case we'll do useless copy */
 | |
| 	if (fs->users == 1)
 | |
| 		return 0;
 | |
| 
 | |
| 	*new_fsp = copy_fs_struct(fs);
 | |
| 	if (!*new_fsp)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Unshare file descriptor table if it is being shared
 | |
|  */
 | |
| static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
 | |
| {
 | |
| 	struct files_struct *fd = current->files;
 | |
| 	int error = 0;
 | |
| 
 | |
| 	if ((unshare_flags & CLONE_FILES) &&
 | |
| 	    (fd && atomic_read(&fd->count) > 1)) {
 | |
| 		*new_fdp = dup_fd(fd, &error);
 | |
| 		if (!*new_fdp)
 | |
| 			return error;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * unshare allows a process to 'unshare' part of the process
 | |
|  * context which was originally shared using clone.  copy_*
 | |
|  * functions used by do_fork() cannot be used here directly
 | |
|  * because they modify an inactive task_struct that is being
 | |
|  * constructed. Here we are modifying the current, active,
 | |
|  * task_struct.
 | |
|  */
 | |
| SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
 | |
| {
 | |
| 	struct fs_struct *fs, *new_fs = NULL;
 | |
| 	struct files_struct *fd, *new_fd = NULL;
 | |
| 	struct cred *new_cred = NULL;
 | |
| 	struct nsproxy *new_nsproxy = NULL;
 | |
| 	int do_sysvsem = 0;
 | |
| 	int err;
 | |
| 
 | |
| 	/*
 | |
| 	 * If unsharing a user namespace must also unshare the thread.
 | |
| 	 */
 | |
| 	if (unshare_flags & CLONE_NEWUSER)
 | |
| 		unshare_flags |= CLONE_THREAD | CLONE_FS;
 | |
| 	/*
 | |
| 	 * If unsharing a pid namespace must also unshare the thread.
 | |
| 	 */
 | |
| 	if (unshare_flags & CLONE_NEWPID)
 | |
| 		unshare_flags |= CLONE_THREAD;
 | |
| 	/*
 | |
| 	 * If unsharing a thread from a thread group, must also unshare vm.
 | |
| 	 */
 | |
| 	if (unshare_flags & CLONE_THREAD)
 | |
| 		unshare_flags |= CLONE_VM;
 | |
| 	/*
 | |
| 	 * If unsharing vm, must also unshare signal handlers.
 | |
| 	 */
 | |
| 	if (unshare_flags & CLONE_VM)
 | |
| 		unshare_flags |= CLONE_SIGHAND;
 | |
| 	/*
 | |
| 	 * If unsharing namespace, must also unshare filesystem information.
 | |
| 	 */
 | |
| 	if (unshare_flags & CLONE_NEWNS)
 | |
| 		unshare_flags |= CLONE_FS;
 | |
| 
 | |
| 	err = check_unshare_flags(unshare_flags);
 | |
| 	if (err)
 | |
| 		goto bad_unshare_out;
 | |
| 	/*
 | |
| 	 * CLONE_NEWIPC must also detach from the undolist: after switching
 | |
| 	 * to a new ipc namespace, the semaphore arrays from the old
 | |
| 	 * namespace are unreachable.
 | |
| 	 */
 | |
| 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
 | |
| 		do_sysvsem = 1;
 | |
| 	err = unshare_fs(unshare_flags, &new_fs);
 | |
| 	if (err)
 | |
| 		goto bad_unshare_out;
 | |
| 	err = unshare_fd(unshare_flags, &new_fd);
 | |
| 	if (err)
 | |
| 		goto bad_unshare_cleanup_fs;
 | |
| 	err = unshare_userns(unshare_flags, &new_cred);
 | |
| 	if (err)
 | |
| 		goto bad_unshare_cleanup_fd;
 | |
| 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
 | |
| 					 new_cred, new_fs);
 | |
| 	if (err)
 | |
| 		goto bad_unshare_cleanup_cred;
 | |
| 
 | |
| 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
 | |
| 		if (do_sysvsem) {
 | |
| 			/*
 | |
| 			 * CLONE_SYSVSEM is equivalent to sys_exit().
 | |
| 			 */
 | |
| 			exit_sem(current);
 | |
| 		}
 | |
| 
 | |
| 		if (new_nsproxy)
 | |
| 			switch_task_namespaces(current, new_nsproxy);
 | |
| 
 | |
| 		task_lock(current);
 | |
| 
 | |
| 		if (new_fs) {
 | |
| 			fs = current->fs;
 | |
| 			spin_lock(&fs->lock);
 | |
| 			current->fs = new_fs;
 | |
| 			if (--fs->users)
 | |
| 				new_fs = NULL;
 | |
| 			else
 | |
| 				new_fs = fs;
 | |
| 			spin_unlock(&fs->lock);
 | |
| 		}
 | |
| 
 | |
| 		if (new_fd) {
 | |
| 			fd = current->files;
 | |
| 			current->files = new_fd;
 | |
| 			new_fd = fd;
 | |
| 		}
 | |
| 
 | |
| 		task_unlock(current);
 | |
| 
 | |
| 		if (new_cred) {
 | |
| 			/* Install the new user namespace */
 | |
| 			commit_creds(new_cred);
 | |
| 			new_cred = NULL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| bad_unshare_cleanup_cred:
 | |
| 	if (new_cred)
 | |
| 		put_cred(new_cred);
 | |
| bad_unshare_cleanup_fd:
 | |
| 	if (new_fd)
 | |
| 		put_files_struct(new_fd);
 | |
| 
 | |
| bad_unshare_cleanup_fs:
 | |
| 	if (new_fs)
 | |
| 		free_fs_struct(new_fs);
 | |
| 
 | |
| bad_unshare_out:
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	Helper to unshare the files of the current task.
 | |
|  *	We don't want to expose copy_files internals to
 | |
|  *	the exec layer of the kernel.
 | |
|  */
 | |
| 
 | |
| int unshare_files(struct files_struct **displaced)
 | |
| {
 | |
| 	struct task_struct *task = current;
 | |
| 	struct files_struct *copy = NULL;
 | |
| 	int error;
 | |
| 
 | |
| 	error = unshare_fd(CLONE_FILES, ©);
 | |
| 	if (error || !copy) {
 | |
| 		*displaced = NULL;
 | |
| 		return error;
 | |
| 	}
 | |
| 	*displaced = task->files;
 | |
| 	task_lock(task);
 | |
| 	task->files = copy;
 | |
| 	task_unlock(task);
 | |
| 	return 0;
 | |
| }
 |