 90ab5ee941
			
		
	
	
	90ab5ee941
	
	
	
		
			
			module_param(bool) used to counter-intuitively take an int.  In
fddd5201 (mid-2009) we allowed bool or int/unsigned int using a messy
trick.
It's time to remove the int/unsigned int option.  For this version
it'll simply give a warning, but it'll break next kernel version.
Acked-by: Mauro Carvalho Chehab <mchehab@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
		
	
			
		
			
				
	
	
		
			1563 lines
		
	
	
	
		
			44 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1563 lines
		
	
	
	
		
			44 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (C) 2005-2006 by Texas Instruments
 | |
|  *
 | |
|  * This file implements a DMA  interface using TI's CPPI DMA.
 | |
|  * For now it's DaVinci-only, but CPPI isn't specific to DaVinci or USB.
 | |
|  * The TUSB6020, using VLYNQ, has CPPI that looks much like DaVinci.
 | |
|  */
 | |
| 
 | |
| #include <linux/platform_device.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/usb.h>
 | |
| 
 | |
| #include "musb_core.h"
 | |
| #include "musb_debug.h"
 | |
| #include "cppi_dma.h"
 | |
| 
 | |
| 
 | |
| /* CPPI DMA status 7-mar-2006:
 | |
|  *
 | |
|  * - See musb_{host,gadget}.c for more info
 | |
|  *
 | |
|  * - Correct RX DMA generally forces the engine into irq-per-packet mode,
 | |
|  *   which can easily saturate the CPU under non-mass-storage loads.
 | |
|  *
 | |
|  * NOTES 24-aug-2006 (2.6.18-rc4):
 | |
|  *
 | |
|  * - peripheral RXDMA wedged in a test with packets of length 512/512/1.
 | |
|  *   evidently after the 1 byte packet was received and acked, the queue
 | |
|  *   of BDs got garbaged so it wouldn't empty the fifo.  (rxcsr 0x2003,
 | |
|  *   and RX DMA0: 4 left, 80000000 8feff880, 8feff860 8feff860; 8f321401
 | |
|  *   004001ff 00000001 .. 8feff860)  Host was just getting NAKed on tx
 | |
|  *   of its next (512 byte) packet.  IRQ issues?
 | |
|  *
 | |
|  * REVISIT:  the "transfer DMA" glue between CPPI and USB fifos will
 | |
|  * evidently also directly update the RX and TX CSRs ... so audit all
 | |
|  * host and peripheral side DMA code to avoid CSR access after DMA has
 | |
|  * been started.
 | |
|  */
 | |
| 
 | |
| /* REVISIT now we can avoid preallocating these descriptors; or
 | |
|  * more simply, switch to a global freelist not per-channel ones.
 | |
|  * Note: at full speed, 64 descriptors == 4K bulk data.
 | |
|  */
 | |
| #define NUM_TXCHAN_BD       64
 | |
| #define NUM_RXCHAN_BD       64
 | |
| 
 | |
| static inline void cpu_drain_writebuffer(void)
 | |
| {
 | |
| 	wmb();
 | |
| #ifdef	CONFIG_CPU_ARM926T
 | |
| 	/* REVISIT this "should not be needed",
 | |
| 	 * but lack of it sure seemed to hurt ...
 | |
| 	 */
 | |
| 	asm("mcr p15, 0, r0, c7, c10, 4 @ drain write buffer\n");
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static inline struct cppi_descriptor *cppi_bd_alloc(struct cppi_channel *c)
 | |
| {
 | |
| 	struct cppi_descriptor	*bd = c->freelist;
 | |
| 
 | |
| 	if (bd)
 | |
| 		c->freelist = bd->next;
 | |
| 	return bd;
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| cppi_bd_free(struct cppi_channel *c, struct cppi_descriptor *bd)
 | |
| {
 | |
| 	if (!bd)
 | |
| 		return;
 | |
| 	bd->next = c->freelist;
 | |
| 	c->freelist = bd;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  Start DMA controller
 | |
|  *
 | |
|  *  Initialize the DMA controller as necessary.
 | |
|  */
 | |
| 
 | |
| /* zero out entire rx state RAM entry for the channel */
 | |
| static void cppi_reset_rx(struct cppi_rx_stateram __iomem *rx)
 | |
| {
 | |
| 	musb_writel(&rx->rx_skipbytes, 0, 0);
 | |
| 	musb_writel(&rx->rx_head, 0, 0);
 | |
| 	musb_writel(&rx->rx_sop, 0, 0);
 | |
| 	musb_writel(&rx->rx_current, 0, 0);
 | |
| 	musb_writel(&rx->rx_buf_current, 0, 0);
 | |
| 	musb_writel(&rx->rx_len_len, 0, 0);
 | |
| 	musb_writel(&rx->rx_cnt_cnt, 0, 0);
 | |
| }
 | |
| 
 | |
| /* zero out entire tx state RAM entry for the channel */
 | |
| static void cppi_reset_tx(struct cppi_tx_stateram __iomem *tx, u32 ptr)
 | |
| {
 | |
| 	musb_writel(&tx->tx_head, 0, 0);
 | |
| 	musb_writel(&tx->tx_buf, 0, 0);
 | |
| 	musb_writel(&tx->tx_current, 0, 0);
 | |
| 	musb_writel(&tx->tx_buf_current, 0, 0);
 | |
| 	musb_writel(&tx->tx_info, 0, 0);
 | |
| 	musb_writel(&tx->tx_rem_len, 0, 0);
 | |
| 	/* musb_writel(&tx->tx_dummy, 0, 0); */
 | |
| 	musb_writel(&tx->tx_complete, 0, ptr);
 | |
| }
 | |
| 
 | |
| static void __init cppi_pool_init(struct cppi *cppi, struct cppi_channel *c)
 | |
| {
 | |
| 	int	j;
 | |
| 
 | |
| 	/* initialize channel fields */
 | |
| 	c->head = NULL;
 | |
| 	c->tail = NULL;
 | |
| 	c->last_processed = NULL;
 | |
| 	c->channel.status = MUSB_DMA_STATUS_UNKNOWN;
 | |
| 	c->controller = cppi;
 | |
| 	c->is_rndis = 0;
 | |
| 	c->freelist = NULL;
 | |
| 
 | |
| 	/* build the BD Free list for the channel */
 | |
| 	for (j = 0; j < NUM_TXCHAN_BD + 1; j++) {
 | |
| 		struct cppi_descriptor	*bd;
 | |
| 		dma_addr_t		dma;
 | |
| 
 | |
| 		bd = dma_pool_alloc(cppi->pool, GFP_KERNEL, &dma);
 | |
| 		bd->dma = dma;
 | |
| 		cppi_bd_free(c, bd);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int cppi_channel_abort(struct dma_channel *);
 | |
| 
 | |
| static void cppi_pool_free(struct cppi_channel *c)
 | |
| {
 | |
| 	struct cppi		*cppi = c->controller;
 | |
| 	struct cppi_descriptor	*bd;
 | |
| 
 | |
| 	(void) cppi_channel_abort(&c->channel);
 | |
| 	c->channel.status = MUSB_DMA_STATUS_UNKNOWN;
 | |
| 	c->controller = NULL;
 | |
| 
 | |
| 	/* free all its bds */
 | |
| 	bd = c->last_processed;
 | |
| 	do {
 | |
| 		if (bd)
 | |
| 			dma_pool_free(cppi->pool, bd, bd->dma);
 | |
| 		bd = cppi_bd_alloc(c);
 | |
| 	} while (bd);
 | |
| 	c->last_processed = NULL;
 | |
| }
 | |
| 
 | |
| static int __init cppi_controller_start(struct dma_controller *c)
 | |
| {
 | |
| 	struct cppi	*controller;
 | |
| 	void __iomem	*tibase;
 | |
| 	int		i;
 | |
| 
 | |
| 	controller = container_of(c, struct cppi, controller);
 | |
| 
 | |
| 	/* do whatever is necessary to start controller */
 | |
| 	for (i = 0; i < ARRAY_SIZE(controller->tx); i++) {
 | |
| 		controller->tx[i].transmit = true;
 | |
| 		controller->tx[i].index = i;
 | |
| 	}
 | |
| 	for (i = 0; i < ARRAY_SIZE(controller->rx); i++) {
 | |
| 		controller->rx[i].transmit = false;
 | |
| 		controller->rx[i].index = i;
 | |
| 	}
 | |
| 
 | |
| 	/* setup BD list on a per channel basis */
 | |
| 	for (i = 0; i < ARRAY_SIZE(controller->tx); i++)
 | |
| 		cppi_pool_init(controller, controller->tx + i);
 | |
| 	for (i = 0; i < ARRAY_SIZE(controller->rx); i++)
 | |
| 		cppi_pool_init(controller, controller->rx + i);
 | |
| 
 | |
| 	tibase =  controller->tibase;
 | |
| 	INIT_LIST_HEAD(&controller->tx_complete);
 | |
| 
 | |
| 	/* initialise tx/rx channel head pointers to zero */
 | |
| 	for (i = 0; i < ARRAY_SIZE(controller->tx); i++) {
 | |
| 		struct cppi_channel	*tx_ch = controller->tx + i;
 | |
| 		struct cppi_tx_stateram __iomem *tx;
 | |
| 
 | |
| 		INIT_LIST_HEAD(&tx_ch->tx_complete);
 | |
| 
 | |
| 		tx = tibase + DAVINCI_TXCPPI_STATERAM_OFFSET(i);
 | |
| 		tx_ch->state_ram = tx;
 | |
| 		cppi_reset_tx(tx, 0);
 | |
| 	}
 | |
| 	for (i = 0; i < ARRAY_SIZE(controller->rx); i++) {
 | |
| 		struct cppi_channel	*rx_ch = controller->rx + i;
 | |
| 		struct cppi_rx_stateram __iomem *rx;
 | |
| 
 | |
| 		INIT_LIST_HEAD(&rx_ch->tx_complete);
 | |
| 
 | |
| 		rx = tibase + DAVINCI_RXCPPI_STATERAM_OFFSET(i);
 | |
| 		rx_ch->state_ram = rx;
 | |
| 		cppi_reset_rx(rx);
 | |
| 	}
 | |
| 
 | |
| 	/* enable individual cppi channels */
 | |
| 	musb_writel(tibase, DAVINCI_TXCPPI_INTENAB_REG,
 | |
| 			DAVINCI_DMA_ALL_CHANNELS_ENABLE);
 | |
| 	musb_writel(tibase, DAVINCI_RXCPPI_INTENAB_REG,
 | |
| 			DAVINCI_DMA_ALL_CHANNELS_ENABLE);
 | |
| 
 | |
| 	/* enable tx/rx CPPI control */
 | |
| 	musb_writel(tibase, DAVINCI_TXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_ENABLE);
 | |
| 	musb_writel(tibase, DAVINCI_RXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_ENABLE);
 | |
| 
 | |
| 	/* disable RNDIS mode, also host rx RNDIS autorequest */
 | |
| 	musb_writel(tibase, DAVINCI_RNDIS_REG, 0);
 | |
| 	musb_writel(tibase, DAVINCI_AUTOREQ_REG, 0);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  Stop DMA controller
 | |
|  *
 | |
|  *  De-Init the DMA controller as necessary.
 | |
|  */
 | |
| 
 | |
| static int cppi_controller_stop(struct dma_controller *c)
 | |
| {
 | |
| 	struct cppi		*controller;
 | |
| 	void __iomem		*tibase;
 | |
| 	int			i;
 | |
| 	struct musb		*musb;
 | |
| 
 | |
| 	controller = container_of(c, struct cppi, controller);
 | |
| 	musb = controller->musb;
 | |
| 
 | |
| 	tibase = controller->tibase;
 | |
| 	/* DISABLE INDIVIDUAL CHANNEL Interrupts */
 | |
| 	musb_writel(tibase, DAVINCI_TXCPPI_INTCLR_REG,
 | |
| 			DAVINCI_DMA_ALL_CHANNELS_ENABLE);
 | |
| 	musb_writel(tibase, DAVINCI_RXCPPI_INTCLR_REG,
 | |
| 			DAVINCI_DMA_ALL_CHANNELS_ENABLE);
 | |
| 
 | |
| 	dev_dbg(musb->controller, "Tearing down RX and TX Channels\n");
 | |
| 	for (i = 0; i < ARRAY_SIZE(controller->tx); i++) {
 | |
| 		/* FIXME restructure of txdma to use bds like rxdma */
 | |
| 		controller->tx[i].last_processed = NULL;
 | |
| 		cppi_pool_free(controller->tx + i);
 | |
| 	}
 | |
| 	for (i = 0; i < ARRAY_SIZE(controller->rx); i++)
 | |
| 		cppi_pool_free(controller->rx + i);
 | |
| 
 | |
| 	/* in Tx Case proper teardown is supported. We resort to disabling
 | |
| 	 * Tx/Rx CPPI after cleanup of Tx channels. Before TX teardown is
 | |
| 	 * complete TX CPPI cannot be disabled.
 | |
| 	 */
 | |
| 	/*disable tx/rx cppi */
 | |
| 	musb_writel(tibase, DAVINCI_TXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_DISABLE);
 | |
| 	musb_writel(tibase, DAVINCI_RXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_DISABLE);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* While dma channel is allocated, we only want the core irqs active
 | |
|  * for fault reports, otherwise we'd get irqs that we don't care about.
 | |
|  * Except for TX irqs, where dma done != fifo empty and reusable ...
 | |
|  *
 | |
|  * NOTE: docs don't say either way, but irq masking **enables** irqs.
 | |
|  *
 | |
|  * REVISIT same issue applies to pure PIO usage too, and non-cppi dma...
 | |
|  */
 | |
| static inline void core_rxirq_disable(void __iomem *tibase, unsigned epnum)
 | |
| {
 | |
| 	musb_writel(tibase, DAVINCI_USB_INT_MASK_CLR_REG, 1 << (epnum + 8));
 | |
| }
 | |
| 
 | |
| static inline void core_rxirq_enable(void __iomem *tibase, unsigned epnum)
 | |
| {
 | |
| 	musb_writel(tibase, DAVINCI_USB_INT_MASK_SET_REG, 1 << (epnum + 8));
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Allocate a CPPI Channel for DMA.  With CPPI, channels are bound to
 | |
|  * each transfer direction of a non-control endpoint, so allocating
 | |
|  * (and deallocating) is mostly a way to notice bad housekeeping on
 | |
|  * the software side.  We assume the irqs are always active.
 | |
|  */
 | |
| static struct dma_channel *
 | |
| cppi_channel_allocate(struct dma_controller *c,
 | |
| 		struct musb_hw_ep *ep, u8 transmit)
 | |
| {
 | |
| 	struct cppi		*controller;
 | |
| 	u8			index;
 | |
| 	struct cppi_channel	*cppi_ch;
 | |
| 	void __iomem		*tibase;
 | |
| 	struct musb		*musb;
 | |
| 
 | |
| 	controller = container_of(c, struct cppi, controller);
 | |
| 	tibase = controller->tibase;
 | |
| 	musb = controller->musb;
 | |
| 
 | |
| 	/* ep0 doesn't use DMA; remember cppi indices are 0..N-1 */
 | |
| 	index = ep->epnum - 1;
 | |
| 
 | |
| 	/* return the corresponding CPPI Channel Handle, and
 | |
| 	 * probably disable the non-CPPI irq until we need it.
 | |
| 	 */
 | |
| 	if (transmit) {
 | |
| 		if (index >= ARRAY_SIZE(controller->tx)) {
 | |
| 			dev_dbg(musb->controller, "no %cX%d CPPI channel\n", 'T', index);
 | |
| 			return NULL;
 | |
| 		}
 | |
| 		cppi_ch = controller->tx + index;
 | |
| 	} else {
 | |
| 		if (index >= ARRAY_SIZE(controller->rx)) {
 | |
| 			dev_dbg(musb->controller, "no %cX%d CPPI channel\n", 'R', index);
 | |
| 			return NULL;
 | |
| 		}
 | |
| 		cppi_ch = controller->rx + index;
 | |
| 		core_rxirq_disable(tibase, ep->epnum);
 | |
| 	}
 | |
| 
 | |
| 	/* REVISIT make this an error later once the same driver code works
 | |
| 	 * with the other DMA engine too
 | |
| 	 */
 | |
| 	if (cppi_ch->hw_ep)
 | |
| 		dev_dbg(musb->controller, "re-allocating DMA%d %cX channel %p\n",
 | |
| 				index, transmit ? 'T' : 'R', cppi_ch);
 | |
| 	cppi_ch->hw_ep = ep;
 | |
| 	cppi_ch->channel.status = MUSB_DMA_STATUS_FREE;
 | |
| 	cppi_ch->channel.max_len = 0x7fffffff;
 | |
| 
 | |
| 	dev_dbg(musb->controller, "Allocate CPPI%d %cX\n", index, transmit ? 'T' : 'R');
 | |
| 	return &cppi_ch->channel;
 | |
| }
 | |
| 
 | |
| /* Release a CPPI Channel.  */
 | |
| static void cppi_channel_release(struct dma_channel *channel)
 | |
| {
 | |
| 	struct cppi_channel	*c;
 | |
| 	void __iomem		*tibase;
 | |
| 
 | |
| 	/* REVISIT:  for paranoia, check state and abort if needed... */
 | |
| 
 | |
| 	c = container_of(channel, struct cppi_channel, channel);
 | |
| 	tibase = c->controller->tibase;
 | |
| 	if (!c->hw_ep)
 | |
| 		dev_dbg(c->controller->musb->controller,
 | |
| 			"releasing idle DMA channel %p\n", c);
 | |
| 	else if (!c->transmit)
 | |
| 		core_rxirq_enable(tibase, c->index + 1);
 | |
| 
 | |
| 	/* for now, leave its cppi IRQ enabled (we won't trigger it) */
 | |
| 	c->hw_ep = NULL;
 | |
| 	channel->status = MUSB_DMA_STATUS_UNKNOWN;
 | |
| }
 | |
| 
 | |
| /* Context: controller irqlocked */
 | |
| static void
 | |
| cppi_dump_rx(int level, struct cppi_channel *c, const char *tag)
 | |
| {
 | |
| 	void __iomem			*base = c->controller->mregs;
 | |
| 	struct cppi_rx_stateram __iomem	*rx = c->state_ram;
 | |
| 
 | |
| 	musb_ep_select(base, c->index + 1);
 | |
| 
 | |
| 	dev_dbg(c->controller->musb->controller,
 | |
| 		"RX DMA%d%s: %d left, csr %04x, "
 | |
| 		"%08x H%08x S%08x C%08x, "
 | |
| 		"B%08x L%08x %08x .. %08x"
 | |
| 		"\n",
 | |
| 		c->index, tag,
 | |
| 		musb_readl(c->controller->tibase,
 | |
| 			DAVINCI_RXCPPI_BUFCNT0_REG + 4 * c->index),
 | |
| 		musb_readw(c->hw_ep->regs, MUSB_RXCSR),
 | |
| 
 | |
| 		musb_readl(&rx->rx_skipbytes, 0),
 | |
| 		musb_readl(&rx->rx_head, 0),
 | |
| 		musb_readl(&rx->rx_sop, 0),
 | |
| 		musb_readl(&rx->rx_current, 0),
 | |
| 
 | |
| 		musb_readl(&rx->rx_buf_current, 0),
 | |
| 		musb_readl(&rx->rx_len_len, 0),
 | |
| 		musb_readl(&rx->rx_cnt_cnt, 0),
 | |
| 		musb_readl(&rx->rx_complete, 0)
 | |
| 		);
 | |
| }
 | |
| 
 | |
| /* Context: controller irqlocked */
 | |
| static void
 | |
| cppi_dump_tx(int level, struct cppi_channel *c, const char *tag)
 | |
| {
 | |
| 	void __iomem			*base = c->controller->mregs;
 | |
| 	struct cppi_tx_stateram __iomem	*tx = c->state_ram;
 | |
| 
 | |
| 	musb_ep_select(base, c->index + 1);
 | |
| 
 | |
| 	dev_dbg(c->controller->musb->controller,
 | |
| 		"TX DMA%d%s: csr %04x, "
 | |
| 		"H%08x S%08x C%08x %08x, "
 | |
| 		"F%08x L%08x .. %08x"
 | |
| 		"\n",
 | |
| 		c->index, tag,
 | |
| 		musb_readw(c->hw_ep->regs, MUSB_TXCSR),
 | |
| 
 | |
| 		musb_readl(&tx->tx_head, 0),
 | |
| 		musb_readl(&tx->tx_buf, 0),
 | |
| 		musb_readl(&tx->tx_current, 0),
 | |
| 		musb_readl(&tx->tx_buf_current, 0),
 | |
| 
 | |
| 		musb_readl(&tx->tx_info, 0),
 | |
| 		musb_readl(&tx->tx_rem_len, 0),
 | |
| 		/* dummy/unused word 6 */
 | |
| 		musb_readl(&tx->tx_complete, 0)
 | |
| 		);
 | |
| }
 | |
| 
 | |
| /* Context: controller irqlocked */
 | |
| static inline void
 | |
| cppi_rndis_update(struct cppi_channel *c, int is_rx,
 | |
| 		void __iomem *tibase, int is_rndis)
 | |
| {
 | |
| 	/* we may need to change the rndis flag for this cppi channel */
 | |
| 	if (c->is_rndis != is_rndis) {
 | |
| 		u32	value = musb_readl(tibase, DAVINCI_RNDIS_REG);
 | |
| 		u32	temp = 1 << (c->index);
 | |
| 
 | |
| 		if (is_rx)
 | |
| 			temp <<= 16;
 | |
| 		if (is_rndis)
 | |
| 			value |= temp;
 | |
| 		else
 | |
| 			value &= ~temp;
 | |
| 		musb_writel(tibase, DAVINCI_RNDIS_REG, value);
 | |
| 		c->is_rndis = is_rndis;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_USB_MUSB_DEBUG
 | |
| static void cppi_dump_rxbd(const char *tag, struct cppi_descriptor *bd)
 | |
| {
 | |
| 	pr_debug("RXBD/%s %08x: "
 | |
| 			"nxt %08x buf %08x off.blen %08x opt.plen %08x\n",
 | |
| 			tag, bd->dma,
 | |
| 			bd->hw_next, bd->hw_bufp, bd->hw_off_len,
 | |
| 			bd->hw_options);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void cppi_dump_rxq(int level, const char *tag, struct cppi_channel *rx)
 | |
| {
 | |
| #ifdef CONFIG_USB_MUSB_DEBUG
 | |
| 	struct cppi_descriptor	*bd;
 | |
| 
 | |
| 	if (!_dbg_level(level))
 | |
| 		return;
 | |
| 	cppi_dump_rx(level, rx, tag);
 | |
| 	if (rx->last_processed)
 | |
| 		cppi_dump_rxbd("last", rx->last_processed);
 | |
| 	for (bd = rx->head; bd; bd = bd->next)
 | |
| 		cppi_dump_rxbd("active", bd);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| 
 | |
| /* NOTE:  DaVinci autoreq is ignored except for host side "RNDIS" mode RX;
 | |
|  * so we won't ever use it (see "CPPI RX Woes" below).
 | |
|  */
 | |
| static inline int cppi_autoreq_update(struct cppi_channel *rx,
 | |
| 		void __iomem *tibase, int onepacket, unsigned n_bds)
 | |
| {
 | |
| 	u32	val;
 | |
| 
 | |
| #ifdef	RNDIS_RX_IS_USABLE
 | |
| 	u32	tmp;
 | |
| 	/* assert(is_host_active(musb)) */
 | |
| 
 | |
| 	/* start from "AutoReq never" */
 | |
| 	tmp = musb_readl(tibase, DAVINCI_AUTOREQ_REG);
 | |
| 	val = tmp & ~((0x3) << (rx->index * 2));
 | |
| 
 | |
| 	/* HCD arranged reqpkt for packet #1.  we arrange int
 | |
| 	 * for all but the last one, maybe in two segments.
 | |
| 	 */
 | |
| 	if (!onepacket) {
 | |
| #if 0
 | |
| 		/* use two segments, autoreq "all" then the last "never" */
 | |
| 		val |= ((0x3) << (rx->index * 2));
 | |
| 		n_bds--;
 | |
| #else
 | |
| 		/* one segment, autoreq "all-but-last" */
 | |
| 		val |= ((0x1) << (rx->index * 2));
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	if (val != tmp) {
 | |
| 		int n = 100;
 | |
| 
 | |
| 		/* make sure that autoreq is updated before continuing */
 | |
| 		musb_writel(tibase, DAVINCI_AUTOREQ_REG, val);
 | |
| 		do {
 | |
| 			tmp = musb_readl(tibase, DAVINCI_AUTOREQ_REG);
 | |
| 			if (tmp == val)
 | |
| 				break;
 | |
| 			cpu_relax();
 | |
| 		} while (n-- > 0);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	/* REQPKT is turned off after each segment */
 | |
| 	if (n_bds && rx->channel.actual_len) {
 | |
| 		void __iomem	*regs = rx->hw_ep->regs;
 | |
| 
 | |
| 		val = musb_readw(regs, MUSB_RXCSR);
 | |
| 		if (!(val & MUSB_RXCSR_H_REQPKT)) {
 | |
| 			val |= MUSB_RXCSR_H_REQPKT | MUSB_RXCSR_H_WZC_BITS;
 | |
| 			musb_writew(regs, MUSB_RXCSR, val);
 | |
| 			/* flush writebuffer */
 | |
| 			val = musb_readw(regs, MUSB_RXCSR);
 | |
| 		}
 | |
| 	}
 | |
| 	return n_bds;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Buffer enqueuing Logic:
 | |
|  *
 | |
|  *  - RX builds new queues each time, to help handle routine "early
 | |
|  *    termination" cases (faults, including errors and short reads)
 | |
|  *    more correctly.
 | |
|  *
 | |
|  *  - for now, TX reuses the same queue of BDs every time
 | |
|  *
 | |
|  * REVISIT long term, we want a normal dynamic model.
 | |
|  * ... the goal will be to append to the
 | |
|  * existing queue, processing completed "dma buffers" (segments) on the fly.
 | |
|  *
 | |
|  * Otherwise we force an IRQ latency between requests, which slows us a lot
 | |
|  * (especially in "transparent" dma).  Unfortunately that model seems to be
 | |
|  * inherent in the DMA model from the Mentor code, except in the rare case
 | |
|  * of transfers big enough (~128+ KB) that we could append "middle" segments
 | |
|  * in the TX paths.  (RX can't do this, see below.)
 | |
|  *
 | |
|  * That's true even in the CPPI- friendly iso case, where most urbs have
 | |
|  * several small segments provided in a group and where the "packet at a time"
 | |
|  * "transparent" DMA model is always correct, even on the RX side.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * CPPI TX:
 | |
|  * ========
 | |
|  * TX is a lot more reasonable than RX; it doesn't need to run in
 | |
|  * irq-per-packet mode very often.  RNDIS mode seems to behave too
 | |
|  * (except how it handles the exactly-N-packets case).  Building a
 | |
|  * txdma queue with multiple requests (urb or usb_request) looks
 | |
|  * like it would work ... but fault handling would need much testing.
 | |
|  *
 | |
|  * The main issue with TX mode RNDIS relates to transfer lengths that
 | |
|  * are an exact multiple of the packet length.  It appears that there's
 | |
|  * a hiccup in that case (maybe the DMA completes before the ZLP gets
 | |
|  * written?) boiling down to not being able to rely on CPPI writing any
 | |
|  * terminating zero length packet before the next transfer is written.
 | |
|  * So that's punted to PIO; better yet, gadget drivers can avoid it.
 | |
|  *
 | |
|  * Plus, there's allegedly an undocumented constraint that rndis transfer
 | |
|  * length be a multiple of 64 bytes ... but the chip doesn't act that
 | |
|  * way, and we really don't _want_ that behavior anyway.
 | |
|  *
 | |
|  * On TX, "transparent" mode works ... although experiments have shown
 | |
|  * problems trying to use the SOP/EOP bits in different USB packets.
 | |
|  *
 | |
|  * REVISIT try to handle terminating zero length packets using CPPI
 | |
|  * instead of doing it by PIO after an IRQ.  (Meanwhile, make Ethernet
 | |
|  * links avoid that issue by forcing them to avoid zlps.)
 | |
|  */
 | |
| static void
 | |
| cppi_next_tx_segment(struct musb *musb, struct cppi_channel *tx)
 | |
| {
 | |
| 	unsigned		maxpacket = tx->maxpacket;
 | |
| 	dma_addr_t		addr = tx->buf_dma + tx->offset;
 | |
| 	size_t			length = tx->buf_len - tx->offset;
 | |
| 	struct cppi_descriptor	*bd;
 | |
| 	unsigned		n_bds;
 | |
| 	unsigned		i;
 | |
| 	struct cppi_tx_stateram	__iomem *tx_ram = tx->state_ram;
 | |
| 	int			rndis;
 | |
| 
 | |
| 	/* TX can use the CPPI "rndis" mode, where we can probably fit this
 | |
| 	 * transfer in one BD and one IRQ.  The only time we would NOT want
 | |
| 	 * to use it is when hardware constraints prevent it, or if we'd
 | |
| 	 * trigger the "send a ZLP?" confusion.
 | |
| 	 */
 | |
| 	rndis = (maxpacket & 0x3f) == 0
 | |
| 		&& length > maxpacket
 | |
| 		&& length < 0xffff
 | |
| 		&& (length % maxpacket) != 0;
 | |
| 
 | |
| 	if (rndis) {
 | |
| 		maxpacket = length;
 | |
| 		n_bds = 1;
 | |
| 	} else {
 | |
| 		n_bds = length / maxpacket;
 | |
| 		if (!length || (length % maxpacket))
 | |
| 			n_bds++;
 | |
| 		n_bds = min(n_bds, (unsigned) NUM_TXCHAN_BD);
 | |
| 		length = min(n_bds * maxpacket, length);
 | |
| 	}
 | |
| 
 | |
| 	dev_dbg(musb->controller, "TX DMA%d, pktSz %d %s bds %d dma 0x%llx len %u\n",
 | |
| 			tx->index,
 | |
| 			maxpacket,
 | |
| 			rndis ? "rndis" : "transparent",
 | |
| 			n_bds,
 | |
| 			(unsigned long long)addr, length);
 | |
| 
 | |
| 	cppi_rndis_update(tx, 0, musb->ctrl_base, rndis);
 | |
| 
 | |
| 	/* assuming here that channel_program is called during
 | |
| 	 * transfer initiation ... current code maintains state
 | |
| 	 * for one outstanding request only (no queues, not even
 | |
| 	 * the implicit ones of an iso urb).
 | |
| 	 */
 | |
| 
 | |
| 	bd = tx->freelist;
 | |
| 	tx->head = bd;
 | |
| 	tx->last_processed = NULL;
 | |
| 
 | |
| 	/* FIXME use BD pool like RX side does, and just queue
 | |
| 	 * the minimum number for this request.
 | |
| 	 */
 | |
| 
 | |
| 	/* Prepare queue of BDs first, then hand it to hardware.
 | |
| 	 * All BDs except maybe the last should be of full packet
 | |
| 	 * size; for RNDIS there _is_ only that last packet.
 | |
| 	 */
 | |
| 	for (i = 0; i < n_bds; ) {
 | |
| 		if (++i < n_bds && bd->next)
 | |
| 			bd->hw_next = bd->next->dma;
 | |
| 		else
 | |
| 			bd->hw_next = 0;
 | |
| 
 | |
| 		bd->hw_bufp = tx->buf_dma + tx->offset;
 | |
| 
 | |
| 		/* FIXME set EOP only on the last packet,
 | |
| 		 * SOP only on the first ... avoid IRQs
 | |
| 		 */
 | |
| 		if ((tx->offset + maxpacket) <= tx->buf_len) {
 | |
| 			tx->offset += maxpacket;
 | |
| 			bd->hw_off_len = maxpacket;
 | |
| 			bd->hw_options = CPPI_SOP_SET | CPPI_EOP_SET
 | |
| 				| CPPI_OWN_SET | maxpacket;
 | |
| 		} else {
 | |
| 			/* only this one may be a partial USB Packet */
 | |
| 			u32		partial_len;
 | |
| 
 | |
| 			partial_len = tx->buf_len - tx->offset;
 | |
| 			tx->offset = tx->buf_len;
 | |
| 			bd->hw_off_len = partial_len;
 | |
| 
 | |
| 			bd->hw_options = CPPI_SOP_SET | CPPI_EOP_SET
 | |
| 				| CPPI_OWN_SET | partial_len;
 | |
| 			if (partial_len == 0)
 | |
| 				bd->hw_options |= CPPI_ZERO_SET;
 | |
| 		}
 | |
| 
 | |
| 		dev_dbg(musb->controller, "TXBD %p: nxt %08x buf %08x len %04x opt %08x\n",
 | |
| 				bd, bd->hw_next, bd->hw_bufp,
 | |
| 				bd->hw_off_len, bd->hw_options);
 | |
| 
 | |
| 		/* update the last BD enqueued to the list */
 | |
| 		tx->tail = bd;
 | |
| 		bd = bd->next;
 | |
| 	}
 | |
| 
 | |
| 	/* BDs live in DMA-coherent memory, but writes might be pending */
 | |
| 	cpu_drain_writebuffer();
 | |
| 
 | |
| 	/* Write to the HeadPtr in state RAM to trigger */
 | |
| 	musb_writel(&tx_ram->tx_head, 0, (u32)tx->freelist->dma);
 | |
| 
 | |
| 	cppi_dump_tx(5, tx, "/S");
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * CPPI RX Woes:
 | |
|  * =============
 | |
|  * Consider a 1KB bulk RX buffer in two scenarios:  (a) it's fed two 300 byte
 | |
|  * packets back-to-back, and (b) it's fed two 512 byte packets back-to-back.
 | |
|  * (Full speed transfers have similar scenarios.)
 | |
|  *
 | |
|  * The correct behavior for Linux is that (a) fills the buffer with 300 bytes,
 | |
|  * and the next packet goes into a buffer that's queued later; while (b) fills
 | |
|  * the buffer with 1024 bytes.  How to do that with CPPI?
 | |
|  *
 | |
|  * - RX queues in "rndis" mode -- one single BD -- handle (a) correctly, but
 | |
|  *   (b) loses **BADLY** because nothing (!) happens when that second packet
 | |
|  *   fills the buffer, much less when a third one arrives.  (Which makes this
 | |
|  *   not a "true" RNDIS mode.  In the RNDIS protocol short-packet termination
 | |
|  *   is optional, and it's fine if peripherals -- not hosts! -- pad messages
 | |
|  *   out to end-of-buffer.  Standard PCI host controller DMA descriptors
 | |
|  *   implement that mode by default ... which is no accident.)
 | |
|  *
 | |
|  * - RX queues in "transparent" mode -- two BDs with 512 bytes each -- have
 | |
|  *   converse problems:  (b) is handled right, but (a) loses badly.  CPPI RX
 | |
|  *   ignores SOP/EOP markings and processes both of those BDs; so both packets
 | |
|  *   are loaded into the buffer (with a 212 byte gap between them), and the next
 | |
|  *   buffer queued will NOT get its 300 bytes of data. (It seems like SOP/EOP
 | |
|  *   are intended as outputs for RX queues, not inputs...)
 | |
|  *
 | |
|  * - A variant of "transparent" mode -- one BD at a time -- is the only way to
 | |
|  *   reliably make both cases work, with software handling both cases correctly
 | |
|  *   and at the significant penalty of needing an IRQ per packet.  (The lack of
 | |
|  *   I/O overlap can be slightly ameliorated by enabling double buffering.)
 | |
|  *
 | |
|  * So how to get rid of IRQ-per-packet?  The transparent multi-BD case could
 | |
|  * be used in special cases like mass storage, which sets URB_SHORT_NOT_OK
 | |
|  * (or maybe its peripheral side counterpart) to flag (a) scenarios as errors
 | |
|  * with guaranteed driver level fault recovery and scrubbing out what's left
 | |
|  * of that garbaged datastream.
 | |
|  *
 | |
|  * But there seems to be no way to identify the cases where CPPI RNDIS mode
 | |
|  * is appropriate -- which do NOT include RNDIS host drivers, but do include
 | |
|  * the CDC Ethernet driver! -- and the documentation is incomplete/wrong.
 | |
|  * So we can't _ever_ use RX RNDIS mode ... except by using a heuristic
 | |
|  * that applies best on the peripheral side (and which could fail rudely).
 | |
|  *
 | |
|  * Leaving only "transparent" mode; we avoid multi-bd modes in almost all
 | |
|  * cases other than mass storage class.  Otherwise we're correct but slow,
 | |
|  * since CPPI penalizes our need for a "true RNDIS" default mode.
 | |
|  */
 | |
| 
 | |
| 
 | |
| /* Heuristic, intended to kick in for ethernet/rndis peripheral ONLY
 | |
|  *
 | |
|  * IFF
 | |
|  *  (a)	peripheral mode ... since rndis peripherals could pad their
 | |
|  *	writes to hosts, causing i/o failure; or we'd have to cope with
 | |
|  *	a largely unknowable variety of host side protocol variants
 | |
|  *  (b)	and short reads are NOT errors ... since full reads would
 | |
|  *	cause those same i/o failures
 | |
|  *  (c)	and read length is
 | |
|  *	- less than 64KB (max per cppi descriptor)
 | |
|  *	- not a multiple of 4096 (g_zero default, full reads typical)
 | |
|  *	- N (>1) packets long, ditto (full reads not EXPECTED)
 | |
|  * THEN
 | |
|  *   try rx rndis mode
 | |
|  *
 | |
|  * Cost of heuristic failing:  RXDMA wedges at the end of transfers that
 | |
|  * fill out the whole buffer.  Buggy host side usb network drivers could
 | |
|  * trigger that, but "in the field" such bugs seem to be all but unknown.
 | |
|  *
 | |
|  * So this module parameter lets the heuristic be disabled.  When using
 | |
|  * gadgetfs, the heuristic will probably need to be disabled.
 | |
|  */
 | |
| static bool cppi_rx_rndis = 1;
 | |
| 
 | |
| module_param(cppi_rx_rndis, bool, 0);
 | |
| MODULE_PARM_DESC(cppi_rx_rndis, "enable/disable RX RNDIS heuristic");
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * cppi_next_rx_segment - dma read for the next chunk of a buffer
 | |
|  * @musb: the controller
 | |
|  * @rx: dma channel
 | |
|  * @onepacket: true unless caller treats short reads as errors, and
 | |
|  *	performs fault recovery above usbcore.
 | |
|  * Context: controller irqlocked
 | |
|  *
 | |
|  * See above notes about why we can't use multi-BD RX queues except in
 | |
|  * rare cases (mass storage class), and can never use the hardware "rndis"
 | |
|  * mode (since it's not a "true" RNDIS mode) with complete safety..
 | |
|  *
 | |
|  * It's ESSENTIAL that callers specify "onepacket" mode unless they kick in
 | |
|  * code to recover from corrupted datastreams after each short transfer.
 | |
|  */
 | |
| static void
 | |
| cppi_next_rx_segment(struct musb *musb, struct cppi_channel *rx, int onepacket)
 | |
| {
 | |
| 	unsigned		maxpacket = rx->maxpacket;
 | |
| 	dma_addr_t		addr = rx->buf_dma + rx->offset;
 | |
| 	size_t			length = rx->buf_len - rx->offset;
 | |
| 	struct cppi_descriptor	*bd, *tail;
 | |
| 	unsigned		n_bds;
 | |
| 	unsigned		i;
 | |
| 	void __iomem		*tibase = musb->ctrl_base;
 | |
| 	int			is_rndis = 0;
 | |
| 	struct cppi_rx_stateram	__iomem *rx_ram = rx->state_ram;
 | |
| 
 | |
| 	if (onepacket) {
 | |
| 		/* almost every USB driver, host or peripheral side */
 | |
| 		n_bds = 1;
 | |
| 
 | |
| 		/* maybe apply the heuristic above */
 | |
| 		if (cppi_rx_rndis
 | |
| 				&& is_peripheral_active(musb)
 | |
| 				&& length > maxpacket
 | |
| 				&& (length & ~0xffff) == 0
 | |
| 				&& (length & 0x0fff) != 0
 | |
| 				&& (length & (maxpacket - 1)) == 0) {
 | |
| 			maxpacket = length;
 | |
| 			is_rndis = 1;
 | |
| 		}
 | |
| 	} else {
 | |
| 		/* virtually nothing except mass storage class */
 | |
| 		if (length > 0xffff) {
 | |
| 			n_bds = 0xffff / maxpacket;
 | |
| 			length = n_bds * maxpacket;
 | |
| 		} else {
 | |
| 			n_bds = length / maxpacket;
 | |
| 			if (length % maxpacket)
 | |
| 				n_bds++;
 | |
| 		}
 | |
| 		if (n_bds == 1)
 | |
| 			onepacket = 1;
 | |
| 		else
 | |
| 			n_bds = min(n_bds, (unsigned) NUM_RXCHAN_BD);
 | |
| 	}
 | |
| 
 | |
| 	/* In host mode, autorequest logic can generate some IN tokens; it's
 | |
| 	 * tricky since we can't leave REQPKT set in RXCSR after the transfer
 | |
| 	 * finishes. So:  multipacket transfers involve two or more segments.
 | |
| 	 * And always at least two IRQs ... RNDIS mode is not an option.
 | |
| 	 */
 | |
| 	if (is_host_active(musb))
 | |
| 		n_bds = cppi_autoreq_update(rx, tibase, onepacket, n_bds);
 | |
| 
 | |
| 	cppi_rndis_update(rx, 1, musb->ctrl_base, is_rndis);
 | |
| 
 | |
| 	length = min(n_bds * maxpacket, length);
 | |
| 
 | |
| 	dev_dbg(musb->controller, "RX DMA%d seg, maxp %d %s bds %d (cnt %d) "
 | |
| 			"dma 0x%llx len %u %u/%u\n",
 | |
| 			rx->index, maxpacket,
 | |
| 			onepacket
 | |
| 				? (is_rndis ? "rndis" : "onepacket")
 | |
| 				: "multipacket",
 | |
| 			n_bds,
 | |
| 			musb_readl(tibase,
 | |
| 				DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4))
 | |
| 					& 0xffff,
 | |
| 			(unsigned long long)addr, length,
 | |
| 			rx->channel.actual_len, rx->buf_len);
 | |
| 
 | |
| 	/* only queue one segment at a time, since the hardware prevents
 | |
| 	 * correct queue shutdown after unexpected short packets
 | |
| 	 */
 | |
| 	bd = cppi_bd_alloc(rx);
 | |
| 	rx->head = bd;
 | |
| 
 | |
| 	/* Build BDs for all packets in this segment */
 | |
| 	for (i = 0, tail = NULL; bd && i < n_bds; i++, tail = bd) {
 | |
| 		u32	bd_len;
 | |
| 
 | |
| 		if (i) {
 | |
| 			bd = cppi_bd_alloc(rx);
 | |
| 			if (!bd)
 | |
| 				break;
 | |
| 			tail->next = bd;
 | |
| 			tail->hw_next = bd->dma;
 | |
| 		}
 | |
| 		bd->hw_next = 0;
 | |
| 
 | |
| 		/* all but the last packet will be maxpacket size */
 | |
| 		if (maxpacket < length)
 | |
| 			bd_len = maxpacket;
 | |
| 		else
 | |
| 			bd_len = length;
 | |
| 
 | |
| 		bd->hw_bufp = addr;
 | |
| 		addr += bd_len;
 | |
| 		rx->offset += bd_len;
 | |
| 
 | |
| 		bd->hw_off_len = (0 /*offset*/ << 16) + bd_len;
 | |
| 		bd->buflen = bd_len;
 | |
| 
 | |
| 		bd->hw_options = CPPI_OWN_SET | (i == 0 ? length : 0);
 | |
| 		length -= bd_len;
 | |
| 	}
 | |
| 
 | |
| 	/* we always expect at least one reusable BD! */
 | |
| 	if (!tail) {
 | |
| 		WARNING("rx dma%d -- no BDs? need %d\n", rx->index, n_bds);
 | |
| 		return;
 | |
| 	} else if (i < n_bds)
 | |
| 		WARNING("rx dma%d -- only %d of %d BDs\n", rx->index, i, n_bds);
 | |
| 
 | |
| 	tail->next = NULL;
 | |
| 	tail->hw_next = 0;
 | |
| 
 | |
| 	bd = rx->head;
 | |
| 	rx->tail = tail;
 | |
| 
 | |
| 	/* short reads and other faults should terminate this entire
 | |
| 	 * dma segment.  we want one "dma packet" per dma segment, not
 | |
| 	 * one per USB packet, terminating the whole queue at once...
 | |
| 	 * NOTE that current hardware seems to ignore SOP and EOP.
 | |
| 	 */
 | |
| 	bd->hw_options |= CPPI_SOP_SET;
 | |
| 	tail->hw_options |= CPPI_EOP_SET;
 | |
| 
 | |
| #ifdef CONFIG_USB_MUSB_DEBUG
 | |
| 	if (_dbg_level(5)) {
 | |
| 		struct cppi_descriptor	*d;
 | |
| 
 | |
| 		for (d = rx->head; d; d = d->next)
 | |
| 			cppi_dump_rxbd("S", d);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	/* in case the preceding transfer left some state... */
 | |
| 	tail = rx->last_processed;
 | |
| 	if (tail) {
 | |
| 		tail->next = bd;
 | |
| 		tail->hw_next = bd->dma;
 | |
| 	}
 | |
| 
 | |
| 	core_rxirq_enable(tibase, rx->index + 1);
 | |
| 
 | |
| 	/* BDs live in DMA-coherent memory, but writes might be pending */
 | |
| 	cpu_drain_writebuffer();
 | |
| 
 | |
| 	/* REVISIT specs say to write this AFTER the BUFCNT register
 | |
| 	 * below ... but that loses badly.
 | |
| 	 */
 | |
| 	musb_writel(&rx_ram->rx_head, 0, bd->dma);
 | |
| 
 | |
| 	/* bufferCount must be at least 3, and zeroes on completion
 | |
| 	 * unless it underflows below zero, or stops at two, or keeps
 | |
| 	 * growing ... grr.
 | |
| 	 */
 | |
| 	i = musb_readl(tibase,
 | |
| 			DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4))
 | |
| 			& 0xffff;
 | |
| 
 | |
| 	if (!i)
 | |
| 		musb_writel(tibase,
 | |
| 			DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4),
 | |
| 			n_bds + 2);
 | |
| 	else if (n_bds > (i - 3))
 | |
| 		musb_writel(tibase,
 | |
| 			DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4),
 | |
| 			n_bds - (i - 3));
 | |
| 
 | |
| 	i = musb_readl(tibase,
 | |
| 			DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4))
 | |
| 			& 0xffff;
 | |
| 	if (i < (2 + n_bds)) {
 | |
| 		dev_dbg(musb->controller, "bufcnt%d underrun - %d (for %d)\n",
 | |
| 					rx->index, i, n_bds);
 | |
| 		musb_writel(tibase,
 | |
| 			DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4),
 | |
| 			n_bds + 2);
 | |
| 	}
 | |
| 
 | |
| 	cppi_dump_rx(4, rx, "/S");
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cppi_channel_program - program channel for data transfer
 | |
|  * @ch: the channel
 | |
|  * @maxpacket: max packet size
 | |
|  * @mode: For RX, 1 unless the usb protocol driver promised to treat
 | |
|  *	all short reads as errors and kick in high level fault recovery.
 | |
|  *	For TX, ignored because of RNDIS mode races/glitches.
 | |
|  * @dma_addr: dma address of buffer
 | |
|  * @len: length of buffer
 | |
|  * Context: controller irqlocked
 | |
|  */
 | |
| static int cppi_channel_program(struct dma_channel *ch,
 | |
| 		u16 maxpacket, u8 mode,
 | |
| 		dma_addr_t dma_addr, u32 len)
 | |
| {
 | |
| 	struct cppi_channel	*cppi_ch;
 | |
| 	struct cppi		*controller;
 | |
| 	struct musb		*musb;
 | |
| 
 | |
| 	cppi_ch = container_of(ch, struct cppi_channel, channel);
 | |
| 	controller = cppi_ch->controller;
 | |
| 	musb = controller->musb;
 | |
| 
 | |
| 	switch (ch->status) {
 | |
| 	case MUSB_DMA_STATUS_BUS_ABORT:
 | |
| 	case MUSB_DMA_STATUS_CORE_ABORT:
 | |
| 		/* fault irq handler should have handled cleanup */
 | |
| 		WARNING("%cX DMA%d not cleaned up after abort!\n",
 | |
| 				cppi_ch->transmit ? 'T' : 'R',
 | |
| 				cppi_ch->index);
 | |
| 		/* WARN_ON(1); */
 | |
| 		break;
 | |
| 	case MUSB_DMA_STATUS_BUSY:
 | |
| 		WARNING("program active channel?  %cX DMA%d\n",
 | |
| 				cppi_ch->transmit ? 'T' : 'R',
 | |
| 				cppi_ch->index);
 | |
| 		/* WARN_ON(1); */
 | |
| 		break;
 | |
| 	case MUSB_DMA_STATUS_UNKNOWN:
 | |
| 		dev_dbg(musb->controller, "%cX DMA%d not allocated!\n",
 | |
| 				cppi_ch->transmit ? 'T' : 'R',
 | |
| 				cppi_ch->index);
 | |
| 		/* FALLTHROUGH */
 | |
| 	case MUSB_DMA_STATUS_FREE:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	ch->status = MUSB_DMA_STATUS_BUSY;
 | |
| 
 | |
| 	/* set transfer parameters, then queue up its first segment */
 | |
| 	cppi_ch->buf_dma = dma_addr;
 | |
| 	cppi_ch->offset = 0;
 | |
| 	cppi_ch->maxpacket = maxpacket;
 | |
| 	cppi_ch->buf_len = len;
 | |
| 	cppi_ch->channel.actual_len = 0;
 | |
| 
 | |
| 	/* TX channel? or RX? */
 | |
| 	if (cppi_ch->transmit)
 | |
| 		cppi_next_tx_segment(musb, cppi_ch);
 | |
| 	else
 | |
| 		cppi_next_rx_segment(musb, cppi_ch, mode);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool cppi_rx_scan(struct cppi *cppi, unsigned ch)
 | |
| {
 | |
| 	struct cppi_channel		*rx = &cppi->rx[ch];
 | |
| 	struct cppi_rx_stateram __iomem	*state = rx->state_ram;
 | |
| 	struct cppi_descriptor		*bd;
 | |
| 	struct cppi_descriptor		*last = rx->last_processed;
 | |
| 	bool				completed = false;
 | |
| 	bool				acked = false;
 | |
| 	int				i;
 | |
| 	dma_addr_t			safe2ack;
 | |
| 	void __iomem			*regs = rx->hw_ep->regs;
 | |
| 	struct musb			*musb = cppi->musb;
 | |
| 
 | |
| 	cppi_dump_rx(6, rx, "/K");
 | |
| 
 | |
| 	bd = last ? last->next : rx->head;
 | |
| 	if (!bd)
 | |
| 		return false;
 | |
| 
 | |
| 	/* run through all completed BDs */
 | |
| 	for (i = 0, safe2ack = musb_readl(&state->rx_complete, 0);
 | |
| 			(safe2ack || completed) && bd && i < NUM_RXCHAN_BD;
 | |
| 			i++, bd = bd->next) {
 | |
| 		u16	len;
 | |
| 
 | |
| 		/* catch latest BD writes from CPPI */
 | |
| 		rmb();
 | |
| 		if (!completed && (bd->hw_options & CPPI_OWN_SET))
 | |
| 			break;
 | |
| 
 | |
| 		dev_dbg(musb->controller, "C/RXBD %llx: nxt %08x buf %08x "
 | |
| 			"off.len %08x opt.len %08x (%d)\n",
 | |
| 			(unsigned long long)bd->dma, bd->hw_next, bd->hw_bufp,
 | |
| 			bd->hw_off_len, bd->hw_options,
 | |
| 			rx->channel.actual_len);
 | |
| 
 | |
| 		/* actual packet received length */
 | |
| 		if ((bd->hw_options & CPPI_SOP_SET) && !completed)
 | |
| 			len = bd->hw_off_len & CPPI_RECV_PKTLEN_MASK;
 | |
| 		else
 | |
| 			len = 0;
 | |
| 
 | |
| 		if (bd->hw_options & CPPI_EOQ_MASK)
 | |
| 			completed = true;
 | |
| 
 | |
| 		if (!completed && len < bd->buflen) {
 | |
| 			/* NOTE:  when we get a short packet, RXCSR_H_REQPKT
 | |
| 			 * must have been cleared, and no more DMA packets may
 | |
| 			 * active be in the queue... TI docs didn't say, but
 | |
| 			 * CPPI ignores those BDs even though OWN is still set.
 | |
| 			 */
 | |
| 			completed = true;
 | |
| 			dev_dbg(musb->controller, "rx short %d/%d (%d)\n",
 | |
| 					len, bd->buflen,
 | |
| 					rx->channel.actual_len);
 | |
| 		}
 | |
| 
 | |
| 		/* If we got here, we expect to ack at least one BD; meanwhile
 | |
| 		 * CPPI may completing other BDs while we scan this list...
 | |
| 		 *
 | |
| 		 * RACE: we can notice OWN cleared before CPPI raises the
 | |
| 		 * matching irq by writing that BD as the completion pointer.
 | |
| 		 * In such cases, stop scanning and wait for the irq, avoiding
 | |
| 		 * lost acks and states where BD ownership is unclear.
 | |
| 		 */
 | |
| 		if (bd->dma == safe2ack) {
 | |
| 			musb_writel(&state->rx_complete, 0, safe2ack);
 | |
| 			safe2ack = musb_readl(&state->rx_complete, 0);
 | |
| 			acked = true;
 | |
| 			if (bd->dma == safe2ack)
 | |
| 				safe2ack = 0;
 | |
| 		}
 | |
| 
 | |
| 		rx->channel.actual_len += len;
 | |
| 
 | |
| 		cppi_bd_free(rx, last);
 | |
| 		last = bd;
 | |
| 
 | |
| 		/* stop scanning on end-of-segment */
 | |
| 		if (bd->hw_next == 0)
 | |
| 			completed = true;
 | |
| 	}
 | |
| 	rx->last_processed = last;
 | |
| 
 | |
| 	/* dma abort, lost ack, or ... */
 | |
| 	if (!acked && last) {
 | |
| 		int	csr;
 | |
| 
 | |
| 		if (safe2ack == 0 || safe2ack == rx->last_processed->dma)
 | |
| 			musb_writel(&state->rx_complete, 0, safe2ack);
 | |
| 		if (safe2ack == 0) {
 | |
| 			cppi_bd_free(rx, last);
 | |
| 			rx->last_processed = NULL;
 | |
| 
 | |
| 			/* if we land here on the host side, H_REQPKT will
 | |
| 			 * be clear and we need to restart the queue...
 | |
| 			 */
 | |
| 			WARN_ON(rx->head);
 | |
| 		}
 | |
| 		musb_ep_select(cppi->mregs, rx->index + 1);
 | |
| 		csr = musb_readw(regs, MUSB_RXCSR);
 | |
| 		if (csr & MUSB_RXCSR_DMAENAB) {
 | |
| 			dev_dbg(musb->controller, "list%d %p/%p, last %llx%s, csr %04x\n",
 | |
| 				rx->index,
 | |
| 				rx->head, rx->tail,
 | |
| 				rx->last_processed
 | |
| 					? (unsigned long long)
 | |
| 						rx->last_processed->dma
 | |
| 					: 0,
 | |
| 				completed ? ", completed" : "",
 | |
| 				csr);
 | |
| 			cppi_dump_rxq(4, "/what?", rx);
 | |
| 		}
 | |
| 	}
 | |
| 	if (!completed) {
 | |
| 		int	csr;
 | |
| 
 | |
| 		rx->head = bd;
 | |
| 
 | |
| 		/* REVISIT seems like "autoreq all but EOP" doesn't...
 | |
| 		 * setting it here "should" be racey, but seems to work
 | |
| 		 */
 | |
| 		csr = musb_readw(rx->hw_ep->regs, MUSB_RXCSR);
 | |
| 		if (is_host_active(cppi->musb)
 | |
| 				&& bd
 | |
| 				&& !(csr & MUSB_RXCSR_H_REQPKT)) {
 | |
| 			csr |= MUSB_RXCSR_H_REQPKT;
 | |
| 			musb_writew(regs, MUSB_RXCSR,
 | |
| 					MUSB_RXCSR_H_WZC_BITS | csr);
 | |
| 			csr = musb_readw(rx->hw_ep->regs, MUSB_RXCSR);
 | |
| 		}
 | |
| 	} else {
 | |
| 		rx->head = NULL;
 | |
| 		rx->tail = NULL;
 | |
| 	}
 | |
| 
 | |
| 	cppi_dump_rx(6, rx, completed ? "/completed" : "/cleaned");
 | |
| 	return completed;
 | |
| }
 | |
| 
 | |
| irqreturn_t cppi_interrupt(int irq, void *dev_id)
 | |
| {
 | |
| 	struct musb		*musb = dev_id;
 | |
| 	struct cppi		*cppi;
 | |
| 	void __iomem		*tibase;
 | |
| 	struct musb_hw_ep	*hw_ep = NULL;
 | |
| 	u32			rx, tx;
 | |
| 	int			i, index;
 | |
| 	unsigned long		uninitialized_var(flags);
 | |
| 
 | |
| 	cppi = container_of(musb->dma_controller, struct cppi, controller);
 | |
| 	if (cppi->irq)
 | |
| 		spin_lock_irqsave(&musb->lock, flags);
 | |
| 
 | |
| 	tibase = musb->ctrl_base;
 | |
| 
 | |
| 	tx = musb_readl(tibase, DAVINCI_TXCPPI_MASKED_REG);
 | |
| 	rx = musb_readl(tibase, DAVINCI_RXCPPI_MASKED_REG);
 | |
| 
 | |
| 	if (!tx && !rx) {
 | |
| 		if (cppi->irq)
 | |
| 			spin_unlock_irqrestore(&musb->lock, flags);
 | |
| 		return IRQ_NONE;
 | |
| 	}
 | |
| 
 | |
| 	dev_dbg(musb->controller, "CPPI IRQ Tx%x Rx%x\n", tx, rx);
 | |
| 
 | |
| 	/* process TX channels */
 | |
| 	for (index = 0; tx; tx = tx >> 1, index++) {
 | |
| 		struct cppi_channel		*tx_ch;
 | |
| 		struct cppi_tx_stateram __iomem	*tx_ram;
 | |
| 		bool				completed = false;
 | |
| 		struct cppi_descriptor		*bd;
 | |
| 
 | |
| 		if (!(tx & 1))
 | |
| 			continue;
 | |
| 
 | |
| 		tx_ch = cppi->tx + index;
 | |
| 		tx_ram = tx_ch->state_ram;
 | |
| 
 | |
| 		/* FIXME  need a cppi_tx_scan() routine, which
 | |
| 		 * can also be called from abort code
 | |
| 		 */
 | |
| 
 | |
| 		cppi_dump_tx(5, tx_ch, "/E");
 | |
| 
 | |
| 		bd = tx_ch->head;
 | |
| 
 | |
| 		/*
 | |
| 		 * If Head is null then this could mean that a abort interrupt
 | |
| 		 * that needs to be acknowledged.
 | |
| 		 */
 | |
| 		if (NULL == bd) {
 | |
| 			dev_dbg(musb->controller, "null BD\n");
 | |
| 			musb_writel(&tx_ram->tx_complete, 0, 0);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* run through all completed BDs */
 | |
| 		for (i = 0; !completed && bd && i < NUM_TXCHAN_BD;
 | |
| 				i++, bd = bd->next) {
 | |
| 			u16	len;
 | |
| 
 | |
| 			/* catch latest BD writes from CPPI */
 | |
| 			rmb();
 | |
| 			if (bd->hw_options & CPPI_OWN_SET)
 | |
| 				break;
 | |
| 
 | |
| 			dev_dbg(musb->controller, "C/TXBD %p n %x b %x off %x opt %x\n",
 | |
| 					bd, bd->hw_next, bd->hw_bufp,
 | |
| 					bd->hw_off_len, bd->hw_options);
 | |
| 
 | |
| 			len = bd->hw_off_len & CPPI_BUFFER_LEN_MASK;
 | |
| 			tx_ch->channel.actual_len += len;
 | |
| 
 | |
| 			tx_ch->last_processed = bd;
 | |
| 
 | |
| 			/* write completion register to acknowledge
 | |
| 			 * processing of completed BDs, and possibly
 | |
| 			 * release the IRQ; EOQ might not be set ...
 | |
| 			 *
 | |
| 			 * REVISIT use the same ack strategy as rx
 | |
| 			 *
 | |
| 			 * REVISIT have observed bit 18 set; huh??
 | |
| 			 */
 | |
| 			/* if ((bd->hw_options & CPPI_EOQ_MASK)) */
 | |
| 				musb_writel(&tx_ram->tx_complete, 0, bd->dma);
 | |
| 
 | |
| 			/* stop scanning on end-of-segment */
 | |
| 			if (bd->hw_next == 0)
 | |
| 				completed = true;
 | |
| 		}
 | |
| 
 | |
| 		/* on end of segment, maybe go to next one */
 | |
| 		if (completed) {
 | |
| 			/* cppi_dump_tx(4, tx_ch, "/complete"); */
 | |
| 
 | |
| 			/* transfer more, or report completion */
 | |
| 			if (tx_ch->offset >= tx_ch->buf_len) {
 | |
| 				tx_ch->head = NULL;
 | |
| 				tx_ch->tail = NULL;
 | |
| 				tx_ch->channel.status = MUSB_DMA_STATUS_FREE;
 | |
| 
 | |
| 				hw_ep = tx_ch->hw_ep;
 | |
| 
 | |
| 				musb_dma_completion(musb, index + 1, 1);
 | |
| 
 | |
| 			} else {
 | |
| 				/* Bigger transfer than we could fit in
 | |
| 				 * that first batch of descriptors...
 | |
| 				 */
 | |
| 				cppi_next_tx_segment(musb, tx_ch);
 | |
| 			}
 | |
| 		} else
 | |
| 			tx_ch->head = bd;
 | |
| 	}
 | |
| 
 | |
| 	/* Start processing the RX block */
 | |
| 	for (index = 0; rx; rx = rx >> 1, index++) {
 | |
| 
 | |
| 		if (rx & 1) {
 | |
| 			struct cppi_channel		*rx_ch;
 | |
| 
 | |
| 			rx_ch = cppi->rx + index;
 | |
| 
 | |
| 			/* let incomplete dma segments finish */
 | |
| 			if (!cppi_rx_scan(cppi, index))
 | |
| 				continue;
 | |
| 
 | |
| 			/* start another dma segment if needed */
 | |
| 			if (rx_ch->channel.actual_len != rx_ch->buf_len
 | |
| 					&& rx_ch->channel.actual_len
 | |
| 						== rx_ch->offset) {
 | |
| 				cppi_next_rx_segment(musb, rx_ch, 1);
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			/* all segments completed! */
 | |
| 			rx_ch->channel.status = MUSB_DMA_STATUS_FREE;
 | |
| 
 | |
| 			hw_ep = rx_ch->hw_ep;
 | |
| 
 | |
| 			core_rxirq_disable(tibase, index + 1);
 | |
| 			musb_dma_completion(musb, index + 1, 0);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* write to CPPI EOI register to re-enable interrupts */
 | |
| 	musb_writel(tibase, DAVINCI_CPPI_EOI_REG, 0);
 | |
| 
 | |
| 	if (cppi->irq)
 | |
| 		spin_unlock_irqrestore(&musb->lock, flags);
 | |
| 
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| /* Instantiate a software object representing a DMA controller. */
 | |
| struct dma_controller *__init
 | |
| dma_controller_create(struct musb *musb, void __iomem *mregs)
 | |
| {
 | |
| 	struct cppi		*controller;
 | |
| 	struct device		*dev = musb->controller;
 | |
| 	struct platform_device	*pdev = to_platform_device(dev);
 | |
| 	int			irq = platform_get_irq_byname(pdev, "dma");
 | |
| 
 | |
| 	controller = kzalloc(sizeof *controller, GFP_KERNEL);
 | |
| 	if (!controller)
 | |
| 		return NULL;
 | |
| 
 | |
| 	controller->mregs = mregs;
 | |
| 	controller->tibase = mregs - DAVINCI_BASE_OFFSET;
 | |
| 
 | |
| 	controller->musb = musb;
 | |
| 	controller->controller.start = cppi_controller_start;
 | |
| 	controller->controller.stop = cppi_controller_stop;
 | |
| 	controller->controller.channel_alloc = cppi_channel_allocate;
 | |
| 	controller->controller.channel_release = cppi_channel_release;
 | |
| 	controller->controller.channel_program = cppi_channel_program;
 | |
| 	controller->controller.channel_abort = cppi_channel_abort;
 | |
| 
 | |
| 	/* NOTE: allocating from on-chip SRAM would give the least
 | |
| 	 * contention for memory access, if that ever matters here.
 | |
| 	 */
 | |
| 
 | |
| 	/* setup BufferPool */
 | |
| 	controller->pool = dma_pool_create("cppi",
 | |
| 			controller->musb->controller,
 | |
| 			sizeof(struct cppi_descriptor),
 | |
| 			CPPI_DESCRIPTOR_ALIGN, 0);
 | |
| 	if (!controller->pool) {
 | |
| 		kfree(controller);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (irq > 0) {
 | |
| 		if (request_irq(irq, cppi_interrupt, 0, "cppi-dma", musb)) {
 | |
| 			dev_err(dev, "request_irq %d failed!\n", irq);
 | |
| 			dma_controller_destroy(&controller->controller);
 | |
| 			return NULL;
 | |
| 		}
 | |
| 		controller->irq = irq;
 | |
| 	}
 | |
| 
 | |
| 	return &controller->controller;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  Destroy a previously-instantiated DMA controller.
 | |
|  */
 | |
| void dma_controller_destroy(struct dma_controller *c)
 | |
| {
 | |
| 	struct cppi	*cppi;
 | |
| 
 | |
| 	cppi = container_of(c, struct cppi, controller);
 | |
| 
 | |
| 	if (cppi->irq)
 | |
| 		free_irq(cppi->irq, cppi->musb);
 | |
| 
 | |
| 	/* assert:  caller stopped the controller first */
 | |
| 	dma_pool_destroy(cppi->pool);
 | |
| 
 | |
| 	kfree(cppi);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Context: controller irqlocked, endpoint selected
 | |
|  */
 | |
| static int cppi_channel_abort(struct dma_channel *channel)
 | |
| {
 | |
| 	struct cppi_channel	*cppi_ch;
 | |
| 	struct cppi		*controller;
 | |
| 	void __iomem		*mbase;
 | |
| 	void __iomem		*tibase;
 | |
| 	void __iomem		*regs;
 | |
| 	u32			value;
 | |
| 	struct cppi_descriptor	*queue;
 | |
| 
 | |
| 	cppi_ch = container_of(channel, struct cppi_channel, channel);
 | |
| 
 | |
| 	controller = cppi_ch->controller;
 | |
| 
 | |
| 	switch (channel->status) {
 | |
| 	case MUSB_DMA_STATUS_BUS_ABORT:
 | |
| 	case MUSB_DMA_STATUS_CORE_ABORT:
 | |
| 		/* from RX or TX fault irq handler */
 | |
| 	case MUSB_DMA_STATUS_BUSY:
 | |
| 		/* the hardware needs shutting down */
 | |
| 		regs = cppi_ch->hw_ep->regs;
 | |
| 		break;
 | |
| 	case MUSB_DMA_STATUS_UNKNOWN:
 | |
| 	case MUSB_DMA_STATUS_FREE:
 | |
| 		return 0;
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (!cppi_ch->transmit && cppi_ch->head)
 | |
| 		cppi_dump_rxq(3, "/abort", cppi_ch);
 | |
| 
 | |
| 	mbase = controller->mregs;
 | |
| 	tibase = controller->tibase;
 | |
| 
 | |
| 	queue = cppi_ch->head;
 | |
| 	cppi_ch->head = NULL;
 | |
| 	cppi_ch->tail = NULL;
 | |
| 
 | |
| 	/* REVISIT should rely on caller having done this,
 | |
| 	 * and caller should rely on us not changing it.
 | |
| 	 * peripheral code is safe ... check host too.
 | |
| 	 */
 | |
| 	musb_ep_select(mbase, cppi_ch->index + 1);
 | |
| 
 | |
| 	if (cppi_ch->transmit) {
 | |
| 		struct cppi_tx_stateram __iomem *tx_ram;
 | |
| 		/* REVISIT put timeouts on these controller handshakes */
 | |
| 
 | |
| 		cppi_dump_tx(6, cppi_ch, " (teardown)");
 | |
| 
 | |
| 		/* teardown DMA engine then usb core */
 | |
| 		do {
 | |
| 			value = musb_readl(tibase, DAVINCI_TXCPPI_TEAR_REG);
 | |
| 		} while (!(value & CPPI_TEAR_READY));
 | |
| 		musb_writel(tibase, DAVINCI_TXCPPI_TEAR_REG, cppi_ch->index);
 | |
| 
 | |
| 		tx_ram = cppi_ch->state_ram;
 | |
| 		do {
 | |
| 			value = musb_readl(&tx_ram->tx_complete, 0);
 | |
| 		} while (0xFFFFFFFC != value);
 | |
| 
 | |
| 		/* FIXME clean up the transfer state ... here?
 | |
| 		 * the completion routine should get called with
 | |
| 		 * an appropriate status code.
 | |
| 		 */
 | |
| 
 | |
| 		value = musb_readw(regs, MUSB_TXCSR);
 | |
| 		value &= ~MUSB_TXCSR_DMAENAB;
 | |
| 		value |= MUSB_TXCSR_FLUSHFIFO;
 | |
| 		musb_writew(regs, MUSB_TXCSR, value);
 | |
| 		musb_writew(regs, MUSB_TXCSR, value);
 | |
| 
 | |
| 		/*
 | |
| 		 * 1. Write to completion Ptr value 0x1(bit 0 set)
 | |
| 		 *    (write back mode)
 | |
| 		 * 2. Wait for abort interrupt and then put the channel in
 | |
| 		 *    compare mode by writing 1 to the tx_complete register.
 | |
| 		 */
 | |
| 		cppi_reset_tx(tx_ram, 1);
 | |
| 		cppi_ch->head = NULL;
 | |
| 		musb_writel(&tx_ram->tx_complete, 0, 1);
 | |
| 		cppi_dump_tx(5, cppi_ch, " (done teardown)");
 | |
| 
 | |
| 		/* REVISIT tx side _should_ clean up the same way
 | |
| 		 * as the RX side ... this does no cleanup at all!
 | |
| 		 */
 | |
| 
 | |
| 	} else /* RX */ {
 | |
| 		u16			csr;
 | |
| 
 | |
| 		/* NOTE: docs don't guarantee any of this works ...  we
 | |
| 		 * expect that if the usb core stops telling the cppi core
 | |
| 		 * to pull more data from it, then it'll be safe to flush
 | |
| 		 * current RX DMA state iff any pending fifo transfer is done.
 | |
| 		 */
 | |
| 
 | |
| 		core_rxirq_disable(tibase, cppi_ch->index + 1);
 | |
| 
 | |
| 		/* for host, ensure ReqPkt is never set again */
 | |
| 		if (is_host_active(cppi_ch->controller->musb)) {
 | |
| 			value = musb_readl(tibase, DAVINCI_AUTOREQ_REG);
 | |
| 			value &= ~((0x3) << (cppi_ch->index * 2));
 | |
| 			musb_writel(tibase, DAVINCI_AUTOREQ_REG, value);
 | |
| 		}
 | |
| 
 | |
| 		csr = musb_readw(regs, MUSB_RXCSR);
 | |
| 
 | |
| 		/* for host, clear (just) ReqPkt at end of current packet(s) */
 | |
| 		if (is_host_active(cppi_ch->controller->musb)) {
 | |
| 			csr |= MUSB_RXCSR_H_WZC_BITS;
 | |
| 			csr &= ~MUSB_RXCSR_H_REQPKT;
 | |
| 		} else
 | |
| 			csr |= MUSB_RXCSR_P_WZC_BITS;
 | |
| 
 | |
| 		/* clear dma enable */
 | |
| 		csr &= ~(MUSB_RXCSR_DMAENAB);
 | |
| 		musb_writew(regs, MUSB_RXCSR, csr);
 | |
| 		csr = musb_readw(regs, MUSB_RXCSR);
 | |
| 
 | |
| 		/* Quiesce: wait for current dma to finish (if not cleanup).
 | |
| 		 * We can't use bit zero of stateram->rx_sop, since that
 | |
| 		 * refers to an entire "DMA packet" not just emptying the
 | |
| 		 * current fifo.  Most segments need multiple usb packets.
 | |
| 		 */
 | |
| 		if (channel->status == MUSB_DMA_STATUS_BUSY)
 | |
| 			udelay(50);
 | |
| 
 | |
| 		/* scan the current list, reporting any data that was
 | |
| 		 * transferred and acking any IRQ
 | |
| 		 */
 | |
| 		cppi_rx_scan(controller, cppi_ch->index);
 | |
| 
 | |
| 		/* clobber the existing state once it's idle
 | |
| 		 *
 | |
| 		 * NOTE:  arguably, we should also wait for all the other
 | |
| 		 * RX channels to quiesce (how??) and then temporarily
 | |
| 		 * disable RXCPPI_CTRL_REG ... but it seems that we can
 | |
| 		 * rely on the controller restarting from state ram, with
 | |
| 		 * only RXCPPI_BUFCNT state being bogus.  BUFCNT will
 | |
| 		 * correct itself after the next DMA transfer though.
 | |
| 		 *
 | |
| 		 * REVISIT does using rndis mode change that?
 | |
| 		 */
 | |
| 		cppi_reset_rx(cppi_ch->state_ram);
 | |
| 
 | |
| 		/* next DMA request _should_ load cppi head ptr */
 | |
| 
 | |
| 		/* ... we don't "free" that list, only mutate it in place.  */
 | |
| 		cppi_dump_rx(5, cppi_ch, " (done abort)");
 | |
| 
 | |
| 		/* clean up previously pending bds */
 | |
| 		cppi_bd_free(cppi_ch, cppi_ch->last_processed);
 | |
| 		cppi_ch->last_processed = NULL;
 | |
| 
 | |
| 		while (queue) {
 | |
| 			struct cppi_descriptor	*tmp = queue->next;
 | |
| 
 | |
| 			cppi_bd_free(cppi_ch, queue);
 | |
| 			queue = tmp;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	channel->status = MUSB_DMA_STATUS_FREE;
 | |
| 	cppi_ch->buf_dma = 0;
 | |
| 	cppi_ch->offset = 0;
 | |
| 	cppi_ch->buf_len = 0;
 | |
| 	cppi_ch->maxpacket = 0;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* TBD Queries:
 | |
|  *
 | |
|  * Power Management ... probably turn off cppi during suspend, restart;
 | |
|  * check state ram?  Clocking is presumably shared with usb core.
 | |
|  */
 |