 1e3e2c7c46
			
		
	
	
	1e3e2c7c46
	
	
	
		
			
			rproc_handle_resources() looks for the resource table and then invokes a resource handler function which it took as a parameter. This works, but it's a bit unintuitive to follow. Instead of passing around function pointers, this patch changes rproc_handle_resource() to just find and return the resource table, and then the calling sites of rproc_handle_resource() invoke their resource handlers directly. Signed-off-by: Ohad Ben-Cohen <ohad@wizery.com> Cc: Brian Swetland <swetland@google.com> Cc: Iliyan Malchev <malchev@google.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Grant Likely <grant.likely@secretlab.ca> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Mark Grosen <mgrosen@ti.com> Cc: John Williams <john.williams@petalogix.com> Cc: Michal Simek <monstr@monstr.eu> Cc: Loic PALLARDY <loic.pallardy@stericsson.com> Cc: Ludovic BARRE <ludovic.barre@stericsson.com> Cc: Omar Ramirez Luna <omar.luna@linaro.org> Cc: Guzman Lugo Fernando <fernando.lugo@ti.com> Cc: Anna Suman <s-anna@ti.com> Cc: Clark Rob <rob@ti.com> Cc: Stephen Boyd <sboyd@codeaurora.org> Cc: Saravana Kannan <skannan@codeaurora.org> Cc: David Brown <davidb@codeaurora.org> Cc: Kieran Bingham <kieranbingham@gmail.com> Cc: Tony Lindgren <tony@atomide.com>
		
			
				
	
	
		
			1586 lines
		
	
	
	
		
			43 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1586 lines
		
	
	
	
		
			43 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Remote Processor Framework
 | |
|  *
 | |
|  * Copyright (C) 2011 Texas Instruments, Inc.
 | |
|  * Copyright (C) 2011 Google, Inc.
 | |
|  *
 | |
|  * Ohad Ben-Cohen <ohad@wizery.com>
 | |
|  * Brian Swetland <swetland@google.com>
 | |
|  * Mark Grosen <mgrosen@ti.com>
 | |
|  * Fernando Guzman Lugo <fernando.lugo@ti.com>
 | |
|  * Suman Anna <s-anna@ti.com>
 | |
|  * Robert Tivy <rtivy@ti.com>
 | |
|  * Armando Uribe De Leon <x0095078@ti.com>
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License
 | |
|  * version 2 as published by the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  */
 | |
| 
 | |
| #define pr_fmt(fmt)    "%s: " fmt, __func__
 | |
| 
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/device.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/mutex.h>
 | |
| #include <linux/dma-mapping.h>
 | |
| #include <linux/firmware.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/debugfs.h>
 | |
| #include <linux/remoteproc.h>
 | |
| #include <linux/iommu.h>
 | |
| #include <linux/klist.h>
 | |
| #include <linux/elf.h>
 | |
| #include <linux/virtio_ids.h>
 | |
| #include <linux/virtio_ring.h>
 | |
| #include <asm/byteorder.h>
 | |
| 
 | |
| #include "remoteproc_internal.h"
 | |
| 
 | |
| static void klist_rproc_get(struct klist_node *n);
 | |
| static void klist_rproc_put(struct klist_node *n);
 | |
| 
 | |
| /*
 | |
|  * klist of the available remote processors.
 | |
|  *
 | |
|  * We need this in order to support name-based lookups (needed by the
 | |
|  * rproc_get_by_name()).
 | |
|  *
 | |
|  * That said, we don't use rproc_get_by_name() at this point.
 | |
|  * The use cases that do require its existence should be
 | |
|  * scrutinized, and hopefully migrated to rproc_boot() using device-based
 | |
|  * binding.
 | |
|  *
 | |
|  * If/when this materializes, we could drop the klist (and the by_name
 | |
|  * API).
 | |
|  */
 | |
| static DEFINE_KLIST(rprocs, klist_rproc_get, klist_rproc_put);
 | |
| 
 | |
| typedef int (*rproc_handle_resources_t)(struct rproc *rproc,
 | |
| 				struct resource_table *table, int len);
 | |
| typedef int (*rproc_handle_resource_t)(struct rproc *rproc, void *, int avail);
 | |
| 
 | |
| /*
 | |
|  * This is the IOMMU fault handler we register with the IOMMU API
 | |
|  * (when relevant; not all remote processors access memory through
 | |
|  * an IOMMU).
 | |
|  *
 | |
|  * IOMMU core will invoke this handler whenever the remote processor
 | |
|  * will try to access an unmapped device address.
 | |
|  *
 | |
|  * Currently this is mostly a stub, but it will be later used to trigger
 | |
|  * the recovery of the remote processor.
 | |
|  */
 | |
| static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
 | |
| 		unsigned long iova, int flags)
 | |
| {
 | |
| 	dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * Let the iommu core know we're not really handling this fault;
 | |
| 	 * we just plan to use this as a recovery trigger.
 | |
| 	 */
 | |
| 	return -ENOSYS;
 | |
| }
 | |
| 
 | |
| static int rproc_enable_iommu(struct rproc *rproc)
 | |
| {
 | |
| 	struct iommu_domain *domain;
 | |
| 	struct device *dev = rproc->dev;
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * We currently use iommu_present() to decide if an IOMMU
 | |
| 	 * setup is needed.
 | |
| 	 *
 | |
| 	 * This works for simple cases, but will easily fail with
 | |
| 	 * platforms that do have an IOMMU, but not for this specific
 | |
| 	 * rproc.
 | |
| 	 *
 | |
| 	 * This will be easily solved by introducing hw capabilities
 | |
| 	 * that will be set by the remoteproc driver.
 | |
| 	 */
 | |
| 	if (!iommu_present(dev->bus)) {
 | |
| 		dev_dbg(dev, "iommu not found\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	domain = iommu_domain_alloc(dev->bus);
 | |
| 	if (!domain) {
 | |
| 		dev_err(dev, "can't alloc iommu domain\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	iommu_set_fault_handler(domain, rproc_iommu_fault);
 | |
| 
 | |
| 	ret = iommu_attach_device(domain, dev);
 | |
| 	if (ret) {
 | |
| 		dev_err(dev, "can't attach iommu device: %d\n", ret);
 | |
| 		goto free_domain;
 | |
| 	}
 | |
| 
 | |
| 	rproc->domain = domain;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| free_domain:
 | |
| 	iommu_domain_free(domain);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void rproc_disable_iommu(struct rproc *rproc)
 | |
| {
 | |
| 	struct iommu_domain *domain = rproc->domain;
 | |
| 	struct device *dev = rproc->dev;
 | |
| 
 | |
| 	if (!domain)
 | |
| 		return;
 | |
| 
 | |
| 	iommu_detach_device(domain, dev);
 | |
| 	iommu_domain_free(domain);
 | |
| 
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Some remote processors will ask us to allocate them physically contiguous
 | |
|  * memory regions (which we call "carveouts"), and map them to specific
 | |
|  * device addresses (which are hardcoded in the firmware).
 | |
|  *
 | |
|  * They may then ask us to copy objects into specific device addresses (e.g.
 | |
|  * code/data sections) or expose us certain symbols in other device address
 | |
|  * (e.g. their trace buffer).
 | |
|  *
 | |
|  * This function is an internal helper with which we can go over the allocated
 | |
|  * carveouts and translate specific device address to kernel virtual addresses
 | |
|  * so we can access the referenced memory.
 | |
|  *
 | |
|  * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
 | |
|  * but only on kernel direct mapped RAM memory. Instead, we're just using
 | |
|  * here the output of the DMA API, which should be more correct.
 | |
|  */
 | |
| static void *rproc_da_to_va(struct rproc *rproc, u64 da, int len)
 | |
| {
 | |
| 	struct rproc_mem_entry *carveout;
 | |
| 	void *ptr = NULL;
 | |
| 
 | |
| 	list_for_each_entry(carveout, &rproc->carveouts, node) {
 | |
| 		int offset = da - carveout->da;
 | |
| 
 | |
| 		/* try next carveout if da is too small */
 | |
| 		if (offset < 0)
 | |
| 			continue;
 | |
| 
 | |
| 		/* try next carveout if da is too large */
 | |
| 		if (offset + len > carveout->len)
 | |
| 			continue;
 | |
| 
 | |
| 		ptr = carveout->va + offset;
 | |
| 
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return ptr;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rproc_load_segments() - load firmware segments to memory
 | |
|  * @rproc: remote processor which will be booted using these fw segments
 | |
|  * @elf_data: the content of the ELF firmware image
 | |
|  * @len: firmware size (in bytes)
 | |
|  *
 | |
|  * This function loads the firmware segments to memory, where the remote
 | |
|  * processor expects them.
 | |
|  *
 | |
|  * Some remote processors will expect their code and data to be placed
 | |
|  * in specific device addresses, and can't have them dynamically assigned.
 | |
|  *
 | |
|  * We currently support only those kind of remote processors, and expect
 | |
|  * the program header's paddr member to contain those addresses. We then go
 | |
|  * through the physically contiguous "carveout" memory regions which we
 | |
|  * allocated (and mapped) earlier on behalf of the remote processor,
 | |
|  * and "translate" device address to kernel addresses, so we can copy the
 | |
|  * segments where they are expected.
 | |
|  *
 | |
|  * Currently we only support remote processors that required carveout
 | |
|  * allocations and got them mapped onto their iommus. Some processors
 | |
|  * might be different: they might not have iommus, and would prefer to
 | |
|  * directly allocate memory for every segment/resource. This is not yet
 | |
|  * supported, though.
 | |
|  */
 | |
| static int
 | |
| rproc_load_segments(struct rproc *rproc, const u8 *elf_data, size_t len)
 | |
| {
 | |
| 	struct device *dev = rproc->dev;
 | |
| 	struct elf32_hdr *ehdr;
 | |
| 	struct elf32_phdr *phdr;
 | |
| 	int i, ret = 0;
 | |
| 
 | |
| 	ehdr = (struct elf32_hdr *)elf_data;
 | |
| 	phdr = (struct elf32_phdr *)(elf_data + ehdr->e_phoff);
 | |
| 
 | |
| 	/* go through the available ELF segments */
 | |
| 	for (i = 0; i < ehdr->e_phnum; i++, phdr++) {
 | |
| 		u32 da = phdr->p_paddr;
 | |
| 		u32 memsz = phdr->p_memsz;
 | |
| 		u32 filesz = phdr->p_filesz;
 | |
| 		u32 offset = phdr->p_offset;
 | |
| 		void *ptr;
 | |
| 
 | |
| 		if (phdr->p_type != PT_LOAD)
 | |
| 			continue;
 | |
| 
 | |
| 		dev_dbg(dev, "phdr: type %d da 0x%x memsz 0x%x filesz 0x%x\n",
 | |
| 					phdr->p_type, da, memsz, filesz);
 | |
| 
 | |
| 		if (filesz > memsz) {
 | |
| 			dev_err(dev, "bad phdr filesz 0x%x memsz 0x%x\n",
 | |
| 							filesz, memsz);
 | |
| 			ret = -EINVAL;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (offset + filesz > len) {
 | |
| 			dev_err(dev, "truncated fw: need 0x%x avail 0x%x\n",
 | |
| 					offset + filesz, len);
 | |
| 			ret = -EINVAL;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/* grab the kernel address for this device address */
 | |
| 		ptr = rproc_da_to_va(rproc, da, memsz);
 | |
| 		if (!ptr) {
 | |
| 			dev_err(dev, "bad phdr da 0x%x mem 0x%x\n", da, memsz);
 | |
| 			ret = -EINVAL;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/* put the segment where the remote processor expects it */
 | |
| 		if (phdr->p_filesz)
 | |
| 			memcpy(ptr, elf_data + phdr->p_offset, filesz);
 | |
| 
 | |
| 		/*
 | |
| 		 * Zero out remaining memory for this segment.
 | |
| 		 *
 | |
| 		 * This isn't strictly required since dma_alloc_coherent already
 | |
| 		 * did this for us. albeit harmless, we may consider removing
 | |
| 		 * this.
 | |
| 		 */
 | |
| 		if (memsz > filesz)
 | |
| 			memset(ptr + filesz, 0, memsz - filesz);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int
 | |
| __rproc_handle_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
 | |
| {
 | |
| 	struct rproc *rproc = rvdev->rproc;
 | |
| 	struct device *dev = rproc->dev;
 | |
| 	struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
 | |
| 	dma_addr_t dma;
 | |
| 	void *va;
 | |
| 	int ret, size, notifyid;
 | |
| 
 | |
| 	dev_dbg(dev, "vdev rsc: vring%d: da %x, qsz %d, align %d\n",
 | |
| 				i, vring->da, vring->num, vring->align);
 | |
| 
 | |
| 	/* make sure reserved bytes are zeroes */
 | |
| 	if (vring->reserved) {
 | |
| 		dev_err(dev, "vring rsc has non zero reserved bytes\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* verify queue size and vring alignment are sane */
 | |
| 	if (!vring->num || !vring->align) {
 | |
| 		dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
 | |
| 						vring->num, vring->align);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* actual size of vring (in bytes) */
 | |
| 	size = PAGE_ALIGN(vring_size(vring->num, vring->align));
 | |
| 
 | |
| 	if (!idr_pre_get(&rproc->notifyids, GFP_KERNEL)) {
 | |
| 		dev_err(dev, "idr_pre_get failed\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocate non-cacheable memory for the vring. In the future
 | |
| 	 * this call will also configure the IOMMU for us
 | |
| 	 */
 | |
| 	va = dma_alloc_coherent(dev, size, &dma, GFP_KERNEL);
 | |
| 	if (!va) {
 | |
| 		dev_err(dev, "dma_alloc_coherent failed\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* assign an rproc-wide unique index for this vring */
 | |
| 	/* TODO: assign a notifyid for rvdev updates as well */
 | |
| 	ret = idr_get_new(&rproc->notifyids, &rvdev->vring[i], ¬ifyid);
 | |
| 	if (ret) {
 | |
| 		dev_err(dev, "idr_get_new failed: %d\n", ret);
 | |
| 		dma_free_coherent(dev, size, va, dma);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	/* let the rproc know the da and notifyid of this vring */
 | |
| 	/* TODO: expose this to remote processor */
 | |
| 	vring->da = dma;
 | |
| 	vring->notifyid = notifyid;
 | |
| 
 | |
| 	dev_dbg(dev, "vring%d: va %p dma %x size %x idr %d\n", i, va,
 | |
| 					dma, size, notifyid);
 | |
| 
 | |
| 	rvdev->vring[i].len = vring->num;
 | |
| 	rvdev->vring[i].align = vring->align;
 | |
| 	rvdev->vring[i].va = va;
 | |
| 	rvdev->vring[i].dma = dma;
 | |
| 	rvdev->vring[i].notifyid = notifyid;
 | |
| 	rvdev->vring[i].rvdev = rvdev;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void __rproc_free_vrings(struct rproc_vdev *rvdev, int i)
 | |
| {
 | |
| 	struct rproc *rproc = rvdev->rproc;
 | |
| 
 | |
| 	for (i--; i > 0; i--) {
 | |
| 		struct rproc_vring *rvring = &rvdev->vring[i];
 | |
| 		int size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
 | |
| 
 | |
| 		dma_free_coherent(rproc->dev, size, rvring->va, rvring->dma);
 | |
| 		idr_remove(&rproc->notifyids, rvring->notifyid);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rproc_handle_vdev() - handle a vdev fw resource
 | |
|  * @rproc: the remote processor
 | |
|  * @rsc: the vring resource descriptor
 | |
|  * @avail: size of available data (for sanity checking the image)
 | |
|  *
 | |
|  * This resource entry requests the host to statically register a virtio
 | |
|  * device (vdev), and setup everything needed to support it. It contains
 | |
|  * everything needed to make it possible: the virtio device id, virtio
 | |
|  * device features, vrings information, virtio config space, etc...
 | |
|  *
 | |
|  * Before registering the vdev, the vrings are allocated from non-cacheable
 | |
|  * physically contiguous memory. Currently we only support two vrings per
 | |
|  * remote processor (temporary limitation). We might also want to consider
 | |
|  * doing the vring allocation only later when ->find_vqs() is invoked, and
 | |
|  * then release them upon ->del_vqs().
 | |
|  *
 | |
|  * Note: @da is currently not really handled correctly: we dynamically
 | |
|  * allocate it using the DMA API, ignoring requested hard coded addresses,
 | |
|  * and we don't take care of any required IOMMU programming. This is all
 | |
|  * going to be taken care of when the generic iommu-based DMA API will be
 | |
|  * merged. Meanwhile, statically-addressed iommu-based firmware images should
 | |
|  * use RSC_DEVMEM resource entries to map their required @da to the physical
 | |
|  * address of their base CMA region (ouch, hacky!).
 | |
|  *
 | |
|  * Returns 0 on success, or an appropriate error code otherwise
 | |
|  */
 | |
| static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
 | |
| 								int avail)
 | |
| {
 | |
| 	struct device *dev = rproc->dev;
 | |
| 	struct rproc_vdev *rvdev;
 | |
| 	int i, ret;
 | |
| 
 | |
| 	/* make sure resource isn't truncated */
 | |
| 	if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring)
 | |
| 			+ rsc->config_len > avail) {
 | |
| 		dev_err(rproc->dev, "vdev rsc is truncated\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* make sure reserved bytes are zeroes */
 | |
| 	if (rsc->reserved[0] || rsc->reserved[1]) {
 | |
| 		dev_err(dev, "vdev rsc has non zero reserved bytes\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	dev_dbg(dev, "vdev rsc: id %d, dfeatures %x, cfg len %d, %d vrings\n",
 | |
| 		rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
 | |
| 
 | |
| 	/* we currently support only two vrings per rvdev */
 | |
| 	if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
 | |
| 		dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	rvdev = kzalloc(sizeof(struct rproc_vdev), GFP_KERNEL);
 | |
| 	if (!rvdev)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	rvdev->rproc = rproc;
 | |
| 
 | |
| 	/* allocate the vrings */
 | |
| 	for (i = 0; i < rsc->num_of_vrings; i++) {
 | |
| 		ret = __rproc_handle_vring(rvdev, rsc, i);
 | |
| 		if (ret)
 | |
| 			goto free_vrings;
 | |
| 	}
 | |
| 
 | |
| 	/* remember the device features */
 | |
| 	rvdev->dfeatures = rsc->dfeatures;
 | |
| 
 | |
| 	list_add_tail(&rvdev->node, &rproc->rvdevs);
 | |
| 
 | |
| 	/* it is now safe to add the virtio device */
 | |
| 	ret = rproc_add_virtio_dev(rvdev, rsc->id);
 | |
| 	if (ret)
 | |
| 		goto free_vrings;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| free_vrings:
 | |
| 	__rproc_free_vrings(rvdev, i);
 | |
| 	kfree(rvdev);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rproc_handle_trace() - handle a shared trace buffer resource
 | |
|  * @rproc: the remote processor
 | |
|  * @rsc: the trace resource descriptor
 | |
|  * @avail: size of available data (for sanity checking the image)
 | |
|  *
 | |
|  * In case the remote processor dumps trace logs into memory,
 | |
|  * export it via debugfs.
 | |
|  *
 | |
|  * Currently, the 'da' member of @rsc should contain the device address
 | |
|  * where the remote processor is dumping the traces. Later we could also
 | |
|  * support dynamically allocating this address using the generic
 | |
|  * DMA API (but currently there isn't a use case for that).
 | |
|  *
 | |
|  * Returns 0 on success, or an appropriate error code otherwise
 | |
|  */
 | |
| static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
 | |
| 								int avail)
 | |
| {
 | |
| 	struct rproc_mem_entry *trace;
 | |
| 	struct device *dev = rproc->dev;
 | |
| 	void *ptr;
 | |
| 	char name[15];
 | |
| 
 | |
| 	if (sizeof(*rsc) > avail) {
 | |
| 		dev_err(rproc->dev, "trace rsc is truncated\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* make sure reserved bytes are zeroes */
 | |
| 	if (rsc->reserved) {
 | |
| 		dev_err(dev, "trace rsc has non zero reserved bytes\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* what's the kernel address of this resource ? */
 | |
| 	ptr = rproc_da_to_va(rproc, rsc->da, rsc->len);
 | |
| 	if (!ptr) {
 | |
| 		dev_err(dev, "erroneous trace resource entry\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	trace = kzalloc(sizeof(*trace), GFP_KERNEL);
 | |
| 	if (!trace) {
 | |
| 		dev_err(dev, "kzalloc trace failed\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	/* set the trace buffer dma properties */
 | |
| 	trace->len = rsc->len;
 | |
| 	trace->va = ptr;
 | |
| 
 | |
| 	/* make sure snprintf always null terminates, even if truncating */
 | |
| 	snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
 | |
| 
 | |
| 	/* create the debugfs entry */
 | |
| 	trace->priv = rproc_create_trace_file(name, rproc, trace);
 | |
| 	if (!trace->priv) {
 | |
| 		trace->va = NULL;
 | |
| 		kfree(trace);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	list_add_tail(&trace->node, &rproc->traces);
 | |
| 
 | |
| 	rproc->num_traces++;
 | |
| 
 | |
| 	dev_dbg(dev, "%s added: va %p, da 0x%x, len 0x%x\n", name, ptr,
 | |
| 						rsc->da, rsc->len);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rproc_handle_devmem() - handle devmem resource entry
 | |
|  * @rproc: remote processor handle
 | |
|  * @rsc: the devmem resource entry
 | |
|  * @avail: size of available data (for sanity checking the image)
 | |
|  *
 | |
|  * Remote processors commonly need to access certain on-chip peripherals.
 | |
|  *
 | |
|  * Some of these remote processors access memory via an iommu device,
 | |
|  * and might require us to configure their iommu before they can access
 | |
|  * the on-chip peripherals they need.
 | |
|  *
 | |
|  * This resource entry is a request to map such a peripheral device.
 | |
|  *
 | |
|  * These devmem entries will contain the physical address of the device in
 | |
|  * the 'pa' member. If a specific device address is expected, then 'da' will
 | |
|  * contain it (currently this is the only use case supported). 'len' will
 | |
|  * contain the size of the physical region we need to map.
 | |
|  *
 | |
|  * Currently we just "trust" those devmem entries to contain valid physical
 | |
|  * addresses, but this is going to change: we want the implementations to
 | |
|  * tell us ranges of physical addresses the firmware is allowed to request,
 | |
|  * and not allow firmwares to request access to physical addresses that
 | |
|  * are outside those ranges.
 | |
|  */
 | |
| static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
 | |
| 								int avail)
 | |
| {
 | |
| 	struct rproc_mem_entry *mapping;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* no point in handling this resource without a valid iommu domain */
 | |
| 	if (!rproc->domain)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (sizeof(*rsc) > avail) {
 | |
| 		dev_err(rproc->dev, "devmem rsc is truncated\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* make sure reserved bytes are zeroes */
 | |
| 	if (rsc->reserved) {
 | |
| 		dev_err(rproc->dev, "devmem rsc has non zero reserved bytes\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
 | |
| 	if (!mapping) {
 | |
| 		dev_err(rproc->dev, "kzalloc mapping failed\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
 | |
| 	if (ret) {
 | |
| 		dev_err(rproc->dev, "failed to map devmem: %d\n", ret);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We'll need this info later when we'll want to unmap everything
 | |
| 	 * (e.g. on shutdown).
 | |
| 	 *
 | |
| 	 * We can't trust the remote processor not to change the resource
 | |
| 	 * table, so we must maintain this info independently.
 | |
| 	 */
 | |
| 	mapping->da = rsc->da;
 | |
| 	mapping->len = rsc->len;
 | |
| 	list_add_tail(&mapping->node, &rproc->mappings);
 | |
| 
 | |
| 	dev_dbg(rproc->dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
 | |
| 					rsc->pa, rsc->da, rsc->len);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out:
 | |
| 	kfree(mapping);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rproc_handle_carveout() - handle phys contig memory allocation requests
 | |
|  * @rproc: rproc handle
 | |
|  * @rsc: the resource entry
 | |
|  * @avail: size of available data (for image validation)
 | |
|  *
 | |
|  * This function will handle firmware requests for allocation of physically
 | |
|  * contiguous memory regions.
 | |
|  *
 | |
|  * These request entries should come first in the firmware's resource table,
 | |
|  * as other firmware entries might request placing other data objects inside
 | |
|  * these memory regions (e.g. data/code segments, trace resource entries, ...).
 | |
|  *
 | |
|  * Allocating memory this way helps utilizing the reserved physical memory
 | |
|  * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
 | |
|  * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
 | |
|  * pressure is important; it may have a substantial impact on performance.
 | |
|  */
 | |
| static int rproc_handle_carveout(struct rproc *rproc,
 | |
| 				struct fw_rsc_carveout *rsc, int avail)
 | |
| {
 | |
| 	struct rproc_mem_entry *carveout, *mapping;
 | |
| 	struct device *dev = rproc->dev;
 | |
| 	dma_addr_t dma;
 | |
| 	void *va;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (sizeof(*rsc) > avail) {
 | |
| 		dev_err(rproc->dev, "carveout rsc is truncated\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* make sure reserved bytes are zeroes */
 | |
| 	if (rsc->reserved) {
 | |
| 		dev_err(dev, "carveout rsc has non zero reserved bytes\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	dev_dbg(dev, "carveout rsc: da %x, pa %x, len %x, flags %x\n",
 | |
| 			rsc->da, rsc->pa, rsc->len, rsc->flags);
 | |
| 
 | |
| 	mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
 | |
| 	if (!mapping) {
 | |
| 		dev_err(dev, "kzalloc mapping failed\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	carveout = kzalloc(sizeof(*carveout), GFP_KERNEL);
 | |
| 	if (!carveout) {
 | |
| 		dev_err(dev, "kzalloc carveout failed\n");
 | |
| 		ret = -ENOMEM;
 | |
| 		goto free_mapping;
 | |
| 	}
 | |
| 
 | |
| 	va = dma_alloc_coherent(dev, rsc->len, &dma, GFP_KERNEL);
 | |
| 	if (!va) {
 | |
| 		dev_err(dev, "failed to dma alloc carveout: %d\n", rsc->len);
 | |
| 		ret = -ENOMEM;
 | |
| 		goto free_carv;
 | |
| 	}
 | |
| 
 | |
| 	dev_dbg(dev, "carveout va %p, dma %x, len 0x%x\n", va, dma, rsc->len);
 | |
| 
 | |
| 	/*
 | |
| 	 * Ok, this is non-standard.
 | |
| 	 *
 | |
| 	 * Sometimes we can't rely on the generic iommu-based DMA API
 | |
| 	 * to dynamically allocate the device address and then set the IOMMU
 | |
| 	 * tables accordingly, because some remote processors might
 | |
| 	 * _require_ us to use hard coded device addresses that their
 | |
| 	 * firmware was compiled with.
 | |
| 	 *
 | |
| 	 * In this case, we must use the IOMMU API directly and map
 | |
| 	 * the memory to the device address as expected by the remote
 | |
| 	 * processor.
 | |
| 	 *
 | |
| 	 * Obviously such remote processor devices should not be configured
 | |
| 	 * to use the iommu-based DMA API: we expect 'dma' to contain the
 | |
| 	 * physical address in this case.
 | |
| 	 */
 | |
| 	if (rproc->domain) {
 | |
| 		ret = iommu_map(rproc->domain, rsc->da, dma, rsc->len,
 | |
| 								rsc->flags);
 | |
| 		if (ret) {
 | |
| 			dev_err(dev, "iommu_map failed: %d\n", ret);
 | |
| 			goto dma_free;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * We'll need this info later when we'll want to unmap
 | |
| 		 * everything (e.g. on shutdown).
 | |
| 		 *
 | |
| 		 * We can't trust the remote processor not to change the
 | |
| 		 * resource table, so we must maintain this info independently.
 | |
| 		 */
 | |
| 		mapping->da = rsc->da;
 | |
| 		mapping->len = rsc->len;
 | |
| 		list_add_tail(&mapping->node, &rproc->mappings);
 | |
| 
 | |
| 		dev_dbg(dev, "carveout mapped 0x%x to 0x%x\n", rsc->da, dma);
 | |
| 
 | |
| 		/*
 | |
| 		 * Some remote processors might need to know the pa
 | |
| 		 * even though they are behind an IOMMU. E.g., OMAP4's
 | |
| 		 * remote M3 processor needs this so it can control
 | |
| 		 * on-chip hardware accelerators that are not behind
 | |
| 		 * the IOMMU, and therefor must know the pa.
 | |
| 		 *
 | |
| 		 * Generally we don't want to expose physical addresses
 | |
| 		 * if we don't have to (remote processors are generally
 | |
| 		 * _not_ trusted), so we might want to do this only for
 | |
| 		 * remote processor that _must_ have this (e.g. OMAP4's
 | |
| 		 * dual M3 subsystem).
 | |
| 		 */
 | |
| 		rsc->pa = dma;
 | |
| 	}
 | |
| 
 | |
| 	carveout->va = va;
 | |
| 	carveout->len = rsc->len;
 | |
| 	carveout->dma = dma;
 | |
| 	carveout->da = rsc->da;
 | |
| 
 | |
| 	list_add_tail(&carveout->node, &rproc->carveouts);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| dma_free:
 | |
| 	dma_free_coherent(dev, rsc->len, va, dma);
 | |
| free_carv:
 | |
| 	kfree(carveout);
 | |
| free_mapping:
 | |
| 	kfree(mapping);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * A lookup table for resource handlers. The indices are defined in
 | |
|  * enum fw_resource_type.
 | |
|  */
 | |
| static rproc_handle_resource_t rproc_handle_rsc[] = {
 | |
| 	[RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
 | |
| 	[RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
 | |
| 	[RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
 | |
| 	[RSC_VDEV] = NULL, /* VDEVs were handled upon registrarion */
 | |
| };
 | |
| 
 | |
| /* handle firmware resource entries before booting the remote processor */
 | |
| static int
 | |
| rproc_handle_boot_rsc(struct rproc *rproc, struct resource_table *table, int len)
 | |
| {
 | |
| 	struct device *dev = rproc->dev;
 | |
| 	rproc_handle_resource_t handler;
 | |
| 	int ret = 0, i;
 | |
| 
 | |
| 	for (i = 0; i < table->num; i++) {
 | |
| 		int offset = table->offset[i];
 | |
| 		struct fw_rsc_hdr *hdr = (void *)table + offset;
 | |
| 		int avail = len - offset - sizeof(*hdr);
 | |
| 		void *rsc = (void *)hdr + sizeof(*hdr);
 | |
| 
 | |
| 		/* make sure table isn't truncated */
 | |
| 		if (avail < 0) {
 | |
| 			dev_err(dev, "rsc table is truncated\n");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		dev_dbg(dev, "rsc: type %d\n", hdr->type);
 | |
| 
 | |
| 		if (hdr->type >= RSC_LAST) {
 | |
| 			dev_warn(dev, "unsupported resource %d\n", hdr->type);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		handler = rproc_handle_rsc[hdr->type];
 | |
| 		if (!handler)
 | |
| 			continue;
 | |
| 
 | |
| 		ret = handler(rproc, rsc, avail);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* handle firmware resource entries while registering the remote processor */
 | |
| static int
 | |
| rproc_handle_virtio_rsc(struct rproc *rproc, struct resource_table *table, int len)
 | |
| {
 | |
| 	struct device *dev = rproc->dev;
 | |
| 	int ret = 0, i;
 | |
| 
 | |
| 	for (i = 0; i < table->num; i++) {
 | |
| 		int offset = table->offset[i];
 | |
| 		struct fw_rsc_hdr *hdr = (void *)table + offset;
 | |
| 		int avail = len - offset - sizeof(*hdr);
 | |
| 		struct fw_rsc_vdev *vrsc;
 | |
| 
 | |
| 		/* make sure table isn't truncated */
 | |
| 		if (avail < 0) {
 | |
| 			dev_err(dev, "rsc table is truncated\n");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		dev_dbg(dev, "%s: rsc type %d\n", __func__, hdr->type);
 | |
| 
 | |
| 		if (hdr->type != RSC_VDEV)
 | |
| 			continue;
 | |
| 
 | |
| 		vrsc = (struct fw_rsc_vdev *)hdr->data;
 | |
| 
 | |
| 		ret = rproc_handle_vdev(rproc, vrsc, avail);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rproc_find_rsc_table() - find the resource table
 | |
|  * @rproc: the rproc handle
 | |
|  * @elf_data: the content of the ELF firmware image
 | |
|  * @len: firmware size (in bytes)
 | |
|  * @tablesz: place holder for providing back the table size
 | |
|  *
 | |
|  * This function finds the resource table inside the remote processor's
 | |
|  * firmware. It is used both upon the registration of @rproc (in order
 | |
|  * to look for and register the supported virito devices), and when the
 | |
|  * @rproc is booted.
 | |
|  *
 | |
|  * Returns the pointer to the resource table if it is found, and write its
 | |
|  * size into @tablesz. If a valid table isn't found, NULL is returned
 | |
|  * (and @tablesz isn't set).
 | |
|  */
 | |
| static struct resource_table *
 | |
| rproc_find_rsc_table(struct rproc *rproc, const u8 *elf_data, size_t len,
 | |
| 							int *tablesz)
 | |
| {
 | |
| 	struct elf32_hdr *ehdr;
 | |
| 	struct elf32_shdr *shdr;
 | |
| 	const char *name_table;
 | |
| 	struct device *dev = rproc->dev;
 | |
| 	struct resource_table *table = NULL;
 | |
| 	int i;
 | |
| 
 | |
| 	ehdr = (struct elf32_hdr *)elf_data;
 | |
| 	shdr = (struct elf32_shdr *)(elf_data + ehdr->e_shoff);
 | |
| 	name_table = elf_data + shdr[ehdr->e_shstrndx].sh_offset;
 | |
| 
 | |
| 	/* look for the resource table and handle it */
 | |
| 	for (i = 0; i < ehdr->e_shnum; i++, shdr++) {
 | |
| 		int size = shdr->sh_size;
 | |
| 		int offset = shdr->sh_offset;
 | |
| 
 | |
| 		if (strcmp(name_table + shdr->sh_name, ".resource_table"))
 | |
| 			continue;
 | |
| 
 | |
| 		table = (struct resource_table *)(elf_data + offset);
 | |
| 
 | |
| 		/* make sure we have the entire table */
 | |
| 		if (offset + size > len) {
 | |
| 			dev_err(dev, "resource table truncated\n");
 | |
| 			return NULL;
 | |
| 		}
 | |
| 
 | |
| 		/* make sure table has at least the header */
 | |
| 		if (sizeof(struct resource_table) > size) {
 | |
| 			dev_err(dev, "header-less resource table\n");
 | |
| 			return NULL;
 | |
| 		}
 | |
| 
 | |
| 		/* we don't support any version beyond the first */
 | |
| 		if (table->ver != 1) {
 | |
| 			dev_err(dev, "unsupported fw ver: %d\n", table->ver);
 | |
| 			return NULL;
 | |
| 		}
 | |
| 
 | |
| 		/* make sure reserved bytes are zeroes */
 | |
| 		if (table->reserved[0] || table->reserved[1]) {
 | |
| 			dev_err(dev, "non zero reserved bytes\n");
 | |
| 			return NULL;
 | |
| 		}
 | |
| 
 | |
| 		/* make sure the offsets array isn't truncated */
 | |
| 		if (table->num * sizeof(table->offset[0]) +
 | |
| 				sizeof(struct resource_table) > size) {
 | |
| 			dev_err(dev, "resource table incomplete\n");
 | |
| 			return NULL;
 | |
| 		}
 | |
| 
 | |
| 		*tablesz = shdr->sh_size;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return table;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rproc_resource_cleanup() - clean up and free all acquired resources
 | |
|  * @rproc: rproc handle
 | |
|  *
 | |
|  * This function will free all resources acquired for @rproc, and it
 | |
|  * is called whenever @rproc either shuts down or fails to boot.
 | |
|  */
 | |
| static void rproc_resource_cleanup(struct rproc *rproc)
 | |
| {
 | |
| 	struct rproc_mem_entry *entry, *tmp;
 | |
| 	struct device *dev = rproc->dev;
 | |
| 
 | |
| 	/* clean up debugfs trace entries */
 | |
| 	list_for_each_entry_safe(entry, tmp, &rproc->traces, node) {
 | |
| 		rproc_remove_trace_file(entry->priv);
 | |
| 		rproc->num_traces--;
 | |
| 		list_del(&entry->node);
 | |
| 		kfree(entry);
 | |
| 	}
 | |
| 
 | |
| 	/* clean up carveout allocations */
 | |
| 	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
 | |
| 		dma_free_coherent(dev, entry->len, entry->va, entry->dma);
 | |
| 		list_del(&entry->node);
 | |
| 		kfree(entry);
 | |
| 	}
 | |
| 
 | |
| 	/* clean up iommu mapping entries */
 | |
| 	list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
 | |
| 		size_t unmapped;
 | |
| 
 | |
| 		unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
 | |
| 		if (unmapped != entry->len) {
 | |
| 			/* nothing much to do besides complaining */
 | |
| 			dev_err(dev, "failed to unmap %u/%u\n", entry->len,
 | |
| 								unmapped);
 | |
| 		}
 | |
| 
 | |
| 		list_del(&entry->node);
 | |
| 		kfree(entry);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* make sure this fw image is sane */
 | |
| static int rproc_fw_sanity_check(struct rproc *rproc, const struct firmware *fw)
 | |
| {
 | |
| 	const char *name = rproc->firmware;
 | |
| 	struct device *dev = rproc->dev;
 | |
| 	struct elf32_hdr *ehdr;
 | |
| 	char class;
 | |
| 
 | |
| 	if (!fw) {
 | |
| 		dev_err(dev, "failed to load %s\n", name);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (fw->size < sizeof(struct elf32_hdr)) {
 | |
| 		dev_err(dev, "Image is too small\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	ehdr = (struct elf32_hdr *)fw->data;
 | |
| 
 | |
| 	/* We only support ELF32 at this point */
 | |
| 	class = ehdr->e_ident[EI_CLASS];
 | |
| 	if (class != ELFCLASS32) {
 | |
| 		dev_err(dev, "Unsupported class: %d\n", class);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* We assume the firmware has the same endianess as the host */
 | |
| # ifdef __LITTLE_ENDIAN
 | |
| 	if (ehdr->e_ident[EI_DATA] != ELFDATA2LSB) {
 | |
| # else /* BIG ENDIAN */
 | |
| 	if (ehdr->e_ident[EI_DATA] != ELFDATA2MSB) {
 | |
| # endif
 | |
| 		dev_err(dev, "Unsupported firmware endianess\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (fw->size < ehdr->e_shoff + sizeof(struct elf32_shdr)) {
 | |
| 		dev_err(dev, "Image is too small\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (memcmp(ehdr->e_ident, ELFMAG, SELFMAG)) {
 | |
| 		dev_err(dev, "Image is corrupted (bad magic)\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (ehdr->e_phnum == 0) {
 | |
| 		dev_err(dev, "No loadable segments\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (ehdr->e_phoff > fw->size) {
 | |
| 		dev_err(dev, "Firmware size is too small\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * take a firmware and boot a remote processor with it.
 | |
|  */
 | |
| static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
 | |
| {
 | |
| 	struct device *dev = rproc->dev;
 | |
| 	const char *name = rproc->firmware;
 | |
| 	struct elf32_hdr *ehdr;
 | |
| 	struct resource_table *table;
 | |
| 	int ret, tablesz;
 | |
| 
 | |
| 	ret = rproc_fw_sanity_check(rproc, fw);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ehdr = (struct elf32_hdr *)fw->data;
 | |
| 
 | |
| 	dev_info(dev, "Booting fw image %s, size %d\n", name, fw->size);
 | |
| 
 | |
| 	/*
 | |
| 	 * if enabling an IOMMU isn't relevant for this rproc, this is
 | |
| 	 * just a nop
 | |
| 	 */
 | |
| 	ret = rproc_enable_iommu(rproc);
 | |
| 	if (ret) {
 | |
| 		dev_err(dev, "can't enable iommu: %d\n", ret);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The ELF entry point is the rproc's boot addr (though this is not
 | |
| 	 * a configurable property of all remote processors: some will always
 | |
| 	 * boot at a specific hardcoded address).
 | |
| 	 */
 | |
| 	rproc->bootaddr = ehdr->e_entry;
 | |
| 
 | |
| 	/* look for the resource table */
 | |
| 	table = rproc_find_rsc_table(rproc, fw->data, fw->size, &tablesz);
 | |
| 	if (!table)
 | |
| 		goto clean_up;
 | |
| 
 | |
| 	/* handle fw resources which are required to boot rproc */
 | |
| 	ret = rproc_handle_boot_rsc(rproc, table, tablesz);
 | |
| 	if (ret) {
 | |
| 		dev_err(dev, "Failed to process resources: %d\n", ret);
 | |
| 		goto clean_up;
 | |
| 	}
 | |
| 
 | |
| 	/* load the ELF segments to memory */
 | |
| 	ret = rproc_load_segments(rproc, fw->data, fw->size);
 | |
| 	if (ret) {
 | |
| 		dev_err(dev, "Failed to load program segments: %d\n", ret);
 | |
| 		goto clean_up;
 | |
| 	}
 | |
| 
 | |
| 	/* power up the remote processor */
 | |
| 	ret = rproc->ops->start(rproc);
 | |
| 	if (ret) {
 | |
| 		dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
 | |
| 		goto clean_up;
 | |
| 	}
 | |
| 
 | |
| 	rproc->state = RPROC_RUNNING;
 | |
| 
 | |
| 	dev_info(dev, "remote processor %s is now up\n", rproc->name);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| clean_up:
 | |
| 	rproc_resource_cleanup(rproc);
 | |
| 	rproc_disable_iommu(rproc);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * take a firmware and look for virtio devices to register.
 | |
|  *
 | |
|  * Note: this function is called asynchronously upon registration of the
 | |
|  * remote processor (so we must wait until it completes before we try
 | |
|  * to unregister the device. one other option is just to use kref here,
 | |
|  * that might be cleaner).
 | |
|  */
 | |
| static void rproc_fw_config_virtio(const struct firmware *fw, void *context)
 | |
| {
 | |
| 	struct rproc *rproc = context;
 | |
| 	struct resource_table *table;
 | |
| 	int ret, tablesz;
 | |
| 
 | |
| 	if (rproc_fw_sanity_check(rproc, fw) < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* look for the resource table */
 | |
| 	table = rproc_find_rsc_table(rproc, fw->data, fw->size, &tablesz);
 | |
| 	if (!table)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* look for virtio devices and register them */
 | |
| 	ret = rproc_handle_virtio_rsc(rproc, table, tablesz);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| out:
 | |
| 	if (fw)
 | |
| 		release_firmware(fw);
 | |
| 	/* allow rproc_unregister() contexts, if any, to proceed */
 | |
| 	complete_all(&rproc->firmware_loading_complete);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rproc_boot() - boot a remote processor
 | |
|  * @rproc: handle of a remote processor
 | |
|  *
 | |
|  * Boot a remote processor (i.e. load its firmware, power it on, ...).
 | |
|  *
 | |
|  * If the remote processor is already powered on, this function immediately
 | |
|  * returns (successfully).
 | |
|  *
 | |
|  * Returns 0 on success, and an appropriate error value otherwise.
 | |
|  */
 | |
| int rproc_boot(struct rproc *rproc)
 | |
| {
 | |
| 	const struct firmware *firmware_p;
 | |
| 	struct device *dev;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!rproc) {
 | |
| 		pr_err("invalid rproc handle\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	dev = rproc->dev;
 | |
| 
 | |
| 	ret = mutex_lock_interruptible(&rproc->lock);
 | |
| 	if (ret) {
 | |
| 		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	/* loading a firmware is required */
 | |
| 	if (!rproc->firmware) {
 | |
| 		dev_err(dev, "%s: no firmware to load\n", __func__);
 | |
| 		ret = -EINVAL;
 | |
| 		goto unlock_mutex;
 | |
| 	}
 | |
| 
 | |
| 	/* prevent underlying implementation from being removed */
 | |
| 	if (!try_module_get(dev->driver->owner)) {
 | |
| 		dev_err(dev, "%s: can't get owner\n", __func__);
 | |
| 		ret = -EINVAL;
 | |
| 		goto unlock_mutex;
 | |
| 	}
 | |
| 
 | |
| 	/* skip the boot process if rproc is already powered up */
 | |
| 	if (atomic_inc_return(&rproc->power) > 1) {
 | |
| 		ret = 0;
 | |
| 		goto unlock_mutex;
 | |
| 	}
 | |
| 
 | |
| 	dev_info(dev, "powering up %s\n", rproc->name);
 | |
| 
 | |
| 	/* load firmware */
 | |
| 	ret = request_firmware(&firmware_p, rproc->firmware, dev);
 | |
| 	if (ret < 0) {
 | |
| 		dev_err(dev, "request_firmware failed: %d\n", ret);
 | |
| 		goto downref_rproc;
 | |
| 	}
 | |
| 
 | |
| 	ret = rproc_fw_boot(rproc, firmware_p);
 | |
| 
 | |
| 	release_firmware(firmware_p);
 | |
| 
 | |
| downref_rproc:
 | |
| 	if (ret) {
 | |
| 		module_put(dev->driver->owner);
 | |
| 		atomic_dec(&rproc->power);
 | |
| 	}
 | |
| unlock_mutex:
 | |
| 	mutex_unlock(&rproc->lock);
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(rproc_boot);
 | |
| 
 | |
| /**
 | |
|  * rproc_shutdown() - power off the remote processor
 | |
|  * @rproc: the remote processor
 | |
|  *
 | |
|  * Power off a remote processor (previously booted with rproc_boot()).
 | |
|  *
 | |
|  * In case @rproc is still being used by an additional user(s), then
 | |
|  * this function will just decrement the power refcount and exit,
 | |
|  * without really powering off the device.
 | |
|  *
 | |
|  * Every call to rproc_boot() must (eventually) be accompanied by a call
 | |
|  * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
 | |
|  *
 | |
|  * Notes:
 | |
|  * - we're not decrementing the rproc's refcount, only the power refcount.
 | |
|  *   which means that the @rproc handle stays valid even after rproc_shutdown()
 | |
|  *   returns, and users can still use it with a subsequent rproc_boot(), if
 | |
|  *   needed.
 | |
|  * - don't call rproc_shutdown() to unroll rproc_get_by_name(), exactly
 | |
|  *   because rproc_shutdown() _does not_ decrement the refcount of @rproc.
 | |
|  *   To decrement the refcount of @rproc, use rproc_put() (but _only_ if
 | |
|  *   you acquired @rproc using rproc_get_by_name()).
 | |
|  */
 | |
| void rproc_shutdown(struct rproc *rproc)
 | |
| {
 | |
| 	struct device *dev = rproc->dev;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = mutex_lock_interruptible(&rproc->lock);
 | |
| 	if (ret) {
 | |
| 		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* if the remote proc is still needed, bail out */
 | |
| 	if (!atomic_dec_and_test(&rproc->power))
 | |
| 		goto out;
 | |
| 
 | |
| 	/* power off the remote processor */
 | |
| 	ret = rproc->ops->stop(rproc);
 | |
| 	if (ret) {
 | |
| 		atomic_inc(&rproc->power);
 | |
| 		dev_err(dev, "can't stop rproc: %d\n", ret);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* clean up all acquired resources */
 | |
| 	rproc_resource_cleanup(rproc);
 | |
| 
 | |
| 	rproc_disable_iommu(rproc);
 | |
| 
 | |
| 	rproc->state = RPROC_OFFLINE;
 | |
| 
 | |
| 	dev_info(dev, "stopped remote processor %s\n", rproc->name);
 | |
| 
 | |
| out:
 | |
| 	mutex_unlock(&rproc->lock);
 | |
| 	if (!ret)
 | |
| 		module_put(dev->driver->owner);
 | |
| }
 | |
| EXPORT_SYMBOL(rproc_shutdown);
 | |
| 
 | |
| /**
 | |
|  * rproc_release() - completely deletes the existence of a remote processor
 | |
|  * @kref: the rproc's kref
 | |
|  *
 | |
|  * This function should _never_ be called directly.
 | |
|  *
 | |
|  * The only reasonable location to use it is as an argument when kref_put'ing
 | |
|  * @rproc's refcount.
 | |
|  *
 | |
|  * This way it will be called when no one holds a valid pointer to this @rproc
 | |
|  * anymore (and obviously after it is removed from the rprocs klist).
 | |
|  *
 | |
|  * Note: this function is not static because rproc_vdev_release() needs it when
 | |
|  * it decrements @rproc's refcount.
 | |
|  */
 | |
| void rproc_release(struct kref *kref)
 | |
| {
 | |
| 	struct rproc *rproc = container_of(kref, struct rproc, refcount);
 | |
| 	struct rproc_vdev *rvdev, *rvtmp;
 | |
| 
 | |
| 	dev_info(rproc->dev, "removing %s\n", rproc->name);
 | |
| 
 | |
| 	rproc_delete_debug_dir(rproc);
 | |
| 
 | |
| 	/* clean up remote vdev entries */
 | |
| 	list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node) {
 | |
| 		__rproc_free_vrings(rvdev, RVDEV_NUM_VRINGS);
 | |
| 		list_del(&rvdev->node);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * At this point no one holds a reference to rproc anymore,
 | |
| 	 * so we can directly unroll rproc_alloc()
 | |
| 	 */
 | |
| 	rproc_free(rproc);
 | |
| }
 | |
| 
 | |
| /* will be called when an rproc is added to the rprocs klist */
 | |
| static void klist_rproc_get(struct klist_node *n)
 | |
| {
 | |
| 	struct rproc *rproc = container_of(n, struct rproc, node);
 | |
| 
 | |
| 	kref_get(&rproc->refcount);
 | |
| }
 | |
| 
 | |
| /* will be called when an rproc is removed from the rprocs klist */
 | |
| static void klist_rproc_put(struct klist_node *n)
 | |
| {
 | |
| 	struct rproc *rproc = container_of(n, struct rproc, node);
 | |
| 
 | |
| 	kref_put(&rproc->refcount, rproc_release);
 | |
| }
 | |
| 
 | |
| static struct rproc *next_rproc(struct klist_iter *i)
 | |
| {
 | |
| 	struct klist_node *n;
 | |
| 
 | |
| 	n = klist_next(i);
 | |
| 	if (!n)
 | |
| 		return NULL;
 | |
| 
 | |
| 	return container_of(n, struct rproc, node);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rproc_get_by_name() - find a remote processor by name and boot it
 | |
|  * @name: name of the remote processor
 | |
|  *
 | |
|  * Finds an rproc handle using the remote processor's name, and then
 | |
|  * boot it. If it's already powered on, then just immediately return
 | |
|  * (successfully).
 | |
|  *
 | |
|  * Returns the rproc handle on success, and NULL on failure.
 | |
|  *
 | |
|  * This function increments the remote processor's refcount, so always
 | |
|  * use rproc_put() to decrement it back once rproc isn't needed anymore.
 | |
|  *
 | |
|  * Note: currently this function (and its counterpart rproc_put()) are not
 | |
|  * being used. We need to scrutinize the use cases
 | |
|  * that still need them, and see if we can migrate them to use the non
 | |
|  * name-based boot/shutdown interface.
 | |
|  */
 | |
| struct rproc *rproc_get_by_name(const char *name)
 | |
| {
 | |
| 	struct rproc *rproc;
 | |
| 	struct klist_iter i;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* find the remote processor, and upref its refcount */
 | |
| 	klist_iter_init(&rprocs, &i);
 | |
| 	while ((rproc = next_rproc(&i)) != NULL)
 | |
| 		if (!strcmp(rproc->name, name)) {
 | |
| 			kref_get(&rproc->refcount);
 | |
| 			break;
 | |
| 		}
 | |
| 	klist_iter_exit(&i);
 | |
| 
 | |
| 	/* can't find this rproc ? */
 | |
| 	if (!rproc) {
 | |
| 		pr_err("can't find remote processor %s\n", name);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	ret = rproc_boot(rproc);
 | |
| 	if (ret < 0) {
 | |
| 		kref_put(&rproc->refcount, rproc_release);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	return rproc;
 | |
| }
 | |
| EXPORT_SYMBOL(rproc_get_by_name);
 | |
| 
 | |
| /**
 | |
|  * rproc_put() - decrement the refcount of a remote processor, and shut it down
 | |
|  * @rproc: the remote processor
 | |
|  *
 | |
|  * This function tries to shutdown @rproc, and it then decrements its
 | |
|  * refcount.
 | |
|  *
 | |
|  * After this function returns, @rproc may _not_ be used anymore, and its
 | |
|  * handle should be considered invalid.
 | |
|  *
 | |
|  * This function should be called _iff_ the @rproc handle was grabbed by
 | |
|  * calling rproc_get_by_name().
 | |
|  */
 | |
| void rproc_put(struct rproc *rproc)
 | |
| {
 | |
| 	/* try to power off the remote processor */
 | |
| 	rproc_shutdown(rproc);
 | |
| 
 | |
| 	/* downref rproc's refcount */
 | |
| 	kref_put(&rproc->refcount, rproc_release);
 | |
| }
 | |
| EXPORT_SYMBOL(rproc_put);
 | |
| 
 | |
| /**
 | |
|  * rproc_register() - register a remote processor
 | |
|  * @rproc: the remote processor handle to register
 | |
|  *
 | |
|  * Registers @rproc with the remoteproc framework, after it has been
 | |
|  * allocated with rproc_alloc().
 | |
|  *
 | |
|  * This is called by the platform-specific rproc implementation, whenever
 | |
|  * a new remote processor device is probed.
 | |
|  *
 | |
|  * Returns 0 on success and an appropriate error code otherwise.
 | |
|  *
 | |
|  * Note: this function initiates an asynchronous firmware loading
 | |
|  * context, which will look for virtio devices supported by the rproc's
 | |
|  * firmware.
 | |
|  *
 | |
|  * If found, those virtio devices will be created and added, so as a result
 | |
|  * of registering this remote processor, additional virtio drivers might be
 | |
|  * probed.
 | |
|  */
 | |
| int rproc_register(struct rproc *rproc)
 | |
| {
 | |
| 	struct device *dev = rproc->dev;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	/* expose to rproc_get_by_name users */
 | |
| 	klist_add_tail(&rproc->node, &rprocs);
 | |
| 
 | |
| 	dev_info(rproc->dev, "%s is available\n", rproc->name);
 | |
| 
 | |
| 	dev_info(dev, "Note: remoteproc is still under development and considered experimental.\n");
 | |
| 	dev_info(dev, "THE BINARY FORMAT IS NOT YET FINALIZED, and backward compatibility isn't yet guaranteed.\n");
 | |
| 
 | |
| 	/* create debugfs entries */
 | |
| 	rproc_create_debug_dir(rproc);
 | |
| 
 | |
| 	/* rproc_unregister() calls must wait until async loader completes */
 | |
| 	init_completion(&rproc->firmware_loading_complete);
 | |
| 
 | |
| 	/*
 | |
| 	 * We must retrieve early virtio configuration info from
 | |
| 	 * the firmware (e.g. whether to register a virtio device,
 | |
| 	 * what virtio features does it support, ...).
 | |
| 	 *
 | |
| 	 * We're initiating an asynchronous firmware loading, so we can
 | |
| 	 * be built-in kernel code, without hanging the boot process.
 | |
| 	 */
 | |
| 	ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
 | |
| 					rproc->firmware, dev, GFP_KERNEL,
 | |
| 					rproc, rproc_fw_config_virtio);
 | |
| 	if (ret < 0) {
 | |
| 		dev_err(dev, "request_firmware_nowait failed: %d\n", ret);
 | |
| 		complete_all(&rproc->firmware_loading_complete);
 | |
| 		klist_remove(&rproc->node);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(rproc_register);
 | |
| 
 | |
| /**
 | |
|  * rproc_alloc() - allocate a remote processor handle
 | |
|  * @dev: the underlying device
 | |
|  * @name: name of this remote processor
 | |
|  * @ops: platform-specific handlers (mainly start/stop)
 | |
|  * @firmware: name of firmware file to load
 | |
|  * @len: length of private data needed by the rproc driver (in bytes)
 | |
|  *
 | |
|  * Allocates a new remote processor handle, but does not register
 | |
|  * it yet.
 | |
|  *
 | |
|  * This function should be used by rproc implementations during initialization
 | |
|  * of the remote processor.
 | |
|  *
 | |
|  * After creating an rproc handle using this function, and when ready,
 | |
|  * implementations should then call rproc_register() to complete
 | |
|  * the registration of the remote processor.
 | |
|  *
 | |
|  * On success the new rproc is returned, and on failure, NULL.
 | |
|  *
 | |
|  * Note: _never_ directly deallocate @rproc, even if it was not registered
 | |
|  * yet. Instead, if you just need to unroll rproc_alloc(), use rproc_free().
 | |
|  */
 | |
| struct rproc *rproc_alloc(struct device *dev, const char *name,
 | |
| 				const struct rproc_ops *ops,
 | |
| 				const char *firmware, int len)
 | |
| {
 | |
| 	struct rproc *rproc;
 | |
| 
 | |
| 	if (!dev || !name || !ops)
 | |
| 		return NULL;
 | |
| 
 | |
| 	rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
 | |
| 	if (!rproc) {
 | |
| 		dev_err(dev, "%s: kzalloc failed\n", __func__);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	rproc->dev = dev;
 | |
| 	rproc->name = name;
 | |
| 	rproc->ops = ops;
 | |
| 	rproc->firmware = firmware;
 | |
| 	rproc->priv = &rproc[1];
 | |
| 
 | |
| 	atomic_set(&rproc->power, 0);
 | |
| 
 | |
| 	kref_init(&rproc->refcount);
 | |
| 
 | |
| 	mutex_init(&rproc->lock);
 | |
| 
 | |
| 	idr_init(&rproc->notifyids);
 | |
| 
 | |
| 	INIT_LIST_HEAD(&rproc->carveouts);
 | |
| 	INIT_LIST_HEAD(&rproc->mappings);
 | |
| 	INIT_LIST_HEAD(&rproc->traces);
 | |
| 	INIT_LIST_HEAD(&rproc->rvdevs);
 | |
| 
 | |
| 	rproc->state = RPROC_OFFLINE;
 | |
| 
 | |
| 	return rproc;
 | |
| }
 | |
| EXPORT_SYMBOL(rproc_alloc);
 | |
| 
 | |
| /**
 | |
|  * rproc_free() - free an rproc handle that was allocated by rproc_alloc
 | |
|  * @rproc: the remote processor handle
 | |
|  *
 | |
|  * This function should _only_ be used if @rproc was only allocated,
 | |
|  * but not registered yet.
 | |
|  *
 | |
|  * If @rproc was already successfully registered (by calling rproc_register()),
 | |
|  * then use rproc_unregister() instead.
 | |
|  */
 | |
| void rproc_free(struct rproc *rproc)
 | |
| {
 | |
| 	idr_remove_all(&rproc->notifyids);
 | |
| 	idr_destroy(&rproc->notifyids);
 | |
| 
 | |
| 	kfree(rproc);
 | |
| }
 | |
| EXPORT_SYMBOL(rproc_free);
 | |
| 
 | |
| /**
 | |
|  * rproc_unregister() - unregister a remote processor
 | |
|  * @rproc: rproc handle to unregister
 | |
|  *
 | |
|  * Unregisters a remote processor, and decrements its refcount.
 | |
|  * If its refcount drops to zero, then @rproc will be freed. If not,
 | |
|  * it will be freed later once the last reference is dropped.
 | |
|  *
 | |
|  * This function should be called when the platform specific rproc
 | |
|  * implementation decides to remove the rproc device. it should
 | |
|  * _only_ be called if a previous invocation of rproc_register()
 | |
|  * has completed successfully.
 | |
|  *
 | |
|  * After rproc_unregister() returns, @rproc is _not_ valid anymore and
 | |
|  * it shouldn't be used. More specifically, don't call rproc_free()
 | |
|  * or try to directly free @rproc after rproc_unregister() returns;
 | |
|  * none of these are needed, and calling them is a bug.
 | |
|  *
 | |
|  * Returns 0 on success and -EINVAL if @rproc isn't valid.
 | |
|  */
 | |
| int rproc_unregister(struct rproc *rproc)
 | |
| {
 | |
| 	struct rproc_vdev *rvdev;
 | |
| 
 | |
| 	if (!rproc)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* if rproc is just being registered, wait */
 | |
| 	wait_for_completion(&rproc->firmware_loading_complete);
 | |
| 
 | |
| 	/* clean up remote vdev entries */
 | |
| 	list_for_each_entry(rvdev, &rproc->rvdevs, node)
 | |
| 		rproc_remove_virtio_dev(rvdev);
 | |
| 
 | |
| 	/* the rproc is downref'ed as soon as it's removed from the klist */
 | |
| 	klist_del(&rproc->node);
 | |
| 
 | |
| 	/* the rproc will only be released after its refcount drops to zero */
 | |
| 	kref_put(&rproc->refcount, rproc_release);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(rproc_unregister);
 | |
| 
 | |
| static int __init remoteproc_init(void)
 | |
| {
 | |
| 	rproc_init_debugfs();
 | |
| 	return 0;
 | |
| }
 | |
| module_init(remoteproc_init);
 | |
| 
 | |
| static void __exit remoteproc_exit(void)
 | |
| {
 | |
| 	rproc_exit_debugfs();
 | |
| }
 | |
| module_exit(remoteproc_exit);
 | |
| 
 | |
| MODULE_LICENSE("GPL v2");
 | |
| MODULE_DESCRIPTION("Generic Remote Processor Framework");
 |