 f04de505e3
			
		
	
	
	f04de505e3
	
	
	
		
			
			Build failure introduced by 5bf1723723
[JFFS2] Write buffer offset adjustment for NOR-ECC (Sibley) flash
Signed-off-by: Steve Glendinning <steve.glendinning@smsc.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
		
	
			
		
			
				
	
	
		
			770 lines
		
	
	
	
		
			27 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			770 lines
		
	
	
	
		
			27 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * JFFS2 -- Journalling Flash File System, Version 2.
 | |
|  *
 | |
|  * Copyright © 2001-2007 Red Hat, Inc.
 | |
|  *
 | |
|  * Created by David Woodhouse <dwmw2@infradead.org>
 | |
|  *
 | |
|  * For licensing information, see the file 'LICENCE' in this directory.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/mtd/mtd.h>
 | |
| #include <linux/compiler.h>
 | |
| #include <linux/sched.h> /* For cond_resched() */
 | |
| #include "nodelist.h"
 | |
| #include "debug.h"
 | |
| 
 | |
| /**
 | |
|  *	jffs2_reserve_space - request physical space to write nodes to flash
 | |
|  *	@c: superblock info
 | |
|  *	@minsize: Minimum acceptable size of allocation
 | |
|  *	@len: Returned value of allocation length
 | |
|  *	@prio: Allocation type - ALLOC_{NORMAL,DELETION}
 | |
|  *
 | |
|  *	Requests a block of physical space on the flash. Returns zero for success
 | |
|  *	and puts 'len' into the appropriate place, or returns -ENOSPC or other 
 | |
|  *	error if appropriate. Doesn't return len since that's 
 | |
|  *
 | |
|  *	If it returns zero, jffs2_reserve_space() also downs the per-filesystem
 | |
|  *	allocation semaphore, to prevent more than one allocation from being
 | |
|  *	active at any time. The semaphore is later released by jffs2_commit_allocation()
 | |
|  *
 | |
|  *	jffs2_reserve_space() may trigger garbage collection in order to make room
 | |
|  *	for the requested allocation.
 | |
|  */
 | |
| 
 | |
| static int jffs2_do_reserve_space(struct jffs2_sb_info *c,  uint32_t minsize,
 | |
| 				  uint32_t *len, uint32_t sumsize);
 | |
| 
 | |
| int jffs2_reserve_space(struct jffs2_sb_info *c, uint32_t minsize,
 | |
| 			uint32_t *len, int prio, uint32_t sumsize)
 | |
| {
 | |
| 	int ret = -EAGAIN;
 | |
| 	int blocksneeded = c->resv_blocks_write;
 | |
| 	/* align it */
 | |
| 	minsize = PAD(minsize);
 | |
| 
 | |
| 	D1(printk(KERN_DEBUG "jffs2_reserve_space(): Requested 0x%x bytes\n", minsize));
 | |
| 	mutex_lock(&c->alloc_sem);
 | |
| 
 | |
| 	D1(printk(KERN_DEBUG "jffs2_reserve_space(): alloc sem got\n"));
 | |
| 
 | |
| 	spin_lock(&c->erase_completion_lock);
 | |
| 
 | |
| 	/* this needs a little more thought (true <tglx> :)) */
 | |
| 	while(ret == -EAGAIN) {
 | |
| 		while(c->nr_free_blocks + c->nr_erasing_blocks < blocksneeded) {
 | |
| 			uint32_t dirty, avail;
 | |
| 
 | |
| 			/* calculate real dirty size
 | |
| 			 * dirty_size contains blocks on erase_pending_list
 | |
| 			 * those blocks are counted in c->nr_erasing_blocks.
 | |
| 			 * If one block is actually erased, it is not longer counted as dirty_space
 | |
| 			 * but it is counted in c->nr_erasing_blocks, so we add it and subtract it
 | |
| 			 * with c->nr_erasing_blocks * c->sector_size again.
 | |
| 			 * Blocks on erasable_list are counted as dirty_size, but not in c->nr_erasing_blocks
 | |
| 			 * This helps us to force gc and pick eventually a clean block to spread the load.
 | |
| 			 * We add unchecked_size here, as we hopefully will find some space to use.
 | |
| 			 * This will affect the sum only once, as gc first finishes checking
 | |
| 			 * of nodes.
 | |
| 			 */
 | |
| 			dirty = c->dirty_size + c->erasing_size - c->nr_erasing_blocks * c->sector_size + c->unchecked_size;
 | |
| 			if (dirty < c->nospc_dirty_size) {
 | |
| 				if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) {
 | |
| 					D1(printk(KERN_NOTICE "jffs2_reserve_space(): Low on dirty space to GC, but it's a deletion. Allowing...\n"));
 | |
| 					break;
 | |
| 				}
 | |
| 				D1(printk(KERN_DEBUG "dirty size 0x%08x + unchecked_size 0x%08x < nospc_dirty_size 0x%08x, returning -ENOSPC\n",
 | |
| 					  dirty, c->unchecked_size, c->sector_size));
 | |
| 
 | |
| 				spin_unlock(&c->erase_completion_lock);
 | |
| 				mutex_unlock(&c->alloc_sem);
 | |
| 				return -ENOSPC;
 | |
| 			}
 | |
| 
 | |
| 			/* Calc possibly available space. Possibly available means that we
 | |
| 			 * don't know, if unchecked size contains obsoleted nodes, which could give us some
 | |
| 			 * more usable space. This will affect the sum only once, as gc first finishes checking
 | |
| 			 * of nodes.
 | |
| 			 + Return -ENOSPC, if the maximum possibly available space is less or equal than
 | |
| 			 * blocksneeded * sector_size.
 | |
| 			 * This blocks endless gc looping on a filesystem, which is nearly full, even if
 | |
| 			 * the check above passes.
 | |
| 			 */
 | |
| 			avail = c->free_size + c->dirty_size + c->erasing_size + c->unchecked_size;
 | |
| 			if ( (avail / c->sector_size) <= blocksneeded) {
 | |
| 				if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) {
 | |
| 					D1(printk(KERN_NOTICE "jffs2_reserve_space(): Low on possibly available space, but it's a deletion. Allowing...\n"));
 | |
| 					break;
 | |
| 				}
 | |
| 
 | |
| 				D1(printk(KERN_DEBUG "max. available size 0x%08x  < blocksneeded * sector_size 0x%08x, returning -ENOSPC\n",
 | |
| 					  avail, blocksneeded * c->sector_size));
 | |
| 				spin_unlock(&c->erase_completion_lock);
 | |
| 				mutex_unlock(&c->alloc_sem);
 | |
| 				return -ENOSPC;
 | |
| 			}
 | |
| 
 | |
| 			mutex_unlock(&c->alloc_sem);
 | |
| 
 | |
| 			D1(printk(KERN_DEBUG "Triggering GC pass. nr_free_blocks %d, nr_erasing_blocks %d, free_size 0x%08x, dirty_size 0x%08x, wasted_size 0x%08x, used_size 0x%08x, erasing_size 0x%08x, bad_size 0x%08x (total 0x%08x of 0x%08x)\n",
 | |
| 				  c->nr_free_blocks, c->nr_erasing_blocks, c->free_size, c->dirty_size, c->wasted_size, c->used_size, c->erasing_size, c->bad_size,
 | |
| 				  c->free_size + c->dirty_size + c->wasted_size + c->used_size + c->erasing_size + c->bad_size, c->flash_size));
 | |
| 			spin_unlock(&c->erase_completion_lock);
 | |
| 
 | |
| 			ret = jffs2_garbage_collect_pass(c);
 | |
| 
 | |
| 			if (ret == -EAGAIN)
 | |
| 				jffs2_erase_pending_blocks(c, 1);
 | |
| 			else if (ret)
 | |
| 				return ret;
 | |
| 
 | |
| 			cond_resched();
 | |
| 
 | |
| 			if (signal_pending(current))
 | |
| 				return -EINTR;
 | |
| 
 | |
| 			mutex_lock(&c->alloc_sem);
 | |
| 			spin_lock(&c->erase_completion_lock);
 | |
| 		}
 | |
| 
 | |
| 		ret = jffs2_do_reserve_space(c, minsize, len, sumsize);
 | |
| 		if (ret) {
 | |
| 			D1(printk(KERN_DEBUG "jffs2_reserve_space: ret is %d\n", ret));
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock(&c->erase_completion_lock);
 | |
| 	if (!ret)
 | |
| 		ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, 1);
 | |
| 	if (ret)
 | |
| 		mutex_unlock(&c->alloc_sem);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int jffs2_reserve_space_gc(struct jffs2_sb_info *c, uint32_t minsize,
 | |
| 			   uint32_t *len, uint32_t sumsize)
 | |
| {
 | |
| 	int ret = -EAGAIN;
 | |
| 	minsize = PAD(minsize);
 | |
| 
 | |
| 	D1(printk(KERN_DEBUG "jffs2_reserve_space_gc(): Requested 0x%x bytes\n", minsize));
 | |
| 
 | |
| 	spin_lock(&c->erase_completion_lock);
 | |
| 	while(ret == -EAGAIN) {
 | |
| 		ret = jffs2_do_reserve_space(c, minsize, len, sumsize);
 | |
| 		if (ret) {
 | |
| 			D1(printk(KERN_DEBUG "jffs2_reserve_space_gc: looping, ret is %d\n", ret));
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock(&c->erase_completion_lock);
 | |
| 	if (!ret)
 | |
| 		ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, 1);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Classify nextblock (clean, dirty of verydirty) and force to select an other one */
 | |
| 
 | |
| static void jffs2_close_nextblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb)
 | |
| {
 | |
| 
 | |
| 	if (c->nextblock == NULL) {
 | |
| 		D1(printk(KERN_DEBUG "jffs2_close_nextblock: Erase block at 0x%08x has already been placed in a list\n",
 | |
| 		  jeb->offset));
 | |
| 		return;
 | |
| 	}
 | |
| 	/* Check, if we have a dirty block now, or if it was dirty already */
 | |
| 	if (ISDIRTY (jeb->wasted_size + jeb->dirty_size)) {
 | |
| 		c->dirty_size += jeb->wasted_size;
 | |
| 		c->wasted_size -= jeb->wasted_size;
 | |
| 		jeb->dirty_size += jeb->wasted_size;
 | |
| 		jeb->wasted_size = 0;
 | |
| 		if (VERYDIRTY(c, jeb->dirty_size)) {
 | |
| 			D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to very_dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
 | |
| 			  jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
 | |
| 			list_add_tail(&jeb->list, &c->very_dirty_list);
 | |
| 		} else {
 | |
| 			D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
 | |
| 			  jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
 | |
| 			list_add_tail(&jeb->list, &c->dirty_list);
 | |
| 		}
 | |
| 	} else {
 | |
| 		D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
 | |
| 		  jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
 | |
| 		list_add_tail(&jeb->list, &c->clean_list);
 | |
| 	}
 | |
| 	c->nextblock = NULL;
 | |
| 
 | |
| }
 | |
| 
 | |
| /* Select a new jeb for nextblock */
 | |
| 
 | |
| static int jffs2_find_nextblock(struct jffs2_sb_info *c)
 | |
| {
 | |
| 	struct list_head *next;
 | |
| 
 | |
| 	/* Take the next block off the 'free' list */
 | |
| 
 | |
| 	if (list_empty(&c->free_list)) {
 | |
| 
 | |
| 		if (!c->nr_erasing_blocks &&
 | |
| 			!list_empty(&c->erasable_list)) {
 | |
| 			struct jffs2_eraseblock *ejeb;
 | |
| 
 | |
| 			ejeb = list_entry(c->erasable_list.next, struct jffs2_eraseblock, list);
 | |
| 			list_move_tail(&ejeb->list, &c->erase_pending_list);
 | |
| 			c->nr_erasing_blocks++;
 | |
| 			jffs2_erase_pending_trigger(c);
 | |
| 			D1(printk(KERN_DEBUG "jffs2_find_nextblock: Triggering erase of erasable block at 0x%08x\n",
 | |
| 				  ejeb->offset));
 | |
| 		}
 | |
| 
 | |
| 		if (!c->nr_erasing_blocks &&
 | |
| 			!list_empty(&c->erasable_pending_wbuf_list)) {
 | |
| 			D1(printk(KERN_DEBUG "jffs2_find_nextblock: Flushing write buffer\n"));
 | |
| 			/* c->nextblock is NULL, no update to c->nextblock allowed */
 | |
| 			spin_unlock(&c->erase_completion_lock);
 | |
| 			jffs2_flush_wbuf_pad(c);
 | |
| 			spin_lock(&c->erase_completion_lock);
 | |
| 			/* Have another go. It'll be on the erasable_list now */
 | |
| 			return -EAGAIN;
 | |
| 		}
 | |
| 
 | |
| 		if (!c->nr_erasing_blocks) {
 | |
| 			/* Ouch. We're in GC, or we wouldn't have got here.
 | |
| 			   And there's no space left. At all. */
 | |
| 			printk(KERN_CRIT "Argh. No free space left for GC. nr_erasing_blocks is %d. nr_free_blocks is %d. (erasableempty: %s, erasingempty: %s, erasependingempty: %s)\n",
 | |
| 				   c->nr_erasing_blocks, c->nr_free_blocks, list_empty(&c->erasable_list)?"yes":"no",
 | |
| 				   list_empty(&c->erasing_list)?"yes":"no", list_empty(&c->erase_pending_list)?"yes":"no");
 | |
| 			return -ENOSPC;
 | |
| 		}
 | |
| 
 | |
| 		spin_unlock(&c->erase_completion_lock);
 | |
| 		/* Don't wait for it; just erase one right now */
 | |
| 		jffs2_erase_pending_blocks(c, 1);
 | |
| 		spin_lock(&c->erase_completion_lock);
 | |
| 
 | |
| 		/* An erase may have failed, decreasing the
 | |
| 		   amount of free space available. So we must
 | |
| 		   restart from the beginning */
 | |
| 		return -EAGAIN;
 | |
| 	}
 | |
| 
 | |
| 	next = c->free_list.next;
 | |
| 	list_del(next);
 | |
| 	c->nextblock = list_entry(next, struct jffs2_eraseblock, list);
 | |
| 	c->nr_free_blocks--;
 | |
| 
 | |
| 	jffs2_sum_reset_collected(c->summary); /* reset collected summary */
 | |
| 
 | |
| #ifdef CONFIG_JFFS2_FS_WRITEBUFFER
 | |
| 	/* adjust write buffer offset, else we get a non contiguous write bug */
 | |
| 	if (!(c->wbuf_ofs % c->sector_size) && !c->wbuf_len)
 | |
| 		c->wbuf_ofs = 0xffffffff;
 | |
| #endif
 | |
| 
 | |
| 	D1(printk(KERN_DEBUG "jffs2_find_nextblock(): new nextblock = 0x%08x\n", c->nextblock->offset));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Called with alloc sem _and_ erase_completion_lock */
 | |
| static int jffs2_do_reserve_space(struct jffs2_sb_info *c, uint32_t minsize,
 | |
| 				  uint32_t *len, uint32_t sumsize)
 | |
| {
 | |
| 	struct jffs2_eraseblock *jeb = c->nextblock;
 | |
| 	uint32_t reserved_size;				/* for summary information at the end of the jeb */
 | |
| 	int ret;
 | |
| 
 | |
|  restart:
 | |
| 	reserved_size = 0;
 | |
| 
 | |
| 	if (jffs2_sum_active() && (sumsize != JFFS2_SUMMARY_NOSUM_SIZE)) {
 | |
| 							/* NOSUM_SIZE means not to generate summary */
 | |
| 
 | |
| 		if (jeb) {
 | |
| 			reserved_size = PAD(sumsize + c->summary->sum_size + JFFS2_SUMMARY_FRAME_SIZE);
 | |
| 			dbg_summary("minsize=%d , jeb->free=%d ,"
 | |
| 						"summary->size=%d , sumsize=%d\n",
 | |
| 						minsize, jeb->free_size,
 | |
| 						c->summary->sum_size, sumsize);
 | |
| 		}
 | |
| 
 | |
| 		/* Is there enough space for writing out the current node, or we have to
 | |
| 		   write out summary information now, close this jeb and select new nextblock? */
 | |
| 		if (jeb && (PAD(minsize) + PAD(c->summary->sum_size + sumsize +
 | |
| 					JFFS2_SUMMARY_FRAME_SIZE) > jeb->free_size)) {
 | |
| 
 | |
| 			/* Has summary been disabled for this jeb? */
 | |
| 			if (jffs2_sum_is_disabled(c->summary)) {
 | |
| 				sumsize = JFFS2_SUMMARY_NOSUM_SIZE;
 | |
| 				goto restart;
 | |
| 			}
 | |
| 
 | |
| 			/* Writing out the collected summary information */
 | |
| 			dbg_summary("generating summary for 0x%08x.\n", jeb->offset);
 | |
| 			ret = jffs2_sum_write_sumnode(c);
 | |
| 
 | |
| 			if (ret)
 | |
| 				return ret;
 | |
| 
 | |
| 			if (jffs2_sum_is_disabled(c->summary)) {
 | |
| 				/* jffs2_write_sumnode() couldn't write out the summary information
 | |
| 				   diabling summary for this jeb and free the collected information
 | |
| 				 */
 | |
| 				sumsize = JFFS2_SUMMARY_NOSUM_SIZE;
 | |
| 				goto restart;
 | |
| 			}
 | |
| 
 | |
| 			jffs2_close_nextblock(c, jeb);
 | |
| 			jeb = NULL;
 | |
| 			/* keep always valid value in reserved_size */
 | |
| 			reserved_size = PAD(sumsize + c->summary->sum_size + JFFS2_SUMMARY_FRAME_SIZE);
 | |
| 		}
 | |
| 	} else {
 | |
| 		if (jeb && minsize > jeb->free_size) {
 | |
| 			uint32_t waste;
 | |
| 
 | |
| 			/* Skip the end of this block and file it as having some dirty space */
 | |
| 			/* If there's a pending write to it, flush now */
 | |
| 
 | |
| 			if (jffs2_wbuf_dirty(c)) {
 | |
| 				spin_unlock(&c->erase_completion_lock);
 | |
| 				D1(printk(KERN_DEBUG "jffs2_do_reserve_space: Flushing write buffer\n"));
 | |
| 				jffs2_flush_wbuf_pad(c);
 | |
| 				spin_lock(&c->erase_completion_lock);
 | |
| 				jeb = c->nextblock;
 | |
| 				goto restart;
 | |
| 			}
 | |
| 
 | |
| 			spin_unlock(&c->erase_completion_lock);
 | |
| 
 | |
| 			ret = jffs2_prealloc_raw_node_refs(c, jeb, 1);
 | |
| 			if (ret)
 | |
| 				return ret;
 | |
| 			/* Just lock it again and continue. Nothing much can change because
 | |
| 			   we hold c->alloc_sem anyway. In fact, it's not entirely clear why
 | |
| 			   we hold c->erase_completion_lock in the majority of this function...
 | |
| 			   but that's a question for another (more caffeine-rich) day. */
 | |
| 			spin_lock(&c->erase_completion_lock);
 | |
| 
 | |
| 			waste = jeb->free_size;
 | |
| 			jffs2_link_node_ref(c, jeb,
 | |
| 					    (jeb->offset + c->sector_size - waste) | REF_OBSOLETE,
 | |
| 					    waste, NULL);
 | |
| 			/* FIXME: that made it count as dirty. Convert to wasted */
 | |
| 			jeb->dirty_size -= waste;
 | |
| 			c->dirty_size -= waste;
 | |
| 			jeb->wasted_size += waste;
 | |
| 			c->wasted_size += waste;
 | |
| 
 | |
| 			jffs2_close_nextblock(c, jeb);
 | |
| 			jeb = NULL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!jeb) {
 | |
| 
 | |
| 		ret = jffs2_find_nextblock(c);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		jeb = c->nextblock;
 | |
| 
 | |
| 		if (jeb->free_size != c->sector_size - c->cleanmarker_size) {
 | |
| 			printk(KERN_WARNING "Eep. Block 0x%08x taken from free_list had free_size of 0x%08x!!\n", jeb->offset, jeb->free_size);
 | |
| 			goto restart;
 | |
| 		}
 | |
| 	}
 | |
| 	/* OK, jeb (==c->nextblock) is now pointing at a block which definitely has
 | |
| 	   enough space */
 | |
| 	*len = jeb->free_size - reserved_size;
 | |
| 
 | |
| 	if (c->cleanmarker_size && jeb->used_size == c->cleanmarker_size &&
 | |
| 	    !jeb->first_node->next_in_ino) {
 | |
| 		/* Only node in it beforehand was a CLEANMARKER node (we think).
 | |
| 		   So mark it obsolete now that there's going to be another node
 | |
| 		   in the block. This will reduce used_size to zero but We've
 | |
| 		   already set c->nextblock so that jffs2_mark_node_obsolete()
 | |
| 		   won't try to refile it to the dirty_list.
 | |
| 		*/
 | |
| 		spin_unlock(&c->erase_completion_lock);
 | |
| 		jffs2_mark_node_obsolete(c, jeb->first_node);
 | |
| 		spin_lock(&c->erase_completion_lock);
 | |
| 	}
 | |
| 
 | |
| 	D1(printk(KERN_DEBUG "jffs2_do_reserve_space(): Giving 0x%x bytes at 0x%x\n",
 | |
| 		  *len, jeb->offset + (c->sector_size - jeb->free_size)));
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	jffs2_add_physical_node_ref - add a physical node reference to the list
 | |
|  *	@c: superblock info
 | |
|  *	@new: new node reference to add
 | |
|  *	@len: length of this physical node
 | |
|  *
 | |
|  *	Should only be used to report nodes for which space has been allocated
 | |
|  *	by jffs2_reserve_space.
 | |
|  *
 | |
|  *	Must be called with the alloc_sem held.
 | |
|  */
 | |
| 
 | |
| struct jffs2_raw_node_ref *jffs2_add_physical_node_ref(struct jffs2_sb_info *c,
 | |
| 						       uint32_t ofs, uint32_t len,
 | |
| 						       struct jffs2_inode_cache *ic)
 | |
| {
 | |
| 	struct jffs2_eraseblock *jeb;
 | |
| 	struct jffs2_raw_node_ref *new;
 | |
| 
 | |
| 	jeb = &c->blocks[ofs / c->sector_size];
 | |
| 
 | |
| 	D1(printk(KERN_DEBUG "jffs2_add_physical_node_ref(): Node at 0x%x(%d), size 0x%x\n",
 | |
| 		  ofs & ~3, ofs & 3, len));
 | |
| #if 1
 | |
| 	/* Allow non-obsolete nodes only to be added at the end of c->nextblock, 
 | |
| 	   if c->nextblock is set. Note that wbuf.c will file obsolete nodes
 | |
| 	   even after refiling c->nextblock */
 | |
| 	if ((c->nextblock || ((ofs & 3) != REF_OBSOLETE))
 | |
| 	    && (jeb != c->nextblock || (ofs & ~3) != jeb->offset + (c->sector_size - jeb->free_size))) {
 | |
| 		printk(KERN_WARNING "argh. node added in wrong place at 0x%08x(%d)\n", ofs & ~3, ofs & 3);
 | |
| 		if (c->nextblock)
 | |
| 			printk(KERN_WARNING "nextblock 0x%08x", c->nextblock->offset);
 | |
| 		else
 | |
| 			printk(KERN_WARNING "No nextblock");
 | |
| 		printk(", expected at %08x\n", jeb->offset + (c->sector_size - jeb->free_size));
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 	}
 | |
| #endif
 | |
| 	spin_lock(&c->erase_completion_lock);
 | |
| 
 | |
| 	new = jffs2_link_node_ref(c, jeb, ofs, len, ic);
 | |
| 
 | |
| 	if (!jeb->free_size && !jeb->dirty_size && !ISDIRTY(jeb->wasted_size)) {
 | |
| 		/* If it lives on the dirty_list, jffs2_reserve_space will put it there */
 | |
| 		D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
 | |
| 			  jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
 | |
| 		if (jffs2_wbuf_dirty(c)) {
 | |
| 			/* Flush the last write in the block if it's outstanding */
 | |
| 			spin_unlock(&c->erase_completion_lock);
 | |
| 			jffs2_flush_wbuf_pad(c);
 | |
| 			spin_lock(&c->erase_completion_lock);
 | |
| 		}
 | |
| 
 | |
| 		list_add_tail(&jeb->list, &c->clean_list);
 | |
| 		c->nextblock = NULL;
 | |
| 	}
 | |
| 	jffs2_dbg_acct_sanity_check_nolock(c,jeb);
 | |
| 	jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
 | |
| 
 | |
| 	spin_unlock(&c->erase_completion_lock);
 | |
| 
 | |
| 	return new;
 | |
| }
 | |
| 
 | |
| 
 | |
| void jffs2_complete_reservation(struct jffs2_sb_info *c)
 | |
| {
 | |
| 	D1(printk(KERN_DEBUG "jffs2_complete_reservation()\n"));
 | |
| 	jffs2_garbage_collect_trigger(c);
 | |
| 	mutex_unlock(&c->alloc_sem);
 | |
| }
 | |
| 
 | |
| static inline int on_list(struct list_head *obj, struct list_head *head)
 | |
| {
 | |
| 	struct list_head *this;
 | |
| 
 | |
| 	list_for_each(this, head) {
 | |
| 		if (this == obj) {
 | |
| 			D1(printk("%p is on list at %p\n", obj, head));
 | |
| 			return 1;
 | |
| 
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void jffs2_mark_node_obsolete(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref)
 | |
| {
 | |
| 	struct jffs2_eraseblock *jeb;
 | |
| 	int blocknr;
 | |
| 	struct jffs2_unknown_node n;
 | |
| 	int ret, addedsize;
 | |
| 	size_t retlen;
 | |
| 	uint32_t freed_len;
 | |
| 
 | |
| 	if(unlikely(!ref)) {
 | |
| 		printk(KERN_NOTICE "EEEEEK. jffs2_mark_node_obsolete called with NULL node\n");
 | |
| 		return;
 | |
| 	}
 | |
| 	if (ref_obsolete(ref)) {
 | |
| 		D1(printk(KERN_DEBUG "jffs2_mark_node_obsolete called with already obsolete node at 0x%08x\n", ref_offset(ref)));
 | |
| 		return;
 | |
| 	}
 | |
| 	blocknr = ref->flash_offset / c->sector_size;
 | |
| 	if (blocknr >= c->nr_blocks) {
 | |
| 		printk(KERN_NOTICE "raw node at 0x%08x is off the end of device!\n", ref->flash_offset);
 | |
| 		BUG();
 | |
| 	}
 | |
| 	jeb = &c->blocks[blocknr];
 | |
| 
 | |
| 	if (jffs2_can_mark_obsolete(c) && !jffs2_is_readonly(c) &&
 | |
| 	    !(c->flags & (JFFS2_SB_FLAG_SCANNING | JFFS2_SB_FLAG_BUILDING))) {
 | |
| 		/* Hm. This may confuse static lock analysis. If any of the above
 | |
| 		   three conditions is false, we're going to return from this
 | |
| 		   function without actually obliterating any nodes or freeing
 | |
| 		   any jffs2_raw_node_refs. So we don't need to stop erases from
 | |
| 		   happening, or protect against people holding an obsolete
 | |
| 		   jffs2_raw_node_ref without the erase_completion_lock. */
 | |
| 		mutex_lock(&c->erase_free_sem);
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&c->erase_completion_lock);
 | |
| 
 | |
| 	freed_len = ref_totlen(c, jeb, ref);
 | |
| 
 | |
| 	if (ref_flags(ref) == REF_UNCHECKED) {
 | |
| 		D1(if (unlikely(jeb->unchecked_size < freed_len)) {
 | |
| 			printk(KERN_NOTICE "raw unchecked node of size 0x%08x freed from erase block %d at 0x%08x, but unchecked_size was already 0x%08x\n",
 | |
| 			       freed_len, blocknr, ref->flash_offset, jeb->used_size);
 | |
| 			BUG();
 | |
| 		})
 | |
| 		D1(printk(KERN_DEBUG "Obsoleting previously unchecked node at 0x%08x of len %x: ", ref_offset(ref), freed_len));
 | |
| 		jeb->unchecked_size -= freed_len;
 | |
| 		c->unchecked_size -= freed_len;
 | |
| 	} else {
 | |
| 		D1(if (unlikely(jeb->used_size < freed_len)) {
 | |
| 			printk(KERN_NOTICE "raw node of size 0x%08x freed from erase block %d at 0x%08x, but used_size was already 0x%08x\n",
 | |
| 			       freed_len, blocknr, ref->flash_offset, jeb->used_size);
 | |
| 			BUG();
 | |
| 		})
 | |
| 		D1(printk(KERN_DEBUG "Obsoleting node at 0x%08x of len %#x: ", ref_offset(ref), freed_len));
 | |
| 		jeb->used_size -= freed_len;
 | |
| 		c->used_size -= freed_len;
 | |
| 	}
 | |
| 
 | |
| 	// Take care, that wasted size is taken into concern
 | |
| 	if ((jeb->dirty_size || ISDIRTY(jeb->wasted_size + freed_len)) && jeb != c->nextblock) {
 | |
| 		D1(printk("Dirtying\n"));
 | |
| 		addedsize = freed_len;
 | |
| 		jeb->dirty_size += freed_len;
 | |
| 		c->dirty_size += freed_len;
 | |
| 
 | |
| 		/* Convert wasted space to dirty, if not a bad block */
 | |
| 		if (jeb->wasted_size) {
 | |
| 			if (on_list(&jeb->list, &c->bad_used_list)) {
 | |
| 				D1(printk(KERN_DEBUG "Leaving block at %08x on the bad_used_list\n",
 | |
| 					  jeb->offset));
 | |
| 				addedsize = 0; /* To fool the refiling code later */
 | |
| 			} else {
 | |
| 				D1(printk(KERN_DEBUG "Converting %d bytes of wasted space to dirty in block at %08x\n",
 | |
| 					  jeb->wasted_size, jeb->offset));
 | |
| 				addedsize += jeb->wasted_size;
 | |
| 				jeb->dirty_size += jeb->wasted_size;
 | |
| 				c->dirty_size += jeb->wasted_size;
 | |
| 				c->wasted_size -= jeb->wasted_size;
 | |
| 				jeb->wasted_size = 0;
 | |
| 			}
 | |
| 		}
 | |
| 	} else {
 | |
| 		D1(printk("Wasting\n"));
 | |
| 		addedsize = 0;
 | |
| 		jeb->wasted_size += freed_len;
 | |
| 		c->wasted_size += freed_len;
 | |
| 	}
 | |
| 	ref->flash_offset = ref_offset(ref) | REF_OBSOLETE;
 | |
| 
 | |
| 	jffs2_dbg_acct_sanity_check_nolock(c, jeb);
 | |
| 	jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
 | |
| 
 | |
| 	if (c->flags & JFFS2_SB_FLAG_SCANNING) {
 | |
| 		/* Flash scanning is in progress. Don't muck about with the block
 | |
| 		   lists because they're not ready yet, and don't actually
 | |
| 		   obliterate nodes that look obsolete. If they weren't
 | |
| 		   marked obsolete on the flash at the time they _became_
 | |
| 		   obsolete, there was probably a reason for that. */
 | |
| 		spin_unlock(&c->erase_completion_lock);
 | |
| 		/* We didn't lock the erase_free_sem */
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (jeb == c->nextblock) {
 | |
| 		D2(printk(KERN_DEBUG "Not moving nextblock 0x%08x to dirty/erase_pending list\n", jeb->offset));
 | |
| 	} else if (!jeb->used_size && !jeb->unchecked_size) {
 | |
| 		if (jeb == c->gcblock) {
 | |
| 			D1(printk(KERN_DEBUG "gcblock at 0x%08x completely dirtied. Clearing gcblock...\n", jeb->offset));
 | |
| 			c->gcblock = NULL;
 | |
| 		} else {
 | |
| 			D1(printk(KERN_DEBUG "Eraseblock at 0x%08x completely dirtied. Removing from (dirty?) list...\n", jeb->offset));
 | |
| 			list_del(&jeb->list);
 | |
| 		}
 | |
| 		if (jffs2_wbuf_dirty(c)) {
 | |
| 			D1(printk(KERN_DEBUG "...and adding to erasable_pending_wbuf_list\n"));
 | |
| 			list_add_tail(&jeb->list, &c->erasable_pending_wbuf_list);
 | |
| 		} else {
 | |
| 			if (jiffies & 127) {
 | |
| 				/* Most of the time, we just erase it immediately. Otherwise we
 | |
| 				   spend ages scanning it on mount, etc. */
 | |
| 				D1(printk(KERN_DEBUG "...and adding to erase_pending_list\n"));
 | |
| 				list_add_tail(&jeb->list, &c->erase_pending_list);
 | |
| 				c->nr_erasing_blocks++;
 | |
| 				jffs2_erase_pending_trigger(c);
 | |
| 			} else {
 | |
| 				/* Sometimes, however, we leave it elsewhere so it doesn't get
 | |
| 				   immediately reused, and we spread the load a bit. */
 | |
| 				D1(printk(KERN_DEBUG "...and adding to erasable_list\n"));
 | |
| 				list_add_tail(&jeb->list, &c->erasable_list);
 | |
| 			}
 | |
| 		}
 | |
| 		D1(printk(KERN_DEBUG "Done OK\n"));
 | |
| 	} else if (jeb == c->gcblock) {
 | |
| 		D2(printk(KERN_DEBUG "Not moving gcblock 0x%08x to dirty_list\n", jeb->offset));
 | |
| 	} else if (ISDIRTY(jeb->dirty_size) && !ISDIRTY(jeb->dirty_size - addedsize)) {
 | |
| 		D1(printk(KERN_DEBUG "Eraseblock at 0x%08x is freshly dirtied. Removing from clean list...\n", jeb->offset));
 | |
| 		list_del(&jeb->list);
 | |
| 		D1(printk(KERN_DEBUG "...and adding to dirty_list\n"));
 | |
| 		list_add_tail(&jeb->list, &c->dirty_list);
 | |
| 	} else if (VERYDIRTY(c, jeb->dirty_size) &&
 | |
| 		   !VERYDIRTY(c, jeb->dirty_size - addedsize)) {
 | |
| 		D1(printk(KERN_DEBUG "Eraseblock at 0x%08x is now very dirty. Removing from dirty list...\n", jeb->offset));
 | |
| 		list_del(&jeb->list);
 | |
| 		D1(printk(KERN_DEBUG "...and adding to very_dirty_list\n"));
 | |
| 		list_add_tail(&jeb->list, &c->very_dirty_list);
 | |
| 	} else {
 | |
| 		D1(printk(KERN_DEBUG "Eraseblock at 0x%08x not moved anywhere. (free 0x%08x, dirty 0x%08x, used 0x%08x)\n",
 | |
| 			  jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock(&c->erase_completion_lock);
 | |
| 
 | |
| 	if (!jffs2_can_mark_obsolete(c) || jffs2_is_readonly(c) ||
 | |
| 		(c->flags & JFFS2_SB_FLAG_BUILDING)) {
 | |
| 		/* We didn't lock the erase_free_sem */
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* The erase_free_sem is locked, and has been since before we marked the node obsolete
 | |
| 	   and potentially put its eraseblock onto the erase_pending_list. Thus, we know that
 | |
| 	   the block hasn't _already_ been erased, and that 'ref' itself hasn't been freed yet
 | |
| 	   by jffs2_free_jeb_node_refs() in erase.c. Which is nice. */
 | |
| 
 | |
| 	D1(printk(KERN_DEBUG "obliterating obsoleted node at 0x%08x\n", ref_offset(ref)));
 | |
| 	ret = jffs2_flash_read(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n);
 | |
| 	if (ret) {
 | |
| 		printk(KERN_WARNING "Read error reading from obsoleted node at 0x%08x: %d\n", ref_offset(ref), ret);
 | |
| 		goto out_erase_sem;
 | |
| 	}
 | |
| 	if (retlen != sizeof(n)) {
 | |
| 		printk(KERN_WARNING "Short read from obsoleted node at 0x%08x: %zd\n", ref_offset(ref), retlen);
 | |
| 		goto out_erase_sem;
 | |
| 	}
 | |
| 	if (PAD(je32_to_cpu(n.totlen)) != PAD(freed_len)) {
 | |
| 		printk(KERN_WARNING "Node totlen on flash (0x%08x) != totlen from node ref (0x%08x)\n", je32_to_cpu(n.totlen), freed_len);
 | |
| 		goto out_erase_sem;
 | |
| 	}
 | |
| 	if (!(je16_to_cpu(n.nodetype) & JFFS2_NODE_ACCURATE)) {
 | |
| 		D1(printk(KERN_DEBUG "Node at 0x%08x was already marked obsolete (nodetype 0x%04x)\n", ref_offset(ref), je16_to_cpu(n.nodetype)));
 | |
| 		goto out_erase_sem;
 | |
| 	}
 | |
| 	/* XXX FIXME: This is ugly now */
 | |
| 	n.nodetype = cpu_to_je16(je16_to_cpu(n.nodetype) & ~JFFS2_NODE_ACCURATE);
 | |
| 	ret = jffs2_flash_write(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n);
 | |
| 	if (ret) {
 | |
| 		printk(KERN_WARNING "Write error in obliterating obsoleted node at 0x%08x: %d\n", ref_offset(ref), ret);
 | |
| 		goto out_erase_sem;
 | |
| 	}
 | |
| 	if (retlen != sizeof(n)) {
 | |
| 		printk(KERN_WARNING "Short write in obliterating obsoleted node at 0x%08x: %zd\n", ref_offset(ref), retlen);
 | |
| 		goto out_erase_sem;
 | |
| 	}
 | |
| 
 | |
| 	/* Nodes which have been marked obsolete no longer need to be
 | |
| 	   associated with any inode. Remove them from the per-inode list.
 | |
| 
 | |
| 	   Note we can't do this for NAND at the moment because we need
 | |
| 	   obsolete dirent nodes to stay on the lists, because of the
 | |
| 	   horridness in jffs2_garbage_collect_deletion_dirent(). Also
 | |
| 	   because we delete the inocache, and on NAND we need that to
 | |
| 	   stay around until all the nodes are actually erased, in order
 | |
| 	   to stop us from giving the same inode number to another newly
 | |
| 	   created inode. */
 | |
| 	if (ref->next_in_ino) {
 | |
| 		struct jffs2_inode_cache *ic;
 | |
| 		struct jffs2_raw_node_ref **p;
 | |
| 
 | |
| 		spin_lock(&c->erase_completion_lock);
 | |
| 
 | |
| 		ic = jffs2_raw_ref_to_ic(ref);
 | |
| 		for (p = &ic->nodes; (*p) != ref; p = &((*p)->next_in_ino))
 | |
| 			;
 | |
| 
 | |
| 		*p = ref->next_in_ino;
 | |
| 		ref->next_in_ino = NULL;
 | |
| 
 | |
| 		switch (ic->class) {
 | |
| #ifdef CONFIG_JFFS2_FS_XATTR
 | |
| 			case RAWNODE_CLASS_XATTR_DATUM:
 | |
| 				jffs2_release_xattr_datum(c, (struct jffs2_xattr_datum *)ic);
 | |
| 				break;
 | |
| 			case RAWNODE_CLASS_XATTR_REF:
 | |
| 				jffs2_release_xattr_ref(c, (struct jffs2_xattr_ref *)ic);
 | |
| 				break;
 | |
| #endif
 | |
| 			default:
 | |
| 				if (ic->nodes == (void *)ic && ic->pino_nlink == 0)
 | |
| 					jffs2_del_ino_cache(c, ic);
 | |
| 				break;
 | |
| 		}
 | |
| 		spin_unlock(&c->erase_completion_lock);
 | |
| 	}
 | |
| 
 | |
|  out_erase_sem:
 | |
| 	mutex_unlock(&c->erase_free_sem);
 | |
| }
 | |
| 
 | |
| int jffs2_thread_should_wake(struct jffs2_sb_info *c)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	uint32_t dirty;
 | |
| 	int nr_very_dirty = 0;
 | |
| 	struct jffs2_eraseblock *jeb;
 | |
| 
 | |
| 	if (c->unchecked_size) {
 | |
| 		D1(printk(KERN_DEBUG "jffs2_thread_should_wake(): unchecked_size %d, checked_ino #%d\n",
 | |
| 			  c->unchecked_size, c->checked_ino));
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	/* dirty_size contains blocks on erase_pending_list
 | |
| 	 * those blocks are counted in c->nr_erasing_blocks.
 | |
| 	 * If one block is actually erased, it is not longer counted as dirty_space
 | |
| 	 * but it is counted in c->nr_erasing_blocks, so we add it and subtract it
 | |
| 	 * with c->nr_erasing_blocks * c->sector_size again.
 | |
| 	 * Blocks on erasable_list are counted as dirty_size, but not in c->nr_erasing_blocks
 | |
| 	 * This helps us to force gc and pick eventually a clean block to spread the load.
 | |
| 	 */
 | |
| 	dirty = c->dirty_size + c->erasing_size - c->nr_erasing_blocks * c->sector_size;
 | |
| 
 | |
| 	if (c->nr_free_blocks + c->nr_erasing_blocks < c->resv_blocks_gctrigger &&
 | |
| 			(dirty > c->nospc_dirty_size))
 | |
| 		ret = 1;
 | |
| 
 | |
| 	list_for_each_entry(jeb, &c->very_dirty_list, list) {
 | |
| 		nr_very_dirty++;
 | |
| 		if (nr_very_dirty == c->vdirty_blocks_gctrigger) {
 | |
| 			ret = 1;
 | |
| 			/* In debug mode, actually go through and count them all */
 | |
| 			D1(continue);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	D1(printk(KERN_DEBUG "jffs2_thread_should_wake(): nr_free_blocks %d, nr_erasing_blocks %d, dirty_size 0x%x, vdirty_blocks %d: %s\n",
 | |
| 		  c->nr_free_blocks, c->nr_erasing_blocks, c->dirty_size, nr_very_dirty, ret?"yes":"no"));
 | |
| 
 | |
| 	return ret;
 | |
| }
 |