 d3ec4844d4
			
		
	
	
	d3ec4844d4
	
	
	
		
			
			* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial: (43 commits)
  fs: Merge split strings
  treewide: fix potentially dangerous trailing ';' in #defined values/expressions
  uwb: Fix misspelling of neighbourhood in comment
  net, netfilter: Remove redundant goto in ebt_ulog_packet
  trivial: don't touch files that are removed in the staging tree
  lib/vsprintf: replace link to Draft by final RFC number
  doc: Kconfig: `to be' -> `be'
  doc: Kconfig: Typo: square -> squared
  doc: Konfig: Documentation/power/{pm => apm-acpi}.txt
  drivers/net: static should be at beginning of declaration
  drivers/media: static should be at beginning of declaration
  drivers/i2c: static should be at beginning of declaration
  XTENSA: static should be at beginning of declaration
  SH: static should be at beginning of declaration
  MIPS: static should be at beginning of declaration
  ARM: static should be at beginning of declaration
  rcu: treewide: Do not use rcu_read_lock_held when calling rcu_dereference_check
  Update my e-mail address
  PCIe ASPM: forcedly -> forcibly
  gma500: push through device driver tree
  ...
Fix up trivial conflicts:
 - arch/arm/mach-ep93xx/dma-m2p.c (deleted)
 - drivers/gpio/gpio-ep93xx.c (renamed and context nearby)
 - drivers/net/r8169.c (just context changes)
		
	
			
		
			
				
	
	
		
			9360 lines
		
	
	
	
		
			223 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			9360 lines
		
	
	
	
		
			223 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  kernel/sched.c
 | |
|  *
 | |
|  *  Kernel scheduler and related syscalls
 | |
|  *
 | |
|  *  Copyright (C) 1991-2002  Linus Torvalds
 | |
|  *
 | |
|  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 | |
|  *		make semaphores SMP safe
 | |
|  *  1998-11-19	Implemented schedule_timeout() and related stuff
 | |
|  *		by Andrea Arcangeli
 | |
|  *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 | |
|  *		hybrid priority-list and round-robin design with
 | |
|  *		an array-switch method of distributing timeslices
 | |
|  *		and per-CPU runqueues.  Cleanups and useful suggestions
 | |
|  *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 | |
|  *  2003-09-03	Interactivity tuning by Con Kolivas.
 | |
|  *  2004-04-02	Scheduler domains code by Nick Piggin
 | |
|  *  2007-04-15  Work begun on replacing all interactivity tuning with a
 | |
|  *              fair scheduling design by Con Kolivas.
 | |
|  *  2007-05-05  Load balancing (smp-nice) and other improvements
 | |
|  *              by Peter Williams
 | |
|  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 | |
|  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
 | |
|  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 | |
|  *              Thomas Gleixner, Mike Kravetz
 | |
|  */
 | |
| 
 | |
| #include <linux/mm.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/nmi.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <asm/mmu_context.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/capability.h>
 | |
| #include <linux/completion.h>
 | |
| #include <linux/kernel_stat.h>
 | |
| #include <linux/debug_locks.h>
 | |
| #include <linux/perf_event.h>
 | |
| #include <linux/security.h>
 | |
| #include <linux/notifier.h>
 | |
| #include <linux/profile.h>
 | |
| #include <linux/freezer.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/blkdev.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/pid_namespace.h>
 | |
| #include <linux/smp.h>
 | |
| #include <linux/threads.h>
 | |
| #include <linux/timer.h>
 | |
| #include <linux/rcupdate.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/cpuset.h>
 | |
| #include <linux/percpu.h>
 | |
| #include <linux/proc_fs.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/stop_machine.h>
 | |
| #include <linux/sysctl.h>
 | |
| #include <linux/syscalls.h>
 | |
| #include <linux/times.h>
 | |
| #include <linux/tsacct_kern.h>
 | |
| #include <linux/kprobes.h>
 | |
| #include <linux/delayacct.h>
 | |
| #include <linux/unistd.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/hrtimer.h>
 | |
| #include <linux/tick.h>
 | |
| #include <linux/debugfs.h>
 | |
| #include <linux/ctype.h>
 | |
| #include <linux/ftrace.h>
 | |
| #include <linux/slab.h>
 | |
| 
 | |
| #include <asm/tlb.h>
 | |
| #include <asm/irq_regs.h>
 | |
| #include <asm/mutex.h>
 | |
| #ifdef CONFIG_PARAVIRT
 | |
| #include <asm/paravirt.h>
 | |
| #endif
 | |
| 
 | |
| #include "sched_cpupri.h"
 | |
| #include "workqueue_sched.h"
 | |
| #include "sched_autogroup.h"
 | |
| 
 | |
| #define CREATE_TRACE_POINTS
 | |
| #include <trace/events/sched.h>
 | |
| 
 | |
| /*
 | |
|  * Convert user-nice values [ -20 ... 0 ... 19 ]
 | |
|  * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 | |
|  * and back.
 | |
|  */
 | |
| #define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
 | |
| #define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
 | |
| #define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)
 | |
| 
 | |
| /*
 | |
|  * 'User priority' is the nice value converted to something we
 | |
|  * can work with better when scaling various scheduler parameters,
 | |
|  * it's a [ 0 ... 39 ] range.
 | |
|  */
 | |
| #define USER_PRIO(p)		((p)-MAX_RT_PRIO)
 | |
| #define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
 | |
| #define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))
 | |
| 
 | |
| /*
 | |
|  * Helpers for converting nanosecond timing to jiffy resolution
 | |
|  */
 | |
| #define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
 | |
| 
 | |
| #define NICE_0_LOAD		SCHED_LOAD_SCALE
 | |
| #define NICE_0_SHIFT		SCHED_LOAD_SHIFT
 | |
| 
 | |
| /*
 | |
|  * These are the 'tuning knobs' of the scheduler:
 | |
|  *
 | |
|  * default timeslice is 100 msecs (used only for SCHED_RR tasks).
 | |
|  * Timeslices get refilled after they expire.
 | |
|  */
 | |
| #define DEF_TIMESLICE		(100 * HZ / 1000)
 | |
| 
 | |
| /*
 | |
|  * single value that denotes runtime == period, ie unlimited time.
 | |
|  */
 | |
| #define RUNTIME_INF	((u64)~0ULL)
 | |
| 
 | |
| static inline int rt_policy(int policy)
 | |
| {
 | |
| 	if (policy == SCHED_FIFO || policy == SCHED_RR)
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int task_has_rt_policy(struct task_struct *p)
 | |
| {
 | |
| 	return rt_policy(p->policy);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is the priority-queue data structure of the RT scheduling class:
 | |
|  */
 | |
| struct rt_prio_array {
 | |
| 	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
 | |
| 	struct list_head queue[MAX_RT_PRIO];
 | |
| };
 | |
| 
 | |
| struct rt_bandwidth {
 | |
| 	/* nests inside the rq lock: */
 | |
| 	raw_spinlock_t		rt_runtime_lock;
 | |
| 	ktime_t			rt_period;
 | |
| 	u64			rt_runtime;
 | |
| 	struct hrtimer		rt_period_timer;
 | |
| };
 | |
| 
 | |
| static struct rt_bandwidth def_rt_bandwidth;
 | |
| 
 | |
| static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
 | |
| 
 | |
| static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
 | |
| {
 | |
| 	struct rt_bandwidth *rt_b =
 | |
| 		container_of(timer, struct rt_bandwidth, rt_period_timer);
 | |
| 	ktime_t now;
 | |
| 	int overrun;
 | |
| 	int idle = 0;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		now = hrtimer_cb_get_time(timer);
 | |
| 		overrun = hrtimer_forward(timer, now, rt_b->rt_period);
 | |
| 
 | |
| 		if (!overrun)
 | |
| 			break;
 | |
| 
 | |
| 		idle = do_sched_rt_period_timer(rt_b, overrun);
 | |
| 	}
 | |
| 
 | |
| 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
 | |
| }
 | |
| 
 | |
| static
 | |
| void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
 | |
| {
 | |
| 	rt_b->rt_period = ns_to_ktime(period);
 | |
| 	rt_b->rt_runtime = runtime;
 | |
| 
 | |
| 	raw_spin_lock_init(&rt_b->rt_runtime_lock);
 | |
| 
 | |
| 	hrtimer_init(&rt_b->rt_period_timer,
 | |
| 			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
 | |
| 	rt_b->rt_period_timer.function = sched_rt_period_timer;
 | |
| }
 | |
| 
 | |
| static inline int rt_bandwidth_enabled(void)
 | |
| {
 | |
| 	return sysctl_sched_rt_runtime >= 0;
 | |
| }
 | |
| 
 | |
| static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
 | |
| {
 | |
| 	ktime_t now;
 | |
| 
 | |
| 	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
 | |
| 		return;
 | |
| 
 | |
| 	if (hrtimer_active(&rt_b->rt_period_timer))
 | |
| 		return;
 | |
| 
 | |
| 	raw_spin_lock(&rt_b->rt_runtime_lock);
 | |
| 	for (;;) {
 | |
| 		unsigned long delta;
 | |
| 		ktime_t soft, hard;
 | |
| 
 | |
| 		if (hrtimer_active(&rt_b->rt_period_timer))
 | |
| 			break;
 | |
| 
 | |
| 		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
 | |
| 		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
 | |
| 
 | |
| 		soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
 | |
| 		hard = hrtimer_get_expires(&rt_b->rt_period_timer);
 | |
| 		delta = ktime_to_ns(ktime_sub(hard, soft));
 | |
| 		__hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
 | |
| 				HRTIMER_MODE_ABS_PINNED, 0);
 | |
| 	}
 | |
| 	raw_spin_unlock(&rt_b->rt_runtime_lock);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_RT_GROUP_SCHED
 | |
| static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
 | |
| {
 | |
| 	hrtimer_cancel(&rt_b->rt_period_timer);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * sched_domains_mutex serializes calls to init_sched_domains,
 | |
|  * detach_destroy_domains and partition_sched_domains.
 | |
|  */
 | |
| static DEFINE_MUTEX(sched_domains_mutex);
 | |
| 
 | |
| #ifdef CONFIG_CGROUP_SCHED
 | |
| 
 | |
| #include <linux/cgroup.h>
 | |
| 
 | |
| struct cfs_rq;
 | |
| 
 | |
| static LIST_HEAD(task_groups);
 | |
| 
 | |
| /* task group related information */
 | |
| struct task_group {
 | |
| 	struct cgroup_subsys_state css;
 | |
| 
 | |
| #ifdef CONFIG_FAIR_GROUP_SCHED
 | |
| 	/* schedulable entities of this group on each cpu */
 | |
| 	struct sched_entity **se;
 | |
| 	/* runqueue "owned" by this group on each cpu */
 | |
| 	struct cfs_rq **cfs_rq;
 | |
| 	unsigned long shares;
 | |
| 
 | |
| 	atomic_t load_weight;
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_RT_GROUP_SCHED
 | |
| 	struct sched_rt_entity **rt_se;
 | |
| 	struct rt_rq **rt_rq;
 | |
| 
 | |
| 	struct rt_bandwidth rt_bandwidth;
 | |
| #endif
 | |
| 
 | |
| 	struct rcu_head rcu;
 | |
| 	struct list_head list;
 | |
| 
 | |
| 	struct task_group *parent;
 | |
| 	struct list_head siblings;
 | |
| 	struct list_head children;
 | |
| 
 | |
| #ifdef CONFIG_SCHED_AUTOGROUP
 | |
| 	struct autogroup *autogroup;
 | |
| #endif
 | |
| };
 | |
| 
 | |
| /* task_group_lock serializes the addition/removal of task groups */
 | |
| static DEFINE_SPINLOCK(task_group_lock);
 | |
| 
 | |
| #ifdef CONFIG_FAIR_GROUP_SCHED
 | |
| 
 | |
| # define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
 | |
| 
 | |
| /*
 | |
|  * A weight of 0 or 1 can cause arithmetics problems.
 | |
|  * A weight of a cfs_rq is the sum of weights of which entities
 | |
|  * are queued on this cfs_rq, so a weight of a entity should not be
 | |
|  * too large, so as the shares value of a task group.
 | |
|  * (The default weight is 1024 - so there's no practical
 | |
|  *  limitation from this.)
 | |
|  */
 | |
| #define MIN_SHARES	(1UL <<  1)
 | |
| #define MAX_SHARES	(1UL << 18)
 | |
| 
 | |
| static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
 | |
| #endif
 | |
| 
 | |
| /* Default task group.
 | |
|  *	Every task in system belong to this group at bootup.
 | |
|  */
 | |
| struct task_group root_task_group;
 | |
| 
 | |
| #endif	/* CONFIG_CGROUP_SCHED */
 | |
| 
 | |
| /* CFS-related fields in a runqueue */
 | |
| struct cfs_rq {
 | |
| 	struct load_weight load;
 | |
| 	unsigned long nr_running;
 | |
| 
 | |
| 	u64 exec_clock;
 | |
| 	u64 min_vruntime;
 | |
| #ifndef CONFIG_64BIT
 | |
| 	u64 min_vruntime_copy;
 | |
| #endif
 | |
| 
 | |
| 	struct rb_root tasks_timeline;
 | |
| 	struct rb_node *rb_leftmost;
 | |
| 
 | |
| 	struct list_head tasks;
 | |
| 	struct list_head *balance_iterator;
 | |
| 
 | |
| 	/*
 | |
| 	 * 'curr' points to currently running entity on this cfs_rq.
 | |
| 	 * It is set to NULL otherwise (i.e when none are currently running).
 | |
| 	 */
 | |
| 	struct sched_entity *curr, *next, *last, *skip;
 | |
| 
 | |
| #ifdef	CONFIG_SCHED_DEBUG
 | |
| 	unsigned int nr_spread_over;
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_FAIR_GROUP_SCHED
 | |
| 	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */
 | |
| 
 | |
| 	/*
 | |
| 	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
 | |
| 	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
 | |
| 	 * (like users, containers etc.)
 | |
| 	 *
 | |
| 	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
 | |
| 	 * list is used during load balance.
 | |
| 	 */
 | |
| 	int on_list;
 | |
| 	struct list_head leaf_cfs_rq_list;
 | |
| 	struct task_group *tg;	/* group that "owns" this runqueue */
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	/*
 | |
| 	 * the part of load.weight contributed by tasks
 | |
| 	 */
 | |
| 	unsigned long task_weight;
 | |
| 
 | |
| 	/*
 | |
| 	 *   h_load = weight * f(tg)
 | |
| 	 *
 | |
| 	 * Where f(tg) is the recursive weight fraction assigned to
 | |
| 	 * this group.
 | |
| 	 */
 | |
| 	unsigned long h_load;
 | |
| 
 | |
| 	/*
 | |
| 	 * Maintaining per-cpu shares distribution for group scheduling
 | |
| 	 *
 | |
| 	 * load_stamp is the last time we updated the load average
 | |
| 	 * load_last is the last time we updated the load average and saw load
 | |
| 	 * load_unacc_exec_time is currently unaccounted execution time
 | |
| 	 */
 | |
| 	u64 load_avg;
 | |
| 	u64 load_period;
 | |
| 	u64 load_stamp, load_last, load_unacc_exec_time;
 | |
| 
 | |
| 	unsigned long load_contribution;
 | |
| #endif
 | |
| #endif
 | |
| };
 | |
| 
 | |
| /* Real-Time classes' related field in a runqueue: */
 | |
| struct rt_rq {
 | |
| 	struct rt_prio_array active;
 | |
| 	unsigned long rt_nr_running;
 | |
| #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
 | |
| 	struct {
 | |
| 		int curr; /* highest queued rt task prio */
 | |
| #ifdef CONFIG_SMP
 | |
| 		int next; /* next highest */
 | |
| #endif
 | |
| 	} highest_prio;
 | |
| #endif
 | |
| #ifdef CONFIG_SMP
 | |
| 	unsigned long rt_nr_migratory;
 | |
| 	unsigned long rt_nr_total;
 | |
| 	int overloaded;
 | |
| 	struct plist_head pushable_tasks;
 | |
| #endif
 | |
| 	int rt_throttled;
 | |
| 	u64 rt_time;
 | |
| 	u64 rt_runtime;
 | |
| 	/* Nests inside the rq lock: */
 | |
| 	raw_spinlock_t rt_runtime_lock;
 | |
| 
 | |
| #ifdef CONFIG_RT_GROUP_SCHED
 | |
| 	unsigned long rt_nr_boosted;
 | |
| 
 | |
| 	struct rq *rq;
 | |
| 	struct list_head leaf_rt_rq_list;
 | |
| 	struct task_group *tg;
 | |
| #endif
 | |
| };
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 
 | |
| /*
 | |
|  * We add the notion of a root-domain which will be used to define per-domain
 | |
|  * variables. Each exclusive cpuset essentially defines an island domain by
 | |
|  * fully partitioning the member cpus from any other cpuset. Whenever a new
 | |
|  * exclusive cpuset is created, we also create and attach a new root-domain
 | |
|  * object.
 | |
|  *
 | |
|  */
 | |
| struct root_domain {
 | |
| 	atomic_t refcount;
 | |
| 	atomic_t rto_count;
 | |
| 	struct rcu_head rcu;
 | |
| 	cpumask_var_t span;
 | |
| 	cpumask_var_t online;
 | |
| 
 | |
| 	/*
 | |
| 	 * The "RT overload" flag: it gets set if a CPU has more than
 | |
| 	 * one runnable RT task.
 | |
| 	 */
 | |
| 	cpumask_var_t rto_mask;
 | |
| 	struct cpupri cpupri;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * By default the system creates a single root-domain with all cpus as
 | |
|  * members (mimicking the global state we have today).
 | |
|  */
 | |
| static struct root_domain def_root_domain;
 | |
| 
 | |
| #endif /* CONFIG_SMP */
 | |
| 
 | |
| /*
 | |
|  * This is the main, per-CPU runqueue data structure.
 | |
|  *
 | |
|  * Locking rule: those places that want to lock multiple runqueues
 | |
|  * (such as the load balancing or the thread migration code), lock
 | |
|  * acquire operations must be ordered by ascending &runqueue.
 | |
|  */
 | |
| struct rq {
 | |
| 	/* runqueue lock: */
 | |
| 	raw_spinlock_t lock;
 | |
| 
 | |
| 	/*
 | |
| 	 * nr_running and cpu_load should be in the same cacheline because
 | |
| 	 * remote CPUs use both these fields when doing load calculation.
 | |
| 	 */
 | |
| 	unsigned long nr_running;
 | |
| 	#define CPU_LOAD_IDX_MAX 5
 | |
| 	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
 | |
| 	unsigned long last_load_update_tick;
 | |
| #ifdef CONFIG_NO_HZ
 | |
| 	u64 nohz_stamp;
 | |
| 	unsigned char nohz_balance_kick;
 | |
| #endif
 | |
| 	int skip_clock_update;
 | |
| 
 | |
| 	/* capture load from *all* tasks on this cpu: */
 | |
| 	struct load_weight load;
 | |
| 	unsigned long nr_load_updates;
 | |
| 	u64 nr_switches;
 | |
| 
 | |
| 	struct cfs_rq cfs;
 | |
| 	struct rt_rq rt;
 | |
| 
 | |
| #ifdef CONFIG_FAIR_GROUP_SCHED
 | |
| 	/* list of leaf cfs_rq on this cpu: */
 | |
| 	struct list_head leaf_cfs_rq_list;
 | |
| #endif
 | |
| #ifdef CONFIG_RT_GROUP_SCHED
 | |
| 	struct list_head leaf_rt_rq_list;
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * This is part of a global counter where only the total sum
 | |
| 	 * over all CPUs matters. A task can increase this counter on
 | |
| 	 * one CPU and if it got migrated afterwards it may decrease
 | |
| 	 * it on another CPU. Always updated under the runqueue lock:
 | |
| 	 */
 | |
| 	unsigned long nr_uninterruptible;
 | |
| 
 | |
| 	struct task_struct *curr, *idle, *stop;
 | |
| 	unsigned long next_balance;
 | |
| 	struct mm_struct *prev_mm;
 | |
| 
 | |
| 	u64 clock;
 | |
| 	u64 clock_task;
 | |
| 
 | |
| 	atomic_t nr_iowait;
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	struct root_domain *rd;
 | |
| 	struct sched_domain *sd;
 | |
| 
 | |
| 	unsigned long cpu_power;
 | |
| 
 | |
| 	unsigned char idle_at_tick;
 | |
| 	/* For active balancing */
 | |
| 	int post_schedule;
 | |
| 	int active_balance;
 | |
| 	int push_cpu;
 | |
| 	struct cpu_stop_work active_balance_work;
 | |
| 	/* cpu of this runqueue: */
 | |
| 	int cpu;
 | |
| 	int online;
 | |
| 
 | |
| 	unsigned long avg_load_per_task;
 | |
| 
 | |
| 	u64 rt_avg;
 | |
| 	u64 age_stamp;
 | |
| 	u64 idle_stamp;
 | |
| 	u64 avg_idle;
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_IRQ_TIME_ACCOUNTING
 | |
| 	u64 prev_irq_time;
 | |
| #endif
 | |
| #ifdef CONFIG_PARAVIRT
 | |
| 	u64 prev_steal_time;
 | |
| #endif
 | |
| #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
 | |
| 	u64 prev_steal_time_rq;
 | |
| #endif
 | |
| 
 | |
| 	/* calc_load related fields */
 | |
| 	unsigned long calc_load_update;
 | |
| 	long calc_load_active;
 | |
| 
 | |
| #ifdef CONFIG_SCHED_HRTICK
 | |
| #ifdef CONFIG_SMP
 | |
| 	int hrtick_csd_pending;
 | |
| 	struct call_single_data hrtick_csd;
 | |
| #endif
 | |
| 	struct hrtimer hrtick_timer;
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_SCHEDSTATS
 | |
| 	/* latency stats */
 | |
| 	struct sched_info rq_sched_info;
 | |
| 	unsigned long long rq_cpu_time;
 | |
| 	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
 | |
| 
 | |
| 	/* sys_sched_yield() stats */
 | |
| 	unsigned int yld_count;
 | |
| 
 | |
| 	/* schedule() stats */
 | |
| 	unsigned int sched_switch;
 | |
| 	unsigned int sched_count;
 | |
| 	unsigned int sched_goidle;
 | |
| 
 | |
| 	/* try_to_wake_up() stats */
 | |
| 	unsigned int ttwu_count;
 | |
| 	unsigned int ttwu_local;
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	struct task_struct *wake_list;
 | |
| #endif
 | |
| };
 | |
| 
 | |
| static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
 | |
| 
 | |
| 
 | |
| static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
 | |
| 
 | |
| static inline int cpu_of(struct rq *rq)
 | |
| {
 | |
| #ifdef CONFIG_SMP
 | |
| 	return rq->cpu;
 | |
| #else
 | |
| 	return 0;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #define rcu_dereference_check_sched_domain(p) \
 | |
| 	rcu_dereference_check((p), \
 | |
| 			      lockdep_is_held(&sched_domains_mutex))
 | |
| 
 | |
| /*
 | |
|  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
 | |
|  * See detach_destroy_domains: synchronize_sched for details.
 | |
|  *
 | |
|  * The domain tree of any CPU may only be accessed from within
 | |
|  * preempt-disabled sections.
 | |
|  */
 | |
| #define for_each_domain(cpu, __sd) \
 | |
| 	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
 | |
| 
 | |
| #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
 | |
| #define this_rq()		(&__get_cpu_var(runqueues))
 | |
| #define task_rq(p)		cpu_rq(task_cpu(p))
 | |
| #define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
 | |
| #define raw_rq()		(&__raw_get_cpu_var(runqueues))
 | |
| 
 | |
| #ifdef CONFIG_CGROUP_SCHED
 | |
| 
 | |
| /*
 | |
|  * Return the group to which this tasks belongs.
 | |
|  *
 | |
|  * We use task_subsys_state_check() and extend the RCU verification with
 | |
|  * pi->lock and rq->lock because cpu_cgroup_attach() holds those locks for each
 | |
|  * task it moves into the cgroup. Therefore by holding either of those locks,
 | |
|  * we pin the task to the current cgroup.
 | |
|  */
 | |
| static inline struct task_group *task_group(struct task_struct *p)
 | |
| {
 | |
| 	struct task_group *tg;
 | |
| 	struct cgroup_subsys_state *css;
 | |
| 
 | |
| 	css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
 | |
| 			lockdep_is_held(&p->pi_lock) ||
 | |
| 			lockdep_is_held(&task_rq(p)->lock));
 | |
| 	tg = container_of(css, struct task_group, css);
 | |
| 
 | |
| 	return autogroup_task_group(p, tg);
 | |
| }
 | |
| 
 | |
| /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
 | |
| static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
 | |
| {
 | |
| #ifdef CONFIG_FAIR_GROUP_SCHED
 | |
| 	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
 | |
| 	p->se.parent = task_group(p)->se[cpu];
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_RT_GROUP_SCHED
 | |
| 	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
 | |
| 	p->rt.parent = task_group(p)->rt_se[cpu];
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #else /* CONFIG_CGROUP_SCHED */
 | |
| 
 | |
| static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
 | |
| static inline struct task_group *task_group(struct task_struct *p)
 | |
| {
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_CGROUP_SCHED */
 | |
| 
 | |
| static void update_rq_clock_task(struct rq *rq, s64 delta);
 | |
| 
 | |
| static void update_rq_clock(struct rq *rq)
 | |
| {
 | |
| 	s64 delta;
 | |
| 
 | |
| 	if (rq->skip_clock_update > 0)
 | |
| 		return;
 | |
| 
 | |
| 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
 | |
| 	rq->clock += delta;
 | |
| 	update_rq_clock_task(rq, delta);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 | |
|  */
 | |
| #ifdef CONFIG_SCHED_DEBUG
 | |
| # define const_debug __read_mostly
 | |
| #else
 | |
| # define const_debug static const
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * runqueue_is_locked - Returns true if the current cpu runqueue is locked
 | |
|  * @cpu: the processor in question.
 | |
|  *
 | |
|  * This interface allows printk to be called with the runqueue lock
 | |
|  * held and know whether or not it is OK to wake up the klogd.
 | |
|  */
 | |
| int runqueue_is_locked(int cpu)
 | |
| {
 | |
| 	return raw_spin_is_locked(&cpu_rq(cpu)->lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Debugging: various feature bits
 | |
|  */
 | |
| 
 | |
| #define SCHED_FEAT(name, enabled)	\
 | |
| 	__SCHED_FEAT_##name ,
 | |
| 
 | |
| enum {
 | |
| #include "sched_features.h"
 | |
| };
 | |
| 
 | |
| #undef SCHED_FEAT
 | |
| 
 | |
| #define SCHED_FEAT(name, enabled)	\
 | |
| 	(1UL << __SCHED_FEAT_##name) * enabled |
 | |
| 
 | |
| const_debug unsigned int sysctl_sched_features =
 | |
| #include "sched_features.h"
 | |
| 	0;
 | |
| 
 | |
| #undef SCHED_FEAT
 | |
| 
 | |
| #ifdef CONFIG_SCHED_DEBUG
 | |
| #define SCHED_FEAT(name, enabled)	\
 | |
| 	#name ,
 | |
| 
 | |
| static __read_mostly char *sched_feat_names[] = {
 | |
| #include "sched_features.h"
 | |
| 	NULL
 | |
| };
 | |
| 
 | |
| #undef SCHED_FEAT
 | |
| 
 | |
| static int sched_feat_show(struct seq_file *m, void *v)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; sched_feat_names[i]; i++) {
 | |
| 		if (!(sysctl_sched_features & (1UL << i)))
 | |
| 			seq_puts(m, "NO_");
 | |
| 		seq_printf(m, "%s ", sched_feat_names[i]);
 | |
| 	}
 | |
| 	seq_puts(m, "\n");
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static ssize_t
 | |
| sched_feat_write(struct file *filp, const char __user *ubuf,
 | |
| 		size_t cnt, loff_t *ppos)
 | |
| {
 | |
| 	char buf[64];
 | |
| 	char *cmp;
 | |
| 	int neg = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	if (cnt > 63)
 | |
| 		cnt = 63;
 | |
| 
 | |
| 	if (copy_from_user(&buf, ubuf, cnt))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	buf[cnt] = 0;
 | |
| 	cmp = strstrip(buf);
 | |
| 
 | |
| 	if (strncmp(cmp, "NO_", 3) == 0) {
 | |
| 		neg = 1;
 | |
| 		cmp += 3;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; sched_feat_names[i]; i++) {
 | |
| 		if (strcmp(cmp, sched_feat_names[i]) == 0) {
 | |
| 			if (neg)
 | |
| 				sysctl_sched_features &= ~(1UL << i);
 | |
| 			else
 | |
| 				sysctl_sched_features |= (1UL << i);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!sched_feat_names[i])
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	*ppos += cnt;
 | |
| 
 | |
| 	return cnt;
 | |
| }
 | |
| 
 | |
| static int sched_feat_open(struct inode *inode, struct file *filp)
 | |
| {
 | |
| 	return single_open(filp, sched_feat_show, NULL);
 | |
| }
 | |
| 
 | |
| static const struct file_operations sched_feat_fops = {
 | |
| 	.open		= sched_feat_open,
 | |
| 	.write		= sched_feat_write,
 | |
| 	.read		= seq_read,
 | |
| 	.llseek		= seq_lseek,
 | |
| 	.release	= single_release,
 | |
| };
 | |
| 
 | |
| static __init int sched_init_debug(void)
 | |
| {
 | |
| 	debugfs_create_file("sched_features", 0644, NULL, NULL,
 | |
| 			&sched_feat_fops);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| late_initcall(sched_init_debug);
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
 | |
| 
 | |
| /*
 | |
|  * Number of tasks to iterate in a single balance run.
 | |
|  * Limited because this is done with IRQs disabled.
 | |
|  */
 | |
| const_debug unsigned int sysctl_sched_nr_migrate = 32;
 | |
| 
 | |
| /*
 | |
|  * period over which we average the RT time consumption, measured
 | |
|  * in ms.
 | |
|  *
 | |
|  * default: 1s
 | |
|  */
 | |
| const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
 | |
| 
 | |
| /*
 | |
|  * period over which we measure -rt task cpu usage in us.
 | |
|  * default: 1s
 | |
|  */
 | |
| unsigned int sysctl_sched_rt_period = 1000000;
 | |
| 
 | |
| static __read_mostly int scheduler_running;
 | |
| 
 | |
| /*
 | |
|  * part of the period that we allow rt tasks to run in us.
 | |
|  * default: 0.95s
 | |
|  */
 | |
| int sysctl_sched_rt_runtime = 950000;
 | |
| 
 | |
| static inline u64 global_rt_period(void)
 | |
| {
 | |
| 	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
 | |
| }
 | |
| 
 | |
| static inline u64 global_rt_runtime(void)
 | |
| {
 | |
| 	if (sysctl_sched_rt_runtime < 0)
 | |
| 		return RUNTIME_INF;
 | |
| 
 | |
| 	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
 | |
| }
 | |
| 
 | |
| #ifndef prepare_arch_switch
 | |
| # define prepare_arch_switch(next)	do { } while (0)
 | |
| #endif
 | |
| #ifndef finish_arch_switch
 | |
| # define finish_arch_switch(prev)	do { } while (0)
 | |
| #endif
 | |
| 
 | |
| static inline int task_current(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| 	return rq->curr == p;
 | |
| }
 | |
| 
 | |
| static inline int task_running(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| #ifdef CONFIG_SMP
 | |
| 	return p->on_cpu;
 | |
| #else
 | |
| 	return task_current(rq, p);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #ifndef __ARCH_WANT_UNLOCKED_CTXSW
 | |
| static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
 | |
| {
 | |
| #ifdef CONFIG_SMP
 | |
| 	/*
 | |
| 	 * We can optimise this out completely for !SMP, because the
 | |
| 	 * SMP rebalancing from interrupt is the only thing that cares
 | |
| 	 * here.
 | |
| 	 */
 | |
| 	next->on_cpu = 1;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
 | |
| {
 | |
| #ifdef CONFIG_SMP
 | |
| 	/*
 | |
| 	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
 | |
| 	 * We must ensure this doesn't happen until the switch is completely
 | |
| 	 * finished.
 | |
| 	 */
 | |
| 	smp_wmb();
 | |
| 	prev->on_cpu = 0;
 | |
| #endif
 | |
| #ifdef CONFIG_DEBUG_SPINLOCK
 | |
| 	/* this is a valid case when another task releases the spinlock */
 | |
| 	rq->lock.owner = current;
 | |
| #endif
 | |
| 	/*
 | |
| 	 * If we are tracking spinlock dependencies then we have to
 | |
| 	 * fix up the runqueue lock - which gets 'carried over' from
 | |
| 	 * prev into current:
 | |
| 	 */
 | |
| 	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
 | |
| 
 | |
| 	raw_spin_unlock_irq(&rq->lock);
 | |
| }
 | |
| 
 | |
| #else /* __ARCH_WANT_UNLOCKED_CTXSW */
 | |
| static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
 | |
| {
 | |
| #ifdef CONFIG_SMP
 | |
| 	/*
 | |
| 	 * We can optimise this out completely for !SMP, because the
 | |
| 	 * SMP rebalancing from interrupt is the only thing that cares
 | |
| 	 * here.
 | |
| 	 */
 | |
| 	next->on_cpu = 1;
 | |
| #endif
 | |
| #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
 | |
| 	raw_spin_unlock_irq(&rq->lock);
 | |
| #else
 | |
| 	raw_spin_unlock(&rq->lock);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
 | |
| {
 | |
| #ifdef CONFIG_SMP
 | |
| 	/*
 | |
| 	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
 | |
| 	 * We must ensure this doesn't happen until the switch is completely
 | |
| 	 * finished.
 | |
| 	 */
 | |
| 	smp_wmb();
 | |
| 	prev->on_cpu = 0;
 | |
| #endif
 | |
| #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
 | |
| 	local_irq_enable();
 | |
| #endif
 | |
| }
 | |
| #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
 | |
| 
 | |
| /*
 | |
|  * __task_rq_lock - lock the rq @p resides on.
 | |
|  */
 | |
| static inline struct rq *__task_rq_lock(struct task_struct *p)
 | |
| 	__acquires(rq->lock)
 | |
| {
 | |
| 	struct rq *rq;
 | |
| 
 | |
| 	lockdep_assert_held(&p->pi_lock);
 | |
| 
 | |
| 	for (;;) {
 | |
| 		rq = task_rq(p);
 | |
| 		raw_spin_lock(&rq->lock);
 | |
| 		if (likely(rq == task_rq(p)))
 | |
| 			return rq;
 | |
| 		raw_spin_unlock(&rq->lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
 | |
|  */
 | |
| static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
 | |
| 	__acquires(p->pi_lock)
 | |
| 	__acquires(rq->lock)
 | |
| {
 | |
| 	struct rq *rq;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		raw_spin_lock_irqsave(&p->pi_lock, *flags);
 | |
| 		rq = task_rq(p);
 | |
| 		raw_spin_lock(&rq->lock);
 | |
| 		if (likely(rq == task_rq(p)))
 | |
| 			return rq;
 | |
| 		raw_spin_unlock(&rq->lock);
 | |
| 		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __task_rq_unlock(struct rq *rq)
 | |
| 	__releases(rq->lock)
 | |
| {
 | |
| 	raw_spin_unlock(&rq->lock);
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
 | |
| 	__releases(rq->lock)
 | |
| 	__releases(p->pi_lock)
 | |
| {
 | |
| 	raw_spin_unlock(&rq->lock);
 | |
| 	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * this_rq_lock - lock this runqueue and disable interrupts.
 | |
|  */
 | |
| static struct rq *this_rq_lock(void)
 | |
| 	__acquires(rq->lock)
 | |
| {
 | |
| 	struct rq *rq;
 | |
| 
 | |
| 	local_irq_disable();
 | |
| 	rq = this_rq();
 | |
| 	raw_spin_lock(&rq->lock);
 | |
| 
 | |
| 	return rq;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SCHED_HRTICK
 | |
| /*
 | |
|  * Use HR-timers to deliver accurate preemption points.
 | |
|  *
 | |
|  * Its all a bit involved since we cannot program an hrt while holding the
 | |
|  * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 | |
|  * reschedule event.
 | |
|  *
 | |
|  * When we get rescheduled we reprogram the hrtick_timer outside of the
 | |
|  * rq->lock.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Use hrtick when:
 | |
|  *  - enabled by features
 | |
|  *  - hrtimer is actually high res
 | |
|  */
 | |
| static inline int hrtick_enabled(struct rq *rq)
 | |
| {
 | |
| 	if (!sched_feat(HRTICK))
 | |
| 		return 0;
 | |
| 	if (!cpu_active(cpu_of(rq)))
 | |
| 		return 0;
 | |
| 	return hrtimer_is_hres_active(&rq->hrtick_timer);
 | |
| }
 | |
| 
 | |
| static void hrtick_clear(struct rq *rq)
 | |
| {
 | |
| 	if (hrtimer_active(&rq->hrtick_timer))
 | |
| 		hrtimer_cancel(&rq->hrtick_timer);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * High-resolution timer tick.
 | |
|  * Runs from hardirq context with interrupts disabled.
 | |
|  */
 | |
| static enum hrtimer_restart hrtick(struct hrtimer *timer)
 | |
| {
 | |
| 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
 | |
| 
 | |
| 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
 | |
| 
 | |
| 	raw_spin_lock(&rq->lock);
 | |
| 	update_rq_clock(rq);
 | |
| 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
 | |
| 	raw_spin_unlock(&rq->lock);
 | |
| 
 | |
| 	return HRTIMER_NORESTART;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| /*
 | |
|  * called from hardirq (IPI) context
 | |
|  */
 | |
| static void __hrtick_start(void *arg)
 | |
| {
 | |
| 	struct rq *rq = arg;
 | |
| 
 | |
| 	raw_spin_lock(&rq->lock);
 | |
| 	hrtimer_restart(&rq->hrtick_timer);
 | |
| 	rq->hrtick_csd_pending = 0;
 | |
| 	raw_spin_unlock(&rq->lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called to set the hrtick timer state.
 | |
|  *
 | |
|  * called with rq->lock held and irqs disabled
 | |
|  */
 | |
| static void hrtick_start(struct rq *rq, u64 delay)
 | |
| {
 | |
| 	struct hrtimer *timer = &rq->hrtick_timer;
 | |
| 	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
 | |
| 
 | |
| 	hrtimer_set_expires(timer, time);
 | |
| 
 | |
| 	if (rq == this_rq()) {
 | |
| 		hrtimer_restart(timer);
 | |
| 	} else if (!rq->hrtick_csd_pending) {
 | |
| 		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
 | |
| 		rq->hrtick_csd_pending = 1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int
 | |
| hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
 | |
| {
 | |
| 	int cpu = (int)(long)hcpu;
 | |
| 
 | |
| 	switch (action) {
 | |
| 	case CPU_UP_CANCELED:
 | |
| 	case CPU_UP_CANCELED_FROZEN:
 | |
| 	case CPU_DOWN_PREPARE:
 | |
| 	case CPU_DOWN_PREPARE_FROZEN:
 | |
| 	case CPU_DEAD:
 | |
| 	case CPU_DEAD_FROZEN:
 | |
| 		hrtick_clear(cpu_rq(cpu));
 | |
| 		return NOTIFY_OK;
 | |
| 	}
 | |
| 
 | |
| 	return NOTIFY_DONE;
 | |
| }
 | |
| 
 | |
| static __init void init_hrtick(void)
 | |
| {
 | |
| 	hotcpu_notifier(hotplug_hrtick, 0);
 | |
| }
 | |
| #else
 | |
| /*
 | |
|  * Called to set the hrtick timer state.
 | |
|  *
 | |
|  * called with rq->lock held and irqs disabled
 | |
|  */
 | |
| static void hrtick_start(struct rq *rq, u64 delay)
 | |
| {
 | |
| 	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
 | |
| 			HRTIMER_MODE_REL_PINNED, 0);
 | |
| }
 | |
| 
 | |
| static inline void init_hrtick(void)
 | |
| {
 | |
| }
 | |
| #endif /* CONFIG_SMP */
 | |
| 
 | |
| static void init_rq_hrtick(struct rq *rq)
 | |
| {
 | |
| #ifdef CONFIG_SMP
 | |
| 	rq->hrtick_csd_pending = 0;
 | |
| 
 | |
| 	rq->hrtick_csd.flags = 0;
 | |
| 	rq->hrtick_csd.func = __hrtick_start;
 | |
| 	rq->hrtick_csd.info = rq;
 | |
| #endif
 | |
| 
 | |
| 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
 | |
| 	rq->hrtick_timer.function = hrtick;
 | |
| }
 | |
| #else	/* CONFIG_SCHED_HRTICK */
 | |
| static inline void hrtick_clear(struct rq *rq)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline void init_rq_hrtick(struct rq *rq)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline void init_hrtick(void)
 | |
| {
 | |
| }
 | |
| #endif	/* CONFIG_SCHED_HRTICK */
 | |
| 
 | |
| /*
 | |
|  * resched_task - mark a task 'to be rescheduled now'.
 | |
|  *
 | |
|  * On UP this means the setting of the need_resched flag, on SMP it
 | |
|  * might also involve a cross-CPU call to trigger the scheduler on
 | |
|  * the target CPU.
 | |
|  */
 | |
| #ifdef CONFIG_SMP
 | |
| 
 | |
| #ifndef tsk_is_polling
 | |
| #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
 | |
| #endif
 | |
| 
 | |
| static void resched_task(struct task_struct *p)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	assert_raw_spin_locked(&task_rq(p)->lock);
 | |
| 
 | |
| 	if (test_tsk_need_resched(p))
 | |
| 		return;
 | |
| 
 | |
| 	set_tsk_need_resched(p);
 | |
| 
 | |
| 	cpu = task_cpu(p);
 | |
| 	if (cpu == smp_processor_id())
 | |
| 		return;
 | |
| 
 | |
| 	/* NEED_RESCHED must be visible before we test polling */
 | |
| 	smp_mb();
 | |
| 	if (!tsk_is_polling(p))
 | |
| 		smp_send_reschedule(cpu);
 | |
| }
 | |
| 
 | |
| static void resched_cpu(int cpu)
 | |
| {
 | |
| 	struct rq *rq = cpu_rq(cpu);
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
 | |
| 		return;
 | |
| 	resched_task(cpu_curr(cpu));
 | |
| 	raw_spin_unlock_irqrestore(&rq->lock, flags);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NO_HZ
 | |
| /*
 | |
|  * In the semi idle case, use the nearest busy cpu for migrating timers
 | |
|  * from an idle cpu.  This is good for power-savings.
 | |
|  *
 | |
|  * We don't do similar optimization for completely idle system, as
 | |
|  * selecting an idle cpu will add more delays to the timers than intended
 | |
|  * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 | |
|  */
 | |
| int get_nohz_timer_target(void)
 | |
| {
 | |
| 	int cpu = smp_processor_id();
 | |
| 	int i;
 | |
| 	struct sched_domain *sd;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	for_each_domain(cpu, sd) {
 | |
| 		for_each_cpu(i, sched_domain_span(sd)) {
 | |
| 			if (!idle_cpu(i)) {
 | |
| 				cpu = i;
 | |
| 				goto unlock;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| unlock:
 | |
| 	rcu_read_unlock();
 | |
| 	return cpu;
 | |
| }
 | |
| /*
 | |
|  * When add_timer_on() enqueues a timer into the timer wheel of an
 | |
|  * idle CPU then this timer might expire before the next timer event
 | |
|  * which is scheduled to wake up that CPU. In case of a completely
 | |
|  * idle system the next event might even be infinite time into the
 | |
|  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 | |
|  * leaves the inner idle loop so the newly added timer is taken into
 | |
|  * account when the CPU goes back to idle and evaluates the timer
 | |
|  * wheel for the next timer event.
 | |
|  */
 | |
| void wake_up_idle_cpu(int cpu)
 | |
| {
 | |
| 	struct rq *rq = cpu_rq(cpu);
 | |
| 
 | |
| 	if (cpu == smp_processor_id())
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * This is safe, as this function is called with the timer
 | |
| 	 * wheel base lock of (cpu) held. When the CPU is on the way
 | |
| 	 * to idle and has not yet set rq->curr to idle then it will
 | |
| 	 * be serialized on the timer wheel base lock and take the new
 | |
| 	 * timer into account automatically.
 | |
| 	 */
 | |
| 	if (rq->curr != rq->idle)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * We can set TIF_RESCHED on the idle task of the other CPU
 | |
| 	 * lockless. The worst case is that the other CPU runs the
 | |
| 	 * idle task through an additional NOOP schedule()
 | |
| 	 */
 | |
| 	set_tsk_need_resched(rq->idle);
 | |
| 
 | |
| 	/* NEED_RESCHED must be visible before we test polling */
 | |
| 	smp_mb();
 | |
| 	if (!tsk_is_polling(rq->idle))
 | |
| 		smp_send_reschedule(cpu);
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_NO_HZ */
 | |
| 
 | |
| static u64 sched_avg_period(void)
 | |
| {
 | |
| 	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
 | |
| }
 | |
| 
 | |
| static void sched_avg_update(struct rq *rq)
 | |
| {
 | |
| 	s64 period = sched_avg_period();
 | |
| 
 | |
| 	while ((s64)(rq->clock - rq->age_stamp) > period) {
 | |
| 		/*
 | |
| 		 * Inline assembly required to prevent the compiler
 | |
| 		 * optimising this loop into a divmod call.
 | |
| 		 * See __iter_div_u64_rem() for another example of this.
 | |
| 		 */
 | |
| 		asm("" : "+rm" (rq->age_stamp));
 | |
| 		rq->age_stamp += period;
 | |
| 		rq->rt_avg /= 2;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
 | |
| {
 | |
| 	rq->rt_avg += rt_delta;
 | |
| 	sched_avg_update(rq);
 | |
| }
 | |
| 
 | |
| #else /* !CONFIG_SMP */
 | |
| static void resched_task(struct task_struct *p)
 | |
| {
 | |
| 	assert_raw_spin_locked(&task_rq(p)->lock);
 | |
| 	set_tsk_need_resched(p);
 | |
| }
 | |
| 
 | |
| static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void sched_avg_update(struct rq *rq)
 | |
| {
 | |
| }
 | |
| #endif /* CONFIG_SMP */
 | |
| 
 | |
| #if BITS_PER_LONG == 32
 | |
| # define WMULT_CONST	(~0UL)
 | |
| #else
 | |
| # define WMULT_CONST	(1UL << 32)
 | |
| #endif
 | |
| 
 | |
| #define WMULT_SHIFT	32
 | |
| 
 | |
| /*
 | |
|  * Shift right and round:
 | |
|  */
 | |
| #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
 | |
| 
 | |
| /*
 | |
|  * delta *= weight / lw
 | |
|  */
 | |
| static unsigned long
 | |
| calc_delta_mine(unsigned long delta_exec, unsigned long weight,
 | |
| 		struct load_weight *lw)
 | |
| {
 | |
| 	u64 tmp;
 | |
| 
 | |
| 	/*
 | |
| 	 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
 | |
| 	 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
 | |
| 	 * 2^SCHED_LOAD_RESOLUTION.
 | |
| 	 */
 | |
| 	if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
 | |
| 		tmp = (u64)delta_exec * scale_load_down(weight);
 | |
| 	else
 | |
| 		tmp = (u64)delta_exec;
 | |
| 
 | |
| 	if (!lw->inv_weight) {
 | |
| 		unsigned long w = scale_load_down(lw->weight);
 | |
| 
 | |
| 		if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
 | |
| 			lw->inv_weight = 1;
 | |
| 		else if (unlikely(!w))
 | |
| 			lw->inv_weight = WMULT_CONST;
 | |
| 		else
 | |
| 			lw->inv_weight = WMULT_CONST / w;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Check whether we'd overflow the 64-bit multiplication:
 | |
| 	 */
 | |
| 	if (unlikely(tmp > WMULT_CONST))
 | |
| 		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
 | |
| 			WMULT_SHIFT/2);
 | |
| 	else
 | |
| 		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
 | |
| 
 | |
| 	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
 | |
| }
 | |
| 
 | |
| static inline void update_load_add(struct load_weight *lw, unsigned long inc)
 | |
| {
 | |
| 	lw->weight += inc;
 | |
| 	lw->inv_weight = 0;
 | |
| }
 | |
| 
 | |
| static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
 | |
| {
 | |
| 	lw->weight -= dec;
 | |
| 	lw->inv_weight = 0;
 | |
| }
 | |
| 
 | |
| static inline void update_load_set(struct load_weight *lw, unsigned long w)
 | |
| {
 | |
| 	lw->weight = w;
 | |
| 	lw->inv_weight = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * To aid in avoiding the subversion of "niceness" due to uneven distribution
 | |
|  * of tasks with abnormal "nice" values across CPUs the contribution that
 | |
|  * each task makes to its run queue's load is weighted according to its
 | |
|  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
 | |
|  * scaled version of the new time slice allocation that they receive on time
 | |
|  * slice expiry etc.
 | |
|  */
 | |
| 
 | |
| #define WEIGHT_IDLEPRIO                3
 | |
| #define WMULT_IDLEPRIO         1431655765
 | |
| 
 | |
| /*
 | |
|  * Nice levels are multiplicative, with a gentle 10% change for every
 | |
|  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 | |
|  * nice 1, it will get ~10% less CPU time than another CPU-bound task
 | |
|  * that remained on nice 0.
 | |
|  *
 | |
|  * The "10% effect" is relative and cumulative: from _any_ nice level,
 | |
|  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
 | |
|  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 | |
|  * If a task goes up by ~10% and another task goes down by ~10% then
 | |
|  * the relative distance between them is ~25%.)
 | |
|  */
 | |
| static const int prio_to_weight[40] = {
 | |
|  /* -20 */     88761,     71755,     56483,     46273,     36291,
 | |
|  /* -15 */     29154,     23254,     18705,     14949,     11916,
 | |
|  /* -10 */      9548,      7620,      6100,      4904,      3906,
 | |
|  /*  -5 */      3121,      2501,      1991,      1586,      1277,
 | |
|  /*   0 */      1024,       820,       655,       526,       423,
 | |
|  /*   5 */       335,       272,       215,       172,       137,
 | |
|  /*  10 */       110,        87,        70,        56,        45,
 | |
|  /*  15 */        36,        29,        23,        18,        15,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 | |
|  *
 | |
|  * In cases where the weight does not change often, we can use the
 | |
|  * precalculated inverse to speed up arithmetics by turning divisions
 | |
|  * into multiplications:
 | |
|  */
 | |
| static const u32 prio_to_wmult[40] = {
 | |
|  /* -20 */     48388,     59856,     76040,     92818,    118348,
 | |
|  /* -15 */    147320,    184698,    229616,    287308,    360437,
 | |
|  /* -10 */    449829,    563644,    704093,    875809,   1099582,
 | |
|  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 | |
|  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 | |
|  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 | |
|  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 | |
|  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
 | |
| };
 | |
| 
 | |
| /* Time spent by the tasks of the cpu accounting group executing in ... */
 | |
| enum cpuacct_stat_index {
 | |
| 	CPUACCT_STAT_USER,	/* ... user mode */
 | |
| 	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */
 | |
| 
 | |
| 	CPUACCT_STAT_NSTATS,
 | |
| };
 | |
| 
 | |
| #ifdef CONFIG_CGROUP_CPUACCT
 | |
| static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
 | |
| static void cpuacct_update_stats(struct task_struct *tsk,
 | |
| 		enum cpuacct_stat_index idx, cputime_t val);
 | |
| #else
 | |
| static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
 | |
| static inline void cpuacct_update_stats(struct task_struct *tsk,
 | |
| 		enum cpuacct_stat_index idx, cputime_t val) {}
 | |
| #endif
 | |
| 
 | |
| static inline void inc_cpu_load(struct rq *rq, unsigned long load)
 | |
| {
 | |
| 	update_load_add(&rq->load, load);
 | |
| }
 | |
| 
 | |
| static inline void dec_cpu_load(struct rq *rq, unsigned long load)
 | |
| {
 | |
| 	update_load_sub(&rq->load, load);
 | |
| }
 | |
| 
 | |
| #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
 | |
| typedef int (*tg_visitor)(struct task_group *, void *);
 | |
| 
 | |
| /*
 | |
|  * Iterate the full tree, calling @down when first entering a node and @up when
 | |
|  * leaving it for the final time.
 | |
|  */
 | |
| static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
 | |
| {
 | |
| 	struct task_group *parent, *child;
 | |
| 	int ret;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	parent = &root_task_group;
 | |
| down:
 | |
| 	ret = (*down)(parent, data);
 | |
| 	if (ret)
 | |
| 		goto out_unlock;
 | |
| 	list_for_each_entry_rcu(child, &parent->children, siblings) {
 | |
| 		parent = child;
 | |
| 		goto down;
 | |
| 
 | |
| up:
 | |
| 		continue;
 | |
| 	}
 | |
| 	ret = (*up)(parent, data);
 | |
| 	if (ret)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	child = parent;
 | |
| 	parent = parent->parent;
 | |
| 	if (parent)
 | |
| 		goto up;
 | |
| out_unlock:
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int tg_nop(struct task_group *tg, void *data)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| /* Used instead of source_load when we know the type == 0 */
 | |
| static unsigned long weighted_cpuload(const int cpu)
 | |
| {
 | |
| 	return cpu_rq(cpu)->load.weight;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return a low guess at the load of a migration-source cpu weighted
 | |
|  * according to the scheduling class and "nice" value.
 | |
|  *
 | |
|  * We want to under-estimate the load of migration sources, to
 | |
|  * balance conservatively.
 | |
|  */
 | |
| static unsigned long source_load(int cpu, int type)
 | |
| {
 | |
| 	struct rq *rq = cpu_rq(cpu);
 | |
| 	unsigned long total = weighted_cpuload(cpu);
 | |
| 
 | |
| 	if (type == 0 || !sched_feat(LB_BIAS))
 | |
| 		return total;
 | |
| 
 | |
| 	return min(rq->cpu_load[type-1], total);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return a high guess at the load of a migration-target cpu weighted
 | |
|  * according to the scheduling class and "nice" value.
 | |
|  */
 | |
| static unsigned long target_load(int cpu, int type)
 | |
| {
 | |
| 	struct rq *rq = cpu_rq(cpu);
 | |
| 	unsigned long total = weighted_cpuload(cpu);
 | |
| 
 | |
| 	if (type == 0 || !sched_feat(LB_BIAS))
 | |
| 		return total;
 | |
| 
 | |
| 	return max(rq->cpu_load[type-1], total);
 | |
| }
 | |
| 
 | |
| static unsigned long power_of(int cpu)
 | |
| {
 | |
| 	return cpu_rq(cpu)->cpu_power;
 | |
| }
 | |
| 
 | |
| static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
 | |
| 
 | |
| static unsigned long cpu_avg_load_per_task(int cpu)
 | |
| {
 | |
| 	struct rq *rq = cpu_rq(cpu);
 | |
| 	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
 | |
| 
 | |
| 	if (nr_running)
 | |
| 		rq->avg_load_per_task = rq->load.weight / nr_running;
 | |
| 	else
 | |
| 		rq->avg_load_per_task = 0;
 | |
| 
 | |
| 	return rq->avg_load_per_task;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PREEMPT
 | |
| 
 | |
| static void double_rq_lock(struct rq *rq1, struct rq *rq2);
 | |
| 
 | |
| /*
 | |
|  * fair double_lock_balance: Safely acquires both rq->locks in a fair
 | |
|  * way at the expense of forcing extra atomic operations in all
 | |
|  * invocations.  This assures that the double_lock is acquired using the
 | |
|  * same underlying policy as the spinlock_t on this architecture, which
 | |
|  * reduces latency compared to the unfair variant below.  However, it
 | |
|  * also adds more overhead and therefore may reduce throughput.
 | |
|  */
 | |
| static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
 | |
| 	__releases(this_rq->lock)
 | |
| 	__acquires(busiest->lock)
 | |
| 	__acquires(this_rq->lock)
 | |
| {
 | |
| 	raw_spin_unlock(&this_rq->lock);
 | |
| 	double_rq_lock(this_rq, busiest);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| #else
 | |
| /*
 | |
|  * Unfair double_lock_balance: Optimizes throughput at the expense of
 | |
|  * latency by eliminating extra atomic operations when the locks are
 | |
|  * already in proper order on entry.  This favors lower cpu-ids and will
 | |
|  * grant the double lock to lower cpus over higher ids under contention,
 | |
|  * regardless of entry order into the function.
 | |
|  */
 | |
| static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
 | |
| 	__releases(this_rq->lock)
 | |
| 	__acquires(busiest->lock)
 | |
| 	__acquires(this_rq->lock)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
 | |
| 		if (busiest < this_rq) {
 | |
| 			raw_spin_unlock(&this_rq->lock);
 | |
| 			raw_spin_lock(&busiest->lock);
 | |
| 			raw_spin_lock_nested(&this_rq->lock,
 | |
| 					      SINGLE_DEPTH_NESTING);
 | |
| 			ret = 1;
 | |
| 		} else
 | |
| 			raw_spin_lock_nested(&busiest->lock,
 | |
| 					      SINGLE_DEPTH_NESTING);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_PREEMPT */
 | |
| 
 | |
| /*
 | |
|  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 | |
|  */
 | |
| static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
 | |
| {
 | |
| 	if (unlikely(!irqs_disabled())) {
 | |
| 		/* printk() doesn't work good under rq->lock */
 | |
| 		raw_spin_unlock(&this_rq->lock);
 | |
| 		BUG_ON(1);
 | |
| 	}
 | |
| 
 | |
| 	return _double_lock_balance(this_rq, busiest);
 | |
| }
 | |
| 
 | |
| static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
 | |
| 	__releases(busiest->lock)
 | |
| {
 | |
| 	raw_spin_unlock(&busiest->lock);
 | |
| 	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * double_rq_lock - safely lock two runqueues
 | |
|  *
 | |
|  * Note this does not disable interrupts like task_rq_lock,
 | |
|  * you need to do so manually before calling.
 | |
|  */
 | |
| static void double_rq_lock(struct rq *rq1, struct rq *rq2)
 | |
| 	__acquires(rq1->lock)
 | |
| 	__acquires(rq2->lock)
 | |
| {
 | |
| 	BUG_ON(!irqs_disabled());
 | |
| 	if (rq1 == rq2) {
 | |
| 		raw_spin_lock(&rq1->lock);
 | |
| 		__acquire(rq2->lock);	/* Fake it out ;) */
 | |
| 	} else {
 | |
| 		if (rq1 < rq2) {
 | |
| 			raw_spin_lock(&rq1->lock);
 | |
| 			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
 | |
| 		} else {
 | |
| 			raw_spin_lock(&rq2->lock);
 | |
| 			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * double_rq_unlock - safely unlock two runqueues
 | |
|  *
 | |
|  * Note this does not restore interrupts like task_rq_unlock,
 | |
|  * you need to do so manually after calling.
 | |
|  */
 | |
| static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
 | |
| 	__releases(rq1->lock)
 | |
| 	__releases(rq2->lock)
 | |
| {
 | |
| 	raw_spin_unlock(&rq1->lock);
 | |
| 	if (rq1 != rq2)
 | |
| 		raw_spin_unlock(&rq2->lock);
 | |
| 	else
 | |
| 		__release(rq2->lock);
 | |
| }
 | |
| 
 | |
| #else /* CONFIG_SMP */
 | |
| 
 | |
| /*
 | |
|  * double_rq_lock - safely lock two runqueues
 | |
|  *
 | |
|  * Note this does not disable interrupts like task_rq_lock,
 | |
|  * you need to do so manually before calling.
 | |
|  */
 | |
| static void double_rq_lock(struct rq *rq1, struct rq *rq2)
 | |
| 	__acquires(rq1->lock)
 | |
| 	__acquires(rq2->lock)
 | |
| {
 | |
| 	BUG_ON(!irqs_disabled());
 | |
| 	BUG_ON(rq1 != rq2);
 | |
| 	raw_spin_lock(&rq1->lock);
 | |
| 	__acquire(rq2->lock);	/* Fake it out ;) */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * double_rq_unlock - safely unlock two runqueues
 | |
|  *
 | |
|  * Note this does not restore interrupts like task_rq_unlock,
 | |
|  * you need to do so manually after calling.
 | |
|  */
 | |
| static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
 | |
| 	__releases(rq1->lock)
 | |
| 	__releases(rq2->lock)
 | |
| {
 | |
| 	BUG_ON(rq1 != rq2);
 | |
| 	raw_spin_unlock(&rq1->lock);
 | |
| 	__release(rq2->lock);
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| static void calc_load_account_idle(struct rq *this_rq);
 | |
| static void update_sysctl(void);
 | |
| static int get_update_sysctl_factor(void);
 | |
| static void update_cpu_load(struct rq *this_rq);
 | |
| 
 | |
| static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
 | |
| {
 | |
| 	set_task_rq(p, cpu);
 | |
| #ifdef CONFIG_SMP
 | |
| 	/*
 | |
| 	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
 | |
| 	 * successfuly executed on another CPU. We must ensure that updates of
 | |
| 	 * per-task data have been completed by this moment.
 | |
| 	 */
 | |
| 	smp_wmb();
 | |
| 	task_thread_info(p)->cpu = cpu;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static const struct sched_class rt_sched_class;
 | |
| 
 | |
| #define sched_class_highest (&stop_sched_class)
 | |
| #define for_each_class(class) \
 | |
|    for (class = sched_class_highest; class; class = class->next)
 | |
| 
 | |
| #include "sched_stats.h"
 | |
| 
 | |
| static void inc_nr_running(struct rq *rq)
 | |
| {
 | |
| 	rq->nr_running++;
 | |
| }
 | |
| 
 | |
| static void dec_nr_running(struct rq *rq)
 | |
| {
 | |
| 	rq->nr_running--;
 | |
| }
 | |
| 
 | |
| static void set_load_weight(struct task_struct *p)
 | |
| {
 | |
| 	int prio = p->static_prio - MAX_RT_PRIO;
 | |
| 	struct load_weight *load = &p->se.load;
 | |
| 
 | |
| 	/*
 | |
| 	 * SCHED_IDLE tasks get minimal weight:
 | |
| 	 */
 | |
| 	if (p->policy == SCHED_IDLE) {
 | |
| 		load->weight = scale_load(WEIGHT_IDLEPRIO);
 | |
| 		load->inv_weight = WMULT_IDLEPRIO;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	load->weight = scale_load(prio_to_weight[prio]);
 | |
| 	load->inv_weight = prio_to_wmult[prio];
 | |
| }
 | |
| 
 | |
| static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
 | |
| {
 | |
| 	update_rq_clock(rq);
 | |
| 	sched_info_queued(p);
 | |
| 	p->sched_class->enqueue_task(rq, p, flags);
 | |
| }
 | |
| 
 | |
| static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
 | |
| {
 | |
| 	update_rq_clock(rq);
 | |
| 	sched_info_dequeued(p);
 | |
| 	p->sched_class->dequeue_task(rq, p, flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * activate_task - move a task to the runqueue.
 | |
|  */
 | |
| static void activate_task(struct rq *rq, struct task_struct *p, int flags)
 | |
| {
 | |
| 	if (task_contributes_to_load(p))
 | |
| 		rq->nr_uninterruptible--;
 | |
| 
 | |
| 	enqueue_task(rq, p, flags);
 | |
| 	inc_nr_running(rq);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * deactivate_task - remove a task from the runqueue.
 | |
|  */
 | |
| static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
 | |
| {
 | |
| 	if (task_contributes_to_load(p))
 | |
| 		rq->nr_uninterruptible++;
 | |
| 
 | |
| 	dequeue_task(rq, p, flags);
 | |
| 	dec_nr_running(rq);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_IRQ_TIME_ACCOUNTING
 | |
| 
 | |
| /*
 | |
|  * There are no locks covering percpu hardirq/softirq time.
 | |
|  * They are only modified in account_system_vtime, on corresponding CPU
 | |
|  * with interrupts disabled. So, writes are safe.
 | |
|  * They are read and saved off onto struct rq in update_rq_clock().
 | |
|  * This may result in other CPU reading this CPU's irq time and can
 | |
|  * race with irq/account_system_vtime on this CPU. We would either get old
 | |
|  * or new value with a side effect of accounting a slice of irq time to wrong
 | |
|  * task when irq is in progress while we read rq->clock. That is a worthy
 | |
|  * compromise in place of having locks on each irq in account_system_time.
 | |
|  */
 | |
| static DEFINE_PER_CPU(u64, cpu_hardirq_time);
 | |
| static DEFINE_PER_CPU(u64, cpu_softirq_time);
 | |
| 
 | |
| static DEFINE_PER_CPU(u64, irq_start_time);
 | |
| static int sched_clock_irqtime;
 | |
| 
 | |
| void enable_sched_clock_irqtime(void)
 | |
| {
 | |
| 	sched_clock_irqtime = 1;
 | |
| }
 | |
| 
 | |
| void disable_sched_clock_irqtime(void)
 | |
| {
 | |
| 	sched_clock_irqtime = 0;
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_64BIT
 | |
| static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
 | |
| 
 | |
| static inline void irq_time_write_begin(void)
 | |
| {
 | |
| 	__this_cpu_inc(irq_time_seq.sequence);
 | |
| 	smp_wmb();
 | |
| }
 | |
| 
 | |
| static inline void irq_time_write_end(void)
 | |
| {
 | |
| 	smp_wmb();
 | |
| 	__this_cpu_inc(irq_time_seq.sequence);
 | |
| }
 | |
| 
 | |
| static inline u64 irq_time_read(int cpu)
 | |
| {
 | |
| 	u64 irq_time;
 | |
| 	unsigned seq;
 | |
| 
 | |
| 	do {
 | |
| 		seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
 | |
| 		irq_time = per_cpu(cpu_softirq_time, cpu) +
 | |
| 			   per_cpu(cpu_hardirq_time, cpu);
 | |
| 	} while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
 | |
| 
 | |
| 	return irq_time;
 | |
| }
 | |
| #else /* CONFIG_64BIT */
 | |
| static inline void irq_time_write_begin(void)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline void irq_time_write_end(void)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline u64 irq_time_read(int cpu)
 | |
| {
 | |
| 	return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
 | |
| }
 | |
| #endif /* CONFIG_64BIT */
 | |
| 
 | |
| /*
 | |
|  * Called before incrementing preempt_count on {soft,}irq_enter
 | |
|  * and before decrementing preempt_count on {soft,}irq_exit.
 | |
|  */
 | |
| void account_system_vtime(struct task_struct *curr)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	s64 delta;
 | |
| 	int cpu;
 | |
| 
 | |
| 	if (!sched_clock_irqtime)
 | |
| 		return;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 
 | |
| 	cpu = smp_processor_id();
 | |
| 	delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
 | |
| 	__this_cpu_add(irq_start_time, delta);
 | |
| 
 | |
| 	irq_time_write_begin();
 | |
| 	/*
 | |
| 	 * We do not account for softirq time from ksoftirqd here.
 | |
| 	 * We want to continue accounting softirq time to ksoftirqd thread
 | |
| 	 * in that case, so as not to confuse scheduler with a special task
 | |
| 	 * that do not consume any time, but still wants to run.
 | |
| 	 */
 | |
| 	if (hardirq_count())
 | |
| 		__this_cpu_add(cpu_hardirq_time, delta);
 | |
| 	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
 | |
| 		__this_cpu_add(cpu_softirq_time, delta);
 | |
| 
 | |
| 	irq_time_write_end();
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(account_system_vtime);
 | |
| 
 | |
| #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
 | |
| 
 | |
| #ifdef CONFIG_PARAVIRT
 | |
| static inline u64 steal_ticks(u64 steal)
 | |
| {
 | |
| 	if (unlikely(steal > NSEC_PER_SEC))
 | |
| 		return div_u64(steal, TICK_NSEC);
 | |
| 
 | |
| 	return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void update_rq_clock_task(struct rq *rq, s64 delta)
 | |
| {
 | |
| /*
 | |
|  * In theory, the compile should just see 0 here, and optimize out the call
 | |
|  * to sched_rt_avg_update. But I don't trust it...
 | |
|  */
 | |
| #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
 | |
| 	s64 steal = 0, irq_delta = 0;
 | |
| #endif
 | |
| #ifdef CONFIG_IRQ_TIME_ACCOUNTING
 | |
| 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
 | |
| 
 | |
| 	/*
 | |
| 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
 | |
| 	 * this case when a previous update_rq_clock() happened inside a
 | |
| 	 * {soft,}irq region.
 | |
| 	 *
 | |
| 	 * When this happens, we stop ->clock_task and only update the
 | |
| 	 * prev_irq_time stamp to account for the part that fit, so that a next
 | |
| 	 * update will consume the rest. This ensures ->clock_task is
 | |
| 	 * monotonic.
 | |
| 	 *
 | |
| 	 * It does however cause some slight miss-attribution of {soft,}irq
 | |
| 	 * time, a more accurate solution would be to update the irq_time using
 | |
| 	 * the current rq->clock timestamp, except that would require using
 | |
| 	 * atomic ops.
 | |
| 	 */
 | |
| 	if (irq_delta > delta)
 | |
| 		irq_delta = delta;
 | |
| 
 | |
| 	rq->prev_irq_time += irq_delta;
 | |
| 	delta -= irq_delta;
 | |
| #endif
 | |
| #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
 | |
| 	if (static_branch((¶virt_steal_rq_enabled))) {
 | |
| 		u64 st;
 | |
| 
 | |
| 		steal = paravirt_steal_clock(cpu_of(rq));
 | |
| 		steal -= rq->prev_steal_time_rq;
 | |
| 
 | |
| 		if (unlikely(steal > delta))
 | |
| 			steal = delta;
 | |
| 
 | |
| 		st = steal_ticks(steal);
 | |
| 		steal = st * TICK_NSEC;
 | |
| 
 | |
| 		rq->prev_steal_time_rq += steal;
 | |
| 
 | |
| 		delta -= steal;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	rq->clock_task += delta;
 | |
| 
 | |
| #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
 | |
| 	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
 | |
| 		sched_rt_avg_update(rq, irq_delta + steal);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_IRQ_TIME_ACCOUNTING
 | |
| static int irqtime_account_hi_update(void)
 | |
| {
 | |
| 	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
 | |
| 	unsigned long flags;
 | |
| 	u64 latest_ns;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	latest_ns = this_cpu_read(cpu_hardirq_time);
 | |
| 	if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
 | |
| 		ret = 1;
 | |
| 	local_irq_restore(flags);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int irqtime_account_si_update(void)
 | |
| {
 | |
| 	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
 | |
| 	unsigned long flags;
 | |
| 	u64 latest_ns;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	latest_ns = this_cpu_read(cpu_softirq_time);
 | |
| 	if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
 | |
| 		ret = 1;
 | |
| 	local_irq_restore(flags);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #else /* CONFIG_IRQ_TIME_ACCOUNTING */
 | |
| 
 | |
| #define sched_clock_irqtime	(0)
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #include "sched_idletask.c"
 | |
| #include "sched_fair.c"
 | |
| #include "sched_rt.c"
 | |
| #include "sched_autogroup.c"
 | |
| #include "sched_stoptask.c"
 | |
| #ifdef CONFIG_SCHED_DEBUG
 | |
| # include "sched_debug.c"
 | |
| #endif
 | |
| 
 | |
| void sched_set_stop_task(int cpu, struct task_struct *stop)
 | |
| {
 | |
| 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
 | |
| 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
 | |
| 
 | |
| 	if (stop) {
 | |
| 		/*
 | |
| 		 * Make it appear like a SCHED_FIFO task, its something
 | |
| 		 * userspace knows about and won't get confused about.
 | |
| 		 *
 | |
| 		 * Also, it will make PI more or less work without too
 | |
| 		 * much confusion -- but then, stop work should not
 | |
| 		 * rely on PI working anyway.
 | |
| 		 */
 | |
| 		sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m);
 | |
| 
 | |
| 		stop->sched_class = &stop_sched_class;
 | |
| 	}
 | |
| 
 | |
| 	cpu_rq(cpu)->stop = stop;
 | |
| 
 | |
| 	if (old_stop) {
 | |
| 		/*
 | |
| 		 * Reset it back to a normal scheduling class so that
 | |
| 		 * it can die in pieces.
 | |
| 		 */
 | |
| 		old_stop->sched_class = &rt_sched_class;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * __normal_prio - return the priority that is based on the static prio
 | |
|  */
 | |
| static inline int __normal_prio(struct task_struct *p)
 | |
| {
 | |
| 	return p->static_prio;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Calculate the expected normal priority: i.e. priority
 | |
|  * without taking RT-inheritance into account. Might be
 | |
|  * boosted by interactivity modifiers. Changes upon fork,
 | |
|  * setprio syscalls, and whenever the interactivity
 | |
|  * estimator recalculates.
 | |
|  */
 | |
| static inline int normal_prio(struct task_struct *p)
 | |
| {
 | |
| 	int prio;
 | |
| 
 | |
| 	if (task_has_rt_policy(p))
 | |
| 		prio = MAX_RT_PRIO-1 - p->rt_priority;
 | |
| 	else
 | |
| 		prio = __normal_prio(p);
 | |
| 	return prio;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Calculate the current priority, i.e. the priority
 | |
|  * taken into account by the scheduler. This value might
 | |
|  * be boosted by RT tasks, or might be boosted by
 | |
|  * interactivity modifiers. Will be RT if the task got
 | |
|  * RT-boosted. If not then it returns p->normal_prio.
 | |
|  */
 | |
| static int effective_prio(struct task_struct *p)
 | |
| {
 | |
| 	p->normal_prio = normal_prio(p);
 | |
| 	/*
 | |
| 	 * If we are RT tasks or we were boosted to RT priority,
 | |
| 	 * keep the priority unchanged. Otherwise, update priority
 | |
| 	 * to the normal priority:
 | |
| 	 */
 | |
| 	if (!rt_prio(p->prio))
 | |
| 		return p->normal_prio;
 | |
| 	return p->prio;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * task_curr - is this task currently executing on a CPU?
 | |
|  * @p: the task in question.
 | |
|  */
 | |
| inline int task_curr(const struct task_struct *p)
 | |
| {
 | |
| 	return cpu_curr(task_cpu(p)) == p;
 | |
| }
 | |
| 
 | |
| static inline void check_class_changed(struct rq *rq, struct task_struct *p,
 | |
| 				       const struct sched_class *prev_class,
 | |
| 				       int oldprio)
 | |
| {
 | |
| 	if (prev_class != p->sched_class) {
 | |
| 		if (prev_class->switched_from)
 | |
| 			prev_class->switched_from(rq, p);
 | |
| 		p->sched_class->switched_to(rq, p);
 | |
| 	} else if (oldprio != p->prio)
 | |
| 		p->sched_class->prio_changed(rq, p, oldprio);
 | |
| }
 | |
| 
 | |
| static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
 | |
| {
 | |
| 	const struct sched_class *class;
 | |
| 
 | |
| 	if (p->sched_class == rq->curr->sched_class) {
 | |
| 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
 | |
| 	} else {
 | |
| 		for_each_class(class) {
 | |
| 			if (class == rq->curr->sched_class)
 | |
| 				break;
 | |
| 			if (class == p->sched_class) {
 | |
| 				resched_task(rq->curr);
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * A queue event has occurred, and we're going to schedule.  In
 | |
| 	 * this case, we can save a useless back to back clock update.
 | |
| 	 */
 | |
| 	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
 | |
| 		rq->skip_clock_update = 1;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| /*
 | |
|  * Is this task likely cache-hot:
 | |
|  */
 | |
| static int
 | |
| task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
 | |
| {
 | |
| 	s64 delta;
 | |
| 
 | |
| 	if (p->sched_class != &fair_sched_class)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (unlikely(p->policy == SCHED_IDLE))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Buddy candidates are cache hot:
 | |
| 	 */
 | |
| 	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
 | |
| 			(&p->se == cfs_rq_of(&p->se)->next ||
 | |
| 			 &p->se == cfs_rq_of(&p->se)->last))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (sysctl_sched_migration_cost == -1)
 | |
| 		return 1;
 | |
| 	if (sysctl_sched_migration_cost == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	delta = now - p->se.exec_start;
 | |
| 
 | |
| 	return delta < (s64)sysctl_sched_migration_cost;
 | |
| }
 | |
| 
 | |
| void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
 | |
| {
 | |
| #ifdef CONFIG_SCHED_DEBUG
 | |
| 	/*
 | |
| 	 * We should never call set_task_cpu() on a blocked task,
 | |
| 	 * ttwu() will sort out the placement.
 | |
| 	 */
 | |
| 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
 | |
| 			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
 | |
| 
 | |
| #ifdef CONFIG_LOCKDEP
 | |
| 	/*
 | |
| 	 * The caller should hold either p->pi_lock or rq->lock, when changing
 | |
| 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
 | |
| 	 *
 | |
| 	 * sched_move_task() holds both and thus holding either pins the cgroup,
 | |
| 	 * see set_task_rq().
 | |
| 	 *
 | |
| 	 * Furthermore, all task_rq users should acquire both locks, see
 | |
| 	 * task_rq_lock().
 | |
| 	 */
 | |
| 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
 | |
| 				      lockdep_is_held(&task_rq(p)->lock)));
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| 	trace_sched_migrate_task(p, new_cpu);
 | |
| 
 | |
| 	if (task_cpu(p) != new_cpu) {
 | |
| 		p->se.nr_migrations++;
 | |
| 		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
 | |
| 	}
 | |
| 
 | |
| 	__set_task_cpu(p, new_cpu);
 | |
| }
 | |
| 
 | |
| struct migration_arg {
 | |
| 	struct task_struct *task;
 | |
| 	int dest_cpu;
 | |
| };
 | |
| 
 | |
| static int migration_cpu_stop(void *data);
 | |
| 
 | |
| /*
 | |
|  * wait_task_inactive - wait for a thread to unschedule.
 | |
|  *
 | |
|  * If @match_state is nonzero, it's the @p->state value just checked and
 | |
|  * not expected to change.  If it changes, i.e. @p might have woken up,
 | |
|  * then return zero.  When we succeed in waiting for @p to be off its CPU,
 | |
|  * we return a positive number (its total switch count).  If a second call
 | |
|  * a short while later returns the same number, the caller can be sure that
 | |
|  * @p has remained unscheduled the whole time.
 | |
|  *
 | |
|  * The caller must ensure that the task *will* unschedule sometime soon,
 | |
|  * else this function might spin for a *long* time. This function can't
 | |
|  * be called with interrupts off, or it may introduce deadlock with
 | |
|  * smp_call_function() if an IPI is sent by the same process we are
 | |
|  * waiting to become inactive.
 | |
|  */
 | |
| unsigned long wait_task_inactive(struct task_struct *p, long match_state)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	int running, on_rq;
 | |
| 	unsigned long ncsw;
 | |
| 	struct rq *rq;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		/*
 | |
| 		 * We do the initial early heuristics without holding
 | |
| 		 * any task-queue locks at all. We'll only try to get
 | |
| 		 * the runqueue lock when things look like they will
 | |
| 		 * work out!
 | |
| 		 */
 | |
| 		rq = task_rq(p);
 | |
| 
 | |
| 		/*
 | |
| 		 * If the task is actively running on another CPU
 | |
| 		 * still, just relax and busy-wait without holding
 | |
| 		 * any locks.
 | |
| 		 *
 | |
| 		 * NOTE! Since we don't hold any locks, it's not
 | |
| 		 * even sure that "rq" stays as the right runqueue!
 | |
| 		 * But we don't care, since "task_running()" will
 | |
| 		 * return false if the runqueue has changed and p
 | |
| 		 * is actually now running somewhere else!
 | |
| 		 */
 | |
| 		while (task_running(rq, p)) {
 | |
| 			if (match_state && unlikely(p->state != match_state))
 | |
| 				return 0;
 | |
| 			cpu_relax();
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Ok, time to look more closely! We need the rq
 | |
| 		 * lock now, to be *sure*. If we're wrong, we'll
 | |
| 		 * just go back and repeat.
 | |
| 		 */
 | |
| 		rq = task_rq_lock(p, &flags);
 | |
| 		trace_sched_wait_task(p);
 | |
| 		running = task_running(rq, p);
 | |
| 		on_rq = p->on_rq;
 | |
| 		ncsw = 0;
 | |
| 		if (!match_state || p->state == match_state)
 | |
| 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
 | |
| 		task_rq_unlock(rq, p, &flags);
 | |
| 
 | |
| 		/*
 | |
| 		 * If it changed from the expected state, bail out now.
 | |
| 		 */
 | |
| 		if (unlikely(!ncsw))
 | |
| 			break;
 | |
| 
 | |
| 		/*
 | |
| 		 * Was it really running after all now that we
 | |
| 		 * checked with the proper locks actually held?
 | |
| 		 *
 | |
| 		 * Oops. Go back and try again..
 | |
| 		 */
 | |
| 		if (unlikely(running)) {
 | |
| 			cpu_relax();
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * It's not enough that it's not actively running,
 | |
| 		 * it must be off the runqueue _entirely_, and not
 | |
| 		 * preempted!
 | |
| 		 *
 | |
| 		 * So if it was still runnable (but just not actively
 | |
| 		 * running right now), it's preempted, and we should
 | |
| 		 * yield - it could be a while.
 | |
| 		 */
 | |
| 		if (unlikely(on_rq)) {
 | |
| 			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
 | |
| 
 | |
| 			set_current_state(TASK_UNINTERRUPTIBLE);
 | |
| 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Ahh, all good. It wasn't running, and it wasn't
 | |
| 		 * runnable, which means that it will never become
 | |
| 		 * running in the future either. We're all done!
 | |
| 		 */
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return ncsw;
 | |
| }
 | |
| 
 | |
| /***
 | |
|  * kick_process - kick a running thread to enter/exit the kernel
 | |
|  * @p: the to-be-kicked thread
 | |
|  *
 | |
|  * Cause a process which is running on another CPU to enter
 | |
|  * kernel-mode, without any delay. (to get signals handled.)
 | |
|  *
 | |
|  * NOTE: this function doesn't have to take the runqueue lock,
 | |
|  * because all it wants to ensure is that the remote task enters
 | |
|  * the kernel. If the IPI races and the task has been migrated
 | |
|  * to another CPU then no harm is done and the purpose has been
 | |
|  * achieved as well.
 | |
|  */
 | |
| void kick_process(struct task_struct *p)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	preempt_disable();
 | |
| 	cpu = task_cpu(p);
 | |
| 	if ((cpu != smp_processor_id()) && task_curr(p))
 | |
| 		smp_send_reschedule(cpu);
 | |
| 	preempt_enable();
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kick_process);
 | |
| #endif /* CONFIG_SMP */
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| /*
 | |
|  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
 | |
|  */
 | |
| static int select_fallback_rq(int cpu, struct task_struct *p)
 | |
| {
 | |
| 	int dest_cpu;
 | |
| 	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
 | |
| 
 | |
| 	/* Look for allowed, online CPU in same node. */
 | |
| 	for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
 | |
| 		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
 | |
| 			return dest_cpu;
 | |
| 
 | |
| 	/* Any allowed, online CPU? */
 | |
| 	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
 | |
| 	if (dest_cpu < nr_cpu_ids)
 | |
| 		return dest_cpu;
 | |
| 
 | |
| 	/* No more Mr. Nice Guy. */
 | |
| 	dest_cpu = cpuset_cpus_allowed_fallback(p);
 | |
| 	/*
 | |
| 	 * Don't tell them about moving exiting tasks or
 | |
| 	 * kernel threads (both mm NULL), since they never
 | |
| 	 * leave kernel.
 | |
| 	 */
 | |
| 	if (p->mm && printk_ratelimit()) {
 | |
| 		printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
 | |
| 				task_pid_nr(p), p->comm, cpu);
 | |
| 	}
 | |
| 
 | |
| 	return dest_cpu;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
 | |
|  */
 | |
| static inline
 | |
| int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
 | |
| {
 | |
| 	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * In order not to call set_task_cpu() on a blocking task we need
 | |
| 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
 | |
| 	 * cpu.
 | |
| 	 *
 | |
| 	 * Since this is common to all placement strategies, this lives here.
 | |
| 	 *
 | |
| 	 * [ this allows ->select_task() to simply return task_cpu(p) and
 | |
| 	 *   not worry about this generic constraint ]
 | |
| 	 */
 | |
| 	if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
 | |
| 		     !cpu_online(cpu)))
 | |
| 		cpu = select_fallback_rq(task_cpu(p), p);
 | |
| 
 | |
| 	return cpu;
 | |
| }
 | |
| 
 | |
| static void update_avg(u64 *avg, u64 sample)
 | |
| {
 | |
| 	s64 diff = sample - *avg;
 | |
| 	*avg += diff >> 3;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void
 | |
| ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
 | |
| {
 | |
| #ifdef CONFIG_SCHEDSTATS
 | |
| 	struct rq *rq = this_rq();
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	int this_cpu = smp_processor_id();
 | |
| 
 | |
| 	if (cpu == this_cpu) {
 | |
| 		schedstat_inc(rq, ttwu_local);
 | |
| 		schedstat_inc(p, se.statistics.nr_wakeups_local);
 | |
| 	} else {
 | |
| 		struct sched_domain *sd;
 | |
| 
 | |
| 		schedstat_inc(p, se.statistics.nr_wakeups_remote);
 | |
| 		rcu_read_lock();
 | |
| 		for_each_domain(this_cpu, sd) {
 | |
| 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
 | |
| 				schedstat_inc(sd, ttwu_wake_remote);
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 		rcu_read_unlock();
 | |
| 	}
 | |
| 
 | |
| 	if (wake_flags & WF_MIGRATED)
 | |
| 		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
 | |
| 
 | |
| #endif /* CONFIG_SMP */
 | |
| 
 | |
| 	schedstat_inc(rq, ttwu_count);
 | |
| 	schedstat_inc(p, se.statistics.nr_wakeups);
 | |
| 
 | |
| 	if (wake_flags & WF_SYNC)
 | |
| 		schedstat_inc(p, se.statistics.nr_wakeups_sync);
 | |
| 
 | |
| #endif /* CONFIG_SCHEDSTATS */
 | |
| }
 | |
| 
 | |
| static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
 | |
| {
 | |
| 	activate_task(rq, p, en_flags);
 | |
| 	p->on_rq = 1;
 | |
| 
 | |
| 	/* if a worker is waking up, notify workqueue */
 | |
| 	if (p->flags & PF_WQ_WORKER)
 | |
| 		wq_worker_waking_up(p, cpu_of(rq));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Mark the task runnable and perform wakeup-preemption.
 | |
|  */
 | |
| static void
 | |
| ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
 | |
| {
 | |
| 	trace_sched_wakeup(p, true);
 | |
| 	check_preempt_curr(rq, p, wake_flags);
 | |
| 
 | |
| 	p->state = TASK_RUNNING;
 | |
| #ifdef CONFIG_SMP
 | |
| 	if (p->sched_class->task_woken)
 | |
| 		p->sched_class->task_woken(rq, p);
 | |
| 
 | |
| 	if (rq->idle_stamp) {
 | |
| 		u64 delta = rq->clock - rq->idle_stamp;
 | |
| 		u64 max = 2*sysctl_sched_migration_cost;
 | |
| 
 | |
| 		if (delta > max)
 | |
| 			rq->avg_idle = max;
 | |
| 		else
 | |
| 			update_avg(&rq->avg_idle, delta);
 | |
| 		rq->idle_stamp = 0;
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void
 | |
| ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
 | |
| {
 | |
| #ifdef CONFIG_SMP
 | |
| 	if (p->sched_contributes_to_load)
 | |
| 		rq->nr_uninterruptible--;
 | |
| #endif
 | |
| 
 | |
| 	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
 | |
| 	ttwu_do_wakeup(rq, p, wake_flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called in case the task @p isn't fully descheduled from its runqueue,
 | |
|  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 | |
|  * since all we need to do is flip p->state to TASK_RUNNING, since
 | |
|  * the task is still ->on_rq.
 | |
|  */
 | |
| static int ttwu_remote(struct task_struct *p, int wake_flags)
 | |
| {
 | |
| 	struct rq *rq;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	rq = __task_rq_lock(p);
 | |
| 	if (p->on_rq) {
 | |
| 		ttwu_do_wakeup(rq, p, wake_flags);
 | |
| 		ret = 1;
 | |
| 	}
 | |
| 	__task_rq_unlock(rq);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| static void sched_ttwu_do_pending(struct task_struct *list)
 | |
| {
 | |
| 	struct rq *rq = this_rq();
 | |
| 
 | |
| 	raw_spin_lock(&rq->lock);
 | |
| 
 | |
| 	while (list) {
 | |
| 		struct task_struct *p = list;
 | |
| 		list = list->wake_entry;
 | |
| 		ttwu_do_activate(rq, p, 0);
 | |
| 	}
 | |
| 
 | |
| 	raw_spin_unlock(&rq->lock);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HOTPLUG_CPU
 | |
| 
 | |
| static void sched_ttwu_pending(void)
 | |
| {
 | |
| 	struct rq *rq = this_rq();
 | |
| 	struct task_struct *list = xchg(&rq->wake_list, NULL);
 | |
| 
 | |
| 	if (!list)
 | |
| 		return;
 | |
| 
 | |
| 	sched_ttwu_do_pending(list);
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_HOTPLUG_CPU */
 | |
| 
 | |
| void scheduler_ipi(void)
 | |
| {
 | |
| 	struct rq *rq = this_rq();
 | |
| 	struct task_struct *list = xchg(&rq->wake_list, NULL);
 | |
| 
 | |
| 	if (!list)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
 | |
| 	 * traditionally all their work was done from the interrupt return
 | |
| 	 * path. Now that we actually do some work, we need to make sure
 | |
| 	 * we do call them.
 | |
| 	 *
 | |
| 	 * Some archs already do call them, luckily irq_enter/exit nest
 | |
| 	 * properly.
 | |
| 	 *
 | |
| 	 * Arguably we should visit all archs and update all handlers,
 | |
| 	 * however a fair share of IPIs are still resched only so this would
 | |
| 	 * somewhat pessimize the simple resched case.
 | |
| 	 */
 | |
| 	irq_enter();
 | |
| 	sched_ttwu_do_pending(list);
 | |
| 	irq_exit();
 | |
| }
 | |
| 
 | |
| static void ttwu_queue_remote(struct task_struct *p, int cpu)
 | |
| {
 | |
| 	struct rq *rq = cpu_rq(cpu);
 | |
| 	struct task_struct *next = rq->wake_list;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		struct task_struct *old = next;
 | |
| 
 | |
| 		p->wake_entry = next;
 | |
| 		next = cmpxchg(&rq->wake_list, old, p);
 | |
| 		if (next == old)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	if (!next)
 | |
| 		smp_send_reschedule(cpu);
 | |
| }
 | |
| 
 | |
| #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
 | |
| static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
 | |
| {
 | |
| 	struct rq *rq;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	rq = __task_rq_lock(p);
 | |
| 	if (p->on_cpu) {
 | |
| 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
 | |
| 		ttwu_do_wakeup(rq, p, wake_flags);
 | |
| 		ret = 1;
 | |
| 	}
 | |
| 	__task_rq_unlock(rq);
 | |
| 
 | |
| 	return ret;
 | |
| 
 | |
| }
 | |
| #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
 | |
| #endif /* CONFIG_SMP */
 | |
| 
 | |
| static void ttwu_queue(struct task_struct *p, int cpu)
 | |
| {
 | |
| 	struct rq *rq = cpu_rq(cpu);
 | |
| 
 | |
| #if defined(CONFIG_SMP)
 | |
| 	if (sched_feat(TTWU_QUEUE) && cpu != smp_processor_id()) {
 | |
| 		sched_clock_cpu(cpu); /* sync clocks x-cpu */
 | |
| 		ttwu_queue_remote(p, cpu);
 | |
| 		return;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	raw_spin_lock(&rq->lock);
 | |
| 	ttwu_do_activate(rq, p, 0);
 | |
| 	raw_spin_unlock(&rq->lock);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * try_to_wake_up - wake up a thread
 | |
|  * @p: the thread to be awakened
 | |
|  * @state: the mask of task states that can be woken
 | |
|  * @wake_flags: wake modifier flags (WF_*)
 | |
|  *
 | |
|  * Put it on the run-queue if it's not already there. The "current"
 | |
|  * thread is always on the run-queue (except when the actual
 | |
|  * re-schedule is in progress), and as such you're allowed to do
 | |
|  * the simpler "current->state = TASK_RUNNING" to mark yourself
 | |
|  * runnable without the overhead of this.
 | |
|  *
 | |
|  * Returns %true if @p was woken up, %false if it was already running
 | |
|  * or @state didn't match @p's state.
 | |
|  */
 | |
| static int
 | |
| try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	int cpu, success = 0;
 | |
| 
 | |
| 	smp_wmb();
 | |
| 	raw_spin_lock_irqsave(&p->pi_lock, flags);
 | |
| 	if (!(p->state & state))
 | |
| 		goto out;
 | |
| 
 | |
| 	success = 1; /* we're going to change ->state */
 | |
| 	cpu = task_cpu(p);
 | |
| 
 | |
| 	if (p->on_rq && ttwu_remote(p, wake_flags))
 | |
| 		goto stat;
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	/*
 | |
| 	 * If the owning (remote) cpu is still in the middle of schedule() with
 | |
| 	 * this task as prev, wait until its done referencing the task.
 | |
| 	 */
 | |
| 	while (p->on_cpu) {
 | |
| #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
 | |
| 		/*
 | |
| 		 * In case the architecture enables interrupts in
 | |
| 		 * context_switch(), we cannot busy wait, since that
 | |
| 		 * would lead to deadlocks when an interrupt hits and
 | |
| 		 * tries to wake up @prev. So bail and do a complete
 | |
| 		 * remote wakeup.
 | |
| 		 */
 | |
| 		if (ttwu_activate_remote(p, wake_flags))
 | |
| 			goto stat;
 | |
| #else
 | |
| 		cpu_relax();
 | |
| #endif
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Pairs with the smp_wmb() in finish_lock_switch().
 | |
| 	 */
 | |
| 	smp_rmb();
 | |
| 
 | |
| 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
 | |
| 	p->state = TASK_WAKING;
 | |
| 
 | |
| 	if (p->sched_class->task_waking)
 | |
| 		p->sched_class->task_waking(p);
 | |
| 
 | |
| 	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
 | |
| 	if (task_cpu(p) != cpu) {
 | |
| 		wake_flags |= WF_MIGRATED;
 | |
| 		set_task_cpu(p, cpu);
 | |
| 	}
 | |
| #endif /* CONFIG_SMP */
 | |
| 
 | |
| 	ttwu_queue(p, cpu);
 | |
| stat:
 | |
| 	ttwu_stat(p, cpu, wake_flags);
 | |
| out:
 | |
| 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
 | |
| 
 | |
| 	return success;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * try_to_wake_up_local - try to wake up a local task with rq lock held
 | |
|  * @p: the thread to be awakened
 | |
|  *
 | |
|  * Put @p on the run-queue if it's not already there. The caller must
 | |
|  * ensure that this_rq() is locked, @p is bound to this_rq() and not
 | |
|  * the current task.
 | |
|  */
 | |
| static void try_to_wake_up_local(struct task_struct *p)
 | |
| {
 | |
| 	struct rq *rq = task_rq(p);
 | |
| 
 | |
| 	BUG_ON(rq != this_rq());
 | |
| 	BUG_ON(p == current);
 | |
| 	lockdep_assert_held(&rq->lock);
 | |
| 
 | |
| 	if (!raw_spin_trylock(&p->pi_lock)) {
 | |
| 		raw_spin_unlock(&rq->lock);
 | |
| 		raw_spin_lock(&p->pi_lock);
 | |
| 		raw_spin_lock(&rq->lock);
 | |
| 	}
 | |
| 
 | |
| 	if (!(p->state & TASK_NORMAL))
 | |
| 		goto out;
 | |
| 
 | |
| 	if (!p->on_rq)
 | |
| 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
 | |
| 
 | |
| 	ttwu_do_wakeup(rq, p, 0);
 | |
| 	ttwu_stat(p, smp_processor_id(), 0);
 | |
| out:
 | |
| 	raw_spin_unlock(&p->pi_lock);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * wake_up_process - Wake up a specific process
 | |
|  * @p: The process to be woken up.
 | |
|  *
 | |
|  * Attempt to wake up the nominated process and move it to the set of runnable
 | |
|  * processes.  Returns 1 if the process was woken up, 0 if it was already
 | |
|  * running.
 | |
|  *
 | |
|  * It may be assumed that this function implies a write memory barrier before
 | |
|  * changing the task state if and only if any tasks are woken up.
 | |
|  */
 | |
| int wake_up_process(struct task_struct *p)
 | |
| {
 | |
| 	return try_to_wake_up(p, TASK_ALL, 0);
 | |
| }
 | |
| EXPORT_SYMBOL(wake_up_process);
 | |
| 
 | |
| int wake_up_state(struct task_struct *p, unsigned int state)
 | |
| {
 | |
| 	return try_to_wake_up(p, state, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Perform scheduler related setup for a newly forked process p.
 | |
|  * p is forked by current.
 | |
|  *
 | |
|  * __sched_fork() is basic setup used by init_idle() too:
 | |
|  */
 | |
| static void __sched_fork(struct task_struct *p)
 | |
| {
 | |
| 	p->on_rq			= 0;
 | |
| 
 | |
| 	p->se.on_rq			= 0;
 | |
| 	p->se.exec_start		= 0;
 | |
| 	p->se.sum_exec_runtime		= 0;
 | |
| 	p->se.prev_sum_exec_runtime	= 0;
 | |
| 	p->se.nr_migrations		= 0;
 | |
| 	p->se.vruntime			= 0;
 | |
| 	INIT_LIST_HEAD(&p->se.group_node);
 | |
| 
 | |
| #ifdef CONFIG_SCHEDSTATS
 | |
| 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
 | |
| #endif
 | |
| 
 | |
| 	INIT_LIST_HEAD(&p->rt.run_list);
 | |
| 
 | |
| #ifdef CONFIG_PREEMPT_NOTIFIERS
 | |
| 	INIT_HLIST_HEAD(&p->preempt_notifiers);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * fork()/clone()-time setup:
 | |
|  */
 | |
| void sched_fork(struct task_struct *p)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	int cpu = get_cpu();
 | |
| 
 | |
| 	__sched_fork(p);
 | |
| 	/*
 | |
| 	 * We mark the process as running here. This guarantees that
 | |
| 	 * nobody will actually run it, and a signal or other external
 | |
| 	 * event cannot wake it up and insert it on the runqueue either.
 | |
| 	 */
 | |
| 	p->state = TASK_RUNNING;
 | |
| 
 | |
| 	/*
 | |
| 	 * Revert to default priority/policy on fork if requested.
 | |
| 	 */
 | |
| 	if (unlikely(p->sched_reset_on_fork)) {
 | |
| 		if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
 | |
| 			p->policy = SCHED_NORMAL;
 | |
| 			p->normal_prio = p->static_prio;
 | |
| 		}
 | |
| 
 | |
| 		if (PRIO_TO_NICE(p->static_prio) < 0) {
 | |
| 			p->static_prio = NICE_TO_PRIO(0);
 | |
| 			p->normal_prio = p->static_prio;
 | |
| 			set_load_weight(p);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * We don't need the reset flag anymore after the fork. It has
 | |
| 		 * fulfilled its duty:
 | |
| 		 */
 | |
| 		p->sched_reset_on_fork = 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure we do not leak PI boosting priority to the child.
 | |
| 	 */
 | |
| 	p->prio = current->normal_prio;
 | |
| 
 | |
| 	if (!rt_prio(p->prio))
 | |
| 		p->sched_class = &fair_sched_class;
 | |
| 
 | |
| 	if (p->sched_class->task_fork)
 | |
| 		p->sched_class->task_fork(p);
 | |
| 
 | |
| 	/*
 | |
| 	 * The child is not yet in the pid-hash so no cgroup attach races,
 | |
| 	 * and the cgroup is pinned to this child due to cgroup_fork()
 | |
| 	 * is ran before sched_fork().
 | |
| 	 *
 | |
| 	 * Silence PROVE_RCU.
 | |
| 	 */
 | |
| 	raw_spin_lock_irqsave(&p->pi_lock, flags);
 | |
| 	set_task_cpu(p, cpu);
 | |
| 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
 | |
| 
 | |
| #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
 | |
| 	if (likely(sched_info_on()))
 | |
| 		memset(&p->sched_info, 0, sizeof(p->sched_info));
 | |
| #endif
 | |
| #if defined(CONFIG_SMP)
 | |
| 	p->on_cpu = 0;
 | |
| #endif
 | |
| #ifdef CONFIG_PREEMPT_COUNT
 | |
| 	/* Want to start with kernel preemption disabled. */
 | |
| 	task_thread_info(p)->preempt_count = 1;
 | |
| #endif
 | |
| #ifdef CONFIG_SMP
 | |
| 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
 | |
| #endif
 | |
| 
 | |
| 	put_cpu();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * wake_up_new_task - wake up a newly created task for the first time.
 | |
|  *
 | |
|  * This function will do some initial scheduler statistics housekeeping
 | |
|  * that must be done for every newly created context, then puts the task
 | |
|  * on the runqueue and wakes it.
 | |
|  */
 | |
| void wake_up_new_task(struct task_struct *p)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct rq *rq;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&p->pi_lock, flags);
 | |
| #ifdef CONFIG_SMP
 | |
| 	/*
 | |
| 	 * Fork balancing, do it here and not earlier because:
 | |
| 	 *  - cpus_allowed can change in the fork path
 | |
| 	 *  - any previously selected cpu might disappear through hotplug
 | |
| 	 */
 | |
| 	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
 | |
| #endif
 | |
| 
 | |
| 	rq = __task_rq_lock(p);
 | |
| 	activate_task(rq, p, 0);
 | |
| 	p->on_rq = 1;
 | |
| 	trace_sched_wakeup_new(p, true);
 | |
| 	check_preempt_curr(rq, p, WF_FORK);
 | |
| #ifdef CONFIG_SMP
 | |
| 	if (p->sched_class->task_woken)
 | |
| 		p->sched_class->task_woken(rq, p);
 | |
| #endif
 | |
| 	task_rq_unlock(rq, p, &flags);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PREEMPT_NOTIFIERS
 | |
| 
 | |
| /**
 | |
|  * preempt_notifier_register - tell me when current is being preempted & rescheduled
 | |
|  * @notifier: notifier struct to register
 | |
|  */
 | |
| void preempt_notifier_register(struct preempt_notifier *notifier)
 | |
| {
 | |
| 	hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(preempt_notifier_register);
 | |
| 
 | |
| /**
 | |
|  * preempt_notifier_unregister - no longer interested in preemption notifications
 | |
|  * @notifier: notifier struct to unregister
 | |
|  *
 | |
|  * This is safe to call from within a preemption notifier.
 | |
|  */
 | |
| void preempt_notifier_unregister(struct preempt_notifier *notifier)
 | |
| {
 | |
| 	hlist_del(¬ifier->link);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
 | |
| 
 | |
| static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
 | |
| {
 | |
| 	struct preempt_notifier *notifier;
 | |
| 	struct hlist_node *node;
 | |
| 
 | |
| 	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
 | |
| 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
 | |
| }
 | |
| 
 | |
| static void
 | |
| fire_sched_out_preempt_notifiers(struct task_struct *curr,
 | |
| 				 struct task_struct *next)
 | |
| {
 | |
| 	struct preempt_notifier *notifier;
 | |
| 	struct hlist_node *node;
 | |
| 
 | |
| 	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
 | |
| 		notifier->ops->sched_out(notifier, next);
 | |
| }
 | |
| 
 | |
| #else /* !CONFIG_PREEMPT_NOTIFIERS */
 | |
| 
 | |
| static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void
 | |
| fire_sched_out_preempt_notifiers(struct task_struct *curr,
 | |
| 				 struct task_struct *next)
 | |
| {
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_PREEMPT_NOTIFIERS */
 | |
| 
 | |
| /**
 | |
|  * prepare_task_switch - prepare to switch tasks
 | |
|  * @rq: the runqueue preparing to switch
 | |
|  * @prev: the current task that is being switched out
 | |
|  * @next: the task we are going to switch to.
 | |
|  *
 | |
|  * This is called with the rq lock held and interrupts off. It must
 | |
|  * be paired with a subsequent finish_task_switch after the context
 | |
|  * switch.
 | |
|  *
 | |
|  * prepare_task_switch sets up locking and calls architecture specific
 | |
|  * hooks.
 | |
|  */
 | |
| static inline void
 | |
| prepare_task_switch(struct rq *rq, struct task_struct *prev,
 | |
| 		    struct task_struct *next)
 | |
| {
 | |
| 	sched_info_switch(prev, next);
 | |
| 	perf_event_task_sched_out(prev, next);
 | |
| 	fire_sched_out_preempt_notifiers(prev, next);
 | |
| 	prepare_lock_switch(rq, next);
 | |
| 	prepare_arch_switch(next);
 | |
| 	trace_sched_switch(prev, next);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * finish_task_switch - clean up after a task-switch
 | |
|  * @rq: runqueue associated with task-switch
 | |
|  * @prev: the thread we just switched away from.
 | |
|  *
 | |
|  * finish_task_switch must be called after the context switch, paired
 | |
|  * with a prepare_task_switch call before the context switch.
 | |
|  * finish_task_switch will reconcile locking set up by prepare_task_switch,
 | |
|  * and do any other architecture-specific cleanup actions.
 | |
|  *
 | |
|  * Note that we may have delayed dropping an mm in context_switch(). If
 | |
|  * so, we finish that here outside of the runqueue lock. (Doing it
 | |
|  * with the lock held can cause deadlocks; see schedule() for
 | |
|  * details.)
 | |
|  */
 | |
| static void finish_task_switch(struct rq *rq, struct task_struct *prev)
 | |
| 	__releases(rq->lock)
 | |
| {
 | |
| 	struct mm_struct *mm = rq->prev_mm;
 | |
| 	long prev_state;
 | |
| 
 | |
| 	rq->prev_mm = NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * A task struct has one reference for the use as "current".
 | |
| 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
 | |
| 	 * schedule one last time. The schedule call will never return, and
 | |
| 	 * the scheduled task must drop that reference.
 | |
| 	 * The test for TASK_DEAD must occur while the runqueue locks are
 | |
| 	 * still held, otherwise prev could be scheduled on another cpu, die
 | |
| 	 * there before we look at prev->state, and then the reference would
 | |
| 	 * be dropped twice.
 | |
| 	 *		Manfred Spraul <manfred@colorfullife.com>
 | |
| 	 */
 | |
| 	prev_state = prev->state;
 | |
| 	finish_arch_switch(prev);
 | |
| #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
 | |
| 	local_irq_disable();
 | |
| #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
 | |
| 	perf_event_task_sched_in(current);
 | |
| #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
 | |
| 	local_irq_enable();
 | |
| #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
 | |
| 	finish_lock_switch(rq, prev);
 | |
| 
 | |
| 	fire_sched_in_preempt_notifiers(current);
 | |
| 	if (mm)
 | |
| 		mmdrop(mm);
 | |
| 	if (unlikely(prev_state == TASK_DEAD)) {
 | |
| 		/*
 | |
| 		 * Remove function-return probe instances associated with this
 | |
| 		 * task and put them back on the free list.
 | |
| 		 */
 | |
| 		kprobe_flush_task(prev);
 | |
| 		put_task_struct(prev);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 
 | |
| /* assumes rq->lock is held */
 | |
| static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
 | |
| {
 | |
| 	if (prev->sched_class->pre_schedule)
 | |
| 		prev->sched_class->pre_schedule(rq, prev);
 | |
| }
 | |
| 
 | |
| /* rq->lock is NOT held, but preemption is disabled */
 | |
| static inline void post_schedule(struct rq *rq)
 | |
| {
 | |
| 	if (rq->post_schedule) {
 | |
| 		unsigned long flags;
 | |
| 
 | |
| 		raw_spin_lock_irqsave(&rq->lock, flags);
 | |
| 		if (rq->curr->sched_class->post_schedule)
 | |
| 			rq->curr->sched_class->post_schedule(rq);
 | |
| 		raw_spin_unlock_irqrestore(&rq->lock, flags);
 | |
| 
 | |
| 		rq->post_schedule = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| static inline void pre_schedule(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline void post_schedule(struct rq *rq)
 | |
| {
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * schedule_tail - first thing a freshly forked thread must call.
 | |
|  * @prev: the thread we just switched away from.
 | |
|  */
 | |
| asmlinkage void schedule_tail(struct task_struct *prev)
 | |
| 	__releases(rq->lock)
 | |
| {
 | |
| 	struct rq *rq = this_rq();
 | |
| 
 | |
| 	finish_task_switch(rq, prev);
 | |
| 
 | |
| 	/*
 | |
| 	 * FIXME: do we need to worry about rq being invalidated by the
 | |
| 	 * task_switch?
 | |
| 	 */
 | |
| 	post_schedule(rq);
 | |
| 
 | |
| #ifdef __ARCH_WANT_UNLOCKED_CTXSW
 | |
| 	/* In this case, finish_task_switch does not reenable preemption */
 | |
| 	preempt_enable();
 | |
| #endif
 | |
| 	if (current->set_child_tid)
 | |
| 		put_user(task_pid_vnr(current), current->set_child_tid);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * context_switch - switch to the new MM and the new
 | |
|  * thread's register state.
 | |
|  */
 | |
| static inline void
 | |
| context_switch(struct rq *rq, struct task_struct *prev,
 | |
| 	       struct task_struct *next)
 | |
| {
 | |
| 	struct mm_struct *mm, *oldmm;
 | |
| 
 | |
| 	prepare_task_switch(rq, prev, next);
 | |
| 
 | |
| 	mm = next->mm;
 | |
| 	oldmm = prev->active_mm;
 | |
| 	/*
 | |
| 	 * For paravirt, this is coupled with an exit in switch_to to
 | |
| 	 * combine the page table reload and the switch backend into
 | |
| 	 * one hypercall.
 | |
| 	 */
 | |
| 	arch_start_context_switch(prev);
 | |
| 
 | |
| 	if (!mm) {
 | |
| 		next->active_mm = oldmm;
 | |
| 		atomic_inc(&oldmm->mm_count);
 | |
| 		enter_lazy_tlb(oldmm, next);
 | |
| 	} else
 | |
| 		switch_mm(oldmm, mm, next);
 | |
| 
 | |
| 	if (!prev->mm) {
 | |
| 		prev->active_mm = NULL;
 | |
| 		rq->prev_mm = oldmm;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Since the runqueue lock will be released by the next
 | |
| 	 * task (which is an invalid locking op but in the case
 | |
| 	 * of the scheduler it's an obvious special-case), so we
 | |
| 	 * do an early lockdep release here:
 | |
| 	 */
 | |
| #ifndef __ARCH_WANT_UNLOCKED_CTXSW
 | |
| 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
 | |
| #endif
 | |
| 
 | |
| 	/* Here we just switch the register state and the stack. */
 | |
| 	switch_to(prev, next, prev);
 | |
| 
 | |
| 	barrier();
 | |
| 	/*
 | |
| 	 * this_rq must be evaluated again because prev may have moved
 | |
| 	 * CPUs since it called schedule(), thus the 'rq' on its stack
 | |
| 	 * frame will be invalid.
 | |
| 	 */
 | |
| 	finish_task_switch(this_rq(), prev);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * nr_running, nr_uninterruptible and nr_context_switches:
 | |
|  *
 | |
|  * externally visible scheduler statistics: current number of runnable
 | |
|  * threads, current number of uninterruptible-sleeping threads, total
 | |
|  * number of context switches performed since bootup.
 | |
|  */
 | |
| unsigned long nr_running(void)
 | |
| {
 | |
| 	unsigned long i, sum = 0;
 | |
| 
 | |
| 	for_each_online_cpu(i)
 | |
| 		sum += cpu_rq(i)->nr_running;
 | |
| 
 | |
| 	return sum;
 | |
| }
 | |
| 
 | |
| unsigned long nr_uninterruptible(void)
 | |
| {
 | |
| 	unsigned long i, sum = 0;
 | |
| 
 | |
| 	for_each_possible_cpu(i)
 | |
| 		sum += cpu_rq(i)->nr_uninterruptible;
 | |
| 
 | |
| 	/*
 | |
| 	 * Since we read the counters lockless, it might be slightly
 | |
| 	 * inaccurate. Do not allow it to go below zero though:
 | |
| 	 */
 | |
| 	if (unlikely((long)sum < 0))
 | |
| 		sum = 0;
 | |
| 
 | |
| 	return sum;
 | |
| }
 | |
| 
 | |
| unsigned long long nr_context_switches(void)
 | |
| {
 | |
| 	int i;
 | |
| 	unsigned long long sum = 0;
 | |
| 
 | |
| 	for_each_possible_cpu(i)
 | |
| 		sum += cpu_rq(i)->nr_switches;
 | |
| 
 | |
| 	return sum;
 | |
| }
 | |
| 
 | |
| unsigned long nr_iowait(void)
 | |
| {
 | |
| 	unsigned long i, sum = 0;
 | |
| 
 | |
| 	for_each_possible_cpu(i)
 | |
| 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
 | |
| 
 | |
| 	return sum;
 | |
| }
 | |
| 
 | |
| unsigned long nr_iowait_cpu(int cpu)
 | |
| {
 | |
| 	struct rq *this = cpu_rq(cpu);
 | |
| 	return atomic_read(&this->nr_iowait);
 | |
| }
 | |
| 
 | |
| unsigned long this_cpu_load(void)
 | |
| {
 | |
| 	struct rq *this = this_rq();
 | |
| 	return this->cpu_load[0];
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Variables and functions for calc_load */
 | |
| static atomic_long_t calc_load_tasks;
 | |
| static unsigned long calc_load_update;
 | |
| unsigned long avenrun[3];
 | |
| EXPORT_SYMBOL(avenrun);
 | |
| 
 | |
| static long calc_load_fold_active(struct rq *this_rq)
 | |
| {
 | |
| 	long nr_active, delta = 0;
 | |
| 
 | |
| 	nr_active = this_rq->nr_running;
 | |
| 	nr_active += (long) this_rq->nr_uninterruptible;
 | |
| 
 | |
| 	if (nr_active != this_rq->calc_load_active) {
 | |
| 		delta = nr_active - this_rq->calc_load_active;
 | |
| 		this_rq->calc_load_active = nr_active;
 | |
| 	}
 | |
| 
 | |
| 	return delta;
 | |
| }
 | |
| 
 | |
| static unsigned long
 | |
| calc_load(unsigned long load, unsigned long exp, unsigned long active)
 | |
| {
 | |
| 	load *= exp;
 | |
| 	load += active * (FIXED_1 - exp);
 | |
| 	load += 1UL << (FSHIFT - 1);
 | |
| 	return load >> FSHIFT;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NO_HZ
 | |
| /*
 | |
|  * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
 | |
|  *
 | |
|  * When making the ILB scale, we should try to pull this in as well.
 | |
|  */
 | |
| static atomic_long_t calc_load_tasks_idle;
 | |
| 
 | |
| static void calc_load_account_idle(struct rq *this_rq)
 | |
| {
 | |
| 	long delta;
 | |
| 
 | |
| 	delta = calc_load_fold_active(this_rq);
 | |
| 	if (delta)
 | |
| 		atomic_long_add(delta, &calc_load_tasks_idle);
 | |
| }
 | |
| 
 | |
| static long calc_load_fold_idle(void)
 | |
| {
 | |
| 	long delta = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Its got a race, we don't care...
 | |
| 	 */
 | |
| 	if (atomic_long_read(&calc_load_tasks_idle))
 | |
| 		delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
 | |
| 
 | |
| 	return delta;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * fixed_power_int - compute: x^n, in O(log n) time
 | |
|  *
 | |
|  * @x:         base of the power
 | |
|  * @frac_bits: fractional bits of @x
 | |
|  * @n:         power to raise @x to.
 | |
|  *
 | |
|  * By exploiting the relation between the definition of the natural power
 | |
|  * function: x^n := x*x*...*x (x multiplied by itself for n times), and
 | |
|  * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
 | |
|  * (where: n_i \elem {0, 1}, the binary vector representing n),
 | |
|  * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
 | |
|  * of course trivially computable in O(log_2 n), the length of our binary
 | |
|  * vector.
 | |
|  */
 | |
| static unsigned long
 | |
| fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
 | |
| {
 | |
| 	unsigned long result = 1UL << frac_bits;
 | |
| 
 | |
| 	if (n) for (;;) {
 | |
| 		if (n & 1) {
 | |
| 			result *= x;
 | |
| 			result += 1UL << (frac_bits - 1);
 | |
| 			result >>= frac_bits;
 | |
| 		}
 | |
| 		n >>= 1;
 | |
| 		if (!n)
 | |
| 			break;
 | |
| 		x *= x;
 | |
| 		x += 1UL << (frac_bits - 1);
 | |
| 		x >>= frac_bits;
 | |
| 	}
 | |
| 
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * a1 = a0 * e + a * (1 - e)
 | |
|  *
 | |
|  * a2 = a1 * e + a * (1 - e)
 | |
|  *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
 | |
|  *    = a0 * e^2 + a * (1 - e) * (1 + e)
 | |
|  *
 | |
|  * a3 = a2 * e + a * (1 - e)
 | |
|  *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
 | |
|  *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
 | |
|  *
 | |
|  *  ...
 | |
|  *
 | |
|  * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
 | |
|  *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
 | |
|  *    = a0 * e^n + a * (1 - e^n)
 | |
|  *
 | |
|  * [1] application of the geometric series:
 | |
|  *
 | |
|  *              n         1 - x^(n+1)
 | |
|  *     S_n := \Sum x^i = -------------
 | |
|  *             i=0          1 - x
 | |
|  */
 | |
| static unsigned long
 | |
| calc_load_n(unsigned long load, unsigned long exp,
 | |
| 	    unsigned long active, unsigned int n)
 | |
| {
 | |
| 
 | |
| 	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * NO_HZ can leave us missing all per-cpu ticks calling
 | |
|  * calc_load_account_active(), but since an idle CPU folds its delta into
 | |
|  * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
 | |
|  * in the pending idle delta if our idle period crossed a load cycle boundary.
 | |
|  *
 | |
|  * Once we've updated the global active value, we need to apply the exponential
 | |
|  * weights adjusted to the number of cycles missed.
 | |
|  */
 | |
| static void calc_global_nohz(unsigned long ticks)
 | |
| {
 | |
| 	long delta, active, n;
 | |
| 
 | |
| 	if (time_before(jiffies, calc_load_update))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we crossed a calc_load_update boundary, make sure to fold
 | |
| 	 * any pending idle changes, the respective CPUs might have
 | |
| 	 * missed the tick driven calc_load_account_active() update
 | |
| 	 * due to NO_HZ.
 | |
| 	 */
 | |
| 	delta = calc_load_fold_idle();
 | |
| 	if (delta)
 | |
| 		atomic_long_add(delta, &calc_load_tasks);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we were idle for multiple load cycles, apply them.
 | |
| 	 */
 | |
| 	if (ticks >= LOAD_FREQ) {
 | |
| 		n = ticks / LOAD_FREQ;
 | |
| 
 | |
| 		active = atomic_long_read(&calc_load_tasks);
 | |
| 		active = active > 0 ? active * FIXED_1 : 0;
 | |
| 
 | |
| 		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
 | |
| 		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
 | |
| 		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
 | |
| 
 | |
| 		calc_load_update += n * LOAD_FREQ;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Its possible the remainder of the above division also crosses
 | |
| 	 * a LOAD_FREQ period, the regular check in calc_global_load()
 | |
| 	 * which comes after this will take care of that.
 | |
| 	 *
 | |
| 	 * Consider us being 11 ticks before a cycle completion, and us
 | |
| 	 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
 | |
| 	 * age us 4 cycles, and the test in calc_global_load() will
 | |
| 	 * pick up the final one.
 | |
| 	 */
 | |
| }
 | |
| #else
 | |
| static void calc_load_account_idle(struct rq *this_rq)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline long calc_load_fold_idle(void)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void calc_global_nohz(unsigned long ticks)
 | |
| {
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * get_avenrun - get the load average array
 | |
|  * @loads:	pointer to dest load array
 | |
|  * @offset:	offset to add
 | |
|  * @shift:	shift count to shift the result left
 | |
|  *
 | |
|  * These values are estimates at best, so no need for locking.
 | |
|  */
 | |
| void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
 | |
| {
 | |
| 	loads[0] = (avenrun[0] + offset) << shift;
 | |
| 	loads[1] = (avenrun[1] + offset) << shift;
 | |
| 	loads[2] = (avenrun[2] + offset) << shift;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * calc_load - update the avenrun load estimates 10 ticks after the
 | |
|  * CPUs have updated calc_load_tasks.
 | |
|  */
 | |
| void calc_global_load(unsigned long ticks)
 | |
| {
 | |
| 	long active;
 | |
| 
 | |
| 	calc_global_nohz(ticks);
 | |
| 
 | |
| 	if (time_before(jiffies, calc_load_update + 10))
 | |
| 		return;
 | |
| 
 | |
| 	active = atomic_long_read(&calc_load_tasks);
 | |
| 	active = active > 0 ? active * FIXED_1 : 0;
 | |
| 
 | |
| 	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
 | |
| 	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
 | |
| 	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
 | |
| 
 | |
| 	calc_load_update += LOAD_FREQ;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called from update_cpu_load() to periodically update this CPU's
 | |
|  * active count.
 | |
|  */
 | |
| static void calc_load_account_active(struct rq *this_rq)
 | |
| {
 | |
| 	long delta;
 | |
| 
 | |
| 	if (time_before(jiffies, this_rq->calc_load_update))
 | |
| 		return;
 | |
| 
 | |
| 	delta  = calc_load_fold_active(this_rq);
 | |
| 	delta += calc_load_fold_idle();
 | |
| 	if (delta)
 | |
| 		atomic_long_add(delta, &calc_load_tasks);
 | |
| 
 | |
| 	this_rq->calc_load_update += LOAD_FREQ;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The exact cpuload at various idx values, calculated at every tick would be
 | |
|  * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
 | |
|  *
 | |
|  * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
 | |
|  * on nth tick when cpu may be busy, then we have:
 | |
|  * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 | |
|  * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
 | |
|  *
 | |
|  * decay_load_missed() below does efficient calculation of
 | |
|  * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 | |
|  * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
 | |
|  *
 | |
|  * The calculation is approximated on a 128 point scale.
 | |
|  * degrade_zero_ticks is the number of ticks after which load at any
 | |
|  * particular idx is approximated to be zero.
 | |
|  * degrade_factor is a precomputed table, a row for each load idx.
 | |
|  * Each column corresponds to degradation factor for a power of two ticks,
 | |
|  * based on 128 point scale.
 | |
|  * Example:
 | |
|  * row 2, col 3 (=12) says that the degradation at load idx 2 after
 | |
|  * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
 | |
|  *
 | |
|  * With this power of 2 load factors, we can degrade the load n times
 | |
|  * by looking at 1 bits in n and doing as many mult/shift instead of
 | |
|  * n mult/shifts needed by the exact degradation.
 | |
|  */
 | |
| #define DEGRADE_SHIFT		7
 | |
| static const unsigned char
 | |
| 		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
 | |
| static const unsigned char
 | |
| 		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
 | |
| 					{0, 0, 0, 0, 0, 0, 0, 0},
 | |
| 					{64, 32, 8, 0, 0, 0, 0, 0},
 | |
| 					{96, 72, 40, 12, 1, 0, 0},
 | |
| 					{112, 98, 75, 43, 15, 1, 0},
 | |
| 					{120, 112, 98, 76, 45, 16, 2} };
 | |
| 
 | |
| /*
 | |
|  * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 | |
|  * would be when CPU is idle and so we just decay the old load without
 | |
|  * adding any new load.
 | |
|  */
 | |
| static unsigned long
 | |
| decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
 | |
| {
 | |
| 	int j = 0;
 | |
| 
 | |
| 	if (!missed_updates)
 | |
| 		return load;
 | |
| 
 | |
| 	if (missed_updates >= degrade_zero_ticks[idx])
 | |
| 		return 0;
 | |
| 
 | |
| 	if (idx == 1)
 | |
| 		return load >> missed_updates;
 | |
| 
 | |
| 	while (missed_updates) {
 | |
| 		if (missed_updates % 2)
 | |
| 			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
 | |
| 
 | |
| 		missed_updates >>= 1;
 | |
| 		j++;
 | |
| 	}
 | |
| 	return load;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update rq->cpu_load[] statistics. This function is usually called every
 | |
|  * scheduler tick (TICK_NSEC). With tickless idle this will not be called
 | |
|  * every tick. We fix it up based on jiffies.
 | |
|  */
 | |
| static void update_cpu_load(struct rq *this_rq)
 | |
| {
 | |
| 	unsigned long this_load = this_rq->load.weight;
 | |
| 	unsigned long curr_jiffies = jiffies;
 | |
| 	unsigned long pending_updates;
 | |
| 	int i, scale;
 | |
| 
 | |
| 	this_rq->nr_load_updates++;
 | |
| 
 | |
| 	/* Avoid repeated calls on same jiffy, when moving in and out of idle */
 | |
| 	if (curr_jiffies == this_rq->last_load_update_tick)
 | |
| 		return;
 | |
| 
 | |
| 	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
 | |
| 	this_rq->last_load_update_tick = curr_jiffies;
 | |
| 
 | |
| 	/* Update our load: */
 | |
| 	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
 | |
| 	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
 | |
| 		unsigned long old_load, new_load;
 | |
| 
 | |
| 		/* scale is effectively 1 << i now, and >> i divides by scale */
 | |
| 
 | |
| 		old_load = this_rq->cpu_load[i];
 | |
| 		old_load = decay_load_missed(old_load, pending_updates - 1, i);
 | |
| 		new_load = this_load;
 | |
| 		/*
 | |
| 		 * Round up the averaging division if load is increasing. This
 | |
| 		 * prevents us from getting stuck on 9 if the load is 10, for
 | |
| 		 * example.
 | |
| 		 */
 | |
| 		if (new_load > old_load)
 | |
| 			new_load += scale - 1;
 | |
| 
 | |
| 		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
 | |
| 	}
 | |
| 
 | |
| 	sched_avg_update(this_rq);
 | |
| }
 | |
| 
 | |
| static void update_cpu_load_active(struct rq *this_rq)
 | |
| {
 | |
| 	update_cpu_load(this_rq);
 | |
| 
 | |
| 	calc_load_account_active(this_rq);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 
 | |
| /*
 | |
|  * sched_exec - execve() is a valuable balancing opportunity, because at
 | |
|  * this point the task has the smallest effective memory and cache footprint.
 | |
|  */
 | |
| void sched_exec(void)
 | |
| {
 | |
| 	struct task_struct *p = current;
 | |
| 	unsigned long flags;
 | |
| 	int dest_cpu;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&p->pi_lock, flags);
 | |
| 	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
 | |
| 	if (dest_cpu == smp_processor_id())
 | |
| 		goto unlock;
 | |
| 
 | |
| 	if (likely(cpu_active(dest_cpu))) {
 | |
| 		struct migration_arg arg = { p, dest_cpu };
 | |
| 
 | |
| 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
 | |
| 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
 | |
| 		return;
 | |
| 	}
 | |
| unlock:
 | |
| 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| DEFINE_PER_CPU(struct kernel_stat, kstat);
 | |
| 
 | |
| EXPORT_PER_CPU_SYMBOL(kstat);
 | |
| 
 | |
| /*
 | |
|  * Return any ns on the sched_clock that have not yet been accounted in
 | |
|  * @p in case that task is currently running.
 | |
|  *
 | |
|  * Called with task_rq_lock() held on @rq.
 | |
|  */
 | |
| static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
 | |
| {
 | |
| 	u64 ns = 0;
 | |
| 
 | |
| 	if (task_current(rq, p)) {
 | |
| 		update_rq_clock(rq);
 | |
| 		ns = rq->clock_task - p->se.exec_start;
 | |
| 		if ((s64)ns < 0)
 | |
| 			ns = 0;
 | |
| 	}
 | |
| 
 | |
| 	return ns;
 | |
| }
 | |
| 
 | |
| unsigned long long task_delta_exec(struct task_struct *p)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct rq *rq;
 | |
| 	u64 ns = 0;
 | |
| 
 | |
| 	rq = task_rq_lock(p, &flags);
 | |
| 	ns = do_task_delta_exec(p, rq);
 | |
| 	task_rq_unlock(rq, p, &flags);
 | |
| 
 | |
| 	return ns;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return accounted runtime for the task.
 | |
|  * In case the task is currently running, return the runtime plus current's
 | |
|  * pending runtime that have not been accounted yet.
 | |
|  */
 | |
| unsigned long long task_sched_runtime(struct task_struct *p)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct rq *rq;
 | |
| 	u64 ns = 0;
 | |
| 
 | |
| 	rq = task_rq_lock(p, &flags);
 | |
| 	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
 | |
| 	task_rq_unlock(rq, p, &flags);
 | |
| 
 | |
| 	return ns;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return sum_exec_runtime for the thread group.
 | |
|  * In case the task is currently running, return the sum plus current's
 | |
|  * pending runtime that have not been accounted yet.
 | |
|  *
 | |
|  * Note that the thread group might have other running tasks as well,
 | |
|  * so the return value not includes other pending runtime that other
 | |
|  * running tasks might have.
 | |
|  */
 | |
| unsigned long long thread_group_sched_runtime(struct task_struct *p)
 | |
| {
 | |
| 	struct task_cputime totals;
 | |
| 	unsigned long flags;
 | |
| 	struct rq *rq;
 | |
| 	u64 ns;
 | |
| 
 | |
| 	rq = task_rq_lock(p, &flags);
 | |
| 	thread_group_cputime(p, &totals);
 | |
| 	ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
 | |
| 	task_rq_unlock(rq, p, &flags);
 | |
| 
 | |
| 	return ns;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Account user cpu time to a process.
 | |
|  * @p: the process that the cpu time gets accounted to
 | |
|  * @cputime: the cpu time spent in user space since the last update
 | |
|  * @cputime_scaled: cputime scaled by cpu frequency
 | |
|  */
 | |
| void account_user_time(struct task_struct *p, cputime_t cputime,
 | |
| 		       cputime_t cputime_scaled)
 | |
| {
 | |
| 	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
 | |
| 	cputime64_t tmp;
 | |
| 
 | |
| 	/* Add user time to process. */
 | |
| 	p->utime = cputime_add(p->utime, cputime);
 | |
| 	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
 | |
| 	account_group_user_time(p, cputime);
 | |
| 
 | |
| 	/* Add user time to cpustat. */
 | |
| 	tmp = cputime_to_cputime64(cputime);
 | |
| 	if (TASK_NICE(p) > 0)
 | |
| 		cpustat->nice = cputime64_add(cpustat->nice, tmp);
 | |
| 	else
 | |
| 		cpustat->user = cputime64_add(cpustat->user, tmp);
 | |
| 
 | |
| 	cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
 | |
| 	/* Account for user time used */
 | |
| 	acct_update_integrals(p);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Account guest cpu time to a process.
 | |
|  * @p: the process that the cpu time gets accounted to
 | |
|  * @cputime: the cpu time spent in virtual machine since the last update
 | |
|  * @cputime_scaled: cputime scaled by cpu frequency
 | |
|  */
 | |
| static void account_guest_time(struct task_struct *p, cputime_t cputime,
 | |
| 			       cputime_t cputime_scaled)
 | |
| {
 | |
| 	cputime64_t tmp;
 | |
| 	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
 | |
| 
 | |
| 	tmp = cputime_to_cputime64(cputime);
 | |
| 
 | |
| 	/* Add guest time to process. */
 | |
| 	p->utime = cputime_add(p->utime, cputime);
 | |
| 	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
 | |
| 	account_group_user_time(p, cputime);
 | |
| 	p->gtime = cputime_add(p->gtime, cputime);
 | |
| 
 | |
| 	/* Add guest time to cpustat. */
 | |
| 	if (TASK_NICE(p) > 0) {
 | |
| 		cpustat->nice = cputime64_add(cpustat->nice, tmp);
 | |
| 		cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
 | |
| 	} else {
 | |
| 		cpustat->user = cputime64_add(cpustat->user, tmp);
 | |
| 		cpustat->guest = cputime64_add(cpustat->guest, tmp);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Account system cpu time to a process and desired cpustat field
 | |
|  * @p: the process that the cpu time gets accounted to
 | |
|  * @cputime: the cpu time spent in kernel space since the last update
 | |
|  * @cputime_scaled: cputime scaled by cpu frequency
 | |
|  * @target_cputime64: pointer to cpustat field that has to be updated
 | |
|  */
 | |
| static inline
 | |
| void __account_system_time(struct task_struct *p, cputime_t cputime,
 | |
| 			cputime_t cputime_scaled, cputime64_t *target_cputime64)
 | |
| {
 | |
| 	cputime64_t tmp = cputime_to_cputime64(cputime);
 | |
| 
 | |
| 	/* Add system time to process. */
 | |
| 	p->stime = cputime_add(p->stime, cputime);
 | |
| 	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
 | |
| 	account_group_system_time(p, cputime);
 | |
| 
 | |
| 	/* Add system time to cpustat. */
 | |
| 	*target_cputime64 = cputime64_add(*target_cputime64, tmp);
 | |
| 	cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
 | |
| 
 | |
| 	/* Account for system time used */
 | |
| 	acct_update_integrals(p);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Account system cpu time to a process.
 | |
|  * @p: the process that the cpu time gets accounted to
 | |
|  * @hardirq_offset: the offset to subtract from hardirq_count()
 | |
|  * @cputime: the cpu time spent in kernel space since the last update
 | |
|  * @cputime_scaled: cputime scaled by cpu frequency
 | |
|  */
 | |
| void account_system_time(struct task_struct *p, int hardirq_offset,
 | |
| 			 cputime_t cputime, cputime_t cputime_scaled)
 | |
| {
 | |
| 	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
 | |
| 	cputime64_t *target_cputime64;
 | |
| 
 | |
| 	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
 | |
| 		account_guest_time(p, cputime, cputime_scaled);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (hardirq_count() - hardirq_offset)
 | |
| 		target_cputime64 = &cpustat->irq;
 | |
| 	else if (in_serving_softirq())
 | |
| 		target_cputime64 = &cpustat->softirq;
 | |
| 	else
 | |
| 		target_cputime64 = &cpustat->system;
 | |
| 
 | |
| 	__account_system_time(p, cputime, cputime_scaled, target_cputime64);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Account for involuntary wait time.
 | |
|  * @cputime: the cpu time spent in involuntary wait
 | |
|  */
 | |
| void account_steal_time(cputime_t cputime)
 | |
| {
 | |
| 	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
 | |
| 	cputime64_t cputime64 = cputime_to_cputime64(cputime);
 | |
| 
 | |
| 	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Account for idle time.
 | |
|  * @cputime: the cpu time spent in idle wait
 | |
|  */
 | |
| void account_idle_time(cputime_t cputime)
 | |
| {
 | |
| 	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
 | |
| 	cputime64_t cputime64 = cputime_to_cputime64(cputime);
 | |
| 	struct rq *rq = this_rq();
 | |
| 
 | |
| 	if (atomic_read(&rq->nr_iowait) > 0)
 | |
| 		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
 | |
| 	else
 | |
| 		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
 | |
| }
 | |
| 
 | |
| static __always_inline bool steal_account_process_tick(void)
 | |
| {
 | |
| #ifdef CONFIG_PARAVIRT
 | |
| 	if (static_branch(¶virt_steal_enabled)) {
 | |
| 		u64 steal, st = 0;
 | |
| 
 | |
| 		steal = paravirt_steal_clock(smp_processor_id());
 | |
| 		steal -= this_rq()->prev_steal_time;
 | |
| 
 | |
| 		st = steal_ticks(steal);
 | |
| 		this_rq()->prev_steal_time += st * TICK_NSEC;
 | |
| 
 | |
| 		account_steal_time(st);
 | |
| 		return st;
 | |
| 	}
 | |
| #endif
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_VIRT_CPU_ACCOUNTING
 | |
| 
 | |
| #ifdef CONFIG_IRQ_TIME_ACCOUNTING
 | |
| /*
 | |
|  * Account a tick to a process and cpustat
 | |
|  * @p: the process that the cpu time gets accounted to
 | |
|  * @user_tick: is the tick from userspace
 | |
|  * @rq: the pointer to rq
 | |
|  *
 | |
|  * Tick demultiplexing follows the order
 | |
|  * - pending hardirq update
 | |
|  * - pending softirq update
 | |
|  * - user_time
 | |
|  * - idle_time
 | |
|  * - system time
 | |
|  *   - check for guest_time
 | |
|  *   - else account as system_time
 | |
|  *
 | |
|  * Check for hardirq is done both for system and user time as there is
 | |
|  * no timer going off while we are on hardirq and hence we may never get an
 | |
|  * opportunity to update it solely in system time.
 | |
|  * p->stime and friends are only updated on system time and not on irq
 | |
|  * softirq as those do not count in task exec_runtime any more.
 | |
|  */
 | |
| static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
 | |
| 						struct rq *rq)
 | |
| {
 | |
| 	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
 | |
| 	cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
 | |
| 	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
 | |
| 
 | |
| 	if (steal_account_process_tick())
 | |
| 		return;
 | |
| 
 | |
| 	if (irqtime_account_hi_update()) {
 | |
| 		cpustat->irq = cputime64_add(cpustat->irq, tmp);
 | |
| 	} else if (irqtime_account_si_update()) {
 | |
| 		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
 | |
| 	} else if (this_cpu_ksoftirqd() == p) {
 | |
| 		/*
 | |
| 		 * ksoftirqd time do not get accounted in cpu_softirq_time.
 | |
| 		 * So, we have to handle it separately here.
 | |
| 		 * Also, p->stime needs to be updated for ksoftirqd.
 | |
| 		 */
 | |
| 		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
 | |
| 					&cpustat->softirq);
 | |
| 	} else if (user_tick) {
 | |
| 		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
 | |
| 	} else if (p == rq->idle) {
 | |
| 		account_idle_time(cputime_one_jiffy);
 | |
| 	} else if (p->flags & PF_VCPU) { /* System time or guest time */
 | |
| 		account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
 | |
| 	} else {
 | |
| 		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
 | |
| 					&cpustat->system);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void irqtime_account_idle_ticks(int ticks)
 | |
| {
 | |
| 	int i;
 | |
| 	struct rq *rq = this_rq();
 | |
| 
 | |
| 	for (i = 0; i < ticks; i++)
 | |
| 		irqtime_account_process_tick(current, 0, rq);
 | |
| }
 | |
| #else /* CONFIG_IRQ_TIME_ACCOUNTING */
 | |
| static void irqtime_account_idle_ticks(int ticks) {}
 | |
| static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
 | |
| 						struct rq *rq) {}
 | |
| #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
 | |
| 
 | |
| /*
 | |
|  * Account a single tick of cpu time.
 | |
|  * @p: the process that the cpu time gets accounted to
 | |
|  * @user_tick: indicates if the tick is a user or a system tick
 | |
|  */
 | |
| void account_process_tick(struct task_struct *p, int user_tick)
 | |
| {
 | |
| 	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
 | |
| 	struct rq *rq = this_rq();
 | |
| 
 | |
| 	if (sched_clock_irqtime) {
 | |
| 		irqtime_account_process_tick(p, user_tick, rq);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (steal_account_process_tick())
 | |
| 		return;
 | |
| 
 | |
| 	if (user_tick)
 | |
| 		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
 | |
| 	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
 | |
| 		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
 | |
| 				    one_jiffy_scaled);
 | |
| 	else
 | |
| 		account_idle_time(cputime_one_jiffy);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Account multiple ticks of steal time.
 | |
|  * @p: the process from which the cpu time has been stolen
 | |
|  * @ticks: number of stolen ticks
 | |
|  */
 | |
| void account_steal_ticks(unsigned long ticks)
 | |
| {
 | |
| 	account_steal_time(jiffies_to_cputime(ticks));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Account multiple ticks of idle time.
 | |
|  * @ticks: number of stolen ticks
 | |
|  */
 | |
| void account_idle_ticks(unsigned long ticks)
 | |
| {
 | |
| 
 | |
| 	if (sched_clock_irqtime) {
 | |
| 		irqtime_account_idle_ticks(ticks);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	account_idle_time(jiffies_to_cputime(ticks));
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Use precise platform statistics if available:
 | |
|  */
 | |
| #ifdef CONFIG_VIRT_CPU_ACCOUNTING
 | |
| void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
 | |
| {
 | |
| 	*ut = p->utime;
 | |
| 	*st = p->stime;
 | |
| }
 | |
| 
 | |
| void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
 | |
| {
 | |
| 	struct task_cputime cputime;
 | |
| 
 | |
| 	thread_group_cputime(p, &cputime);
 | |
| 
 | |
| 	*ut = cputime.utime;
 | |
| 	*st = cputime.stime;
 | |
| }
 | |
| #else
 | |
| 
 | |
| #ifndef nsecs_to_cputime
 | |
| # define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
 | |
| #endif
 | |
| 
 | |
| void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
 | |
| {
 | |
| 	cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
 | |
| 
 | |
| 	/*
 | |
| 	 * Use CFS's precise accounting:
 | |
| 	 */
 | |
| 	rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
 | |
| 
 | |
| 	if (total) {
 | |
| 		u64 temp = rtime;
 | |
| 
 | |
| 		temp *= utime;
 | |
| 		do_div(temp, total);
 | |
| 		utime = (cputime_t)temp;
 | |
| 	} else
 | |
| 		utime = rtime;
 | |
| 
 | |
| 	/*
 | |
| 	 * Compare with previous values, to keep monotonicity:
 | |
| 	 */
 | |
| 	p->prev_utime = max(p->prev_utime, utime);
 | |
| 	p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
 | |
| 
 | |
| 	*ut = p->prev_utime;
 | |
| 	*st = p->prev_stime;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Must be called with siglock held.
 | |
|  */
 | |
| void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
 | |
| {
 | |
| 	struct signal_struct *sig = p->signal;
 | |
| 	struct task_cputime cputime;
 | |
| 	cputime_t rtime, utime, total;
 | |
| 
 | |
| 	thread_group_cputime(p, &cputime);
 | |
| 
 | |
| 	total = cputime_add(cputime.utime, cputime.stime);
 | |
| 	rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
 | |
| 
 | |
| 	if (total) {
 | |
| 		u64 temp = rtime;
 | |
| 
 | |
| 		temp *= cputime.utime;
 | |
| 		do_div(temp, total);
 | |
| 		utime = (cputime_t)temp;
 | |
| 	} else
 | |
| 		utime = rtime;
 | |
| 
 | |
| 	sig->prev_utime = max(sig->prev_utime, utime);
 | |
| 	sig->prev_stime = max(sig->prev_stime,
 | |
| 			      cputime_sub(rtime, sig->prev_utime));
 | |
| 
 | |
| 	*ut = sig->prev_utime;
 | |
| 	*st = sig->prev_stime;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * This function gets called by the timer code, with HZ frequency.
 | |
|  * We call it with interrupts disabled.
 | |
|  */
 | |
| void scheduler_tick(void)
 | |
| {
 | |
| 	int cpu = smp_processor_id();
 | |
| 	struct rq *rq = cpu_rq(cpu);
 | |
| 	struct task_struct *curr = rq->curr;
 | |
| 
 | |
| 	sched_clock_tick();
 | |
| 
 | |
| 	raw_spin_lock(&rq->lock);
 | |
| 	update_rq_clock(rq);
 | |
| 	update_cpu_load_active(rq);
 | |
| 	curr->sched_class->task_tick(rq, curr, 0);
 | |
| 	raw_spin_unlock(&rq->lock);
 | |
| 
 | |
| 	perf_event_task_tick();
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	rq->idle_at_tick = idle_cpu(cpu);
 | |
| 	trigger_load_balance(rq, cpu);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| notrace unsigned long get_parent_ip(unsigned long addr)
 | |
| {
 | |
| 	if (in_lock_functions(addr)) {
 | |
| 		addr = CALLER_ADDR2;
 | |
| 		if (in_lock_functions(addr))
 | |
| 			addr = CALLER_ADDR3;
 | |
| 	}
 | |
| 	return addr;
 | |
| }
 | |
| 
 | |
| #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
 | |
| 				defined(CONFIG_PREEMPT_TRACER))
 | |
| 
 | |
| void __kprobes add_preempt_count(int val)
 | |
| {
 | |
| #ifdef CONFIG_DEBUG_PREEMPT
 | |
| 	/*
 | |
| 	 * Underflow?
 | |
| 	 */
 | |
| 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
 | |
| 		return;
 | |
| #endif
 | |
| 	preempt_count() += val;
 | |
| #ifdef CONFIG_DEBUG_PREEMPT
 | |
| 	/*
 | |
| 	 * Spinlock count overflowing soon?
 | |
| 	 */
 | |
| 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
 | |
| 				PREEMPT_MASK - 10);
 | |
| #endif
 | |
| 	if (preempt_count() == val)
 | |
| 		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
 | |
| }
 | |
| EXPORT_SYMBOL(add_preempt_count);
 | |
| 
 | |
| void __kprobes sub_preempt_count(int val)
 | |
| {
 | |
| #ifdef CONFIG_DEBUG_PREEMPT
 | |
| 	/*
 | |
| 	 * Underflow?
 | |
| 	 */
 | |
| 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
 | |
| 		return;
 | |
| 	/*
 | |
| 	 * Is the spinlock portion underflowing?
 | |
| 	 */
 | |
| 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
 | |
| 			!(preempt_count() & PREEMPT_MASK)))
 | |
| 		return;
 | |
| #endif
 | |
| 
 | |
| 	if (preempt_count() == val)
 | |
| 		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
 | |
| 	preempt_count() -= val;
 | |
| }
 | |
| EXPORT_SYMBOL(sub_preempt_count);
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Print scheduling while atomic bug:
 | |
|  */
 | |
| static noinline void __schedule_bug(struct task_struct *prev)
 | |
| {
 | |
| 	struct pt_regs *regs = get_irq_regs();
 | |
| 
 | |
| 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
 | |
| 		prev->comm, prev->pid, preempt_count());
 | |
| 
 | |
| 	debug_show_held_locks(prev);
 | |
| 	print_modules();
 | |
| 	if (irqs_disabled())
 | |
| 		print_irqtrace_events(prev);
 | |
| 
 | |
| 	if (regs)
 | |
| 		show_regs(regs);
 | |
| 	else
 | |
| 		dump_stack();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Various schedule()-time debugging checks and statistics:
 | |
|  */
 | |
| static inline void schedule_debug(struct task_struct *prev)
 | |
| {
 | |
| 	/*
 | |
| 	 * Test if we are atomic. Since do_exit() needs to call into
 | |
| 	 * schedule() atomically, we ignore that path for now.
 | |
| 	 * Otherwise, whine if we are scheduling when we should not be.
 | |
| 	 */
 | |
| 	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
 | |
| 		__schedule_bug(prev);
 | |
| 
 | |
| 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
 | |
| 
 | |
| 	schedstat_inc(this_rq(), sched_count);
 | |
| }
 | |
| 
 | |
| static void put_prev_task(struct rq *rq, struct task_struct *prev)
 | |
| {
 | |
| 	if (prev->on_rq || rq->skip_clock_update < 0)
 | |
| 		update_rq_clock(rq);
 | |
| 	prev->sched_class->put_prev_task(rq, prev);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Pick up the highest-prio task:
 | |
|  */
 | |
| static inline struct task_struct *
 | |
| pick_next_task(struct rq *rq)
 | |
| {
 | |
| 	const struct sched_class *class;
 | |
| 	struct task_struct *p;
 | |
| 
 | |
| 	/*
 | |
| 	 * Optimization: we know that if all tasks are in
 | |
| 	 * the fair class we can call that function directly:
 | |
| 	 */
 | |
| 	if (likely(rq->nr_running == rq->cfs.nr_running)) {
 | |
| 		p = fair_sched_class.pick_next_task(rq);
 | |
| 		if (likely(p))
 | |
| 			return p;
 | |
| 	}
 | |
| 
 | |
| 	for_each_class(class) {
 | |
| 		p = class->pick_next_task(rq);
 | |
| 		if (p)
 | |
| 			return p;
 | |
| 	}
 | |
| 
 | |
| 	BUG(); /* the idle class will always have a runnable task */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * schedule() is the main scheduler function.
 | |
|  */
 | |
| asmlinkage void __sched schedule(void)
 | |
| {
 | |
| 	struct task_struct *prev, *next;
 | |
| 	unsigned long *switch_count;
 | |
| 	struct rq *rq;
 | |
| 	int cpu;
 | |
| 
 | |
| need_resched:
 | |
| 	preempt_disable();
 | |
| 	cpu = smp_processor_id();
 | |
| 	rq = cpu_rq(cpu);
 | |
| 	rcu_note_context_switch(cpu);
 | |
| 	prev = rq->curr;
 | |
| 
 | |
| 	schedule_debug(prev);
 | |
| 
 | |
| 	if (sched_feat(HRTICK))
 | |
| 		hrtick_clear(rq);
 | |
| 
 | |
| 	raw_spin_lock_irq(&rq->lock);
 | |
| 
 | |
| 	switch_count = &prev->nivcsw;
 | |
| 	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
 | |
| 		if (unlikely(signal_pending_state(prev->state, prev))) {
 | |
| 			prev->state = TASK_RUNNING;
 | |
| 		} else {
 | |
| 			deactivate_task(rq, prev, DEQUEUE_SLEEP);
 | |
| 			prev->on_rq = 0;
 | |
| 
 | |
| 			/*
 | |
| 			 * If a worker went to sleep, notify and ask workqueue
 | |
| 			 * whether it wants to wake up a task to maintain
 | |
| 			 * concurrency.
 | |
| 			 */
 | |
| 			if (prev->flags & PF_WQ_WORKER) {
 | |
| 				struct task_struct *to_wakeup;
 | |
| 
 | |
| 				to_wakeup = wq_worker_sleeping(prev, cpu);
 | |
| 				if (to_wakeup)
 | |
| 					try_to_wake_up_local(to_wakeup);
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * If we are going to sleep and we have plugged IO
 | |
| 			 * queued, make sure to submit it to avoid deadlocks.
 | |
| 			 */
 | |
| 			if (blk_needs_flush_plug(prev)) {
 | |
| 				raw_spin_unlock(&rq->lock);
 | |
| 				blk_schedule_flush_plug(prev);
 | |
| 				raw_spin_lock(&rq->lock);
 | |
| 			}
 | |
| 		}
 | |
| 		switch_count = &prev->nvcsw;
 | |
| 	}
 | |
| 
 | |
| 	pre_schedule(rq, prev);
 | |
| 
 | |
| 	if (unlikely(!rq->nr_running))
 | |
| 		idle_balance(cpu, rq);
 | |
| 
 | |
| 	put_prev_task(rq, prev);
 | |
| 	next = pick_next_task(rq);
 | |
| 	clear_tsk_need_resched(prev);
 | |
| 	rq->skip_clock_update = 0;
 | |
| 
 | |
| 	if (likely(prev != next)) {
 | |
| 		rq->nr_switches++;
 | |
| 		rq->curr = next;
 | |
| 		++*switch_count;
 | |
| 
 | |
| 		context_switch(rq, prev, next); /* unlocks the rq */
 | |
| 		/*
 | |
| 		 * The context switch have flipped the stack from under us
 | |
| 		 * and restored the local variables which were saved when
 | |
| 		 * this task called schedule() in the past. prev == current
 | |
| 		 * is still correct, but it can be moved to another cpu/rq.
 | |
| 		 */
 | |
| 		cpu = smp_processor_id();
 | |
| 		rq = cpu_rq(cpu);
 | |
| 	} else
 | |
| 		raw_spin_unlock_irq(&rq->lock);
 | |
| 
 | |
| 	post_schedule(rq);
 | |
| 
 | |
| 	preempt_enable_no_resched();
 | |
| 	if (need_resched())
 | |
| 		goto need_resched;
 | |
| }
 | |
| EXPORT_SYMBOL(schedule);
 | |
| 
 | |
| #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
 | |
| 
 | |
| static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
 | |
| {
 | |
| 	if (lock->owner != owner)
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
 | |
| 	 * lock->owner still matches owner, if that fails, owner might
 | |
| 	 * point to free()d memory, if it still matches, the rcu_read_lock()
 | |
| 	 * ensures the memory stays valid.
 | |
| 	 */
 | |
| 	barrier();
 | |
| 
 | |
| 	return owner->on_cpu;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Look out! "owner" is an entirely speculative pointer
 | |
|  * access and not reliable.
 | |
|  */
 | |
| int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
 | |
| {
 | |
| 	if (!sched_feat(OWNER_SPIN))
 | |
| 		return 0;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	while (owner_running(lock, owner)) {
 | |
| 		if (need_resched())
 | |
| 			break;
 | |
| 
 | |
| 		arch_mutex_cpu_relax();
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	/*
 | |
| 	 * We break out the loop above on need_resched() and when the
 | |
| 	 * owner changed, which is a sign for heavy contention. Return
 | |
| 	 * success only when lock->owner is NULL.
 | |
| 	 */
 | |
| 	return lock->owner == NULL;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_PREEMPT
 | |
| /*
 | |
|  * this is the entry point to schedule() from in-kernel preemption
 | |
|  * off of preempt_enable. Kernel preemptions off return from interrupt
 | |
|  * occur there and call schedule directly.
 | |
|  */
 | |
| asmlinkage void __sched notrace preempt_schedule(void)
 | |
| {
 | |
| 	struct thread_info *ti = current_thread_info();
 | |
| 
 | |
| 	/*
 | |
| 	 * If there is a non-zero preempt_count or interrupts are disabled,
 | |
| 	 * we do not want to preempt the current task. Just return..
 | |
| 	 */
 | |
| 	if (likely(ti->preempt_count || irqs_disabled()))
 | |
| 		return;
 | |
| 
 | |
| 	do {
 | |
| 		add_preempt_count_notrace(PREEMPT_ACTIVE);
 | |
| 		schedule();
 | |
| 		sub_preempt_count_notrace(PREEMPT_ACTIVE);
 | |
| 
 | |
| 		/*
 | |
| 		 * Check again in case we missed a preemption opportunity
 | |
| 		 * between schedule and now.
 | |
| 		 */
 | |
| 		barrier();
 | |
| 	} while (need_resched());
 | |
| }
 | |
| EXPORT_SYMBOL(preempt_schedule);
 | |
| 
 | |
| /*
 | |
|  * this is the entry point to schedule() from kernel preemption
 | |
|  * off of irq context.
 | |
|  * Note, that this is called and return with irqs disabled. This will
 | |
|  * protect us against recursive calling from irq.
 | |
|  */
 | |
| asmlinkage void __sched preempt_schedule_irq(void)
 | |
| {
 | |
| 	struct thread_info *ti = current_thread_info();
 | |
| 
 | |
| 	/* Catch callers which need to be fixed */
 | |
| 	BUG_ON(ti->preempt_count || !irqs_disabled());
 | |
| 
 | |
| 	do {
 | |
| 		add_preempt_count(PREEMPT_ACTIVE);
 | |
| 		local_irq_enable();
 | |
| 		schedule();
 | |
| 		local_irq_disable();
 | |
| 		sub_preempt_count(PREEMPT_ACTIVE);
 | |
| 
 | |
| 		/*
 | |
| 		 * Check again in case we missed a preemption opportunity
 | |
| 		 * between schedule and now.
 | |
| 		 */
 | |
| 		barrier();
 | |
| 	} while (need_resched());
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_PREEMPT */
 | |
| 
 | |
| int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
 | |
| 			  void *key)
 | |
| {
 | |
| 	return try_to_wake_up(curr->private, mode, wake_flags);
 | |
| }
 | |
| EXPORT_SYMBOL(default_wake_function);
 | |
| 
 | |
| /*
 | |
|  * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 | |
|  * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
 | |
|  * number) then we wake all the non-exclusive tasks and one exclusive task.
 | |
|  *
 | |
|  * There are circumstances in which we can try to wake a task which has already
 | |
|  * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
 | |
|  * zero in this (rare) case, and we handle it by continuing to scan the queue.
 | |
|  */
 | |
| static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
 | |
| 			int nr_exclusive, int wake_flags, void *key)
 | |
| {
 | |
| 	wait_queue_t *curr, *next;
 | |
| 
 | |
| 	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
 | |
| 		unsigned flags = curr->flags;
 | |
| 
 | |
| 		if (curr->func(curr, mode, wake_flags, key) &&
 | |
| 				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
 | |
| 			break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __wake_up - wake up threads blocked on a waitqueue.
 | |
|  * @q: the waitqueue
 | |
|  * @mode: which threads
 | |
|  * @nr_exclusive: how many wake-one or wake-many threads to wake up
 | |
|  * @key: is directly passed to the wakeup function
 | |
|  *
 | |
|  * It may be assumed that this function implies a write memory barrier before
 | |
|  * changing the task state if and only if any tasks are woken up.
 | |
|  */
 | |
| void __wake_up(wait_queue_head_t *q, unsigned int mode,
 | |
| 			int nr_exclusive, void *key)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&q->lock, flags);
 | |
| 	__wake_up_common(q, mode, nr_exclusive, 0, key);
 | |
| 	spin_unlock_irqrestore(&q->lock, flags);
 | |
| }
 | |
| EXPORT_SYMBOL(__wake_up);
 | |
| 
 | |
| /*
 | |
|  * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 | |
|  */
 | |
| void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
 | |
| {
 | |
| 	__wake_up_common(q, mode, 1, 0, NULL);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(__wake_up_locked);
 | |
| 
 | |
| void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
 | |
| {
 | |
| 	__wake_up_common(q, mode, 1, 0, key);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(__wake_up_locked_key);
 | |
| 
 | |
| /**
 | |
|  * __wake_up_sync_key - wake up threads blocked on a waitqueue.
 | |
|  * @q: the waitqueue
 | |
|  * @mode: which threads
 | |
|  * @nr_exclusive: how many wake-one or wake-many threads to wake up
 | |
|  * @key: opaque value to be passed to wakeup targets
 | |
|  *
 | |
|  * The sync wakeup differs that the waker knows that it will schedule
 | |
|  * away soon, so while the target thread will be woken up, it will not
 | |
|  * be migrated to another CPU - ie. the two threads are 'synchronized'
 | |
|  * with each other. This can prevent needless bouncing between CPUs.
 | |
|  *
 | |
|  * On UP it can prevent extra preemption.
 | |
|  *
 | |
|  * It may be assumed that this function implies a write memory barrier before
 | |
|  * changing the task state if and only if any tasks are woken up.
 | |
|  */
 | |
| void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
 | |
| 			int nr_exclusive, void *key)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	int wake_flags = WF_SYNC;
 | |
| 
 | |
| 	if (unlikely(!q))
 | |
| 		return;
 | |
| 
 | |
| 	if (unlikely(!nr_exclusive))
 | |
| 		wake_flags = 0;
 | |
| 
 | |
| 	spin_lock_irqsave(&q->lock, flags);
 | |
| 	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
 | |
| 	spin_unlock_irqrestore(&q->lock, flags);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(__wake_up_sync_key);
 | |
| 
 | |
| /*
 | |
|  * __wake_up_sync - see __wake_up_sync_key()
 | |
|  */
 | |
| void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
 | |
| {
 | |
| 	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
 | |
| 
 | |
| /**
 | |
|  * complete: - signals a single thread waiting on this completion
 | |
|  * @x:  holds the state of this particular completion
 | |
|  *
 | |
|  * This will wake up a single thread waiting on this completion. Threads will be
 | |
|  * awakened in the same order in which they were queued.
 | |
|  *
 | |
|  * See also complete_all(), wait_for_completion() and related routines.
 | |
|  *
 | |
|  * It may be assumed that this function implies a write memory barrier before
 | |
|  * changing the task state if and only if any tasks are woken up.
 | |
|  */
 | |
| void complete(struct completion *x)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&x->wait.lock, flags);
 | |
| 	x->done++;
 | |
| 	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
 | |
| 	spin_unlock_irqrestore(&x->wait.lock, flags);
 | |
| }
 | |
| EXPORT_SYMBOL(complete);
 | |
| 
 | |
| /**
 | |
|  * complete_all: - signals all threads waiting on this completion
 | |
|  * @x:  holds the state of this particular completion
 | |
|  *
 | |
|  * This will wake up all threads waiting on this particular completion event.
 | |
|  *
 | |
|  * It may be assumed that this function implies a write memory barrier before
 | |
|  * changing the task state if and only if any tasks are woken up.
 | |
|  */
 | |
| void complete_all(struct completion *x)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&x->wait.lock, flags);
 | |
| 	x->done += UINT_MAX/2;
 | |
| 	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
 | |
| 	spin_unlock_irqrestore(&x->wait.lock, flags);
 | |
| }
 | |
| EXPORT_SYMBOL(complete_all);
 | |
| 
 | |
| static inline long __sched
 | |
| do_wait_for_common(struct completion *x, long timeout, int state)
 | |
| {
 | |
| 	if (!x->done) {
 | |
| 		DECLARE_WAITQUEUE(wait, current);
 | |
| 
 | |
| 		__add_wait_queue_tail_exclusive(&x->wait, &wait);
 | |
| 		do {
 | |
| 			if (signal_pending_state(state, current)) {
 | |
| 				timeout = -ERESTARTSYS;
 | |
| 				break;
 | |
| 			}
 | |
| 			__set_current_state(state);
 | |
| 			spin_unlock_irq(&x->wait.lock);
 | |
| 			timeout = schedule_timeout(timeout);
 | |
| 			spin_lock_irq(&x->wait.lock);
 | |
| 		} while (!x->done && timeout);
 | |
| 		__remove_wait_queue(&x->wait, &wait);
 | |
| 		if (!x->done)
 | |
| 			return timeout;
 | |
| 	}
 | |
| 	x->done--;
 | |
| 	return timeout ?: 1;
 | |
| }
 | |
| 
 | |
| static long __sched
 | |
| wait_for_common(struct completion *x, long timeout, int state)
 | |
| {
 | |
| 	might_sleep();
 | |
| 
 | |
| 	spin_lock_irq(&x->wait.lock);
 | |
| 	timeout = do_wait_for_common(x, timeout, state);
 | |
| 	spin_unlock_irq(&x->wait.lock);
 | |
| 	return timeout;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * wait_for_completion: - waits for completion of a task
 | |
|  * @x:  holds the state of this particular completion
 | |
|  *
 | |
|  * This waits to be signaled for completion of a specific task. It is NOT
 | |
|  * interruptible and there is no timeout.
 | |
|  *
 | |
|  * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 | |
|  * and interrupt capability. Also see complete().
 | |
|  */
 | |
| void __sched wait_for_completion(struct completion *x)
 | |
| {
 | |
| 	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
 | |
| }
 | |
| EXPORT_SYMBOL(wait_for_completion);
 | |
| 
 | |
| /**
 | |
|  * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 | |
|  * @x:  holds the state of this particular completion
 | |
|  * @timeout:  timeout value in jiffies
 | |
|  *
 | |
|  * This waits for either a completion of a specific task to be signaled or for a
 | |
|  * specified timeout to expire. The timeout is in jiffies. It is not
 | |
|  * interruptible.
 | |
|  */
 | |
| unsigned long __sched
 | |
| wait_for_completion_timeout(struct completion *x, unsigned long timeout)
 | |
| {
 | |
| 	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
 | |
| }
 | |
| EXPORT_SYMBOL(wait_for_completion_timeout);
 | |
| 
 | |
| /**
 | |
|  * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 | |
|  * @x:  holds the state of this particular completion
 | |
|  *
 | |
|  * This waits for completion of a specific task to be signaled. It is
 | |
|  * interruptible.
 | |
|  */
 | |
| int __sched wait_for_completion_interruptible(struct completion *x)
 | |
| {
 | |
| 	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
 | |
| 	if (t == -ERESTARTSYS)
 | |
| 		return t;
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(wait_for_completion_interruptible);
 | |
| 
 | |
| /**
 | |
|  * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 | |
|  * @x:  holds the state of this particular completion
 | |
|  * @timeout:  timeout value in jiffies
 | |
|  *
 | |
|  * This waits for either a completion of a specific task to be signaled or for a
 | |
|  * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 | |
|  */
 | |
| long __sched
 | |
| wait_for_completion_interruptible_timeout(struct completion *x,
 | |
| 					  unsigned long timeout)
 | |
| {
 | |
| 	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
 | |
| }
 | |
| EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
 | |
| 
 | |
| /**
 | |
|  * wait_for_completion_killable: - waits for completion of a task (killable)
 | |
|  * @x:  holds the state of this particular completion
 | |
|  *
 | |
|  * This waits to be signaled for completion of a specific task. It can be
 | |
|  * interrupted by a kill signal.
 | |
|  */
 | |
| int __sched wait_for_completion_killable(struct completion *x)
 | |
| {
 | |
| 	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
 | |
| 	if (t == -ERESTARTSYS)
 | |
| 		return t;
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(wait_for_completion_killable);
 | |
| 
 | |
| /**
 | |
|  * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
 | |
|  * @x:  holds the state of this particular completion
 | |
|  * @timeout:  timeout value in jiffies
 | |
|  *
 | |
|  * This waits for either a completion of a specific task to be
 | |
|  * signaled or for a specified timeout to expire. It can be
 | |
|  * interrupted by a kill signal. The timeout is in jiffies.
 | |
|  */
 | |
| long __sched
 | |
| wait_for_completion_killable_timeout(struct completion *x,
 | |
| 				     unsigned long timeout)
 | |
| {
 | |
| 	return wait_for_common(x, timeout, TASK_KILLABLE);
 | |
| }
 | |
| EXPORT_SYMBOL(wait_for_completion_killable_timeout);
 | |
| 
 | |
| /**
 | |
|  *	try_wait_for_completion - try to decrement a completion without blocking
 | |
|  *	@x:	completion structure
 | |
|  *
 | |
|  *	Returns: 0 if a decrement cannot be done without blocking
 | |
|  *		 1 if a decrement succeeded.
 | |
|  *
 | |
|  *	If a completion is being used as a counting completion,
 | |
|  *	attempt to decrement the counter without blocking. This
 | |
|  *	enables us to avoid waiting if the resource the completion
 | |
|  *	is protecting is not available.
 | |
|  */
 | |
| bool try_wait_for_completion(struct completion *x)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	int ret = 1;
 | |
| 
 | |
| 	spin_lock_irqsave(&x->wait.lock, flags);
 | |
| 	if (!x->done)
 | |
| 		ret = 0;
 | |
| 	else
 | |
| 		x->done--;
 | |
| 	spin_unlock_irqrestore(&x->wait.lock, flags);
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(try_wait_for_completion);
 | |
| 
 | |
| /**
 | |
|  *	completion_done - Test to see if a completion has any waiters
 | |
|  *	@x:	completion structure
 | |
|  *
 | |
|  *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 | |
|  *		 1 if there are no waiters.
 | |
|  *
 | |
|  */
 | |
| bool completion_done(struct completion *x)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	int ret = 1;
 | |
| 
 | |
| 	spin_lock_irqsave(&x->wait.lock, flags);
 | |
| 	if (!x->done)
 | |
| 		ret = 0;
 | |
| 	spin_unlock_irqrestore(&x->wait.lock, flags);
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(completion_done);
 | |
| 
 | |
| static long __sched
 | |
| sleep_on_common(wait_queue_head_t *q, int state, long timeout)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	wait_queue_t wait;
 | |
| 
 | |
| 	init_waitqueue_entry(&wait, current);
 | |
| 
 | |
| 	__set_current_state(state);
 | |
| 
 | |
| 	spin_lock_irqsave(&q->lock, flags);
 | |
| 	__add_wait_queue(q, &wait);
 | |
| 	spin_unlock(&q->lock);
 | |
| 	timeout = schedule_timeout(timeout);
 | |
| 	spin_lock_irq(&q->lock);
 | |
| 	__remove_wait_queue(q, &wait);
 | |
| 	spin_unlock_irqrestore(&q->lock, flags);
 | |
| 
 | |
| 	return timeout;
 | |
| }
 | |
| 
 | |
| void __sched interruptible_sleep_on(wait_queue_head_t *q)
 | |
| {
 | |
| 	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
 | |
| }
 | |
| EXPORT_SYMBOL(interruptible_sleep_on);
 | |
| 
 | |
| long __sched
 | |
| interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
 | |
| {
 | |
| 	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
 | |
| }
 | |
| EXPORT_SYMBOL(interruptible_sleep_on_timeout);
 | |
| 
 | |
| void __sched sleep_on(wait_queue_head_t *q)
 | |
| {
 | |
| 	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
 | |
| }
 | |
| EXPORT_SYMBOL(sleep_on);
 | |
| 
 | |
| long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
 | |
| {
 | |
| 	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
 | |
| }
 | |
| EXPORT_SYMBOL(sleep_on_timeout);
 | |
| 
 | |
| #ifdef CONFIG_RT_MUTEXES
 | |
| 
 | |
| /*
 | |
|  * rt_mutex_setprio - set the current priority of a task
 | |
|  * @p: task
 | |
|  * @prio: prio value (kernel-internal form)
 | |
|  *
 | |
|  * This function changes the 'effective' priority of a task. It does
 | |
|  * not touch ->normal_prio like __setscheduler().
 | |
|  *
 | |
|  * Used by the rt_mutex code to implement priority inheritance logic.
 | |
|  */
 | |
| void rt_mutex_setprio(struct task_struct *p, int prio)
 | |
| {
 | |
| 	int oldprio, on_rq, running;
 | |
| 	struct rq *rq;
 | |
| 	const struct sched_class *prev_class;
 | |
| 
 | |
| 	BUG_ON(prio < 0 || prio > MAX_PRIO);
 | |
| 
 | |
| 	rq = __task_rq_lock(p);
 | |
| 
 | |
| 	trace_sched_pi_setprio(p, prio);
 | |
| 	oldprio = p->prio;
 | |
| 	prev_class = p->sched_class;
 | |
| 	on_rq = p->on_rq;
 | |
| 	running = task_current(rq, p);
 | |
| 	if (on_rq)
 | |
| 		dequeue_task(rq, p, 0);
 | |
| 	if (running)
 | |
| 		p->sched_class->put_prev_task(rq, p);
 | |
| 
 | |
| 	if (rt_prio(prio))
 | |
| 		p->sched_class = &rt_sched_class;
 | |
| 	else
 | |
| 		p->sched_class = &fair_sched_class;
 | |
| 
 | |
| 	p->prio = prio;
 | |
| 
 | |
| 	if (running)
 | |
| 		p->sched_class->set_curr_task(rq);
 | |
| 	if (on_rq)
 | |
| 		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
 | |
| 
 | |
| 	check_class_changed(rq, p, prev_class, oldprio);
 | |
| 	__task_rq_unlock(rq);
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| void set_user_nice(struct task_struct *p, long nice)
 | |
| {
 | |
| 	int old_prio, delta, on_rq;
 | |
| 	unsigned long flags;
 | |
| 	struct rq *rq;
 | |
| 
 | |
| 	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
 | |
| 		return;
 | |
| 	/*
 | |
| 	 * We have to be careful, if called from sys_setpriority(),
 | |
| 	 * the task might be in the middle of scheduling on another CPU.
 | |
| 	 */
 | |
| 	rq = task_rq_lock(p, &flags);
 | |
| 	/*
 | |
| 	 * The RT priorities are set via sched_setscheduler(), but we still
 | |
| 	 * allow the 'normal' nice value to be set - but as expected
 | |
| 	 * it wont have any effect on scheduling until the task is
 | |
| 	 * SCHED_FIFO/SCHED_RR:
 | |
| 	 */
 | |
| 	if (task_has_rt_policy(p)) {
 | |
| 		p->static_prio = NICE_TO_PRIO(nice);
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 	on_rq = p->on_rq;
 | |
| 	if (on_rq)
 | |
| 		dequeue_task(rq, p, 0);
 | |
| 
 | |
| 	p->static_prio = NICE_TO_PRIO(nice);
 | |
| 	set_load_weight(p);
 | |
| 	old_prio = p->prio;
 | |
| 	p->prio = effective_prio(p);
 | |
| 	delta = p->prio - old_prio;
 | |
| 
 | |
| 	if (on_rq) {
 | |
| 		enqueue_task(rq, p, 0);
 | |
| 		/*
 | |
| 		 * If the task increased its priority or is running and
 | |
| 		 * lowered its priority, then reschedule its CPU:
 | |
| 		 */
 | |
| 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
 | |
| 			resched_task(rq->curr);
 | |
| 	}
 | |
| out_unlock:
 | |
| 	task_rq_unlock(rq, p, &flags);
 | |
| }
 | |
| EXPORT_SYMBOL(set_user_nice);
 | |
| 
 | |
| /*
 | |
|  * can_nice - check if a task can reduce its nice value
 | |
|  * @p: task
 | |
|  * @nice: nice value
 | |
|  */
 | |
| int can_nice(const struct task_struct *p, const int nice)
 | |
| {
 | |
| 	/* convert nice value [19,-20] to rlimit style value [1,40] */
 | |
| 	int nice_rlim = 20 - nice;
 | |
| 
 | |
| 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
 | |
| 		capable(CAP_SYS_NICE));
 | |
| }
 | |
| 
 | |
| #ifdef __ARCH_WANT_SYS_NICE
 | |
| 
 | |
| /*
 | |
|  * sys_nice - change the priority of the current process.
 | |
|  * @increment: priority increment
 | |
|  *
 | |
|  * sys_setpriority is a more generic, but much slower function that
 | |
|  * does similar things.
 | |
|  */
 | |
| SYSCALL_DEFINE1(nice, int, increment)
 | |
| {
 | |
| 	long nice, retval;
 | |
| 
 | |
| 	/*
 | |
| 	 * Setpriority might change our priority at the same moment.
 | |
| 	 * We don't have to worry. Conceptually one call occurs first
 | |
| 	 * and we have a single winner.
 | |
| 	 */
 | |
| 	if (increment < -40)
 | |
| 		increment = -40;
 | |
| 	if (increment > 40)
 | |
| 		increment = 40;
 | |
| 
 | |
| 	nice = TASK_NICE(current) + increment;
 | |
| 	if (nice < -20)
 | |
| 		nice = -20;
 | |
| 	if (nice > 19)
 | |
| 		nice = 19;
 | |
| 
 | |
| 	if (increment < 0 && !can_nice(current, nice))
 | |
| 		return -EPERM;
 | |
| 
 | |
| 	retval = security_task_setnice(current, nice);
 | |
| 	if (retval)
 | |
| 		return retval;
 | |
| 
 | |
| 	set_user_nice(current, nice);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * task_prio - return the priority value of a given task.
 | |
|  * @p: the task in question.
 | |
|  *
 | |
|  * This is the priority value as seen by users in /proc.
 | |
|  * RT tasks are offset by -200. Normal tasks are centered
 | |
|  * around 0, value goes from -16 to +15.
 | |
|  */
 | |
| int task_prio(const struct task_struct *p)
 | |
| {
 | |
| 	return p->prio - MAX_RT_PRIO;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * task_nice - return the nice value of a given task.
 | |
|  * @p: the task in question.
 | |
|  */
 | |
| int task_nice(const struct task_struct *p)
 | |
| {
 | |
| 	return TASK_NICE(p);
 | |
| }
 | |
| EXPORT_SYMBOL(task_nice);
 | |
| 
 | |
| /**
 | |
|  * idle_cpu - is a given cpu idle currently?
 | |
|  * @cpu: the processor in question.
 | |
|  */
 | |
| int idle_cpu(int cpu)
 | |
| {
 | |
| 	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * idle_task - return the idle task for a given cpu.
 | |
|  * @cpu: the processor in question.
 | |
|  */
 | |
| struct task_struct *idle_task(int cpu)
 | |
| {
 | |
| 	return cpu_rq(cpu)->idle;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * find_process_by_pid - find a process with a matching PID value.
 | |
|  * @pid: the pid in question.
 | |
|  */
 | |
| static struct task_struct *find_process_by_pid(pid_t pid)
 | |
| {
 | |
| 	return pid ? find_task_by_vpid(pid) : current;
 | |
| }
 | |
| 
 | |
| /* Actually do priority change: must hold rq lock. */
 | |
| static void
 | |
| __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
 | |
| {
 | |
| 	p->policy = policy;
 | |
| 	p->rt_priority = prio;
 | |
| 	p->normal_prio = normal_prio(p);
 | |
| 	/* we are holding p->pi_lock already */
 | |
| 	p->prio = rt_mutex_getprio(p);
 | |
| 	if (rt_prio(p->prio))
 | |
| 		p->sched_class = &rt_sched_class;
 | |
| 	else
 | |
| 		p->sched_class = &fair_sched_class;
 | |
| 	set_load_weight(p);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * check the target process has a UID that matches the current process's
 | |
|  */
 | |
| static bool check_same_owner(struct task_struct *p)
 | |
| {
 | |
| 	const struct cred *cred = current_cred(), *pcred;
 | |
| 	bool match;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	pcred = __task_cred(p);
 | |
| 	if (cred->user->user_ns == pcred->user->user_ns)
 | |
| 		match = (cred->euid == pcred->euid ||
 | |
| 			 cred->euid == pcred->uid);
 | |
| 	else
 | |
| 		match = false;
 | |
| 	rcu_read_unlock();
 | |
| 	return match;
 | |
| }
 | |
| 
 | |
| static int __sched_setscheduler(struct task_struct *p, int policy,
 | |
| 				const struct sched_param *param, bool user)
 | |
| {
 | |
| 	int retval, oldprio, oldpolicy = -1, on_rq, running;
 | |
| 	unsigned long flags;
 | |
| 	const struct sched_class *prev_class;
 | |
| 	struct rq *rq;
 | |
| 	int reset_on_fork;
 | |
| 
 | |
| 	/* may grab non-irq protected spin_locks */
 | |
| 	BUG_ON(in_interrupt());
 | |
| recheck:
 | |
| 	/* double check policy once rq lock held */
 | |
| 	if (policy < 0) {
 | |
| 		reset_on_fork = p->sched_reset_on_fork;
 | |
| 		policy = oldpolicy = p->policy;
 | |
| 	} else {
 | |
| 		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
 | |
| 		policy &= ~SCHED_RESET_ON_FORK;
 | |
| 
 | |
| 		if (policy != SCHED_FIFO && policy != SCHED_RR &&
 | |
| 				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
 | |
| 				policy != SCHED_IDLE)
 | |
| 			return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
 | |
| 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
 | |
| 	 * SCHED_BATCH and SCHED_IDLE is 0.
 | |
| 	 */
 | |
| 	if (param->sched_priority < 0 ||
 | |
| 	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
 | |
| 	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
 | |
| 		return -EINVAL;
 | |
| 	if (rt_policy(policy) != (param->sched_priority != 0))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Allow unprivileged RT tasks to decrease priority:
 | |
| 	 */
 | |
| 	if (user && !capable(CAP_SYS_NICE)) {
 | |
| 		if (rt_policy(policy)) {
 | |
| 			unsigned long rlim_rtprio =
 | |
| 					task_rlimit(p, RLIMIT_RTPRIO);
 | |
| 
 | |
| 			/* can't set/change the rt policy */
 | |
| 			if (policy != p->policy && !rlim_rtprio)
 | |
| 				return -EPERM;
 | |
| 
 | |
| 			/* can't increase priority */
 | |
| 			if (param->sched_priority > p->rt_priority &&
 | |
| 			    param->sched_priority > rlim_rtprio)
 | |
| 				return -EPERM;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
 | |
| 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
 | |
| 		 */
 | |
| 		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
 | |
| 			if (!can_nice(p, TASK_NICE(p)))
 | |
| 				return -EPERM;
 | |
| 		}
 | |
| 
 | |
| 		/* can't change other user's priorities */
 | |
| 		if (!check_same_owner(p))
 | |
| 			return -EPERM;
 | |
| 
 | |
| 		/* Normal users shall not reset the sched_reset_on_fork flag */
 | |
| 		if (p->sched_reset_on_fork && !reset_on_fork)
 | |
| 			return -EPERM;
 | |
| 	}
 | |
| 
 | |
| 	if (user) {
 | |
| 		retval = security_task_setscheduler(p);
 | |
| 		if (retval)
 | |
| 			return retval;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * make sure no PI-waiters arrive (or leave) while we are
 | |
| 	 * changing the priority of the task:
 | |
| 	 *
 | |
| 	 * To be able to change p->policy safely, the appropriate
 | |
| 	 * runqueue lock must be held.
 | |
| 	 */
 | |
| 	rq = task_rq_lock(p, &flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * Changing the policy of the stop threads its a very bad idea
 | |
| 	 */
 | |
| 	if (p == rq->stop) {
 | |
| 		task_rq_unlock(rq, p, &flags);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If not changing anything there's no need to proceed further:
 | |
| 	 */
 | |
| 	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
 | |
| 			param->sched_priority == p->rt_priority))) {
 | |
| 
 | |
| 		__task_rq_unlock(rq);
 | |
| 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_RT_GROUP_SCHED
 | |
| 	if (user) {
 | |
| 		/*
 | |
| 		 * Do not allow realtime tasks into groups that have no runtime
 | |
| 		 * assigned.
 | |
| 		 */
 | |
| 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
 | |
| 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
 | |
| 				!task_group_is_autogroup(task_group(p))) {
 | |
| 			task_rq_unlock(rq, p, &flags);
 | |
| 			return -EPERM;
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	/* recheck policy now with rq lock held */
 | |
| 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
 | |
| 		policy = oldpolicy = -1;
 | |
| 		task_rq_unlock(rq, p, &flags);
 | |
| 		goto recheck;
 | |
| 	}
 | |
| 	on_rq = p->on_rq;
 | |
| 	running = task_current(rq, p);
 | |
| 	if (on_rq)
 | |
| 		deactivate_task(rq, p, 0);
 | |
| 	if (running)
 | |
| 		p->sched_class->put_prev_task(rq, p);
 | |
| 
 | |
| 	p->sched_reset_on_fork = reset_on_fork;
 | |
| 
 | |
| 	oldprio = p->prio;
 | |
| 	prev_class = p->sched_class;
 | |
| 	__setscheduler(rq, p, policy, param->sched_priority);
 | |
| 
 | |
| 	if (running)
 | |
| 		p->sched_class->set_curr_task(rq);
 | |
| 	if (on_rq)
 | |
| 		activate_task(rq, p, 0);
 | |
| 
 | |
| 	check_class_changed(rq, p, prev_class, oldprio);
 | |
| 	task_rq_unlock(rq, p, &flags);
 | |
| 
 | |
| 	rt_mutex_adjust_pi(p);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 | |
|  * @p: the task in question.
 | |
|  * @policy: new policy.
 | |
|  * @param: structure containing the new RT priority.
 | |
|  *
 | |
|  * NOTE that the task may be already dead.
 | |
|  */
 | |
| int sched_setscheduler(struct task_struct *p, int policy,
 | |
| 		       const struct sched_param *param)
 | |
| {
 | |
| 	return __sched_setscheduler(p, policy, param, true);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(sched_setscheduler);
 | |
| 
 | |
| /**
 | |
|  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 | |
|  * @p: the task in question.
 | |
|  * @policy: new policy.
 | |
|  * @param: structure containing the new RT priority.
 | |
|  *
 | |
|  * Just like sched_setscheduler, only don't bother checking if the
 | |
|  * current context has permission.  For example, this is needed in
 | |
|  * stop_machine(): we create temporary high priority worker threads,
 | |
|  * but our caller might not have that capability.
 | |
|  */
 | |
| int sched_setscheduler_nocheck(struct task_struct *p, int policy,
 | |
| 			       const struct sched_param *param)
 | |
| {
 | |
| 	return __sched_setscheduler(p, policy, param, false);
 | |
| }
 | |
| 
 | |
| static int
 | |
| do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
 | |
| {
 | |
| 	struct sched_param lparam;
 | |
| 	struct task_struct *p;
 | |
| 	int retval;
 | |
| 
 | |
| 	if (!param || pid < 0)
 | |
| 		return -EINVAL;
 | |
| 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	retval = -ESRCH;
 | |
| 	p = find_process_by_pid(pid);
 | |
| 	if (p != NULL)
 | |
| 		retval = sched_setscheduler(p, policy, &lparam);
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 | |
|  * @pid: the pid in question.
 | |
|  * @policy: new policy.
 | |
|  * @param: structure containing the new RT priority.
 | |
|  */
 | |
| SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
 | |
| 		struct sched_param __user *, param)
 | |
| {
 | |
| 	/* negative values for policy are not valid */
 | |
| 	if (policy < 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return do_sched_setscheduler(pid, policy, param);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sys_sched_setparam - set/change the RT priority of a thread
 | |
|  * @pid: the pid in question.
 | |
|  * @param: structure containing the new RT priority.
 | |
|  */
 | |
| SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
 | |
| {
 | |
| 	return do_sched_setscheduler(pid, -1, param);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 | |
|  * @pid: the pid in question.
 | |
|  */
 | |
| SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
 | |
| {
 | |
| 	struct task_struct *p;
 | |
| 	int retval;
 | |
| 
 | |
| 	if (pid < 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	retval = -ESRCH;
 | |
| 	rcu_read_lock();
 | |
| 	p = find_process_by_pid(pid);
 | |
| 	if (p) {
 | |
| 		retval = security_task_getscheduler(p);
 | |
| 		if (!retval)
 | |
| 			retval = p->policy
 | |
| 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sys_sched_getparam - get the RT priority of a thread
 | |
|  * @pid: the pid in question.
 | |
|  * @param: structure containing the RT priority.
 | |
|  */
 | |
| SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
 | |
| {
 | |
| 	struct sched_param lp;
 | |
| 	struct task_struct *p;
 | |
| 	int retval;
 | |
| 
 | |
| 	if (!param || pid < 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	p = find_process_by_pid(pid);
 | |
| 	retval = -ESRCH;
 | |
| 	if (!p)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	retval = security_task_getscheduler(p);
 | |
| 	if (retval)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	lp.sched_priority = p->rt_priority;
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	/*
 | |
| 	 * This one might sleep, we cannot do it with a spinlock held ...
 | |
| 	 */
 | |
| 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
 | |
| 
 | |
| 	return retval;
 | |
| 
 | |
| out_unlock:
 | |
| 	rcu_read_unlock();
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
 | |
| {
 | |
| 	cpumask_var_t cpus_allowed, new_mask;
 | |
| 	struct task_struct *p;
 | |
| 	int retval;
 | |
| 
 | |
| 	get_online_cpus();
 | |
| 	rcu_read_lock();
 | |
| 
 | |
| 	p = find_process_by_pid(pid);
 | |
| 	if (!p) {
 | |
| 		rcu_read_unlock();
 | |
| 		put_online_cpus();
 | |
| 		return -ESRCH;
 | |
| 	}
 | |
| 
 | |
| 	/* Prevent p going away */
 | |
| 	get_task_struct(p);
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
 | |
| 		retval = -ENOMEM;
 | |
| 		goto out_put_task;
 | |
| 	}
 | |
| 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
 | |
| 		retval = -ENOMEM;
 | |
| 		goto out_free_cpus_allowed;
 | |
| 	}
 | |
| 	retval = -EPERM;
 | |
| 	if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	retval = security_task_setscheduler(p);
 | |
| 	if (retval)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	cpuset_cpus_allowed(p, cpus_allowed);
 | |
| 	cpumask_and(new_mask, in_mask, cpus_allowed);
 | |
| again:
 | |
| 	retval = set_cpus_allowed_ptr(p, new_mask);
 | |
| 
 | |
| 	if (!retval) {
 | |
| 		cpuset_cpus_allowed(p, cpus_allowed);
 | |
| 		if (!cpumask_subset(new_mask, cpus_allowed)) {
 | |
| 			/*
 | |
| 			 * We must have raced with a concurrent cpuset
 | |
| 			 * update. Just reset the cpus_allowed to the
 | |
| 			 * cpuset's cpus_allowed
 | |
| 			 */
 | |
| 			cpumask_copy(new_mask, cpus_allowed);
 | |
| 			goto again;
 | |
| 		}
 | |
| 	}
 | |
| out_unlock:
 | |
| 	free_cpumask_var(new_mask);
 | |
| out_free_cpus_allowed:
 | |
| 	free_cpumask_var(cpus_allowed);
 | |
| out_put_task:
 | |
| 	put_task_struct(p);
 | |
| 	put_online_cpus();
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
 | |
| 			     struct cpumask *new_mask)
 | |
| {
 | |
| 	if (len < cpumask_size())
 | |
| 		cpumask_clear(new_mask);
 | |
| 	else if (len > cpumask_size())
 | |
| 		len = cpumask_size();
 | |
| 
 | |
| 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sys_sched_setaffinity - set the cpu affinity of a process
 | |
|  * @pid: pid of the process
 | |
|  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 | |
|  * @user_mask_ptr: user-space pointer to the new cpu mask
 | |
|  */
 | |
| SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
 | |
| 		unsigned long __user *, user_mask_ptr)
 | |
| {
 | |
| 	cpumask_var_t new_mask;
 | |
| 	int retval;
 | |
| 
 | |
| 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
 | |
| 	if (retval == 0)
 | |
| 		retval = sched_setaffinity(pid, new_mask);
 | |
| 	free_cpumask_var(new_mask);
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| long sched_getaffinity(pid_t pid, struct cpumask *mask)
 | |
| {
 | |
| 	struct task_struct *p;
 | |
| 	unsigned long flags;
 | |
| 	int retval;
 | |
| 
 | |
| 	get_online_cpus();
 | |
| 	rcu_read_lock();
 | |
| 
 | |
| 	retval = -ESRCH;
 | |
| 	p = find_process_by_pid(pid);
 | |
| 	if (!p)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	retval = security_task_getscheduler(p);
 | |
| 	if (retval)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&p->pi_lock, flags);
 | |
| 	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
 | |
| 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
 | |
| 
 | |
| out_unlock:
 | |
| 	rcu_read_unlock();
 | |
| 	put_online_cpus();
 | |
| 
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sys_sched_getaffinity - get the cpu affinity of a process
 | |
|  * @pid: pid of the process
 | |
|  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 | |
|  * @user_mask_ptr: user-space pointer to hold the current cpu mask
 | |
|  */
 | |
| SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
 | |
| 		unsigned long __user *, user_mask_ptr)
 | |
| {
 | |
| 	int ret;
 | |
| 	cpumask_var_t mask;
 | |
| 
 | |
| 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
 | |
| 		return -EINVAL;
 | |
| 	if (len & (sizeof(unsigned long)-1))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	ret = sched_getaffinity(pid, mask);
 | |
| 	if (ret == 0) {
 | |
| 		size_t retlen = min_t(size_t, len, cpumask_size());
 | |
| 
 | |
| 		if (copy_to_user(user_mask_ptr, mask, retlen))
 | |
| 			ret = -EFAULT;
 | |
| 		else
 | |
| 			ret = retlen;
 | |
| 	}
 | |
| 	free_cpumask_var(mask);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sys_sched_yield - yield the current processor to other threads.
 | |
|  *
 | |
|  * This function yields the current CPU to other tasks. If there are no
 | |
|  * other threads running on this CPU then this function will return.
 | |
|  */
 | |
| SYSCALL_DEFINE0(sched_yield)
 | |
| {
 | |
| 	struct rq *rq = this_rq_lock();
 | |
| 
 | |
| 	schedstat_inc(rq, yld_count);
 | |
| 	current->sched_class->yield_task(rq);
 | |
| 
 | |
| 	/*
 | |
| 	 * Since we are going to call schedule() anyway, there's
 | |
| 	 * no need to preempt or enable interrupts:
 | |
| 	 */
 | |
| 	__release(rq->lock);
 | |
| 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
 | |
| 	do_raw_spin_unlock(&rq->lock);
 | |
| 	preempt_enable_no_resched();
 | |
| 
 | |
| 	schedule();
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int should_resched(void)
 | |
| {
 | |
| 	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
 | |
| }
 | |
| 
 | |
| static void __cond_resched(void)
 | |
| {
 | |
| 	add_preempt_count(PREEMPT_ACTIVE);
 | |
| 	schedule();
 | |
| 	sub_preempt_count(PREEMPT_ACTIVE);
 | |
| }
 | |
| 
 | |
| int __sched _cond_resched(void)
 | |
| {
 | |
| 	if (should_resched()) {
 | |
| 		__cond_resched();
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(_cond_resched);
 | |
| 
 | |
| /*
 | |
|  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
 | |
|  * call schedule, and on return reacquire the lock.
 | |
|  *
 | |
|  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
 | |
|  * operations here to prevent schedule() from being called twice (once via
 | |
|  * spin_unlock(), once by hand).
 | |
|  */
 | |
| int __cond_resched_lock(spinlock_t *lock)
 | |
| {
 | |
| 	int resched = should_resched();
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	lockdep_assert_held(lock);
 | |
| 
 | |
| 	if (spin_needbreak(lock) || resched) {
 | |
| 		spin_unlock(lock);
 | |
| 		if (resched)
 | |
| 			__cond_resched();
 | |
| 		else
 | |
| 			cpu_relax();
 | |
| 		ret = 1;
 | |
| 		spin_lock(lock);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(__cond_resched_lock);
 | |
| 
 | |
| int __sched __cond_resched_softirq(void)
 | |
| {
 | |
| 	BUG_ON(!in_softirq());
 | |
| 
 | |
| 	if (should_resched()) {
 | |
| 		local_bh_enable();
 | |
| 		__cond_resched();
 | |
| 		local_bh_disable();
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(__cond_resched_softirq);
 | |
| 
 | |
| /**
 | |
|  * yield - yield the current processor to other threads.
 | |
|  *
 | |
|  * This is a shortcut for kernel-space yielding - it marks the
 | |
|  * thread runnable and calls sys_sched_yield().
 | |
|  */
 | |
| void __sched yield(void)
 | |
| {
 | |
| 	set_current_state(TASK_RUNNING);
 | |
| 	sys_sched_yield();
 | |
| }
 | |
| EXPORT_SYMBOL(yield);
 | |
| 
 | |
| /**
 | |
|  * yield_to - yield the current processor to another thread in
 | |
|  * your thread group, or accelerate that thread toward the
 | |
|  * processor it's on.
 | |
|  * @p: target task
 | |
|  * @preempt: whether task preemption is allowed or not
 | |
|  *
 | |
|  * It's the caller's job to ensure that the target task struct
 | |
|  * can't go away on us before we can do any checks.
 | |
|  *
 | |
|  * Returns true if we indeed boosted the target task.
 | |
|  */
 | |
| bool __sched yield_to(struct task_struct *p, bool preempt)
 | |
| {
 | |
| 	struct task_struct *curr = current;
 | |
| 	struct rq *rq, *p_rq;
 | |
| 	unsigned long flags;
 | |
| 	bool yielded = 0;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	rq = this_rq();
 | |
| 
 | |
| again:
 | |
| 	p_rq = task_rq(p);
 | |
| 	double_rq_lock(rq, p_rq);
 | |
| 	while (task_rq(p) != p_rq) {
 | |
| 		double_rq_unlock(rq, p_rq);
 | |
| 		goto again;
 | |
| 	}
 | |
| 
 | |
| 	if (!curr->sched_class->yield_to_task)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (curr->sched_class != p->sched_class)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (task_running(p_rq, p) || p->state)
 | |
| 		goto out;
 | |
| 
 | |
| 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
 | |
| 	if (yielded) {
 | |
| 		schedstat_inc(rq, yld_count);
 | |
| 		/*
 | |
| 		 * Make p's CPU reschedule; pick_next_entity takes care of
 | |
| 		 * fairness.
 | |
| 		 */
 | |
| 		if (preempt && rq != p_rq)
 | |
| 			resched_task(p_rq->curr);
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	double_rq_unlock(rq, p_rq);
 | |
| 	local_irq_restore(flags);
 | |
| 
 | |
| 	if (yielded)
 | |
| 		schedule();
 | |
| 
 | |
| 	return yielded;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(yield_to);
 | |
| 
 | |
| /*
 | |
|  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
 | |
|  * that process accounting knows that this is a task in IO wait state.
 | |
|  */
 | |
| void __sched io_schedule(void)
 | |
| {
 | |
| 	struct rq *rq = raw_rq();
 | |
| 
 | |
| 	delayacct_blkio_start();
 | |
| 	atomic_inc(&rq->nr_iowait);
 | |
| 	blk_flush_plug(current);
 | |
| 	current->in_iowait = 1;
 | |
| 	schedule();
 | |
| 	current->in_iowait = 0;
 | |
| 	atomic_dec(&rq->nr_iowait);
 | |
| 	delayacct_blkio_end();
 | |
| }
 | |
| EXPORT_SYMBOL(io_schedule);
 | |
| 
 | |
| long __sched io_schedule_timeout(long timeout)
 | |
| {
 | |
| 	struct rq *rq = raw_rq();
 | |
| 	long ret;
 | |
| 
 | |
| 	delayacct_blkio_start();
 | |
| 	atomic_inc(&rq->nr_iowait);
 | |
| 	blk_flush_plug(current);
 | |
| 	current->in_iowait = 1;
 | |
| 	ret = schedule_timeout(timeout);
 | |
| 	current->in_iowait = 0;
 | |
| 	atomic_dec(&rq->nr_iowait);
 | |
| 	delayacct_blkio_end();
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sys_sched_get_priority_max - return maximum RT priority.
 | |
|  * @policy: scheduling class.
 | |
|  *
 | |
|  * this syscall returns the maximum rt_priority that can be used
 | |
|  * by a given scheduling class.
 | |
|  */
 | |
| SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
 | |
| {
 | |
| 	int ret = -EINVAL;
 | |
| 
 | |
| 	switch (policy) {
 | |
| 	case SCHED_FIFO:
 | |
| 	case SCHED_RR:
 | |
| 		ret = MAX_USER_RT_PRIO-1;
 | |
| 		break;
 | |
| 	case SCHED_NORMAL:
 | |
| 	case SCHED_BATCH:
 | |
| 	case SCHED_IDLE:
 | |
| 		ret = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sys_sched_get_priority_min - return minimum RT priority.
 | |
|  * @policy: scheduling class.
 | |
|  *
 | |
|  * this syscall returns the minimum rt_priority that can be used
 | |
|  * by a given scheduling class.
 | |
|  */
 | |
| SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
 | |
| {
 | |
| 	int ret = -EINVAL;
 | |
| 
 | |
| 	switch (policy) {
 | |
| 	case SCHED_FIFO:
 | |
| 	case SCHED_RR:
 | |
| 		ret = 1;
 | |
| 		break;
 | |
| 	case SCHED_NORMAL:
 | |
| 	case SCHED_BATCH:
 | |
| 	case SCHED_IDLE:
 | |
| 		ret = 0;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sys_sched_rr_get_interval - return the default timeslice of a process.
 | |
|  * @pid: pid of the process.
 | |
|  * @interval: userspace pointer to the timeslice value.
 | |
|  *
 | |
|  * this syscall writes the default timeslice value of a given process
 | |
|  * into the user-space timespec buffer. A value of '0' means infinity.
 | |
|  */
 | |
| SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
 | |
| 		struct timespec __user *, interval)
 | |
| {
 | |
| 	struct task_struct *p;
 | |
| 	unsigned int time_slice;
 | |
| 	unsigned long flags;
 | |
| 	struct rq *rq;
 | |
| 	int retval;
 | |
| 	struct timespec t;
 | |
| 
 | |
| 	if (pid < 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	retval = -ESRCH;
 | |
| 	rcu_read_lock();
 | |
| 	p = find_process_by_pid(pid);
 | |
| 	if (!p)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	retval = security_task_getscheduler(p);
 | |
| 	if (retval)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	rq = task_rq_lock(p, &flags);
 | |
| 	time_slice = p->sched_class->get_rr_interval(rq, p);
 | |
| 	task_rq_unlock(rq, p, &flags);
 | |
| 
 | |
| 	rcu_read_unlock();
 | |
| 	jiffies_to_timespec(time_slice, &t);
 | |
| 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
 | |
| 	return retval;
 | |
| 
 | |
| out_unlock:
 | |
| 	rcu_read_unlock();
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
 | |
| 
 | |
| void sched_show_task(struct task_struct *p)
 | |
| {
 | |
| 	unsigned long free = 0;
 | |
| 	unsigned state;
 | |
| 
 | |
| 	state = p->state ? __ffs(p->state) + 1 : 0;
 | |
| 	printk(KERN_INFO "%-15.15s %c", p->comm,
 | |
| 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
 | |
| #if BITS_PER_LONG == 32
 | |
| 	if (state == TASK_RUNNING)
 | |
| 		printk(KERN_CONT " running  ");
 | |
| 	else
 | |
| 		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
 | |
| #else
 | |
| 	if (state == TASK_RUNNING)
 | |
| 		printk(KERN_CONT "  running task    ");
 | |
| 	else
 | |
| 		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
 | |
| #endif
 | |
| #ifdef CONFIG_DEBUG_STACK_USAGE
 | |
| 	free = stack_not_used(p);
 | |
| #endif
 | |
| 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
 | |
| 		task_pid_nr(p), task_pid_nr(p->real_parent),
 | |
| 		(unsigned long)task_thread_info(p)->flags);
 | |
| 
 | |
| 	show_stack(p, NULL);
 | |
| }
 | |
| 
 | |
| void show_state_filter(unsigned long state_filter)
 | |
| {
 | |
| 	struct task_struct *g, *p;
 | |
| 
 | |
| #if BITS_PER_LONG == 32
 | |
| 	printk(KERN_INFO
 | |
| 		"  task                PC stack   pid father\n");
 | |
| #else
 | |
| 	printk(KERN_INFO
 | |
| 		"  task                        PC stack   pid father\n");
 | |
| #endif
 | |
| 	read_lock(&tasklist_lock);
 | |
| 	do_each_thread(g, p) {
 | |
| 		/*
 | |
| 		 * reset the NMI-timeout, listing all files on a slow
 | |
| 		 * console might take a lot of time:
 | |
| 		 */
 | |
| 		touch_nmi_watchdog();
 | |
| 		if (!state_filter || (p->state & state_filter))
 | |
| 			sched_show_task(p);
 | |
| 	} while_each_thread(g, p);
 | |
| 
 | |
| 	touch_all_softlockup_watchdogs();
 | |
| 
 | |
| #ifdef CONFIG_SCHED_DEBUG
 | |
| 	sysrq_sched_debug_show();
 | |
| #endif
 | |
| 	read_unlock(&tasklist_lock);
 | |
| 	/*
 | |
| 	 * Only show locks if all tasks are dumped:
 | |
| 	 */
 | |
| 	if (!state_filter)
 | |
| 		debug_show_all_locks();
 | |
| }
 | |
| 
 | |
| void __cpuinit init_idle_bootup_task(struct task_struct *idle)
 | |
| {
 | |
| 	idle->sched_class = &idle_sched_class;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * init_idle - set up an idle thread for a given CPU
 | |
|  * @idle: task in question
 | |
|  * @cpu: cpu the idle task belongs to
 | |
|  *
 | |
|  * NOTE: this function does not set the idle thread's NEED_RESCHED
 | |
|  * flag, to make booting more robust.
 | |
|  */
 | |
| void __cpuinit init_idle(struct task_struct *idle, int cpu)
 | |
| {
 | |
| 	struct rq *rq = cpu_rq(cpu);
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&rq->lock, flags);
 | |
| 
 | |
| 	__sched_fork(idle);
 | |
| 	idle->state = TASK_RUNNING;
 | |
| 	idle->se.exec_start = sched_clock();
 | |
| 
 | |
| 	do_set_cpus_allowed(idle, cpumask_of(cpu));
 | |
| 	/*
 | |
| 	 * We're having a chicken and egg problem, even though we are
 | |
| 	 * holding rq->lock, the cpu isn't yet set to this cpu so the
 | |
| 	 * lockdep check in task_group() will fail.
 | |
| 	 *
 | |
| 	 * Similar case to sched_fork(). / Alternatively we could
 | |
| 	 * use task_rq_lock() here and obtain the other rq->lock.
 | |
| 	 *
 | |
| 	 * Silence PROVE_RCU
 | |
| 	 */
 | |
| 	rcu_read_lock();
 | |
| 	__set_task_cpu(idle, cpu);
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	rq->curr = rq->idle = idle;
 | |
| #if defined(CONFIG_SMP)
 | |
| 	idle->on_cpu = 1;
 | |
| #endif
 | |
| 	raw_spin_unlock_irqrestore(&rq->lock, flags);
 | |
| 
 | |
| 	/* Set the preempt count _outside_ the spinlocks! */
 | |
| 	task_thread_info(idle)->preempt_count = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * The idle tasks have their own, simple scheduling class:
 | |
| 	 */
 | |
| 	idle->sched_class = &idle_sched_class;
 | |
| 	ftrace_graph_init_idle_task(idle, cpu);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * In a system that switches off the HZ timer nohz_cpu_mask
 | |
|  * indicates which cpus entered this state. This is used
 | |
|  * in the rcu update to wait only for active cpus. For system
 | |
|  * which do not switch off the HZ timer nohz_cpu_mask should
 | |
|  * always be CPU_BITS_NONE.
 | |
|  */
 | |
| cpumask_var_t nohz_cpu_mask;
 | |
| 
 | |
| /*
 | |
|  * Increase the granularity value when there are more CPUs,
 | |
|  * because with more CPUs the 'effective latency' as visible
 | |
|  * to users decreases. But the relationship is not linear,
 | |
|  * so pick a second-best guess by going with the log2 of the
 | |
|  * number of CPUs.
 | |
|  *
 | |
|  * This idea comes from the SD scheduler of Con Kolivas:
 | |
|  */
 | |
| static int get_update_sysctl_factor(void)
 | |
| {
 | |
| 	unsigned int cpus = min_t(int, num_online_cpus(), 8);
 | |
| 	unsigned int factor;
 | |
| 
 | |
| 	switch (sysctl_sched_tunable_scaling) {
 | |
| 	case SCHED_TUNABLESCALING_NONE:
 | |
| 		factor = 1;
 | |
| 		break;
 | |
| 	case SCHED_TUNABLESCALING_LINEAR:
 | |
| 		factor = cpus;
 | |
| 		break;
 | |
| 	case SCHED_TUNABLESCALING_LOG:
 | |
| 	default:
 | |
| 		factor = 1 + ilog2(cpus);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return factor;
 | |
| }
 | |
| 
 | |
| static void update_sysctl(void)
 | |
| {
 | |
| 	unsigned int factor = get_update_sysctl_factor();
 | |
| 
 | |
| #define SET_SYSCTL(name) \
 | |
| 	(sysctl_##name = (factor) * normalized_sysctl_##name)
 | |
| 	SET_SYSCTL(sched_min_granularity);
 | |
| 	SET_SYSCTL(sched_latency);
 | |
| 	SET_SYSCTL(sched_wakeup_granularity);
 | |
| #undef SET_SYSCTL
 | |
| }
 | |
| 
 | |
| static inline void sched_init_granularity(void)
 | |
| {
 | |
| 	update_sysctl();
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
 | |
| {
 | |
| 	if (p->sched_class && p->sched_class->set_cpus_allowed)
 | |
| 		p->sched_class->set_cpus_allowed(p, new_mask);
 | |
| 	else {
 | |
| 		cpumask_copy(&p->cpus_allowed, new_mask);
 | |
| 		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is how migration works:
 | |
|  *
 | |
|  * 1) we invoke migration_cpu_stop() on the target CPU using
 | |
|  *    stop_one_cpu().
 | |
|  * 2) stopper starts to run (implicitly forcing the migrated thread
 | |
|  *    off the CPU)
 | |
|  * 3) it checks whether the migrated task is still in the wrong runqueue.
 | |
|  * 4) if it's in the wrong runqueue then the migration thread removes
 | |
|  *    it and puts it into the right queue.
 | |
|  * 5) stopper completes and stop_one_cpu() returns and the migration
 | |
|  *    is done.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Change a given task's CPU affinity. Migrate the thread to a
 | |
|  * proper CPU and schedule it away if the CPU it's executing on
 | |
|  * is removed from the allowed bitmask.
 | |
|  *
 | |
|  * NOTE: the caller must have a valid reference to the task, the
 | |
|  * task must not exit() & deallocate itself prematurely. The
 | |
|  * call is not atomic; no spinlocks may be held.
 | |
|  */
 | |
| int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct rq *rq;
 | |
| 	unsigned int dest_cpu;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	rq = task_rq_lock(p, &flags);
 | |
| 
 | |
| 	if (cpumask_equal(&p->cpus_allowed, new_mask))
 | |
| 		goto out;
 | |
| 
 | |
| 	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
 | |
| 		ret = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
 | |
| 		ret = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	do_set_cpus_allowed(p, new_mask);
 | |
| 
 | |
| 	/* Can the task run on the task's current CPU? If so, we're done */
 | |
| 	if (cpumask_test_cpu(task_cpu(p), new_mask))
 | |
| 		goto out;
 | |
| 
 | |
| 	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
 | |
| 	if (p->on_rq) {
 | |
| 		struct migration_arg arg = { p, dest_cpu };
 | |
| 		/* Need help from migration thread: drop lock and wait. */
 | |
| 		task_rq_unlock(rq, p, &flags);
 | |
| 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
 | |
| 		tlb_migrate_finish(p->mm);
 | |
| 		return 0;
 | |
| 	}
 | |
| out:
 | |
| 	task_rq_unlock(rq, p, &flags);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
 | |
| 
 | |
| /*
 | |
|  * Move (not current) task off this cpu, onto dest cpu. We're doing
 | |
|  * this because either it can't run here any more (set_cpus_allowed()
 | |
|  * away from this CPU, or CPU going down), or because we're
 | |
|  * attempting to rebalance this task on exec (sched_exec).
 | |
|  *
 | |
|  * So we race with normal scheduler movements, but that's OK, as long
 | |
|  * as the task is no longer on this CPU.
 | |
|  *
 | |
|  * Returns non-zero if task was successfully migrated.
 | |
|  */
 | |
| static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
 | |
| {
 | |
| 	struct rq *rq_dest, *rq_src;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (unlikely(!cpu_active(dest_cpu)))
 | |
| 		return ret;
 | |
| 
 | |
| 	rq_src = cpu_rq(src_cpu);
 | |
| 	rq_dest = cpu_rq(dest_cpu);
 | |
| 
 | |
| 	raw_spin_lock(&p->pi_lock);
 | |
| 	double_rq_lock(rq_src, rq_dest);
 | |
| 	/* Already moved. */
 | |
| 	if (task_cpu(p) != src_cpu)
 | |
| 		goto done;
 | |
| 	/* Affinity changed (again). */
 | |
| 	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
 | |
| 		goto fail;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we're not on a rq, the next wake-up will ensure we're
 | |
| 	 * placed properly.
 | |
| 	 */
 | |
| 	if (p->on_rq) {
 | |
| 		deactivate_task(rq_src, p, 0);
 | |
| 		set_task_cpu(p, dest_cpu);
 | |
| 		activate_task(rq_dest, p, 0);
 | |
| 		check_preempt_curr(rq_dest, p, 0);
 | |
| 	}
 | |
| done:
 | |
| 	ret = 1;
 | |
| fail:
 | |
| 	double_rq_unlock(rq_src, rq_dest);
 | |
| 	raw_spin_unlock(&p->pi_lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * migration_cpu_stop - this will be executed by a highprio stopper thread
 | |
|  * and performs thread migration by bumping thread off CPU then
 | |
|  * 'pushing' onto another runqueue.
 | |
|  */
 | |
| static int migration_cpu_stop(void *data)
 | |
| {
 | |
| 	struct migration_arg *arg = data;
 | |
| 
 | |
| 	/*
 | |
| 	 * The original target cpu might have gone down and we might
 | |
| 	 * be on another cpu but it doesn't matter.
 | |
| 	 */
 | |
| 	local_irq_disable();
 | |
| 	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
 | |
| 	local_irq_enable();
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HOTPLUG_CPU
 | |
| 
 | |
| /*
 | |
|  * Ensures that the idle task is using init_mm right before its cpu goes
 | |
|  * offline.
 | |
|  */
 | |
| void idle_task_exit(void)
 | |
| {
 | |
| 	struct mm_struct *mm = current->active_mm;
 | |
| 
 | |
| 	BUG_ON(cpu_online(smp_processor_id()));
 | |
| 
 | |
| 	if (mm != &init_mm)
 | |
| 		switch_mm(mm, &init_mm, current);
 | |
| 	mmdrop(mm);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * While a dead CPU has no uninterruptible tasks queued at this point,
 | |
|  * it might still have a nonzero ->nr_uninterruptible counter, because
 | |
|  * for performance reasons the counter is not stricly tracking tasks to
 | |
|  * their home CPUs. So we just add the counter to another CPU's counter,
 | |
|  * to keep the global sum constant after CPU-down:
 | |
|  */
 | |
| static void migrate_nr_uninterruptible(struct rq *rq_src)
 | |
| {
 | |
| 	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
 | |
| 
 | |
| 	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
 | |
| 	rq_src->nr_uninterruptible = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * remove the tasks which were accounted by rq from calc_load_tasks.
 | |
|  */
 | |
| static void calc_global_load_remove(struct rq *rq)
 | |
| {
 | |
| 	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
 | |
| 	rq->calc_load_active = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Migrate all tasks from the rq, sleeping tasks will be migrated by
 | |
|  * try_to_wake_up()->select_task_rq().
 | |
|  *
 | |
|  * Called with rq->lock held even though we'er in stop_machine() and
 | |
|  * there's no concurrency possible, we hold the required locks anyway
 | |
|  * because of lock validation efforts.
 | |
|  */
 | |
| static void migrate_tasks(unsigned int dead_cpu)
 | |
| {
 | |
| 	struct rq *rq = cpu_rq(dead_cpu);
 | |
| 	struct task_struct *next, *stop = rq->stop;
 | |
| 	int dest_cpu;
 | |
| 
 | |
| 	/*
 | |
| 	 * Fudge the rq selection such that the below task selection loop
 | |
| 	 * doesn't get stuck on the currently eligible stop task.
 | |
| 	 *
 | |
| 	 * We're currently inside stop_machine() and the rq is either stuck
 | |
| 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
 | |
| 	 * either way we should never end up calling schedule() until we're
 | |
| 	 * done here.
 | |
| 	 */
 | |
| 	rq->stop = NULL;
 | |
| 
 | |
| 	for ( ; ; ) {
 | |
| 		/*
 | |
| 		 * There's this thread running, bail when that's the only
 | |
| 		 * remaining thread.
 | |
| 		 */
 | |
| 		if (rq->nr_running == 1)
 | |
| 			break;
 | |
| 
 | |
| 		next = pick_next_task(rq);
 | |
| 		BUG_ON(!next);
 | |
| 		next->sched_class->put_prev_task(rq, next);
 | |
| 
 | |
| 		/* Find suitable destination for @next, with force if needed. */
 | |
| 		dest_cpu = select_fallback_rq(dead_cpu, next);
 | |
| 		raw_spin_unlock(&rq->lock);
 | |
| 
 | |
| 		__migrate_task(next, dead_cpu, dest_cpu);
 | |
| 
 | |
| 		raw_spin_lock(&rq->lock);
 | |
| 	}
 | |
| 
 | |
| 	rq->stop = stop;
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_HOTPLUG_CPU */
 | |
| 
 | |
| #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
 | |
| 
 | |
| static struct ctl_table sd_ctl_dir[] = {
 | |
| 	{
 | |
| 		.procname	= "sched_domain",
 | |
| 		.mode		= 0555,
 | |
| 	},
 | |
| 	{}
 | |
| };
 | |
| 
 | |
| static struct ctl_table sd_ctl_root[] = {
 | |
| 	{
 | |
| 		.procname	= "kernel",
 | |
| 		.mode		= 0555,
 | |
| 		.child		= sd_ctl_dir,
 | |
| 	},
 | |
| 	{}
 | |
| };
 | |
| 
 | |
| static struct ctl_table *sd_alloc_ctl_entry(int n)
 | |
| {
 | |
| 	struct ctl_table *entry =
 | |
| 		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
 | |
| 
 | |
| 	return entry;
 | |
| }
 | |
| 
 | |
| static void sd_free_ctl_entry(struct ctl_table **tablep)
 | |
| {
 | |
| 	struct ctl_table *entry;
 | |
| 
 | |
| 	/*
 | |
| 	 * In the intermediate directories, both the child directory and
 | |
| 	 * procname are dynamically allocated and could fail but the mode
 | |
| 	 * will always be set. In the lowest directory the names are
 | |
| 	 * static strings and all have proc handlers.
 | |
| 	 */
 | |
| 	for (entry = *tablep; entry->mode; entry++) {
 | |
| 		if (entry->child)
 | |
| 			sd_free_ctl_entry(&entry->child);
 | |
| 		if (entry->proc_handler == NULL)
 | |
| 			kfree(entry->procname);
 | |
| 	}
 | |
| 
 | |
| 	kfree(*tablep);
 | |
| 	*tablep = NULL;
 | |
| }
 | |
| 
 | |
| static void
 | |
| set_table_entry(struct ctl_table *entry,
 | |
| 		const char *procname, void *data, int maxlen,
 | |
| 		mode_t mode, proc_handler *proc_handler)
 | |
| {
 | |
| 	entry->procname = procname;
 | |
| 	entry->data = data;
 | |
| 	entry->maxlen = maxlen;
 | |
| 	entry->mode = mode;
 | |
| 	entry->proc_handler = proc_handler;
 | |
| }
 | |
| 
 | |
| static struct ctl_table *
 | |
| sd_alloc_ctl_domain_table(struct sched_domain *sd)
 | |
| {
 | |
| 	struct ctl_table *table = sd_alloc_ctl_entry(13);
 | |
| 
 | |
| 	if (table == NULL)
 | |
| 		return NULL;
 | |
| 
 | |
| 	set_table_entry(&table[0], "min_interval", &sd->min_interval,
 | |
| 		sizeof(long), 0644, proc_doulongvec_minmax);
 | |
| 	set_table_entry(&table[1], "max_interval", &sd->max_interval,
 | |
| 		sizeof(long), 0644, proc_doulongvec_minmax);
 | |
| 	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
 | |
| 		sizeof(int), 0644, proc_dointvec_minmax);
 | |
| 	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
 | |
| 		sizeof(int), 0644, proc_dointvec_minmax);
 | |
| 	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
 | |
| 		sizeof(int), 0644, proc_dointvec_minmax);
 | |
| 	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
 | |
| 		sizeof(int), 0644, proc_dointvec_minmax);
 | |
| 	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
 | |
| 		sizeof(int), 0644, proc_dointvec_minmax);
 | |
| 	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
 | |
| 		sizeof(int), 0644, proc_dointvec_minmax);
 | |
| 	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
 | |
| 		sizeof(int), 0644, proc_dointvec_minmax);
 | |
| 	set_table_entry(&table[9], "cache_nice_tries",
 | |
| 		&sd->cache_nice_tries,
 | |
| 		sizeof(int), 0644, proc_dointvec_minmax);
 | |
| 	set_table_entry(&table[10], "flags", &sd->flags,
 | |
| 		sizeof(int), 0644, proc_dointvec_minmax);
 | |
| 	set_table_entry(&table[11], "name", sd->name,
 | |
| 		CORENAME_MAX_SIZE, 0444, proc_dostring);
 | |
| 	/* &table[12] is terminator */
 | |
| 
 | |
| 	return table;
 | |
| }
 | |
| 
 | |
| static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
 | |
| {
 | |
| 	struct ctl_table *entry, *table;
 | |
| 	struct sched_domain *sd;
 | |
| 	int domain_num = 0, i;
 | |
| 	char buf[32];
 | |
| 
 | |
| 	for_each_domain(cpu, sd)
 | |
| 		domain_num++;
 | |
| 	entry = table = sd_alloc_ctl_entry(domain_num + 1);
 | |
| 	if (table == NULL)
 | |
| 		return NULL;
 | |
| 
 | |
| 	i = 0;
 | |
| 	for_each_domain(cpu, sd) {
 | |
| 		snprintf(buf, 32, "domain%d", i);
 | |
| 		entry->procname = kstrdup(buf, GFP_KERNEL);
 | |
| 		entry->mode = 0555;
 | |
| 		entry->child = sd_alloc_ctl_domain_table(sd);
 | |
| 		entry++;
 | |
| 		i++;
 | |
| 	}
 | |
| 	return table;
 | |
| }
 | |
| 
 | |
| static struct ctl_table_header *sd_sysctl_header;
 | |
| static void register_sched_domain_sysctl(void)
 | |
| {
 | |
| 	int i, cpu_num = num_possible_cpus();
 | |
| 	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
 | |
| 	char buf[32];
 | |
| 
 | |
| 	WARN_ON(sd_ctl_dir[0].child);
 | |
| 	sd_ctl_dir[0].child = entry;
 | |
| 
 | |
| 	if (entry == NULL)
 | |
| 		return;
 | |
| 
 | |
| 	for_each_possible_cpu(i) {
 | |
| 		snprintf(buf, 32, "cpu%d", i);
 | |
| 		entry->procname = kstrdup(buf, GFP_KERNEL);
 | |
| 		entry->mode = 0555;
 | |
| 		entry->child = sd_alloc_ctl_cpu_table(i);
 | |
| 		entry++;
 | |
| 	}
 | |
| 
 | |
| 	WARN_ON(sd_sysctl_header);
 | |
| 	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
 | |
| }
 | |
| 
 | |
| /* may be called multiple times per register */
 | |
| static void unregister_sched_domain_sysctl(void)
 | |
| {
 | |
| 	if (sd_sysctl_header)
 | |
| 		unregister_sysctl_table(sd_sysctl_header);
 | |
| 	sd_sysctl_header = NULL;
 | |
| 	if (sd_ctl_dir[0].child)
 | |
| 		sd_free_ctl_entry(&sd_ctl_dir[0].child);
 | |
| }
 | |
| #else
 | |
| static void register_sched_domain_sysctl(void)
 | |
| {
 | |
| }
 | |
| static void unregister_sched_domain_sysctl(void)
 | |
| {
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void set_rq_online(struct rq *rq)
 | |
| {
 | |
| 	if (!rq->online) {
 | |
| 		const struct sched_class *class;
 | |
| 
 | |
| 		cpumask_set_cpu(rq->cpu, rq->rd->online);
 | |
| 		rq->online = 1;
 | |
| 
 | |
| 		for_each_class(class) {
 | |
| 			if (class->rq_online)
 | |
| 				class->rq_online(rq);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void set_rq_offline(struct rq *rq)
 | |
| {
 | |
| 	if (rq->online) {
 | |
| 		const struct sched_class *class;
 | |
| 
 | |
| 		for_each_class(class) {
 | |
| 			if (class->rq_offline)
 | |
| 				class->rq_offline(rq);
 | |
| 		}
 | |
| 
 | |
| 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
 | |
| 		rq->online = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * migration_call - callback that gets triggered when a CPU is added.
 | |
|  * Here we can start up the necessary migration thread for the new CPU.
 | |
|  */
 | |
| static int __cpuinit
 | |
| migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
 | |
| {
 | |
| 	int cpu = (long)hcpu;
 | |
| 	unsigned long flags;
 | |
| 	struct rq *rq = cpu_rq(cpu);
 | |
| 
 | |
| 	switch (action & ~CPU_TASKS_FROZEN) {
 | |
| 
 | |
| 	case CPU_UP_PREPARE:
 | |
| 		rq->calc_load_update = calc_load_update;
 | |
| 		break;
 | |
| 
 | |
| 	case CPU_ONLINE:
 | |
| 		/* Update our root-domain */
 | |
| 		raw_spin_lock_irqsave(&rq->lock, flags);
 | |
| 		if (rq->rd) {
 | |
| 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
 | |
| 
 | |
| 			set_rq_online(rq);
 | |
| 		}
 | |
| 		raw_spin_unlock_irqrestore(&rq->lock, flags);
 | |
| 		break;
 | |
| 
 | |
| #ifdef CONFIG_HOTPLUG_CPU
 | |
| 	case CPU_DYING:
 | |
| 		sched_ttwu_pending();
 | |
| 		/* Update our root-domain */
 | |
| 		raw_spin_lock_irqsave(&rq->lock, flags);
 | |
| 		if (rq->rd) {
 | |
| 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
 | |
| 			set_rq_offline(rq);
 | |
| 		}
 | |
| 		migrate_tasks(cpu);
 | |
| 		BUG_ON(rq->nr_running != 1); /* the migration thread */
 | |
| 		raw_spin_unlock_irqrestore(&rq->lock, flags);
 | |
| 
 | |
| 		migrate_nr_uninterruptible(rq);
 | |
| 		calc_global_load_remove(rq);
 | |
| 		break;
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	update_max_interval();
 | |
| 
 | |
| 	return NOTIFY_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Register at high priority so that task migration (migrate_all_tasks)
 | |
|  * happens before everything else.  This has to be lower priority than
 | |
|  * the notifier in the perf_event subsystem, though.
 | |
|  */
 | |
| static struct notifier_block __cpuinitdata migration_notifier = {
 | |
| 	.notifier_call = migration_call,
 | |
| 	.priority = CPU_PRI_MIGRATION,
 | |
| };
 | |
| 
 | |
| static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
 | |
| 				      unsigned long action, void *hcpu)
 | |
| {
 | |
| 	switch (action & ~CPU_TASKS_FROZEN) {
 | |
| 	case CPU_ONLINE:
 | |
| 	case CPU_DOWN_FAILED:
 | |
| 		set_cpu_active((long)hcpu, true);
 | |
| 		return NOTIFY_OK;
 | |
| 	default:
 | |
| 		return NOTIFY_DONE;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
 | |
| 					unsigned long action, void *hcpu)
 | |
| {
 | |
| 	switch (action & ~CPU_TASKS_FROZEN) {
 | |
| 	case CPU_DOWN_PREPARE:
 | |
| 		set_cpu_active((long)hcpu, false);
 | |
| 		return NOTIFY_OK;
 | |
| 	default:
 | |
| 		return NOTIFY_DONE;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int __init migration_init(void)
 | |
| {
 | |
| 	void *cpu = (void *)(long)smp_processor_id();
 | |
| 	int err;
 | |
| 
 | |
| 	/* Initialize migration for the boot CPU */
 | |
| 	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
 | |
| 	BUG_ON(err == NOTIFY_BAD);
 | |
| 	migration_call(&migration_notifier, CPU_ONLINE, cpu);
 | |
| 	register_cpu_notifier(&migration_notifier);
 | |
| 
 | |
| 	/* Register cpu active notifiers */
 | |
| 	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
 | |
| 	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| early_initcall(migration_init);
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 
 | |
| static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
 | |
| 
 | |
| #ifdef CONFIG_SCHED_DEBUG
 | |
| 
 | |
| static __read_mostly int sched_domain_debug_enabled;
 | |
| 
 | |
| static int __init sched_domain_debug_setup(char *str)
 | |
| {
 | |
| 	sched_domain_debug_enabled = 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| early_param("sched_debug", sched_domain_debug_setup);
 | |
| 
 | |
| static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
 | |
| 				  struct cpumask *groupmask)
 | |
| {
 | |
| 	struct sched_group *group = sd->groups;
 | |
| 	char str[256];
 | |
| 
 | |
| 	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
 | |
| 	cpumask_clear(groupmask);
 | |
| 
 | |
| 	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
 | |
| 
 | |
| 	if (!(sd->flags & SD_LOAD_BALANCE)) {
 | |
| 		printk("does not load-balance\n");
 | |
| 		if (sd->parent)
 | |
| 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
 | |
| 					" has parent");
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	printk(KERN_CONT "span %s level %s\n", str, sd->name);
 | |
| 
 | |
| 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
 | |
| 		printk(KERN_ERR "ERROR: domain->span does not contain "
 | |
| 				"CPU%d\n", cpu);
 | |
| 	}
 | |
| 	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
 | |
| 		printk(KERN_ERR "ERROR: domain->groups does not contain"
 | |
| 				" CPU%d\n", cpu);
 | |
| 	}
 | |
| 
 | |
| 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
 | |
| 	do {
 | |
| 		if (!group) {
 | |
| 			printk("\n");
 | |
| 			printk(KERN_ERR "ERROR: group is NULL\n");
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (!group->sgp->power) {
 | |
| 			printk(KERN_CONT "\n");
 | |
| 			printk(KERN_ERR "ERROR: domain->cpu_power not "
 | |
| 					"set\n");
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (!cpumask_weight(sched_group_cpus(group))) {
 | |
| 			printk(KERN_CONT "\n");
 | |
| 			printk(KERN_ERR "ERROR: empty group\n");
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
 | |
| 			printk(KERN_CONT "\n");
 | |
| 			printk(KERN_ERR "ERROR: repeated CPUs\n");
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
 | |
| 
 | |
| 		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
 | |
| 
 | |
| 		printk(KERN_CONT " %s", str);
 | |
| 		if (group->sgp->power != SCHED_POWER_SCALE) {
 | |
| 			printk(KERN_CONT " (cpu_power = %d)",
 | |
| 				group->sgp->power);
 | |
| 		}
 | |
| 
 | |
| 		group = group->next;
 | |
| 	} while (group != sd->groups);
 | |
| 	printk(KERN_CONT "\n");
 | |
| 
 | |
| 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
 | |
| 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
 | |
| 
 | |
| 	if (sd->parent &&
 | |
| 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
 | |
| 		printk(KERN_ERR "ERROR: parent span is not a superset "
 | |
| 			"of domain->span\n");
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void sched_domain_debug(struct sched_domain *sd, int cpu)
 | |
| {
 | |
| 	int level = 0;
 | |
| 
 | |
| 	if (!sched_domain_debug_enabled)
 | |
| 		return;
 | |
| 
 | |
| 	if (!sd) {
 | |
| 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
 | |
| 
 | |
| 	for (;;) {
 | |
| 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
 | |
| 			break;
 | |
| 		level++;
 | |
| 		sd = sd->parent;
 | |
| 		if (!sd)
 | |
| 			break;
 | |
| 	}
 | |
| }
 | |
| #else /* !CONFIG_SCHED_DEBUG */
 | |
| # define sched_domain_debug(sd, cpu) do { } while (0)
 | |
| #endif /* CONFIG_SCHED_DEBUG */
 | |
| 
 | |
| static int sd_degenerate(struct sched_domain *sd)
 | |
| {
 | |
| 	if (cpumask_weight(sched_domain_span(sd)) == 1)
 | |
| 		return 1;
 | |
| 
 | |
| 	/* Following flags need at least 2 groups */
 | |
| 	if (sd->flags & (SD_LOAD_BALANCE |
 | |
| 			 SD_BALANCE_NEWIDLE |
 | |
| 			 SD_BALANCE_FORK |
 | |
| 			 SD_BALANCE_EXEC |
 | |
| 			 SD_SHARE_CPUPOWER |
 | |
| 			 SD_SHARE_PKG_RESOURCES)) {
 | |
| 		if (sd->groups != sd->groups->next)
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Following flags don't use groups */
 | |
| 	if (sd->flags & (SD_WAKE_AFFINE))
 | |
| 		return 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int
 | |
| sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
 | |
| {
 | |
| 	unsigned long cflags = sd->flags, pflags = parent->flags;
 | |
| 
 | |
| 	if (sd_degenerate(parent))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Flags needing groups don't count if only 1 group in parent */
 | |
| 	if (parent->groups == parent->groups->next) {
 | |
| 		pflags &= ~(SD_LOAD_BALANCE |
 | |
| 				SD_BALANCE_NEWIDLE |
 | |
| 				SD_BALANCE_FORK |
 | |
| 				SD_BALANCE_EXEC |
 | |
| 				SD_SHARE_CPUPOWER |
 | |
| 				SD_SHARE_PKG_RESOURCES);
 | |
| 		if (nr_node_ids == 1)
 | |
| 			pflags &= ~SD_SERIALIZE;
 | |
| 	}
 | |
| 	if (~cflags & pflags)
 | |
| 		return 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static void free_rootdomain(struct rcu_head *rcu)
 | |
| {
 | |
| 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
 | |
| 
 | |
| 	cpupri_cleanup(&rd->cpupri);
 | |
| 	free_cpumask_var(rd->rto_mask);
 | |
| 	free_cpumask_var(rd->online);
 | |
| 	free_cpumask_var(rd->span);
 | |
| 	kfree(rd);
 | |
| }
 | |
| 
 | |
| static void rq_attach_root(struct rq *rq, struct root_domain *rd)
 | |
| {
 | |
| 	struct root_domain *old_rd = NULL;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&rq->lock, flags);
 | |
| 
 | |
| 	if (rq->rd) {
 | |
| 		old_rd = rq->rd;
 | |
| 
 | |
| 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
 | |
| 			set_rq_offline(rq);
 | |
| 
 | |
| 		cpumask_clear_cpu(rq->cpu, old_rd->span);
 | |
| 
 | |
| 		/*
 | |
| 		 * If we dont want to free the old_rt yet then
 | |
| 		 * set old_rd to NULL to skip the freeing later
 | |
| 		 * in this function:
 | |
| 		 */
 | |
| 		if (!atomic_dec_and_test(&old_rd->refcount))
 | |
| 			old_rd = NULL;
 | |
| 	}
 | |
| 
 | |
| 	atomic_inc(&rd->refcount);
 | |
| 	rq->rd = rd;
 | |
| 
 | |
| 	cpumask_set_cpu(rq->cpu, rd->span);
 | |
| 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
 | |
| 		set_rq_online(rq);
 | |
| 
 | |
| 	raw_spin_unlock_irqrestore(&rq->lock, flags);
 | |
| 
 | |
| 	if (old_rd)
 | |
| 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
 | |
| }
 | |
| 
 | |
| static int init_rootdomain(struct root_domain *rd)
 | |
| {
 | |
| 	memset(rd, 0, sizeof(*rd));
 | |
| 
 | |
| 	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
 | |
| 		goto out;
 | |
| 	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
 | |
| 		goto free_span;
 | |
| 	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
 | |
| 		goto free_online;
 | |
| 
 | |
| 	if (cpupri_init(&rd->cpupri) != 0)
 | |
| 		goto free_rto_mask;
 | |
| 	return 0;
 | |
| 
 | |
| free_rto_mask:
 | |
| 	free_cpumask_var(rd->rto_mask);
 | |
| free_online:
 | |
| 	free_cpumask_var(rd->online);
 | |
| free_span:
 | |
| 	free_cpumask_var(rd->span);
 | |
| out:
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| static void init_defrootdomain(void)
 | |
| {
 | |
| 	init_rootdomain(&def_root_domain);
 | |
| 
 | |
| 	atomic_set(&def_root_domain.refcount, 1);
 | |
| }
 | |
| 
 | |
| static struct root_domain *alloc_rootdomain(void)
 | |
| {
 | |
| 	struct root_domain *rd;
 | |
| 
 | |
| 	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
 | |
| 	if (!rd)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (init_rootdomain(rd) != 0) {
 | |
| 		kfree(rd);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	return rd;
 | |
| }
 | |
| 
 | |
| static void free_sched_groups(struct sched_group *sg, int free_sgp)
 | |
| {
 | |
| 	struct sched_group *tmp, *first;
 | |
| 
 | |
| 	if (!sg)
 | |
| 		return;
 | |
| 
 | |
| 	first = sg;
 | |
| 	do {
 | |
| 		tmp = sg->next;
 | |
| 
 | |
| 		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
 | |
| 			kfree(sg->sgp);
 | |
| 
 | |
| 		kfree(sg);
 | |
| 		sg = tmp;
 | |
| 	} while (sg != first);
 | |
| }
 | |
| 
 | |
| static void free_sched_domain(struct rcu_head *rcu)
 | |
| {
 | |
| 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
 | |
| 
 | |
| 	/*
 | |
| 	 * If its an overlapping domain it has private groups, iterate and
 | |
| 	 * nuke them all.
 | |
| 	 */
 | |
| 	if (sd->flags & SD_OVERLAP) {
 | |
| 		free_sched_groups(sd->groups, 1);
 | |
| 	} else if (atomic_dec_and_test(&sd->groups->ref)) {
 | |
| 		kfree(sd->groups->sgp);
 | |
| 		kfree(sd->groups);
 | |
| 	}
 | |
| 	kfree(sd);
 | |
| }
 | |
| 
 | |
| static void destroy_sched_domain(struct sched_domain *sd, int cpu)
 | |
| {
 | |
| 	call_rcu(&sd->rcu, free_sched_domain);
 | |
| }
 | |
| 
 | |
| static void destroy_sched_domains(struct sched_domain *sd, int cpu)
 | |
| {
 | |
| 	for (; sd; sd = sd->parent)
 | |
| 		destroy_sched_domain(sd, cpu);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
 | |
|  * hold the hotplug lock.
 | |
|  */
 | |
| static void
 | |
| cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
 | |
| {
 | |
| 	struct rq *rq = cpu_rq(cpu);
 | |
| 	struct sched_domain *tmp;
 | |
| 
 | |
| 	/* Remove the sched domains which do not contribute to scheduling. */
 | |
| 	for (tmp = sd; tmp; ) {
 | |
| 		struct sched_domain *parent = tmp->parent;
 | |
| 		if (!parent)
 | |
| 			break;
 | |
| 
 | |
| 		if (sd_parent_degenerate(tmp, parent)) {
 | |
| 			tmp->parent = parent->parent;
 | |
| 			if (parent->parent)
 | |
| 				parent->parent->child = tmp;
 | |
| 			destroy_sched_domain(parent, cpu);
 | |
| 		} else
 | |
| 			tmp = tmp->parent;
 | |
| 	}
 | |
| 
 | |
| 	if (sd && sd_degenerate(sd)) {
 | |
| 		tmp = sd;
 | |
| 		sd = sd->parent;
 | |
| 		destroy_sched_domain(tmp, cpu);
 | |
| 		if (sd)
 | |
| 			sd->child = NULL;
 | |
| 	}
 | |
| 
 | |
| 	sched_domain_debug(sd, cpu);
 | |
| 
 | |
| 	rq_attach_root(rq, rd);
 | |
| 	tmp = rq->sd;
 | |
| 	rcu_assign_pointer(rq->sd, sd);
 | |
| 	destroy_sched_domains(tmp, cpu);
 | |
| }
 | |
| 
 | |
| /* cpus with isolated domains */
 | |
| static cpumask_var_t cpu_isolated_map;
 | |
| 
 | |
| /* Setup the mask of cpus configured for isolated domains */
 | |
| static int __init isolated_cpu_setup(char *str)
 | |
| {
 | |
| 	alloc_bootmem_cpumask_var(&cpu_isolated_map);
 | |
| 	cpulist_parse(str, cpu_isolated_map);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| __setup("isolcpus=", isolated_cpu_setup);
 | |
| 
 | |
| #define SD_NODES_PER_DOMAIN 16
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| 
 | |
| /**
 | |
|  * find_next_best_node - find the next node to include in a sched_domain
 | |
|  * @node: node whose sched_domain we're building
 | |
|  * @used_nodes: nodes already in the sched_domain
 | |
|  *
 | |
|  * Find the next node to include in a given scheduling domain. Simply
 | |
|  * finds the closest node not already in the @used_nodes map.
 | |
|  *
 | |
|  * Should use nodemask_t.
 | |
|  */
 | |
| static int find_next_best_node(int node, nodemask_t *used_nodes)
 | |
| {
 | |
| 	int i, n, val, min_val, best_node = -1;
 | |
| 
 | |
| 	min_val = INT_MAX;
 | |
| 
 | |
| 	for (i = 0; i < nr_node_ids; i++) {
 | |
| 		/* Start at @node */
 | |
| 		n = (node + i) % nr_node_ids;
 | |
| 
 | |
| 		if (!nr_cpus_node(n))
 | |
| 			continue;
 | |
| 
 | |
| 		/* Skip already used nodes */
 | |
| 		if (node_isset(n, *used_nodes))
 | |
| 			continue;
 | |
| 
 | |
| 		/* Simple min distance search */
 | |
| 		val = node_distance(node, n);
 | |
| 
 | |
| 		if (val < min_val) {
 | |
| 			min_val = val;
 | |
| 			best_node = n;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (best_node != -1)
 | |
| 		node_set(best_node, *used_nodes);
 | |
| 	return best_node;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sched_domain_node_span - get a cpumask for a node's sched_domain
 | |
|  * @node: node whose cpumask we're constructing
 | |
|  * @span: resulting cpumask
 | |
|  *
 | |
|  * Given a node, construct a good cpumask for its sched_domain to span. It
 | |
|  * should be one that prevents unnecessary balancing, but also spreads tasks
 | |
|  * out optimally.
 | |
|  */
 | |
| static void sched_domain_node_span(int node, struct cpumask *span)
 | |
| {
 | |
| 	nodemask_t used_nodes;
 | |
| 	int i;
 | |
| 
 | |
| 	cpumask_clear(span);
 | |
| 	nodes_clear(used_nodes);
 | |
| 
 | |
| 	cpumask_or(span, span, cpumask_of_node(node));
 | |
| 	node_set(node, used_nodes);
 | |
| 
 | |
| 	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
 | |
| 		int next_node = find_next_best_node(node, &used_nodes);
 | |
| 		if (next_node < 0)
 | |
| 			break;
 | |
| 		cpumask_or(span, span, cpumask_of_node(next_node));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static const struct cpumask *cpu_node_mask(int cpu)
 | |
| {
 | |
| 	lockdep_assert_held(&sched_domains_mutex);
 | |
| 
 | |
| 	sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
 | |
| 
 | |
| 	return sched_domains_tmpmask;
 | |
| }
 | |
| 
 | |
| static const struct cpumask *cpu_allnodes_mask(int cpu)
 | |
| {
 | |
| 	return cpu_possible_mask;
 | |
| }
 | |
| #endif /* CONFIG_NUMA */
 | |
| 
 | |
| static const struct cpumask *cpu_cpu_mask(int cpu)
 | |
| {
 | |
| 	return cpumask_of_node(cpu_to_node(cpu));
 | |
| }
 | |
| 
 | |
| int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
 | |
| 
 | |
| struct sd_data {
 | |
| 	struct sched_domain **__percpu sd;
 | |
| 	struct sched_group **__percpu sg;
 | |
| 	struct sched_group_power **__percpu sgp;
 | |
| };
 | |
| 
 | |
| struct s_data {
 | |
| 	struct sched_domain ** __percpu sd;
 | |
| 	struct root_domain	*rd;
 | |
| };
 | |
| 
 | |
| enum s_alloc {
 | |
| 	sa_rootdomain,
 | |
| 	sa_sd,
 | |
| 	sa_sd_storage,
 | |
| 	sa_none,
 | |
| };
 | |
| 
 | |
| struct sched_domain_topology_level;
 | |
| 
 | |
| typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
 | |
| typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
 | |
| 
 | |
| #define SDTL_OVERLAP	0x01
 | |
| 
 | |
| struct sched_domain_topology_level {
 | |
| 	sched_domain_init_f init;
 | |
| 	sched_domain_mask_f mask;
 | |
| 	int		    flags;
 | |
| 	struct sd_data      data;
 | |
| };
 | |
| 
 | |
| static int
 | |
| build_overlap_sched_groups(struct sched_domain *sd, int cpu)
 | |
| {
 | |
| 	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
 | |
| 	const struct cpumask *span = sched_domain_span(sd);
 | |
| 	struct cpumask *covered = sched_domains_tmpmask;
 | |
| 	struct sd_data *sdd = sd->private;
 | |
| 	struct sched_domain *child;
 | |
| 	int i;
 | |
| 
 | |
| 	cpumask_clear(covered);
 | |
| 
 | |
| 	for_each_cpu(i, span) {
 | |
| 		struct cpumask *sg_span;
 | |
| 
 | |
| 		if (cpumask_test_cpu(i, covered))
 | |
| 			continue;
 | |
| 
 | |
| 		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
 | |
| 				GFP_KERNEL, cpu_to_node(i));
 | |
| 
 | |
| 		if (!sg)
 | |
| 			goto fail;
 | |
| 
 | |
| 		sg_span = sched_group_cpus(sg);
 | |
| 
 | |
| 		child = *per_cpu_ptr(sdd->sd, i);
 | |
| 		if (child->child) {
 | |
| 			child = child->child;
 | |
| 			cpumask_copy(sg_span, sched_domain_span(child));
 | |
| 		} else
 | |
| 			cpumask_set_cpu(i, sg_span);
 | |
| 
 | |
| 		cpumask_or(covered, covered, sg_span);
 | |
| 
 | |
| 		sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
 | |
| 		atomic_inc(&sg->sgp->ref);
 | |
| 
 | |
| 		if (cpumask_test_cpu(cpu, sg_span))
 | |
| 			groups = sg;
 | |
| 
 | |
| 		if (!first)
 | |
| 			first = sg;
 | |
| 		if (last)
 | |
| 			last->next = sg;
 | |
| 		last = sg;
 | |
| 		last->next = first;
 | |
| 	}
 | |
| 	sd->groups = groups;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| fail:
 | |
| 	free_sched_groups(first, 0);
 | |
| 
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
 | |
| {
 | |
| 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
 | |
| 	struct sched_domain *child = sd->child;
 | |
| 
 | |
| 	if (child)
 | |
| 		cpu = cpumask_first(sched_domain_span(child));
 | |
| 
 | |
| 	if (sg) {
 | |
| 		*sg = *per_cpu_ptr(sdd->sg, cpu);
 | |
| 		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
 | |
| 		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
 | |
| 	}
 | |
| 
 | |
| 	return cpu;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * build_sched_groups will build a circular linked list of the groups
 | |
|  * covered by the given span, and will set each group's ->cpumask correctly,
 | |
|  * and ->cpu_power to 0.
 | |
|  *
 | |
|  * Assumes the sched_domain tree is fully constructed
 | |
|  */
 | |
| static int
 | |
| build_sched_groups(struct sched_domain *sd, int cpu)
 | |
| {
 | |
| 	struct sched_group *first = NULL, *last = NULL;
 | |
| 	struct sd_data *sdd = sd->private;
 | |
| 	const struct cpumask *span = sched_domain_span(sd);
 | |
| 	struct cpumask *covered;
 | |
| 	int i;
 | |
| 
 | |
| 	get_group(cpu, sdd, &sd->groups);
 | |
| 	atomic_inc(&sd->groups->ref);
 | |
| 
 | |
| 	if (cpu != cpumask_first(sched_domain_span(sd)))
 | |
| 		return 0;
 | |
| 
 | |
| 	lockdep_assert_held(&sched_domains_mutex);
 | |
| 	covered = sched_domains_tmpmask;
 | |
| 
 | |
| 	cpumask_clear(covered);
 | |
| 
 | |
| 	for_each_cpu(i, span) {
 | |
| 		struct sched_group *sg;
 | |
| 		int group = get_group(i, sdd, &sg);
 | |
| 		int j;
 | |
| 
 | |
| 		if (cpumask_test_cpu(i, covered))
 | |
| 			continue;
 | |
| 
 | |
| 		cpumask_clear(sched_group_cpus(sg));
 | |
| 		sg->sgp->power = 0;
 | |
| 
 | |
| 		for_each_cpu(j, span) {
 | |
| 			if (get_group(j, sdd, NULL) != group)
 | |
| 				continue;
 | |
| 
 | |
| 			cpumask_set_cpu(j, covered);
 | |
| 			cpumask_set_cpu(j, sched_group_cpus(sg));
 | |
| 		}
 | |
| 
 | |
| 		if (!first)
 | |
| 			first = sg;
 | |
| 		if (last)
 | |
| 			last->next = sg;
 | |
| 		last = sg;
 | |
| 	}
 | |
| 	last->next = first;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize sched groups cpu_power.
 | |
|  *
 | |
|  * cpu_power indicates the capacity of sched group, which is used while
 | |
|  * distributing the load between different sched groups in a sched domain.
 | |
|  * Typically cpu_power for all the groups in a sched domain will be same unless
 | |
|  * there are asymmetries in the topology. If there are asymmetries, group
 | |
|  * having more cpu_power will pickup more load compared to the group having
 | |
|  * less cpu_power.
 | |
|  */
 | |
| static void init_sched_groups_power(int cpu, struct sched_domain *sd)
 | |
| {
 | |
| 	struct sched_group *sg = sd->groups;
 | |
| 
 | |
| 	WARN_ON(!sd || !sg);
 | |
| 
 | |
| 	do {
 | |
| 		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
 | |
| 		sg = sg->next;
 | |
| 	} while (sg != sd->groups);
 | |
| 
 | |
| 	if (cpu != group_first_cpu(sg))
 | |
| 		return;
 | |
| 
 | |
| 	update_group_power(sd, cpu);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initializers for schedule domains
 | |
|  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 | |
|  */
 | |
| 
 | |
| #ifdef CONFIG_SCHED_DEBUG
 | |
| # define SD_INIT_NAME(sd, type)		sd->name = #type
 | |
| #else
 | |
| # define SD_INIT_NAME(sd, type)		do { } while (0)
 | |
| #endif
 | |
| 
 | |
| #define SD_INIT_FUNC(type)						\
 | |
| static noinline struct sched_domain *					\
 | |
| sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
 | |
| {									\
 | |
| 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
 | |
| 	*sd = SD_##type##_INIT;						\
 | |
| 	SD_INIT_NAME(sd, type);						\
 | |
| 	sd->private = &tl->data;					\
 | |
| 	return sd;							\
 | |
| }
 | |
| 
 | |
| SD_INIT_FUNC(CPU)
 | |
| #ifdef CONFIG_NUMA
 | |
|  SD_INIT_FUNC(ALLNODES)
 | |
|  SD_INIT_FUNC(NODE)
 | |
| #endif
 | |
| #ifdef CONFIG_SCHED_SMT
 | |
|  SD_INIT_FUNC(SIBLING)
 | |
| #endif
 | |
| #ifdef CONFIG_SCHED_MC
 | |
|  SD_INIT_FUNC(MC)
 | |
| #endif
 | |
| #ifdef CONFIG_SCHED_BOOK
 | |
|  SD_INIT_FUNC(BOOK)
 | |
| #endif
 | |
| 
 | |
| static int default_relax_domain_level = -1;
 | |
| int sched_domain_level_max;
 | |
| 
 | |
| static int __init setup_relax_domain_level(char *str)
 | |
| {
 | |
| 	unsigned long val;
 | |
| 
 | |
| 	val = simple_strtoul(str, NULL, 0);
 | |
| 	if (val < sched_domain_level_max)
 | |
| 		default_relax_domain_level = val;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| __setup("relax_domain_level=", setup_relax_domain_level);
 | |
| 
 | |
| static void set_domain_attribute(struct sched_domain *sd,
 | |
| 				 struct sched_domain_attr *attr)
 | |
| {
 | |
| 	int request;
 | |
| 
 | |
| 	if (!attr || attr->relax_domain_level < 0) {
 | |
| 		if (default_relax_domain_level < 0)
 | |
| 			return;
 | |
| 		else
 | |
| 			request = default_relax_domain_level;
 | |
| 	} else
 | |
| 		request = attr->relax_domain_level;
 | |
| 	if (request < sd->level) {
 | |
| 		/* turn off idle balance on this domain */
 | |
| 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
 | |
| 	} else {
 | |
| 		/* turn on idle balance on this domain */
 | |
| 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __sdt_free(const struct cpumask *cpu_map);
 | |
| static int __sdt_alloc(const struct cpumask *cpu_map);
 | |
| 
 | |
| static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
 | |
| 				 const struct cpumask *cpu_map)
 | |
| {
 | |
| 	switch (what) {
 | |
| 	case sa_rootdomain:
 | |
| 		if (!atomic_read(&d->rd->refcount))
 | |
| 			free_rootdomain(&d->rd->rcu); /* fall through */
 | |
| 	case sa_sd:
 | |
| 		free_percpu(d->sd); /* fall through */
 | |
| 	case sa_sd_storage:
 | |
| 		__sdt_free(cpu_map); /* fall through */
 | |
| 	case sa_none:
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
 | |
| 						   const struct cpumask *cpu_map)
 | |
| {
 | |
| 	memset(d, 0, sizeof(*d));
 | |
| 
 | |
| 	if (__sdt_alloc(cpu_map))
 | |
| 		return sa_sd_storage;
 | |
| 	d->sd = alloc_percpu(struct sched_domain *);
 | |
| 	if (!d->sd)
 | |
| 		return sa_sd_storage;
 | |
| 	d->rd = alloc_rootdomain();
 | |
| 	if (!d->rd)
 | |
| 		return sa_sd;
 | |
| 	return sa_rootdomain;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * NULL the sd_data elements we've used to build the sched_domain and
 | |
|  * sched_group structure so that the subsequent __free_domain_allocs()
 | |
|  * will not free the data we're using.
 | |
|  */
 | |
| static void claim_allocations(int cpu, struct sched_domain *sd)
 | |
| {
 | |
| 	struct sd_data *sdd = sd->private;
 | |
| 
 | |
| 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
 | |
| 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
 | |
| 
 | |
| 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
 | |
| 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
 | |
| 
 | |
| 	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
 | |
| 		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SCHED_SMT
 | |
| static const struct cpumask *cpu_smt_mask(int cpu)
 | |
| {
 | |
| 	return topology_thread_cpumask(cpu);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Topology list, bottom-up.
 | |
|  */
 | |
| static struct sched_domain_topology_level default_topology[] = {
 | |
| #ifdef CONFIG_SCHED_SMT
 | |
| 	{ sd_init_SIBLING, cpu_smt_mask, },
 | |
| #endif
 | |
| #ifdef CONFIG_SCHED_MC
 | |
| 	{ sd_init_MC, cpu_coregroup_mask, },
 | |
| #endif
 | |
| #ifdef CONFIG_SCHED_BOOK
 | |
| 	{ sd_init_BOOK, cpu_book_mask, },
 | |
| #endif
 | |
| 	{ sd_init_CPU, cpu_cpu_mask, },
 | |
| #ifdef CONFIG_NUMA
 | |
| 	{ sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
 | |
| 	{ sd_init_ALLNODES, cpu_allnodes_mask, },
 | |
| #endif
 | |
| 	{ NULL, },
 | |
| };
 | |
| 
 | |
| static struct sched_domain_topology_level *sched_domain_topology = default_topology;
 | |
| 
 | |
| static int __sdt_alloc(const struct cpumask *cpu_map)
 | |
| {
 | |
| 	struct sched_domain_topology_level *tl;
 | |
| 	int j;
 | |
| 
 | |
| 	for (tl = sched_domain_topology; tl->init; tl++) {
 | |
| 		struct sd_data *sdd = &tl->data;
 | |
| 
 | |
| 		sdd->sd = alloc_percpu(struct sched_domain *);
 | |
| 		if (!sdd->sd)
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		sdd->sg = alloc_percpu(struct sched_group *);
 | |
| 		if (!sdd->sg)
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		sdd->sgp = alloc_percpu(struct sched_group_power *);
 | |
| 		if (!sdd->sgp)
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		for_each_cpu(j, cpu_map) {
 | |
| 			struct sched_domain *sd;
 | |
| 			struct sched_group *sg;
 | |
| 			struct sched_group_power *sgp;
 | |
| 
 | |
| 		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
 | |
| 					GFP_KERNEL, cpu_to_node(j));
 | |
| 			if (!sd)
 | |
| 				return -ENOMEM;
 | |
| 
 | |
| 			*per_cpu_ptr(sdd->sd, j) = sd;
 | |
| 
 | |
| 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
 | |
| 					GFP_KERNEL, cpu_to_node(j));
 | |
| 			if (!sg)
 | |
| 				return -ENOMEM;
 | |
| 
 | |
| 			*per_cpu_ptr(sdd->sg, j) = sg;
 | |
| 
 | |
| 			sgp = kzalloc_node(sizeof(struct sched_group_power),
 | |
| 					GFP_KERNEL, cpu_to_node(j));
 | |
| 			if (!sgp)
 | |
| 				return -ENOMEM;
 | |
| 
 | |
| 			*per_cpu_ptr(sdd->sgp, j) = sgp;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void __sdt_free(const struct cpumask *cpu_map)
 | |
| {
 | |
| 	struct sched_domain_topology_level *tl;
 | |
| 	int j;
 | |
| 
 | |
| 	for (tl = sched_domain_topology; tl->init; tl++) {
 | |
| 		struct sd_data *sdd = &tl->data;
 | |
| 
 | |
| 		for_each_cpu(j, cpu_map) {
 | |
| 			struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
 | |
| 			if (sd && (sd->flags & SD_OVERLAP))
 | |
| 				free_sched_groups(sd->groups, 0);
 | |
| 			kfree(*per_cpu_ptr(sdd->sg, j));
 | |
| 			kfree(*per_cpu_ptr(sdd->sgp, j));
 | |
| 		}
 | |
| 		free_percpu(sdd->sd);
 | |
| 		free_percpu(sdd->sg);
 | |
| 		free_percpu(sdd->sgp);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
 | |
| 		struct s_data *d, const struct cpumask *cpu_map,
 | |
| 		struct sched_domain_attr *attr, struct sched_domain *child,
 | |
| 		int cpu)
 | |
| {
 | |
| 	struct sched_domain *sd = tl->init(tl, cpu);
 | |
| 	if (!sd)
 | |
| 		return child;
 | |
| 
 | |
| 	set_domain_attribute(sd, attr);
 | |
| 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
 | |
| 	if (child) {
 | |
| 		sd->level = child->level + 1;
 | |
| 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
 | |
| 		child->parent = sd;
 | |
| 	}
 | |
| 	sd->child = child;
 | |
| 
 | |
| 	return sd;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Build sched domains for a given set of cpus and attach the sched domains
 | |
|  * to the individual cpus
 | |
|  */
 | |
| static int build_sched_domains(const struct cpumask *cpu_map,
 | |
| 			       struct sched_domain_attr *attr)
 | |
| {
 | |
| 	enum s_alloc alloc_state = sa_none;
 | |
| 	struct sched_domain *sd;
 | |
| 	struct s_data d;
 | |
| 	int i, ret = -ENOMEM;
 | |
| 
 | |
| 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
 | |
| 	if (alloc_state != sa_rootdomain)
 | |
| 		goto error;
 | |
| 
 | |
| 	/* Set up domains for cpus specified by the cpu_map. */
 | |
| 	for_each_cpu(i, cpu_map) {
 | |
| 		struct sched_domain_topology_level *tl;
 | |
| 
 | |
| 		sd = NULL;
 | |
| 		for (tl = sched_domain_topology; tl->init; tl++) {
 | |
| 			sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
 | |
| 			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
 | |
| 				sd->flags |= SD_OVERLAP;
 | |
| 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 		while (sd->child)
 | |
| 			sd = sd->child;
 | |
| 
 | |
| 		*per_cpu_ptr(d.sd, i) = sd;
 | |
| 	}
 | |
| 
 | |
| 	/* Build the groups for the domains */
 | |
| 	for_each_cpu(i, cpu_map) {
 | |
| 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
 | |
| 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
 | |
| 			if (sd->flags & SD_OVERLAP) {
 | |
| 				if (build_overlap_sched_groups(sd, i))
 | |
| 					goto error;
 | |
| 			} else {
 | |
| 				if (build_sched_groups(sd, i))
 | |
| 					goto error;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Calculate CPU power for physical packages and nodes */
 | |
| 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
 | |
| 		if (!cpumask_test_cpu(i, cpu_map))
 | |
| 			continue;
 | |
| 
 | |
| 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
 | |
| 			claim_allocations(i, sd);
 | |
| 			init_sched_groups_power(i, sd);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Attach the domains */
 | |
| 	rcu_read_lock();
 | |
| 	for_each_cpu(i, cpu_map) {
 | |
| 		sd = *per_cpu_ptr(d.sd, i);
 | |
| 		cpu_attach_domain(sd, d.rd, i);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	ret = 0;
 | |
| error:
 | |
| 	__free_domain_allocs(&d, alloc_state, cpu_map);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static cpumask_var_t *doms_cur;	/* current sched domains */
 | |
| static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
 | |
| static struct sched_domain_attr *dattr_cur;
 | |
| 				/* attribues of custom domains in 'doms_cur' */
 | |
| 
 | |
| /*
 | |
|  * Special case: If a kmalloc of a doms_cur partition (array of
 | |
|  * cpumask) fails, then fallback to a single sched domain,
 | |
|  * as determined by the single cpumask fallback_doms.
 | |
|  */
 | |
| static cpumask_var_t fallback_doms;
 | |
| 
 | |
| /*
 | |
|  * arch_update_cpu_topology lets virtualized architectures update the
 | |
|  * cpu core maps. It is supposed to return 1 if the topology changed
 | |
|  * or 0 if it stayed the same.
 | |
|  */
 | |
| int __attribute__((weak)) arch_update_cpu_topology(void)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
 | |
| {
 | |
| 	int i;
 | |
| 	cpumask_var_t *doms;
 | |
| 
 | |
| 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
 | |
| 	if (!doms)
 | |
| 		return NULL;
 | |
| 	for (i = 0; i < ndoms; i++) {
 | |
| 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
 | |
| 			free_sched_domains(doms, i);
 | |
| 			return NULL;
 | |
| 		}
 | |
| 	}
 | |
| 	return doms;
 | |
| }
 | |
| 
 | |
| void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 	for (i = 0; i < ndoms; i++)
 | |
| 		free_cpumask_var(doms[i]);
 | |
| 	kfree(doms);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
 | |
|  * For now this just excludes isolated cpus, but could be used to
 | |
|  * exclude other special cases in the future.
 | |
|  */
 | |
| static int init_sched_domains(const struct cpumask *cpu_map)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	arch_update_cpu_topology();
 | |
| 	ndoms_cur = 1;
 | |
| 	doms_cur = alloc_sched_domains(ndoms_cur);
 | |
| 	if (!doms_cur)
 | |
| 		doms_cur = &fallback_doms;
 | |
| 	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
 | |
| 	dattr_cur = NULL;
 | |
| 	err = build_sched_domains(doms_cur[0], NULL);
 | |
| 	register_sched_domain_sysctl();
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Detach sched domains from a group of cpus specified in cpu_map
 | |
|  * These cpus will now be attached to the NULL domain
 | |
|  */
 | |
| static void detach_destroy_domains(const struct cpumask *cpu_map)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	for_each_cpu(i, cpu_map)
 | |
| 		cpu_attach_domain(NULL, &def_root_domain, i);
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| /* handle null as "default" */
 | |
| static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
 | |
| 			struct sched_domain_attr *new, int idx_new)
 | |
| {
 | |
| 	struct sched_domain_attr tmp;
 | |
| 
 | |
| 	/* fast path */
 | |
| 	if (!new && !cur)
 | |
| 		return 1;
 | |
| 
 | |
| 	tmp = SD_ATTR_INIT;
 | |
| 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
 | |
| 			new ? (new + idx_new) : &tmp,
 | |
| 			sizeof(struct sched_domain_attr));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Partition sched domains as specified by the 'ndoms_new'
 | |
|  * cpumasks in the array doms_new[] of cpumasks. This compares
 | |
|  * doms_new[] to the current sched domain partitioning, doms_cur[].
 | |
|  * It destroys each deleted domain and builds each new domain.
 | |
|  *
 | |
|  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
 | |
|  * The masks don't intersect (don't overlap.) We should setup one
 | |
|  * sched domain for each mask. CPUs not in any of the cpumasks will
 | |
|  * not be load balanced. If the same cpumask appears both in the
 | |
|  * current 'doms_cur' domains and in the new 'doms_new', we can leave
 | |
|  * it as it is.
 | |
|  *
 | |
|  * The passed in 'doms_new' should be allocated using
 | |
|  * alloc_sched_domains.  This routine takes ownership of it and will
 | |
|  * free_sched_domains it when done with it. If the caller failed the
 | |
|  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 | |
|  * and partition_sched_domains() will fallback to the single partition
 | |
|  * 'fallback_doms', it also forces the domains to be rebuilt.
 | |
|  *
 | |
|  * If doms_new == NULL it will be replaced with cpu_online_mask.
 | |
|  * ndoms_new == 0 is a special case for destroying existing domains,
 | |
|  * and it will not create the default domain.
 | |
|  *
 | |
|  * Call with hotplug lock held
 | |
|  */
 | |
| void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
 | |
| 			     struct sched_domain_attr *dattr_new)
 | |
| {
 | |
| 	int i, j, n;
 | |
| 	int new_topology;
 | |
| 
 | |
| 	mutex_lock(&sched_domains_mutex);
 | |
| 
 | |
| 	/* always unregister in case we don't destroy any domains */
 | |
| 	unregister_sched_domain_sysctl();
 | |
| 
 | |
| 	/* Let architecture update cpu core mappings. */
 | |
| 	new_topology = arch_update_cpu_topology();
 | |
| 
 | |
| 	n = doms_new ? ndoms_new : 0;
 | |
| 
 | |
| 	/* Destroy deleted domains */
 | |
| 	for (i = 0; i < ndoms_cur; i++) {
 | |
| 		for (j = 0; j < n && !new_topology; j++) {
 | |
| 			if (cpumask_equal(doms_cur[i], doms_new[j])
 | |
| 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
 | |
| 				goto match1;
 | |
| 		}
 | |
| 		/* no match - a current sched domain not in new doms_new[] */
 | |
| 		detach_destroy_domains(doms_cur[i]);
 | |
| match1:
 | |
| 		;
 | |
| 	}
 | |
| 
 | |
| 	if (doms_new == NULL) {
 | |
| 		ndoms_cur = 0;
 | |
| 		doms_new = &fallback_doms;
 | |
| 		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
 | |
| 		WARN_ON_ONCE(dattr_new);
 | |
| 	}
 | |
| 
 | |
| 	/* Build new domains */
 | |
| 	for (i = 0; i < ndoms_new; i++) {
 | |
| 		for (j = 0; j < ndoms_cur && !new_topology; j++) {
 | |
| 			if (cpumask_equal(doms_new[i], doms_cur[j])
 | |
| 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
 | |
| 				goto match2;
 | |
| 		}
 | |
| 		/* no match - add a new doms_new */
 | |
| 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
 | |
| match2:
 | |
| 		;
 | |
| 	}
 | |
| 
 | |
| 	/* Remember the new sched domains */
 | |
| 	if (doms_cur != &fallback_doms)
 | |
| 		free_sched_domains(doms_cur, ndoms_cur);
 | |
| 	kfree(dattr_cur);	/* kfree(NULL) is safe */
 | |
| 	doms_cur = doms_new;
 | |
| 	dattr_cur = dattr_new;
 | |
| 	ndoms_cur = ndoms_new;
 | |
| 
 | |
| 	register_sched_domain_sysctl();
 | |
| 
 | |
| 	mutex_unlock(&sched_domains_mutex);
 | |
| }
 | |
| 
 | |
| #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
 | |
| static void reinit_sched_domains(void)
 | |
| {
 | |
| 	get_online_cpus();
 | |
| 
 | |
| 	/* Destroy domains first to force the rebuild */
 | |
| 	partition_sched_domains(0, NULL, NULL);
 | |
| 
 | |
| 	rebuild_sched_domains();
 | |
| 	put_online_cpus();
 | |
| }
 | |
| 
 | |
| static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
 | |
| {
 | |
| 	unsigned int level = 0;
 | |
| 
 | |
| 	if (sscanf(buf, "%u", &level) != 1)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * level is always be positive so don't check for
 | |
| 	 * level < POWERSAVINGS_BALANCE_NONE which is 0
 | |
| 	 * What happens on 0 or 1 byte write,
 | |
| 	 * need to check for count as well?
 | |
| 	 */
 | |
| 
 | |
| 	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (smt)
 | |
| 		sched_smt_power_savings = level;
 | |
| 	else
 | |
| 		sched_mc_power_savings = level;
 | |
| 
 | |
| 	reinit_sched_domains();
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SCHED_MC
 | |
| static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
 | |
| 					   struct sysdev_class_attribute *attr,
 | |
| 					   char *page)
 | |
| {
 | |
| 	return sprintf(page, "%u\n", sched_mc_power_savings);
 | |
| }
 | |
| static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
 | |
| 					    struct sysdev_class_attribute *attr,
 | |
| 					    const char *buf, size_t count)
 | |
| {
 | |
| 	return sched_power_savings_store(buf, count, 0);
 | |
| }
 | |
| static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
 | |
| 			 sched_mc_power_savings_show,
 | |
| 			 sched_mc_power_savings_store);
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_SCHED_SMT
 | |
| static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
 | |
| 					    struct sysdev_class_attribute *attr,
 | |
| 					    char *page)
 | |
| {
 | |
| 	return sprintf(page, "%u\n", sched_smt_power_savings);
 | |
| }
 | |
| static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
 | |
| 					     struct sysdev_class_attribute *attr,
 | |
| 					     const char *buf, size_t count)
 | |
| {
 | |
| 	return sched_power_savings_store(buf, count, 1);
 | |
| }
 | |
| static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
 | |
| 		   sched_smt_power_savings_show,
 | |
| 		   sched_smt_power_savings_store);
 | |
| #endif
 | |
| 
 | |
| int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
 | |
| {
 | |
| 	int err = 0;
 | |
| 
 | |
| #ifdef CONFIG_SCHED_SMT
 | |
| 	if (smt_capable())
 | |
| 		err = sysfs_create_file(&cls->kset.kobj,
 | |
| 					&attr_sched_smt_power_savings.attr);
 | |
| #endif
 | |
| #ifdef CONFIG_SCHED_MC
 | |
| 	if (!err && mc_capable())
 | |
| 		err = sysfs_create_file(&cls->kset.kobj,
 | |
| 					&attr_sched_mc_power_savings.attr);
 | |
| #endif
 | |
| 	return err;
 | |
| }
 | |
| #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
 | |
| 
 | |
| /*
 | |
|  * Update cpusets according to cpu_active mask.  If cpusets are
 | |
|  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 | |
|  * around partition_sched_domains().
 | |
|  */
 | |
| static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
 | |
| 			     void *hcpu)
 | |
| {
 | |
| 	switch (action & ~CPU_TASKS_FROZEN) {
 | |
| 	case CPU_ONLINE:
 | |
| 	case CPU_DOWN_FAILED:
 | |
| 		cpuset_update_active_cpus();
 | |
| 		return NOTIFY_OK;
 | |
| 	default:
 | |
| 		return NOTIFY_DONE;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
 | |
| 			       void *hcpu)
 | |
| {
 | |
| 	switch (action & ~CPU_TASKS_FROZEN) {
 | |
| 	case CPU_DOWN_PREPARE:
 | |
| 		cpuset_update_active_cpus();
 | |
| 		return NOTIFY_OK;
 | |
| 	default:
 | |
| 		return NOTIFY_DONE;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int update_runtime(struct notifier_block *nfb,
 | |
| 				unsigned long action, void *hcpu)
 | |
| {
 | |
| 	int cpu = (int)(long)hcpu;
 | |
| 
 | |
| 	switch (action) {
 | |
| 	case CPU_DOWN_PREPARE:
 | |
| 	case CPU_DOWN_PREPARE_FROZEN:
 | |
| 		disable_runtime(cpu_rq(cpu));
 | |
| 		return NOTIFY_OK;
 | |
| 
 | |
| 	case CPU_DOWN_FAILED:
 | |
| 	case CPU_DOWN_FAILED_FROZEN:
 | |
| 	case CPU_ONLINE:
 | |
| 	case CPU_ONLINE_FROZEN:
 | |
| 		enable_runtime(cpu_rq(cpu));
 | |
| 		return NOTIFY_OK;
 | |
| 
 | |
| 	default:
 | |
| 		return NOTIFY_DONE;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void __init sched_init_smp(void)
 | |
| {
 | |
| 	cpumask_var_t non_isolated_cpus;
 | |
| 
 | |
| 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
 | |
| 	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
 | |
| 
 | |
| 	get_online_cpus();
 | |
| 	mutex_lock(&sched_domains_mutex);
 | |
| 	init_sched_domains(cpu_active_mask);
 | |
| 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
 | |
| 	if (cpumask_empty(non_isolated_cpus))
 | |
| 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
 | |
| 	mutex_unlock(&sched_domains_mutex);
 | |
| 	put_online_cpus();
 | |
| 
 | |
| 	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
 | |
| 	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
 | |
| 
 | |
| 	/* RT runtime code needs to handle some hotplug events */
 | |
| 	hotcpu_notifier(update_runtime, 0);
 | |
| 
 | |
| 	init_hrtick();
 | |
| 
 | |
| 	/* Move init over to a non-isolated CPU */
 | |
| 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
 | |
| 		BUG();
 | |
| 	sched_init_granularity();
 | |
| 	free_cpumask_var(non_isolated_cpus);
 | |
| 
 | |
| 	init_sched_rt_class();
 | |
| }
 | |
| #else
 | |
| void __init sched_init_smp(void)
 | |
| {
 | |
| 	sched_init_granularity();
 | |
| }
 | |
| #endif /* CONFIG_SMP */
 | |
| 
 | |
| const_debug unsigned int sysctl_timer_migration = 1;
 | |
| 
 | |
| int in_sched_functions(unsigned long addr)
 | |
| {
 | |
| 	return in_lock_functions(addr) ||
 | |
| 		(addr >= (unsigned long)__sched_text_start
 | |
| 		&& addr < (unsigned long)__sched_text_end);
 | |
| }
 | |
| 
 | |
| static void init_cfs_rq(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	cfs_rq->tasks_timeline = RB_ROOT;
 | |
| 	INIT_LIST_HEAD(&cfs_rq->tasks);
 | |
| 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
 | |
| #ifndef CONFIG_64BIT
 | |
| 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
 | |
| {
 | |
| 	struct rt_prio_array *array;
 | |
| 	int i;
 | |
| 
 | |
| 	array = &rt_rq->active;
 | |
| 	for (i = 0; i < MAX_RT_PRIO; i++) {
 | |
| 		INIT_LIST_HEAD(array->queue + i);
 | |
| 		__clear_bit(i, array->bitmap);
 | |
| 	}
 | |
| 	/* delimiter for bitsearch: */
 | |
| 	__set_bit(MAX_RT_PRIO, array->bitmap);
 | |
| 
 | |
| #if defined CONFIG_SMP
 | |
| 	rt_rq->highest_prio.curr = MAX_RT_PRIO;
 | |
| 	rt_rq->highest_prio.next = MAX_RT_PRIO;
 | |
| 	rt_rq->rt_nr_migratory = 0;
 | |
| 	rt_rq->overloaded = 0;
 | |
| 	plist_head_init(&rt_rq->pushable_tasks);
 | |
| #endif
 | |
| 
 | |
| 	rt_rq->rt_time = 0;
 | |
| 	rt_rq->rt_throttled = 0;
 | |
| 	rt_rq->rt_runtime = 0;
 | |
| 	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_FAIR_GROUP_SCHED
 | |
| static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
 | |
| 				struct sched_entity *se, int cpu,
 | |
| 				struct sched_entity *parent)
 | |
| {
 | |
| 	struct rq *rq = cpu_rq(cpu);
 | |
| 
 | |
| 	cfs_rq->tg = tg;
 | |
| 	cfs_rq->rq = rq;
 | |
| #ifdef CONFIG_SMP
 | |
| 	/* allow initial update_cfs_load() to truncate */
 | |
| 	cfs_rq->load_stamp = 1;
 | |
| #endif
 | |
| 
 | |
| 	tg->cfs_rq[cpu] = cfs_rq;
 | |
| 	tg->se[cpu] = se;
 | |
| 
 | |
| 	/* se could be NULL for root_task_group */
 | |
| 	if (!se)
 | |
| 		return;
 | |
| 
 | |
| 	if (!parent)
 | |
| 		se->cfs_rq = &rq->cfs;
 | |
| 	else
 | |
| 		se->cfs_rq = parent->my_q;
 | |
| 
 | |
| 	se->my_q = cfs_rq;
 | |
| 	update_load_set(&se->load, 0);
 | |
| 	se->parent = parent;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_RT_GROUP_SCHED
 | |
| static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
 | |
| 		struct sched_rt_entity *rt_se, int cpu,
 | |
| 		struct sched_rt_entity *parent)
 | |
| {
 | |
| 	struct rq *rq = cpu_rq(cpu);
 | |
| 
 | |
| 	rt_rq->highest_prio.curr = MAX_RT_PRIO;
 | |
| 	rt_rq->rt_nr_boosted = 0;
 | |
| 	rt_rq->rq = rq;
 | |
| 	rt_rq->tg = tg;
 | |
| 
 | |
| 	tg->rt_rq[cpu] = rt_rq;
 | |
| 	tg->rt_se[cpu] = rt_se;
 | |
| 
 | |
| 	if (!rt_se)
 | |
| 		return;
 | |
| 
 | |
| 	if (!parent)
 | |
| 		rt_se->rt_rq = &rq->rt;
 | |
| 	else
 | |
| 		rt_se->rt_rq = parent->my_q;
 | |
| 
 | |
| 	rt_se->my_q = rt_rq;
 | |
| 	rt_se->parent = parent;
 | |
| 	INIT_LIST_HEAD(&rt_se->run_list);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void __init sched_init(void)
 | |
| {
 | |
| 	int i, j;
 | |
| 	unsigned long alloc_size = 0, ptr;
 | |
| 
 | |
| #ifdef CONFIG_FAIR_GROUP_SCHED
 | |
| 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
 | |
| #endif
 | |
| #ifdef CONFIG_RT_GROUP_SCHED
 | |
| 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
 | |
| #endif
 | |
| #ifdef CONFIG_CPUMASK_OFFSTACK
 | |
| 	alloc_size += num_possible_cpus() * cpumask_size();
 | |
| #endif
 | |
| 	if (alloc_size) {
 | |
| 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
 | |
| 
 | |
| #ifdef CONFIG_FAIR_GROUP_SCHED
 | |
| 		root_task_group.se = (struct sched_entity **)ptr;
 | |
| 		ptr += nr_cpu_ids * sizeof(void **);
 | |
| 
 | |
| 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
 | |
| 		ptr += nr_cpu_ids * sizeof(void **);
 | |
| 
 | |
| #endif /* CONFIG_FAIR_GROUP_SCHED */
 | |
| #ifdef CONFIG_RT_GROUP_SCHED
 | |
| 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
 | |
| 		ptr += nr_cpu_ids * sizeof(void **);
 | |
| 
 | |
| 		root_task_group.rt_rq = (struct rt_rq **)ptr;
 | |
| 		ptr += nr_cpu_ids * sizeof(void **);
 | |
| 
 | |
| #endif /* CONFIG_RT_GROUP_SCHED */
 | |
| #ifdef CONFIG_CPUMASK_OFFSTACK
 | |
| 		for_each_possible_cpu(i) {
 | |
| 			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
 | |
| 			ptr += cpumask_size();
 | |
| 		}
 | |
| #endif /* CONFIG_CPUMASK_OFFSTACK */
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	init_defrootdomain();
 | |
| #endif
 | |
| 
 | |
| 	init_rt_bandwidth(&def_rt_bandwidth,
 | |
| 			global_rt_period(), global_rt_runtime());
 | |
| 
 | |
| #ifdef CONFIG_RT_GROUP_SCHED
 | |
| 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
 | |
| 			global_rt_period(), global_rt_runtime());
 | |
| #endif /* CONFIG_RT_GROUP_SCHED */
 | |
| 
 | |
| #ifdef CONFIG_CGROUP_SCHED
 | |
| 	list_add(&root_task_group.list, &task_groups);
 | |
| 	INIT_LIST_HEAD(&root_task_group.children);
 | |
| 	autogroup_init(&init_task);
 | |
| #endif /* CONFIG_CGROUP_SCHED */
 | |
| 
 | |
| 	for_each_possible_cpu(i) {
 | |
| 		struct rq *rq;
 | |
| 
 | |
| 		rq = cpu_rq(i);
 | |
| 		raw_spin_lock_init(&rq->lock);
 | |
| 		rq->nr_running = 0;
 | |
| 		rq->calc_load_active = 0;
 | |
| 		rq->calc_load_update = jiffies + LOAD_FREQ;
 | |
| 		init_cfs_rq(&rq->cfs);
 | |
| 		init_rt_rq(&rq->rt, rq);
 | |
| #ifdef CONFIG_FAIR_GROUP_SCHED
 | |
| 		root_task_group.shares = root_task_group_load;
 | |
| 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
 | |
| 		/*
 | |
| 		 * How much cpu bandwidth does root_task_group get?
 | |
| 		 *
 | |
| 		 * In case of task-groups formed thr' the cgroup filesystem, it
 | |
| 		 * gets 100% of the cpu resources in the system. This overall
 | |
| 		 * system cpu resource is divided among the tasks of
 | |
| 		 * root_task_group and its child task-groups in a fair manner,
 | |
| 		 * based on each entity's (task or task-group's) weight
 | |
| 		 * (se->load.weight).
 | |
| 		 *
 | |
| 		 * In other words, if root_task_group has 10 tasks of weight
 | |
| 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
 | |
| 		 * then A0's share of the cpu resource is:
 | |
| 		 *
 | |
| 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
 | |
| 		 *
 | |
| 		 * We achieve this by letting root_task_group's tasks sit
 | |
| 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
 | |
| 		 */
 | |
| 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
 | |
| #endif /* CONFIG_FAIR_GROUP_SCHED */
 | |
| 
 | |
| 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
 | |
| #ifdef CONFIG_RT_GROUP_SCHED
 | |
| 		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
 | |
| 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
 | |
| #endif
 | |
| 
 | |
| 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
 | |
| 			rq->cpu_load[j] = 0;
 | |
| 
 | |
| 		rq->last_load_update_tick = jiffies;
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 		rq->sd = NULL;
 | |
| 		rq->rd = NULL;
 | |
| 		rq->cpu_power = SCHED_POWER_SCALE;
 | |
| 		rq->post_schedule = 0;
 | |
| 		rq->active_balance = 0;
 | |
| 		rq->next_balance = jiffies;
 | |
| 		rq->push_cpu = 0;
 | |
| 		rq->cpu = i;
 | |
| 		rq->online = 0;
 | |
| 		rq->idle_stamp = 0;
 | |
| 		rq->avg_idle = 2*sysctl_sched_migration_cost;
 | |
| 		rq_attach_root(rq, &def_root_domain);
 | |
| #ifdef CONFIG_NO_HZ
 | |
| 		rq->nohz_balance_kick = 0;
 | |
| 		init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
 | |
| #endif
 | |
| #endif
 | |
| 		init_rq_hrtick(rq);
 | |
| 		atomic_set(&rq->nr_iowait, 0);
 | |
| 	}
 | |
| 
 | |
| 	set_load_weight(&init_task);
 | |
| 
 | |
| #ifdef CONFIG_PREEMPT_NOTIFIERS
 | |
| 	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_RT_MUTEXES
 | |
| 	plist_head_init(&init_task.pi_waiters);
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * The boot idle thread does lazy MMU switching as well:
 | |
| 	 */
 | |
| 	atomic_inc(&init_mm.mm_count);
 | |
| 	enter_lazy_tlb(&init_mm, current);
 | |
| 
 | |
| 	/*
 | |
| 	 * Make us the idle thread. Technically, schedule() should not be
 | |
| 	 * called from this thread, however somewhere below it might be,
 | |
| 	 * but because we are the idle thread, we just pick up running again
 | |
| 	 * when this runqueue becomes "idle".
 | |
| 	 */
 | |
| 	init_idle(current, smp_processor_id());
 | |
| 
 | |
| 	calc_load_update = jiffies + LOAD_FREQ;
 | |
| 
 | |
| 	/*
 | |
| 	 * During early bootup we pretend to be a normal task:
 | |
| 	 */
 | |
| 	current->sched_class = &fair_sched_class;
 | |
| 
 | |
| 	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
 | |
| 	zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
 | |
| #ifdef CONFIG_SMP
 | |
| 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
 | |
| #ifdef CONFIG_NO_HZ
 | |
| 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
 | |
| 	alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
 | |
| 	atomic_set(&nohz.load_balancer, nr_cpu_ids);
 | |
| 	atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
 | |
| 	atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
 | |
| #endif
 | |
| 	/* May be allocated at isolcpus cmdline parse time */
 | |
| 	if (cpu_isolated_map == NULL)
 | |
| 		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
 | |
| #endif /* SMP */
 | |
| 
 | |
| 	scheduler_running = 1;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
 | |
| static inline int preempt_count_equals(int preempt_offset)
 | |
| {
 | |
| 	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
 | |
| 
 | |
| 	return (nested == preempt_offset);
 | |
| }
 | |
| 
 | |
| void __might_sleep(const char *file, int line, int preempt_offset)
 | |
| {
 | |
| 	static unsigned long prev_jiffy;	/* ratelimiting */
 | |
| 
 | |
| 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
 | |
| 	    system_state != SYSTEM_RUNNING || oops_in_progress)
 | |
| 		return;
 | |
| 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
 | |
| 		return;
 | |
| 	prev_jiffy = jiffies;
 | |
| 
 | |
| 	printk(KERN_ERR
 | |
| 		"BUG: sleeping function called from invalid context at %s:%d\n",
 | |
| 			file, line);
 | |
| 	printk(KERN_ERR
 | |
| 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
 | |
| 			in_atomic(), irqs_disabled(),
 | |
| 			current->pid, current->comm);
 | |
| 
 | |
| 	debug_show_held_locks(current);
 | |
| 	if (irqs_disabled())
 | |
| 		print_irqtrace_events(current);
 | |
| 	dump_stack();
 | |
| }
 | |
| EXPORT_SYMBOL(__might_sleep);
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_MAGIC_SYSRQ
 | |
| static void normalize_task(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| 	const struct sched_class *prev_class = p->sched_class;
 | |
| 	int old_prio = p->prio;
 | |
| 	int on_rq;
 | |
| 
 | |
| 	on_rq = p->on_rq;
 | |
| 	if (on_rq)
 | |
| 		deactivate_task(rq, p, 0);
 | |
| 	__setscheduler(rq, p, SCHED_NORMAL, 0);
 | |
| 	if (on_rq) {
 | |
| 		activate_task(rq, p, 0);
 | |
| 		resched_task(rq->curr);
 | |
| 	}
 | |
| 
 | |
| 	check_class_changed(rq, p, prev_class, old_prio);
 | |
| }
 | |
| 
 | |
| void normalize_rt_tasks(void)
 | |
| {
 | |
| 	struct task_struct *g, *p;
 | |
| 	unsigned long flags;
 | |
| 	struct rq *rq;
 | |
| 
 | |
| 	read_lock_irqsave(&tasklist_lock, flags);
 | |
| 	do_each_thread(g, p) {
 | |
| 		/*
 | |
| 		 * Only normalize user tasks:
 | |
| 		 */
 | |
| 		if (!p->mm)
 | |
| 			continue;
 | |
| 
 | |
| 		p->se.exec_start		= 0;
 | |
| #ifdef CONFIG_SCHEDSTATS
 | |
| 		p->se.statistics.wait_start	= 0;
 | |
| 		p->se.statistics.sleep_start	= 0;
 | |
| 		p->se.statistics.block_start	= 0;
 | |
| #endif
 | |
| 
 | |
| 		if (!rt_task(p)) {
 | |
| 			/*
 | |
| 			 * Renice negative nice level userspace
 | |
| 			 * tasks back to 0:
 | |
| 			 */
 | |
| 			if (TASK_NICE(p) < 0 && p->mm)
 | |
| 				set_user_nice(p, 0);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		raw_spin_lock(&p->pi_lock);
 | |
| 		rq = __task_rq_lock(p);
 | |
| 
 | |
| 		normalize_task(rq, p);
 | |
| 
 | |
| 		__task_rq_unlock(rq);
 | |
| 		raw_spin_unlock(&p->pi_lock);
 | |
| 	} while_each_thread(g, p);
 | |
| 
 | |
| 	read_unlock_irqrestore(&tasklist_lock, flags);
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_MAGIC_SYSRQ */
 | |
| 
 | |
| #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
 | |
| /*
 | |
|  * These functions are only useful for the IA64 MCA handling, or kdb.
 | |
|  *
 | |
|  * They can only be called when the whole system has been
 | |
|  * stopped - every CPU needs to be quiescent, and no scheduling
 | |
|  * activity can take place. Using them for anything else would
 | |
|  * be a serious bug, and as a result, they aren't even visible
 | |
|  * under any other configuration.
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * curr_task - return the current task for a given cpu.
 | |
|  * @cpu: the processor in question.
 | |
|  *
 | |
|  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 | |
|  */
 | |
| struct task_struct *curr_task(int cpu)
 | |
| {
 | |
| 	return cpu_curr(cpu);
 | |
| }
 | |
| 
 | |
| #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
 | |
| 
 | |
| #ifdef CONFIG_IA64
 | |
| /**
 | |
|  * set_curr_task - set the current task for a given cpu.
 | |
|  * @cpu: the processor in question.
 | |
|  * @p: the task pointer to set.
 | |
|  *
 | |
|  * Description: This function must only be used when non-maskable interrupts
 | |
|  * are serviced on a separate stack. It allows the architecture to switch the
 | |
|  * notion of the current task on a cpu in a non-blocking manner. This function
 | |
|  * must be called with all CPU's synchronized, and interrupts disabled, the
 | |
|  * and caller must save the original value of the current task (see
 | |
|  * curr_task() above) and restore that value before reenabling interrupts and
 | |
|  * re-starting the system.
 | |
|  *
 | |
|  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 | |
|  */
 | |
| void set_curr_task(int cpu, struct task_struct *p)
 | |
| {
 | |
| 	cpu_curr(cpu) = p;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_FAIR_GROUP_SCHED
 | |
| static void free_fair_sched_group(struct task_group *tg)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for_each_possible_cpu(i) {
 | |
| 		if (tg->cfs_rq)
 | |
| 			kfree(tg->cfs_rq[i]);
 | |
| 		if (tg->se)
 | |
| 			kfree(tg->se[i]);
 | |
| 	}
 | |
| 
 | |
| 	kfree(tg->cfs_rq);
 | |
| 	kfree(tg->se);
 | |
| }
 | |
| 
 | |
| static
 | |
| int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
 | |
| {
 | |
| 	struct cfs_rq *cfs_rq;
 | |
| 	struct sched_entity *se;
 | |
| 	int i;
 | |
| 
 | |
| 	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
 | |
| 	if (!tg->cfs_rq)
 | |
| 		goto err;
 | |
| 	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
 | |
| 	if (!tg->se)
 | |
| 		goto err;
 | |
| 
 | |
| 	tg->shares = NICE_0_LOAD;
 | |
| 
 | |
| 	for_each_possible_cpu(i) {
 | |
| 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
 | |
| 				      GFP_KERNEL, cpu_to_node(i));
 | |
| 		if (!cfs_rq)
 | |
| 			goto err;
 | |
| 
 | |
| 		se = kzalloc_node(sizeof(struct sched_entity),
 | |
| 				  GFP_KERNEL, cpu_to_node(i));
 | |
| 		if (!se)
 | |
| 			goto err_free_rq;
 | |
| 
 | |
| 		init_cfs_rq(cfs_rq);
 | |
| 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
 | |
| 	}
 | |
| 
 | |
| 	return 1;
 | |
| 
 | |
| err_free_rq:
 | |
| 	kfree(cfs_rq);
 | |
| err:
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
 | |
| {
 | |
| 	struct rq *rq = cpu_rq(cpu);
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/*
 | |
| 	* Only empty task groups can be destroyed; so we can speculatively
 | |
| 	* check on_list without danger of it being re-added.
 | |
| 	*/
 | |
| 	if (!tg->cfs_rq[cpu]->on_list)
 | |
| 		return;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&rq->lock, flags);
 | |
| 	list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
 | |
| 	raw_spin_unlock_irqrestore(&rq->lock, flags);
 | |
| }
 | |
| #else /* !CONFIG_FAIR_GROUP_SCHED */
 | |
| static inline void free_fair_sched_group(struct task_group *tg)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline
 | |
| int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
 | |
| {
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
 | |
| {
 | |
| }
 | |
| #endif /* CONFIG_FAIR_GROUP_SCHED */
 | |
| 
 | |
| #ifdef CONFIG_RT_GROUP_SCHED
 | |
| static void free_rt_sched_group(struct task_group *tg)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (tg->rt_se)
 | |
| 		destroy_rt_bandwidth(&tg->rt_bandwidth);
 | |
| 
 | |
| 	for_each_possible_cpu(i) {
 | |
| 		if (tg->rt_rq)
 | |
| 			kfree(tg->rt_rq[i]);
 | |
| 		if (tg->rt_se)
 | |
| 			kfree(tg->rt_se[i]);
 | |
| 	}
 | |
| 
 | |
| 	kfree(tg->rt_rq);
 | |
| 	kfree(tg->rt_se);
 | |
| }
 | |
| 
 | |
| static
 | |
| int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
 | |
| {
 | |
| 	struct rt_rq *rt_rq;
 | |
| 	struct sched_rt_entity *rt_se;
 | |
| 	int i;
 | |
| 
 | |
| 	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
 | |
| 	if (!tg->rt_rq)
 | |
| 		goto err;
 | |
| 	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
 | |
| 	if (!tg->rt_se)
 | |
| 		goto err;
 | |
| 
 | |
| 	init_rt_bandwidth(&tg->rt_bandwidth,
 | |
| 			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
 | |
| 
 | |
| 	for_each_possible_cpu(i) {
 | |
| 		rt_rq = kzalloc_node(sizeof(struct rt_rq),
 | |
| 				     GFP_KERNEL, cpu_to_node(i));
 | |
| 		if (!rt_rq)
 | |
| 			goto err;
 | |
| 
 | |
| 		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
 | |
| 				     GFP_KERNEL, cpu_to_node(i));
 | |
| 		if (!rt_se)
 | |
| 			goto err_free_rq;
 | |
| 
 | |
| 		init_rt_rq(rt_rq, cpu_rq(i));
 | |
| 		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
 | |
| 		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
 | |
| 	}
 | |
| 
 | |
| 	return 1;
 | |
| 
 | |
| err_free_rq:
 | |
| 	kfree(rt_rq);
 | |
| err:
 | |
| 	return 0;
 | |
| }
 | |
| #else /* !CONFIG_RT_GROUP_SCHED */
 | |
| static inline void free_rt_sched_group(struct task_group *tg)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline
 | |
| int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
 | |
| {
 | |
| 	return 1;
 | |
| }
 | |
| #endif /* CONFIG_RT_GROUP_SCHED */
 | |
| 
 | |
| #ifdef CONFIG_CGROUP_SCHED
 | |
| static void free_sched_group(struct task_group *tg)
 | |
| {
 | |
| 	free_fair_sched_group(tg);
 | |
| 	free_rt_sched_group(tg);
 | |
| 	autogroup_free(tg);
 | |
| 	kfree(tg);
 | |
| }
 | |
| 
 | |
| /* allocate runqueue etc for a new task group */
 | |
| struct task_group *sched_create_group(struct task_group *parent)
 | |
| {
 | |
| 	struct task_group *tg;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
 | |
| 	if (!tg)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	if (!alloc_fair_sched_group(tg, parent))
 | |
| 		goto err;
 | |
| 
 | |
| 	if (!alloc_rt_sched_group(tg, parent))
 | |
| 		goto err;
 | |
| 
 | |
| 	spin_lock_irqsave(&task_group_lock, flags);
 | |
| 	list_add_rcu(&tg->list, &task_groups);
 | |
| 
 | |
| 	WARN_ON(!parent); /* root should already exist */
 | |
| 
 | |
| 	tg->parent = parent;
 | |
| 	INIT_LIST_HEAD(&tg->children);
 | |
| 	list_add_rcu(&tg->siblings, &parent->children);
 | |
| 	spin_unlock_irqrestore(&task_group_lock, flags);
 | |
| 
 | |
| 	return tg;
 | |
| 
 | |
| err:
 | |
| 	free_sched_group(tg);
 | |
| 	return ERR_PTR(-ENOMEM);
 | |
| }
 | |
| 
 | |
| /* rcu callback to free various structures associated with a task group */
 | |
| static void free_sched_group_rcu(struct rcu_head *rhp)
 | |
| {
 | |
| 	/* now it should be safe to free those cfs_rqs */
 | |
| 	free_sched_group(container_of(rhp, struct task_group, rcu));
 | |
| }
 | |
| 
 | |
| /* Destroy runqueue etc associated with a task group */
 | |
| void sched_destroy_group(struct task_group *tg)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	int i;
 | |
| 
 | |
| 	/* end participation in shares distribution */
 | |
| 	for_each_possible_cpu(i)
 | |
| 		unregister_fair_sched_group(tg, i);
 | |
| 
 | |
| 	spin_lock_irqsave(&task_group_lock, flags);
 | |
| 	list_del_rcu(&tg->list);
 | |
| 	list_del_rcu(&tg->siblings);
 | |
| 	spin_unlock_irqrestore(&task_group_lock, flags);
 | |
| 
 | |
| 	/* wait for possible concurrent references to cfs_rqs complete */
 | |
| 	call_rcu(&tg->rcu, free_sched_group_rcu);
 | |
| }
 | |
| 
 | |
| /* change task's runqueue when it moves between groups.
 | |
|  *	The caller of this function should have put the task in its new group
 | |
|  *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 | |
|  *	reflect its new group.
 | |
|  */
 | |
| void sched_move_task(struct task_struct *tsk)
 | |
| {
 | |
| 	int on_rq, running;
 | |
| 	unsigned long flags;
 | |
| 	struct rq *rq;
 | |
| 
 | |
| 	rq = task_rq_lock(tsk, &flags);
 | |
| 
 | |
| 	running = task_current(rq, tsk);
 | |
| 	on_rq = tsk->on_rq;
 | |
| 
 | |
| 	if (on_rq)
 | |
| 		dequeue_task(rq, tsk, 0);
 | |
| 	if (unlikely(running))
 | |
| 		tsk->sched_class->put_prev_task(rq, tsk);
 | |
| 
 | |
| #ifdef CONFIG_FAIR_GROUP_SCHED
 | |
| 	if (tsk->sched_class->task_move_group)
 | |
| 		tsk->sched_class->task_move_group(tsk, on_rq);
 | |
| 	else
 | |
| #endif
 | |
| 		set_task_rq(tsk, task_cpu(tsk));
 | |
| 
 | |
| 	if (unlikely(running))
 | |
| 		tsk->sched_class->set_curr_task(rq);
 | |
| 	if (on_rq)
 | |
| 		enqueue_task(rq, tsk, 0);
 | |
| 
 | |
| 	task_rq_unlock(rq, tsk, &flags);
 | |
| }
 | |
| #endif /* CONFIG_CGROUP_SCHED */
 | |
| 
 | |
| #ifdef CONFIG_FAIR_GROUP_SCHED
 | |
| static DEFINE_MUTEX(shares_mutex);
 | |
| 
 | |
| int sched_group_set_shares(struct task_group *tg, unsigned long shares)
 | |
| {
 | |
| 	int i;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/*
 | |
| 	 * We can't change the weight of the root cgroup.
 | |
| 	 */
 | |
| 	if (!tg->se[0])
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
 | |
| 
 | |
| 	mutex_lock(&shares_mutex);
 | |
| 	if (tg->shares == shares)
 | |
| 		goto done;
 | |
| 
 | |
| 	tg->shares = shares;
 | |
| 	for_each_possible_cpu(i) {
 | |
| 		struct rq *rq = cpu_rq(i);
 | |
| 		struct sched_entity *se;
 | |
| 
 | |
| 		se = tg->se[i];
 | |
| 		/* Propagate contribution to hierarchy */
 | |
| 		raw_spin_lock_irqsave(&rq->lock, flags);
 | |
| 		for_each_sched_entity(se)
 | |
| 			update_cfs_shares(group_cfs_rq(se));
 | |
| 		raw_spin_unlock_irqrestore(&rq->lock, flags);
 | |
| 	}
 | |
| 
 | |
| done:
 | |
| 	mutex_unlock(&shares_mutex);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| unsigned long sched_group_shares(struct task_group *tg)
 | |
| {
 | |
| 	return tg->shares;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_RT_GROUP_SCHED
 | |
| /*
 | |
|  * Ensure that the real time constraints are schedulable.
 | |
|  */
 | |
| static DEFINE_MUTEX(rt_constraints_mutex);
 | |
| 
 | |
| static unsigned long to_ratio(u64 period, u64 runtime)
 | |
| {
 | |
| 	if (runtime == RUNTIME_INF)
 | |
| 		return 1ULL << 20;
 | |
| 
 | |
| 	return div64_u64(runtime << 20, period);
 | |
| }
 | |
| 
 | |
| /* Must be called with tasklist_lock held */
 | |
| static inline int tg_has_rt_tasks(struct task_group *tg)
 | |
| {
 | |
| 	struct task_struct *g, *p;
 | |
| 
 | |
| 	do_each_thread(g, p) {
 | |
| 		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
 | |
| 			return 1;
 | |
| 	} while_each_thread(g, p);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| struct rt_schedulable_data {
 | |
| 	struct task_group *tg;
 | |
| 	u64 rt_period;
 | |
| 	u64 rt_runtime;
 | |
| };
 | |
| 
 | |
| static int tg_schedulable(struct task_group *tg, void *data)
 | |
| {
 | |
| 	struct rt_schedulable_data *d = data;
 | |
| 	struct task_group *child;
 | |
| 	unsigned long total, sum = 0;
 | |
| 	u64 period, runtime;
 | |
| 
 | |
| 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
 | |
| 	runtime = tg->rt_bandwidth.rt_runtime;
 | |
| 
 | |
| 	if (tg == d->tg) {
 | |
| 		period = d->rt_period;
 | |
| 		runtime = d->rt_runtime;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Cannot have more runtime than the period.
 | |
| 	 */
 | |
| 	if (runtime > period && runtime != RUNTIME_INF)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Ensure we don't starve existing RT tasks.
 | |
| 	 */
 | |
| 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	total = to_ratio(period, runtime);
 | |
| 
 | |
| 	/*
 | |
| 	 * Nobody can have more than the global setting allows.
 | |
| 	 */
 | |
| 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * The sum of our children's runtime should not exceed our own.
 | |
| 	 */
 | |
| 	list_for_each_entry_rcu(child, &tg->children, siblings) {
 | |
| 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
 | |
| 		runtime = child->rt_bandwidth.rt_runtime;
 | |
| 
 | |
| 		if (child == d->tg) {
 | |
| 			period = d->rt_period;
 | |
| 			runtime = d->rt_runtime;
 | |
| 		}
 | |
| 
 | |
| 		sum += to_ratio(period, runtime);
 | |
| 	}
 | |
| 
 | |
| 	if (sum > total)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
 | |
| {
 | |
| 	struct rt_schedulable_data data = {
 | |
| 		.tg = tg,
 | |
| 		.rt_period = period,
 | |
| 		.rt_runtime = runtime,
 | |
| 	};
 | |
| 
 | |
| 	return walk_tg_tree(tg_schedulable, tg_nop, &data);
 | |
| }
 | |
| 
 | |
| static int tg_set_bandwidth(struct task_group *tg,
 | |
| 		u64 rt_period, u64 rt_runtime)
 | |
| {
 | |
| 	int i, err = 0;
 | |
| 
 | |
| 	mutex_lock(&rt_constraints_mutex);
 | |
| 	read_lock(&tasklist_lock);
 | |
| 	err = __rt_schedulable(tg, rt_period, rt_runtime);
 | |
| 	if (err)
 | |
| 		goto unlock;
 | |
| 
 | |
| 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
 | |
| 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
 | |
| 	tg->rt_bandwidth.rt_runtime = rt_runtime;
 | |
| 
 | |
| 	for_each_possible_cpu(i) {
 | |
| 		struct rt_rq *rt_rq = tg->rt_rq[i];
 | |
| 
 | |
| 		raw_spin_lock(&rt_rq->rt_runtime_lock);
 | |
| 		rt_rq->rt_runtime = rt_runtime;
 | |
| 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 | |
| 	}
 | |
| 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
 | |
| unlock:
 | |
| 	read_unlock(&tasklist_lock);
 | |
| 	mutex_unlock(&rt_constraints_mutex);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
 | |
| {
 | |
| 	u64 rt_runtime, rt_period;
 | |
| 
 | |
| 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
 | |
| 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
 | |
| 	if (rt_runtime_us < 0)
 | |
| 		rt_runtime = RUNTIME_INF;
 | |
| 
 | |
| 	return tg_set_bandwidth(tg, rt_period, rt_runtime);
 | |
| }
 | |
| 
 | |
| long sched_group_rt_runtime(struct task_group *tg)
 | |
| {
 | |
| 	u64 rt_runtime_us;
 | |
| 
 | |
| 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
 | |
| 		return -1;
 | |
| 
 | |
| 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
 | |
| 	do_div(rt_runtime_us, NSEC_PER_USEC);
 | |
| 	return rt_runtime_us;
 | |
| }
 | |
| 
 | |
| int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
 | |
| {
 | |
| 	u64 rt_runtime, rt_period;
 | |
| 
 | |
| 	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
 | |
| 	rt_runtime = tg->rt_bandwidth.rt_runtime;
 | |
| 
 | |
| 	if (rt_period == 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return tg_set_bandwidth(tg, rt_period, rt_runtime);
 | |
| }
 | |
| 
 | |
| long sched_group_rt_period(struct task_group *tg)
 | |
| {
 | |
| 	u64 rt_period_us;
 | |
| 
 | |
| 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
 | |
| 	do_div(rt_period_us, NSEC_PER_USEC);
 | |
| 	return rt_period_us;
 | |
| }
 | |
| 
 | |
| static int sched_rt_global_constraints(void)
 | |
| {
 | |
| 	u64 runtime, period;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (sysctl_sched_rt_period <= 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	runtime = global_rt_runtime();
 | |
| 	period = global_rt_period();
 | |
| 
 | |
| 	/*
 | |
| 	 * Sanity check on the sysctl variables.
 | |
| 	 */
 | |
| 	if (runtime > period && runtime != RUNTIME_INF)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	mutex_lock(&rt_constraints_mutex);
 | |
| 	read_lock(&tasklist_lock);
 | |
| 	ret = __rt_schedulable(NULL, 0, 0);
 | |
| 	read_unlock(&tasklist_lock);
 | |
| 	mutex_unlock(&rt_constraints_mutex);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
 | |
| {
 | |
| 	/* Don't accept realtime tasks when there is no way for them to run */
 | |
| 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| #else /* !CONFIG_RT_GROUP_SCHED */
 | |
| static int sched_rt_global_constraints(void)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	int i;
 | |
| 
 | |
| 	if (sysctl_sched_rt_period <= 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * There's always some RT tasks in the root group
 | |
| 	 * -- migration, kstopmachine etc..
 | |
| 	 */
 | |
| 	if (sysctl_sched_rt_runtime == 0)
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
 | |
| 	for_each_possible_cpu(i) {
 | |
| 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
 | |
| 
 | |
| 		raw_spin_lock(&rt_rq->rt_runtime_lock);
 | |
| 		rt_rq->rt_runtime = global_rt_runtime();
 | |
| 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 | |
| 	}
 | |
| 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| #endif /* CONFIG_RT_GROUP_SCHED */
 | |
| 
 | |
| int sched_rt_handler(struct ctl_table *table, int write,
 | |
| 		void __user *buffer, size_t *lenp,
 | |
| 		loff_t *ppos)
 | |
| {
 | |
| 	int ret;
 | |
| 	int old_period, old_runtime;
 | |
| 	static DEFINE_MUTEX(mutex);
 | |
| 
 | |
| 	mutex_lock(&mutex);
 | |
| 	old_period = sysctl_sched_rt_period;
 | |
| 	old_runtime = sysctl_sched_rt_runtime;
 | |
| 
 | |
| 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
 | |
| 
 | |
| 	if (!ret && write) {
 | |
| 		ret = sched_rt_global_constraints();
 | |
| 		if (ret) {
 | |
| 			sysctl_sched_rt_period = old_period;
 | |
| 			sysctl_sched_rt_runtime = old_runtime;
 | |
| 		} else {
 | |
| 			def_rt_bandwidth.rt_runtime = global_rt_runtime();
 | |
| 			def_rt_bandwidth.rt_period =
 | |
| 				ns_to_ktime(global_rt_period());
 | |
| 		}
 | |
| 	}
 | |
| 	mutex_unlock(&mutex);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_CGROUP_SCHED
 | |
| 
 | |
| /* return corresponding task_group object of a cgroup */
 | |
| static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
 | |
| {
 | |
| 	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
 | |
| 			    struct task_group, css);
 | |
| }
 | |
| 
 | |
| static struct cgroup_subsys_state *
 | |
| cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
 | |
| {
 | |
| 	struct task_group *tg, *parent;
 | |
| 
 | |
| 	if (!cgrp->parent) {
 | |
| 		/* This is early initialization for the top cgroup */
 | |
| 		return &root_task_group.css;
 | |
| 	}
 | |
| 
 | |
| 	parent = cgroup_tg(cgrp->parent);
 | |
| 	tg = sched_create_group(parent);
 | |
| 	if (IS_ERR(tg))
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	return &tg->css;
 | |
| }
 | |
| 
 | |
| static void
 | |
| cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
 | |
| {
 | |
| 	struct task_group *tg = cgroup_tg(cgrp);
 | |
| 
 | |
| 	sched_destroy_group(tg);
 | |
| }
 | |
| 
 | |
| static int
 | |
| cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
 | |
| {
 | |
| #ifdef CONFIG_RT_GROUP_SCHED
 | |
| 	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
 | |
| 		return -EINVAL;
 | |
| #else
 | |
| 	/* We don't support RT-tasks being in separate groups */
 | |
| 	if (tsk->sched_class != &fair_sched_class)
 | |
| 		return -EINVAL;
 | |
| #endif
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void
 | |
| cpu_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
 | |
| {
 | |
| 	sched_move_task(tsk);
 | |
| }
 | |
| 
 | |
| static void
 | |
| cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
 | |
| 		struct cgroup *old_cgrp, struct task_struct *task)
 | |
| {
 | |
| 	/*
 | |
| 	 * cgroup_exit() is called in the copy_process() failure path.
 | |
| 	 * Ignore this case since the task hasn't ran yet, this avoids
 | |
| 	 * trying to poke a half freed task state from generic code.
 | |
| 	 */
 | |
| 	if (!(task->flags & PF_EXITING))
 | |
| 		return;
 | |
| 
 | |
| 	sched_move_task(task);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_FAIR_GROUP_SCHED
 | |
| static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
 | |
| 				u64 shareval)
 | |
| {
 | |
| 	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
 | |
| }
 | |
| 
 | |
| static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
 | |
| {
 | |
| 	struct task_group *tg = cgroup_tg(cgrp);
 | |
| 
 | |
| 	return (u64) scale_load_down(tg->shares);
 | |
| }
 | |
| #endif /* CONFIG_FAIR_GROUP_SCHED */
 | |
| 
 | |
| #ifdef CONFIG_RT_GROUP_SCHED
 | |
| static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
 | |
| 				s64 val)
 | |
| {
 | |
| 	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
 | |
| }
 | |
| 
 | |
| static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
 | |
| {
 | |
| 	return sched_group_rt_runtime(cgroup_tg(cgrp));
 | |
| }
 | |
| 
 | |
| static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
 | |
| 		u64 rt_period_us)
 | |
| {
 | |
| 	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
 | |
| }
 | |
| 
 | |
| static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
 | |
| {
 | |
| 	return sched_group_rt_period(cgroup_tg(cgrp));
 | |
| }
 | |
| #endif /* CONFIG_RT_GROUP_SCHED */
 | |
| 
 | |
| static struct cftype cpu_files[] = {
 | |
| #ifdef CONFIG_FAIR_GROUP_SCHED
 | |
| 	{
 | |
| 		.name = "shares",
 | |
| 		.read_u64 = cpu_shares_read_u64,
 | |
| 		.write_u64 = cpu_shares_write_u64,
 | |
| 	},
 | |
| #endif
 | |
| #ifdef CONFIG_RT_GROUP_SCHED
 | |
| 	{
 | |
| 		.name = "rt_runtime_us",
 | |
| 		.read_s64 = cpu_rt_runtime_read,
 | |
| 		.write_s64 = cpu_rt_runtime_write,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "rt_period_us",
 | |
| 		.read_u64 = cpu_rt_period_read_uint,
 | |
| 		.write_u64 = cpu_rt_period_write_uint,
 | |
| 	},
 | |
| #endif
 | |
| };
 | |
| 
 | |
| static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
 | |
| {
 | |
| 	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
 | |
| }
 | |
| 
 | |
| struct cgroup_subsys cpu_cgroup_subsys = {
 | |
| 	.name		= "cpu",
 | |
| 	.create		= cpu_cgroup_create,
 | |
| 	.destroy	= cpu_cgroup_destroy,
 | |
| 	.can_attach_task = cpu_cgroup_can_attach_task,
 | |
| 	.attach_task	= cpu_cgroup_attach_task,
 | |
| 	.exit		= cpu_cgroup_exit,
 | |
| 	.populate	= cpu_cgroup_populate,
 | |
| 	.subsys_id	= cpu_cgroup_subsys_id,
 | |
| 	.early_init	= 1,
 | |
| };
 | |
| 
 | |
| #endif	/* CONFIG_CGROUP_SCHED */
 | |
| 
 | |
| #ifdef CONFIG_CGROUP_CPUACCT
 | |
| 
 | |
| /*
 | |
|  * CPU accounting code for task groups.
 | |
|  *
 | |
|  * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 | |
|  * (balbir@in.ibm.com).
 | |
|  */
 | |
| 
 | |
| /* track cpu usage of a group of tasks and its child groups */
 | |
| struct cpuacct {
 | |
| 	struct cgroup_subsys_state css;
 | |
| 	/* cpuusage holds pointer to a u64-type object on every cpu */
 | |
| 	u64 __percpu *cpuusage;
 | |
| 	struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
 | |
| 	struct cpuacct *parent;
 | |
| };
 | |
| 
 | |
| struct cgroup_subsys cpuacct_subsys;
 | |
| 
 | |
| /* return cpu accounting group corresponding to this container */
 | |
| static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
 | |
| {
 | |
| 	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
 | |
| 			    struct cpuacct, css);
 | |
| }
 | |
| 
 | |
| /* return cpu accounting group to which this task belongs */
 | |
| static inline struct cpuacct *task_ca(struct task_struct *tsk)
 | |
| {
 | |
| 	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
 | |
| 			    struct cpuacct, css);
 | |
| }
 | |
| 
 | |
| /* create a new cpu accounting group */
 | |
| static struct cgroup_subsys_state *cpuacct_create(
 | |
| 	struct cgroup_subsys *ss, struct cgroup *cgrp)
 | |
| {
 | |
| 	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
 | |
| 	int i;
 | |
| 
 | |
| 	if (!ca)
 | |
| 		goto out;
 | |
| 
 | |
| 	ca->cpuusage = alloc_percpu(u64);
 | |
| 	if (!ca->cpuusage)
 | |
| 		goto out_free_ca;
 | |
| 
 | |
| 	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
 | |
| 		if (percpu_counter_init(&ca->cpustat[i], 0))
 | |
| 			goto out_free_counters;
 | |
| 
 | |
| 	if (cgrp->parent)
 | |
| 		ca->parent = cgroup_ca(cgrp->parent);
 | |
| 
 | |
| 	return &ca->css;
 | |
| 
 | |
| out_free_counters:
 | |
| 	while (--i >= 0)
 | |
| 		percpu_counter_destroy(&ca->cpustat[i]);
 | |
| 	free_percpu(ca->cpuusage);
 | |
| out_free_ca:
 | |
| 	kfree(ca);
 | |
| out:
 | |
| 	return ERR_PTR(-ENOMEM);
 | |
| }
 | |
| 
 | |
| /* destroy an existing cpu accounting group */
 | |
| static void
 | |
| cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
 | |
| {
 | |
| 	struct cpuacct *ca = cgroup_ca(cgrp);
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
 | |
| 		percpu_counter_destroy(&ca->cpustat[i]);
 | |
| 	free_percpu(ca->cpuusage);
 | |
| 	kfree(ca);
 | |
| }
 | |
| 
 | |
| static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
 | |
| {
 | |
| 	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
 | |
| 	u64 data;
 | |
| 
 | |
| #ifndef CONFIG_64BIT
 | |
| 	/*
 | |
| 	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
 | |
| 	 */
 | |
| 	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
 | |
| 	data = *cpuusage;
 | |
| 	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
 | |
| #else
 | |
| 	data = *cpuusage;
 | |
| #endif
 | |
| 
 | |
| 	return data;
 | |
| }
 | |
| 
 | |
| static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
 | |
| {
 | |
| 	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
 | |
| 
 | |
| #ifndef CONFIG_64BIT
 | |
| 	/*
 | |
| 	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
 | |
| 	 */
 | |
| 	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
 | |
| 	*cpuusage = val;
 | |
| 	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
 | |
| #else
 | |
| 	*cpuusage = val;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* return total cpu usage (in nanoseconds) of a group */
 | |
| static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
 | |
| {
 | |
| 	struct cpuacct *ca = cgroup_ca(cgrp);
 | |
| 	u64 totalcpuusage = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	for_each_present_cpu(i)
 | |
| 		totalcpuusage += cpuacct_cpuusage_read(ca, i);
 | |
| 
 | |
| 	return totalcpuusage;
 | |
| }
 | |
| 
 | |
| static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
 | |
| 								u64 reset)
 | |
| {
 | |
| 	struct cpuacct *ca = cgroup_ca(cgrp);
 | |
| 	int err = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	if (reset) {
 | |
| 		err = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	for_each_present_cpu(i)
 | |
| 		cpuacct_cpuusage_write(ca, i, 0);
 | |
| 
 | |
| out:
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
 | |
| 				   struct seq_file *m)
 | |
| {
 | |
| 	struct cpuacct *ca = cgroup_ca(cgroup);
 | |
| 	u64 percpu;
 | |
| 	int i;
 | |
| 
 | |
| 	for_each_present_cpu(i) {
 | |
| 		percpu = cpuacct_cpuusage_read(ca, i);
 | |
| 		seq_printf(m, "%llu ", (unsigned long long) percpu);
 | |
| 	}
 | |
| 	seq_printf(m, "\n");
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const char *cpuacct_stat_desc[] = {
 | |
| 	[CPUACCT_STAT_USER] = "user",
 | |
| 	[CPUACCT_STAT_SYSTEM] = "system",
 | |
| };
 | |
| 
 | |
| static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
 | |
| 		struct cgroup_map_cb *cb)
 | |
| {
 | |
| 	struct cpuacct *ca = cgroup_ca(cgrp);
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
 | |
| 		s64 val = percpu_counter_read(&ca->cpustat[i]);
 | |
| 		val = cputime64_to_clock_t(val);
 | |
| 		cb->fill(cb, cpuacct_stat_desc[i], val);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct cftype files[] = {
 | |
| 	{
 | |
| 		.name = "usage",
 | |
| 		.read_u64 = cpuusage_read,
 | |
| 		.write_u64 = cpuusage_write,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "usage_percpu",
 | |
| 		.read_seq_string = cpuacct_percpu_seq_read,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "stat",
 | |
| 		.read_map = cpuacct_stats_show,
 | |
| 	},
 | |
| };
 | |
| 
 | |
| static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
 | |
| {
 | |
| 	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * charge this task's execution time to its accounting group.
 | |
|  *
 | |
|  * called with rq->lock held.
 | |
|  */
 | |
| static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
 | |
| {
 | |
| 	struct cpuacct *ca;
 | |
| 	int cpu;
 | |
| 
 | |
| 	if (unlikely(!cpuacct_subsys.active))
 | |
| 		return;
 | |
| 
 | |
| 	cpu = task_cpu(tsk);
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 
 | |
| 	ca = task_ca(tsk);
 | |
| 
 | |
| 	for (; ca; ca = ca->parent) {
 | |
| 		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
 | |
| 		*cpuusage += cputime;
 | |
| 	}
 | |
| 
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
 | |
|  * in cputime_t units. As a result, cpuacct_update_stats calls
 | |
|  * percpu_counter_add with values large enough to always overflow the
 | |
|  * per cpu batch limit causing bad SMP scalability.
 | |
|  *
 | |
|  * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
 | |
|  * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
 | |
|  * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
 | |
|  */
 | |
| #ifdef CONFIG_SMP
 | |
| #define CPUACCT_BATCH	\
 | |
| 	min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
 | |
| #else
 | |
| #define CPUACCT_BATCH	0
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Charge the system/user time to the task's accounting group.
 | |
|  */
 | |
| static void cpuacct_update_stats(struct task_struct *tsk,
 | |
| 		enum cpuacct_stat_index idx, cputime_t val)
 | |
| {
 | |
| 	struct cpuacct *ca;
 | |
| 	int batch = CPUACCT_BATCH;
 | |
| 
 | |
| 	if (unlikely(!cpuacct_subsys.active))
 | |
| 		return;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	ca = task_ca(tsk);
 | |
| 
 | |
| 	do {
 | |
| 		__percpu_counter_add(&ca->cpustat[idx], val, batch);
 | |
| 		ca = ca->parent;
 | |
| 	} while (ca);
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| struct cgroup_subsys cpuacct_subsys = {
 | |
| 	.name = "cpuacct",
 | |
| 	.create = cpuacct_create,
 | |
| 	.destroy = cpuacct_destroy,
 | |
| 	.populate = cpuacct_populate,
 | |
| 	.subsys_id = cpuacct_subsys_id,
 | |
| };
 | |
| #endif	/* CONFIG_CGROUP_CPUACCT */
 | |
| 
 |