The reset value of the uSOF cycle period is incorrect. Set it to 60,000 bits. Without this, several commercial USB flash memory devices and hubs fail to work properly. Signed-off-by: David Daney <ddaney@caviumnetworks.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
		
			
				
	
	
		
			200 lines
		
	
	
	
		
			4.9 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			200 lines
		
	
	
	
		
			4.9 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * This file is subject to the terms and conditions of the GNU General Public
 | 
						|
 * License.  See the file "COPYING" in the main directory of this archive
 | 
						|
 * for more details.
 | 
						|
 *
 | 
						|
 * Copyright (C) 2010, 2011 Cavium Networks
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/module.h>
 | 
						|
#include <linux/mutex.h>
 | 
						|
#include <linux/delay.h>
 | 
						|
 | 
						|
#include <asm/octeon/octeon.h>
 | 
						|
#include <asm/octeon/cvmx-uctlx-defs.h>
 | 
						|
 | 
						|
static DEFINE_MUTEX(octeon2_usb_clocks_mutex);
 | 
						|
 | 
						|
static int octeon2_usb_clock_start_cnt;
 | 
						|
 | 
						|
void octeon2_usb_clocks_start(void)
 | 
						|
{
 | 
						|
	u64 div;
 | 
						|
	union cvmx_uctlx_if_ena if_ena;
 | 
						|
	union cvmx_uctlx_clk_rst_ctl clk_rst_ctl;
 | 
						|
	union cvmx_uctlx_uphy_ctl_status uphy_ctl_status;
 | 
						|
	union cvmx_uctlx_uphy_portx_ctl_status port_ctl_status;
 | 
						|
	int i;
 | 
						|
	unsigned long io_clk_64_to_ns;
 | 
						|
 | 
						|
 | 
						|
	mutex_lock(&octeon2_usb_clocks_mutex);
 | 
						|
 | 
						|
	octeon2_usb_clock_start_cnt++;
 | 
						|
	if (octeon2_usb_clock_start_cnt != 1)
 | 
						|
		goto exit;
 | 
						|
 | 
						|
	io_clk_64_to_ns = 64000000000ull / octeon_get_io_clock_rate();
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Step 1: Wait for voltages stable.  That surely happened
 | 
						|
	 * before starting the kernel.
 | 
						|
	 *
 | 
						|
	 * Step 2: Enable  SCLK of UCTL by writing UCTL0_IF_ENA[EN] = 1
 | 
						|
	 */
 | 
						|
	if_ena.u64 = 0;
 | 
						|
	if_ena.s.en = 1;
 | 
						|
	cvmx_write_csr(CVMX_UCTLX_IF_ENA(0), if_ena.u64);
 | 
						|
 | 
						|
	/* Step 3: Configure the reference clock, PHY, and HCLK */
 | 
						|
	clk_rst_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_CLK_RST_CTL(0));
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the UCTL looks like it has already been started, skip
 | 
						|
	 * the initialization, otherwise bus errors are obtained.
 | 
						|
	 */
 | 
						|
	if (clk_rst_ctl.s.hrst)
 | 
						|
		goto end_clock;
 | 
						|
	/* 3a */
 | 
						|
	clk_rst_ctl.s.p_por = 1;
 | 
						|
	clk_rst_ctl.s.hrst = 0;
 | 
						|
	clk_rst_ctl.s.p_prst = 0;
 | 
						|
	clk_rst_ctl.s.h_clkdiv_rst = 0;
 | 
						|
	clk_rst_ctl.s.o_clkdiv_rst = 0;
 | 
						|
	clk_rst_ctl.s.h_clkdiv_en = 0;
 | 
						|
	clk_rst_ctl.s.o_clkdiv_en = 0;
 | 
						|
	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
 | 
						|
 | 
						|
	/* 3b */
 | 
						|
	/* 12MHz crystal. */
 | 
						|
	clk_rst_ctl.s.p_refclk_sel = 0;
 | 
						|
	clk_rst_ctl.s.p_refclk_div = 0;
 | 
						|
	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
 | 
						|
 | 
						|
	/* 3c */
 | 
						|
	div = octeon_get_io_clock_rate() / 130000000ull;
 | 
						|
 | 
						|
	switch (div) {
 | 
						|
	case 0:
 | 
						|
		div = 1;
 | 
						|
		break;
 | 
						|
	case 1:
 | 
						|
	case 2:
 | 
						|
	case 3:
 | 
						|
	case 4:
 | 
						|
		break;
 | 
						|
	case 5:
 | 
						|
		div = 4;
 | 
						|
		break;
 | 
						|
	case 6:
 | 
						|
	case 7:
 | 
						|
		div = 6;
 | 
						|
		break;
 | 
						|
	case 8:
 | 
						|
	case 9:
 | 
						|
	case 10:
 | 
						|
	case 11:
 | 
						|
		div = 8;
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		div = 12;
 | 
						|
		break;
 | 
						|
	}
 | 
						|
	clk_rst_ctl.s.h_div = div;
 | 
						|
	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
 | 
						|
	/* Read it back, */
 | 
						|
	clk_rst_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_CLK_RST_CTL(0));
 | 
						|
	clk_rst_ctl.s.h_clkdiv_en = 1;
 | 
						|
	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
 | 
						|
	/* 3d */
 | 
						|
	clk_rst_ctl.s.h_clkdiv_rst = 1;
 | 
						|
	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
 | 
						|
 | 
						|
	/* 3e: delay 64 io clocks */
 | 
						|
	ndelay(io_clk_64_to_ns);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Step 4: Program the power-on reset field in the UCTL
 | 
						|
	 * clock-reset-control register.
 | 
						|
	 */
 | 
						|
	clk_rst_ctl.s.p_por = 0;
 | 
						|
	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
 | 
						|
 | 
						|
	/* Step 5:    Wait 1 ms for the PHY clock to start. */
 | 
						|
	mdelay(1);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Step 6: Program the reset input from automatic test
 | 
						|
	 * equipment field in the UPHY CSR
 | 
						|
	 */
 | 
						|
	uphy_ctl_status.u64 = cvmx_read_csr(CVMX_UCTLX_UPHY_CTL_STATUS(0));
 | 
						|
	uphy_ctl_status.s.ate_reset = 1;
 | 
						|
	cvmx_write_csr(CVMX_UCTLX_UPHY_CTL_STATUS(0), uphy_ctl_status.u64);
 | 
						|
 | 
						|
	/* Step 7: Wait for at least 10ns. */
 | 
						|
	ndelay(10);
 | 
						|
 | 
						|
	/* Step 8: Clear the ATE_RESET field in the UPHY CSR. */
 | 
						|
	uphy_ctl_status.s.ate_reset = 0;
 | 
						|
	cvmx_write_csr(CVMX_UCTLX_UPHY_CTL_STATUS(0), uphy_ctl_status.u64);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Step 9: Wait for at least 20ns for UPHY to output PHY clock
 | 
						|
	 * signals and OHCI_CLK48
 | 
						|
	 */
 | 
						|
	ndelay(20);
 | 
						|
 | 
						|
	/* Step 10: Configure the OHCI_CLK48 and OHCI_CLK12 clocks. */
 | 
						|
	/* 10a */
 | 
						|
	clk_rst_ctl.s.o_clkdiv_rst = 1;
 | 
						|
	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
 | 
						|
 | 
						|
	/* 10b */
 | 
						|
	clk_rst_ctl.s.o_clkdiv_en = 1;
 | 
						|
	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
 | 
						|
 | 
						|
	/* 10c */
 | 
						|
	ndelay(io_clk_64_to_ns);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Step 11: Program the PHY reset field:
 | 
						|
	 * UCTL0_CLK_RST_CTL[P_PRST] = 1
 | 
						|
	 */
 | 
						|
	clk_rst_ctl.s.p_prst = 1;
 | 
						|
	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
 | 
						|
 | 
						|
	/* Step 12: Wait 1 uS. */
 | 
						|
	udelay(1);
 | 
						|
 | 
						|
	/* Step 13: Program the HRESET_N field: UCTL0_CLK_RST_CTL[HRST] = 1 */
 | 
						|
	clk_rst_ctl.s.hrst = 1;
 | 
						|
	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
 | 
						|
 | 
						|
end_clock:
 | 
						|
	/* Now we can set some other registers.  */
 | 
						|
 | 
						|
	for (i = 0; i <= 1; i++) {
 | 
						|
		port_ctl_status.u64 =
 | 
						|
			cvmx_read_csr(CVMX_UCTLX_UPHY_PORTX_CTL_STATUS(i, 0));
 | 
						|
		/* Set txvreftune to 15 to obtain compliant 'eye' diagram. */
 | 
						|
		port_ctl_status.s.txvreftune = 15;
 | 
						|
		port_ctl_status.s.txrisetune = 1;
 | 
						|
		port_ctl_status.s.txpreemphasistune = 1;
 | 
						|
		cvmx_write_csr(CVMX_UCTLX_UPHY_PORTX_CTL_STATUS(i, 0),
 | 
						|
			       port_ctl_status.u64);
 | 
						|
	}
 | 
						|
 | 
						|
	/* Set uSOF cycle period to 60,000 bits. */
 | 
						|
	cvmx_write_csr(CVMX_UCTLX_EHCI_FLA(0), 0x20ull);
 | 
						|
exit:
 | 
						|
	mutex_unlock(&octeon2_usb_clocks_mutex);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(octeon2_usb_clocks_start);
 | 
						|
 | 
						|
void octeon2_usb_clocks_stop(void)
 | 
						|
{
 | 
						|
	mutex_lock(&octeon2_usb_clocks_mutex);
 | 
						|
	octeon2_usb_clock_start_cnt--;
 | 
						|
	mutex_unlock(&octeon2_usb_clocks_mutex);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(octeon2_usb_clocks_stop);
 |