 5166ab0655
			
		
	
	
	5166ab0655
	
	
	
		
			
			Make use of XFS_SB_LOG_RES() at xfs_mount_log_sb(). Signed-off-by: Jie Liu <jeff.liu@oracle.com> CC: Dave Chinner <david@fromorbit.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
		
			
				
	
	
		
			2545 lines
		
	
	
	
		
			66 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2545 lines
		
	
	
	
		
			66 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
 | |
|  * All Rights Reserved.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License as
 | |
|  * published by the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope that it would be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write the Free Software Foundation,
 | |
|  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 | |
|  */
 | |
| #include "xfs.h"
 | |
| #include "xfs_fs.h"
 | |
| #include "xfs_types.h"
 | |
| #include "xfs_bit.h"
 | |
| #include "xfs_log.h"
 | |
| #include "xfs_inum.h"
 | |
| #include "xfs_trans.h"
 | |
| #include "xfs_trans_priv.h"
 | |
| #include "xfs_sb.h"
 | |
| #include "xfs_ag.h"
 | |
| #include "xfs_dir2.h"
 | |
| #include "xfs_mount.h"
 | |
| #include "xfs_bmap_btree.h"
 | |
| #include "xfs_alloc_btree.h"
 | |
| #include "xfs_ialloc_btree.h"
 | |
| #include "xfs_dinode.h"
 | |
| #include "xfs_inode.h"
 | |
| #include "xfs_btree.h"
 | |
| #include "xfs_ialloc.h"
 | |
| #include "xfs_alloc.h"
 | |
| #include "xfs_rtalloc.h"
 | |
| #include "xfs_bmap.h"
 | |
| #include "xfs_error.h"
 | |
| #include "xfs_quota.h"
 | |
| #include "xfs_fsops.h"
 | |
| #include "xfs_utils.h"
 | |
| #include "xfs_trace.h"
 | |
| #include "xfs_icache.h"
 | |
| 
 | |
| 
 | |
| #ifdef HAVE_PERCPU_SB
 | |
| STATIC void	xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
 | |
| 						int);
 | |
| STATIC void	xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t,
 | |
| 						int);
 | |
| STATIC void	xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
 | |
| #else
 | |
| 
 | |
| #define xfs_icsb_balance_counter(mp, a, b)		do { } while (0)
 | |
| #define xfs_icsb_balance_counter_locked(mp, a, b)	do { } while (0)
 | |
| #endif
 | |
| 
 | |
| static const struct {
 | |
| 	short offset;
 | |
| 	short type;	/* 0 = integer
 | |
| 			 * 1 = binary / string (no translation)
 | |
| 			 */
 | |
| } xfs_sb_info[] = {
 | |
|     { offsetof(xfs_sb_t, sb_magicnum),   0 },
 | |
|     { offsetof(xfs_sb_t, sb_blocksize),  0 },
 | |
|     { offsetof(xfs_sb_t, sb_dblocks),    0 },
 | |
|     { offsetof(xfs_sb_t, sb_rblocks),    0 },
 | |
|     { offsetof(xfs_sb_t, sb_rextents),   0 },
 | |
|     { offsetof(xfs_sb_t, sb_uuid),       1 },
 | |
|     { offsetof(xfs_sb_t, sb_logstart),   0 },
 | |
|     { offsetof(xfs_sb_t, sb_rootino),    0 },
 | |
|     { offsetof(xfs_sb_t, sb_rbmino),     0 },
 | |
|     { offsetof(xfs_sb_t, sb_rsumino),    0 },
 | |
|     { offsetof(xfs_sb_t, sb_rextsize),   0 },
 | |
|     { offsetof(xfs_sb_t, sb_agblocks),   0 },
 | |
|     { offsetof(xfs_sb_t, sb_agcount),    0 },
 | |
|     { offsetof(xfs_sb_t, sb_rbmblocks),  0 },
 | |
|     { offsetof(xfs_sb_t, sb_logblocks),  0 },
 | |
|     { offsetof(xfs_sb_t, sb_versionnum), 0 },
 | |
|     { offsetof(xfs_sb_t, sb_sectsize),   0 },
 | |
|     { offsetof(xfs_sb_t, sb_inodesize),  0 },
 | |
|     { offsetof(xfs_sb_t, sb_inopblock),  0 },
 | |
|     { offsetof(xfs_sb_t, sb_fname[0]),   1 },
 | |
|     { offsetof(xfs_sb_t, sb_blocklog),   0 },
 | |
|     { offsetof(xfs_sb_t, sb_sectlog),    0 },
 | |
|     { offsetof(xfs_sb_t, sb_inodelog),   0 },
 | |
|     { offsetof(xfs_sb_t, sb_inopblog),   0 },
 | |
|     { offsetof(xfs_sb_t, sb_agblklog),   0 },
 | |
|     { offsetof(xfs_sb_t, sb_rextslog),   0 },
 | |
|     { offsetof(xfs_sb_t, sb_inprogress), 0 },
 | |
|     { offsetof(xfs_sb_t, sb_imax_pct),   0 },
 | |
|     { offsetof(xfs_sb_t, sb_icount),     0 },
 | |
|     { offsetof(xfs_sb_t, sb_ifree),      0 },
 | |
|     { offsetof(xfs_sb_t, sb_fdblocks),   0 },
 | |
|     { offsetof(xfs_sb_t, sb_frextents),  0 },
 | |
|     { offsetof(xfs_sb_t, sb_uquotino),   0 },
 | |
|     { offsetof(xfs_sb_t, sb_gquotino),   0 },
 | |
|     { offsetof(xfs_sb_t, sb_qflags),     0 },
 | |
|     { offsetof(xfs_sb_t, sb_flags),      0 },
 | |
|     { offsetof(xfs_sb_t, sb_shared_vn),  0 },
 | |
|     { offsetof(xfs_sb_t, sb_inoalignmt), 0 },
 | |
|     { offsetof(xfs_sb_t, sb_unit),	 0 },
 | |
|     { offsetof(xfs_sb_t, sb_width),	 0 },
 | |
|     { offsetof(xfs_sb_t, sb_dirblklog),	 0 },
 | |
|     { offsetof(xfs_sb_t, sb_logsectlog), 0 },
 | |
|     { offsetof(xfs_sb_t, sb_logsectsize),0 },
 | |
|     { offsetof(xfs_sb_t, sb_logsunit),	 0 },
 | |
|     { offsetof(xfs_sb_t, sb_features2),	 0 },
 | |
|     { offsetof(xfs_sb_t, sb_bad_features2), 0 },
 | |
|     { sizeof(xfs_sb_t),			 0 }
 | |
| };
 | |
| 
 | |
| static DEFINE_MUTEX(xfs_uuid_table_mutex);
 | |
| static int xfs_uuid_table_size;
 | |
| static uuid_t *xfs_uuid_table;
 | |
| 
 | |
| /*
 | |
|  * See if the UUID is unique among mounted XFS filesystems.
 | |
|  * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
 | |
|  */
 | |
| STATIC int
 | |
| xfs_uuid_mount(
 | |
| 	struct xfs_mount	*mp)
 | |
| {
 | |
| 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
 | |
| 	int			hole, i;
 | |
| 
 | |
| 	if (mp->m_flags & XFS_MOUNT_NOUUID)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (uuid_is_nil(uuid)) {
 | |
| 		xfs_warn(mp, "Filesystem has nil UUID - can't mount");
 | |
| 		return XFS_ERROR(EINVAL);
 | |
| 	}
 | |
| 
 | |
| 	mutex_lock(&xfs_uuid_table_mutex);
 | |
| 	for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
 | |
| 		if (uuid_is_nil(&xfs_uuid_table[i])) {
 | |
| 			hole = i;
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (uuid_equal(uuid, &xfs_uuid_table[i]))
 | |
| 			goto out_duplicate;
 | |
| 	}
 | |
| 
 | |
| 	if (hole < 0) {
 | |
| 		xfs_uuid_table = kmem_realloc(xfs_uuid_table,
 | |
| 			(xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
 | |
| 			xfs_uuid_table_size  * sizeof(*xfs_uuid_table),
 | |
| 			KM_SLEEP);
 | |
| 		hole = xfs_uuid_table_size++;
 | |
| 	}
 | |
| 	xfs_uuid_table[hole] = *uuid;
 | |
| 	mutex_unlock(&xfs_uuid_table_mutex);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
|  out_duplicate:
 | |
| 	mutex_unlock(&xfs_uuid_table_mutex);
 | |
| 	xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
 | |
| 	return XFS_ERROR(EINVAL);
 | |
| }
 | |
| 
 | |
| STATIC void
 | |
| xfs_uuid_unmount(
 | |
| 	struct xfs_mount	*mp)
 | |
| {
 | |
| 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
 | |
| 	int			i;
 | |
| 
 | |
| 	if (mp->m_flags & XFS_MOUNT_NOUUID)
 | |
| 		return;
 | |
| 
 | |
| 	mutex_lock(&xfs_uuid_table_mutex);
 | |
| 	for (i = 0; i < xfs_uuid_table_size; i++) {
 | |
| 		if (uuid_is_nil(&xfs_uuid_table[i]))
 | |
| 			continue;
 | |
| 		if (!uuid_equal(uuid, &xfs_uuid_table[i]))
 | |
| 			continue;
 | |
| 		memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
 | |
| 		break;
 | |
| 	}
 | |
| 	ASSERT(i < xfs_uuid_table_size);
 | |
| 	mutex_unlock(&xfs_uuid_table_mutex);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Reference counting access wrappers to the perag structures.
 | |
|  * Because we never free per-ag structures, the only thing we
 | |
|  * have to protect against changes is the tree structure itself.
 | |
|  */
 | |
| struct xfs_perag *
 | |
| xfs_perag_get(struct xfs_mount *mp, xfs_agnumber_t agno)
 | |
| {
 | |
| 	struct xfs_perag	*pag;
 | |
| 	int			ref = 0;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	pag = radix_tree_lookup(&mp->m_perag_tree, agno);
 | |
| 	if (pag) {
 | |
| 		ASSERT(atomic_read(&pag->pag_ref) >= 0);
 | |
| 		ref = atomic_inc_return(&pag->pag_ref);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 	trace_xfs_perag_get(mp, agno, ref, _RET_IP_);
 | |
| 	return pag;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * search from @first to find the next perag with the given tag set.
 | |
|  */
 | |
| struct xfs_perag *
 | |
| xfs_perag_get_tag(
 | |
| 	struct xfs_mount	*mp,
 | |
| 	xfs_agnumber_t		first,
 | |
| 	int			tag)
 | |
| {
 | |
| 	struct xfs_perag	*pag;
 | |
| 	int			found;
 | |
| 	int			ref;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	found = radix_tree_gang_lookup_tag(&mp->m_perag_tree,
 | |
| 					(void **)&pag, first, 1, tag);
 | |
| 	if (found <= 0) {
 | |
| 		rcu_read_unlock();
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	ref = atomic_inc_return(&pag->pag_ref);
 | |
| 	rcu_read_unlock();
 | |
| 	trace_xfs_perag_get_tag(mp, pag->pag_agno, ref, _RET_IP_);
 | |
| 	return pag;
 | |
| }
 | |
| 
 | |
| void
 | |
| xfs_perag_put(struct xfs_perag *pag)
 | |
| {
 | |
| 	int	ref;
 | |
| 
 | |
| 	ASSERT(atomic_read(&pag->pag_ref) > 0);
 | |
| 	ref = atomic_dec_return(&pag->pag_ref);
 | |
| 	trace_xfs_perag_put(pag->pag_mount, pag->pag_agno, ref, _RET_IP_);
 | |
| }
 | |
| 
 | |
| STATIC void
 | |
| __xfs_free_perag(
 | |
| 	struct rcu_head	*head)
 | |
| {
 | |
| 	struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
 | |
| 
 | |
| 	ASSERT(atomic_read(&pag->pag_ref) == 0);
 | |
| 	kmem_free(pag);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Free up the per-ag resources associated with the mount structure.
 | |
|  */
 | |
| STATIC void
 | |
| xfs_free_perag(
 | |
| 	xfs_mount_t	*mp)
 | |
| {
 | |
| 	xfs_agnumber_t	agno;
 | |
| 	struct xfs_perag *pag;
 | |
| 
 | |
| 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
 | |
| 		spin_lock(&mp->m_perag_lock);
 | |
| 		pag = radix_tree_delete(&mp->m_perag_tree, agno);
 | |
| 		spin_unlock(&mp->m_perag_lock);
 | |
| 		ASSERT(pag);
 | |
| 		ASSERT(atomic_read(&pag->pag_ref) == 0);
 | |
| 		call_rcu(&pag->rcu_head, __xfs_free_perag);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check size of device based on the (data/realtime) block count.
 | |
|  * Note: this check is used by the growfs code as well as mount.
 | |
|  */
 | |
| int
 | |
| xfs_sb_validate_fsb_count(
 | |
| 	xfs_sb_t	*sbp,
 | |
| 	__uint64_t	nblocks)
 | |
| {
 | |
| 	ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
 | |
| 	ASSERT(sbp->sb_blocklog >= BBSHIFT);
 | |
| 
 | |
| #if XFS_BIG_BLKNOS     /* Limited by ULONG_MAX of page cache index */
 | |
| 	if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
 | |
| 		return EFBIG;
 | |
| #else                  /* Limited by UINT_MAX of sectors */
 | |
| 	if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX)
 | |
| 		return EFBIG;
 | |
| #endif
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check the validity of the SB found.
 | |
|  */
 | |
| STATIC int
 | |
| xfs_mount_validate_sb(
 | |
| 	xfs_mount_t	*mp,
 | |
| 	xfs_sb_t	*sbp,
 | |
| 	bool		check_inprogress)
 | |
| {
 | |
| 
 | |
| 	/*
 | |
| 	 * If the log device and data device have the
 | |
| 	 * same device number, the log is internal.
 | |
| 	 * Consequently, the sb_logstart should be non-zero.  If
 | |
| 	 * we have a zero sb_logstart in this case, we may be trying to mount
 | |
| 	 * a volume filesystem in a non-volume manner.
 | |
| 	 */
 | |
| 	if (sbp->sb_magicnum != XFS_SB_MAGIC) {
 | |
| 		xfs_warn(mp, "bad magic number");
 | |
| 		return XFS_ERROR(EWRONGFS);
 | |
| 	}
 | |
| 
 | |
| 	if (!xfs_sb_good_version(sbp)) {
 | |
| 		xfs_warn(mp, "bad version");
 | |
| 		return XFS_ERROR(EWRONGFS);
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(
 | |
| 	    sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) {
 | |
| 		xfs_warn(mp,
 | |
| 		"filesystem is marked as having an external log; "
 | |
| 		"specify logdev on the mount command line.");
 | |
| 		return XFS_ERROR(EINVAL);
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(
 | |
| 	    sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) {
 | |
| 		xfs_warn(mp,
 | |
| 		"filesystem is marked as having an internal log; "
 | |
| 		"do not specify logdev on the mount command line.");
 | |
| 		return XFS_ERROR(EINVAL);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * More sanity checking.  Most of these were stolen directly from
 | |
| 	 * xfs_repair.
 | |
| 	 */
 | |
| 	if (unlikely(
 | |
| 	    sbp->sb_agcount <= 0					||
 | |
| 	    sbp->sb_sectsize < XFS_MIN_SECTORSIZE			||
 | |
| 	    sbp->sb_sectsize > XFS_MAX_SECTORSIZE			||
 | |
| 	    sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG			||
 | |
| 	    sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG			||
 | |
| 	    sbp->sb_sectsize != (1 << sbp->sb_sectlog)			||
 | |
| 	    sbp->sb_blocksize < XFS_MIN_BLOCKSIZE			||
 | |
| 	    sbp->sb_blocksize > XFS_MAX_BLOCKSIZE			||
 | |
| 	    sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG			||
 | |
| 	    sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG			||
 | |
| 	    sbp->sb_blocksize != (1 << sbp->sb_blocklog)		||
 | |
| 	    sbp->sb_inodesize < XFS_DINODE_MIN_SIZE			||
 | |
| 	    sbp->sb_inodesize > XFS_DINODE_MAX_SIZE			||
 | |
| 	    sbp->sb_inodelog < XFS_DINODE_MIN_LOG			||
 | |
| 	    sbp->sb_inodelog > XFS_DINODE_MAX_LOG			||
 | |
| 	    sbp->sb_inodesize != (1 << sbp->sb_inodelog)		||
 | |
| 	    (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog)	||
 | |
| 	    (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE)	||
 | |
| 	    (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE)	||
 | |
| 	    (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */)	||
 | |
| 	    sbp->sb_dblocks == 0					||
 | |
| 	    sbp->sb_dblocks > XFS_MAX_DBLOCKS(sbp)			||
 | |
| 	    sbp->sb_dblocks < XFS_MIN_DBLOCKS(sbp))) {
 | |
| 		XFS_CORRUPTION_ERROR("SB sanity check failed",
 | |
| 				XFS_ERRLEVEL_LOW, mp, sbp);
 | |
| 		return XFS_ERROR(EFSCORRUPTED);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Until this is fixed only page-sized or smaller data blocks work.
 | |
| 	 */
 | |
| 	if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) {
 | |
| 		xfs_warn(mp,
 | |
| 		"File system with blocksize %d bytes. "
 | |
| 		"Only pagesize (%ld) or less will currently work.",
 | |
| 				sbp->sb_blocksize, PAGE_SIZE);
 | |
| 		return XFS_ERROR(ENOSYS);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Currently only very few inode sizes are supported.
 | |
| 	 */
 | |
| 	switch (sbp->sb_inodesize) {
 | |
| 	case 256:
 | |
| 	case 512:
 | |
| 	case 1024:
 | |
| 	case 2048:
 | |
| 		break;
 | |
| 	default:
 | |
| 		xfs_warn(mp, "inode size of %d bytes not supported",
 | |
| 				sbp->sb_inodesize);
 | |
| 		return XFS_ERROR(ENOSYS);
 | |
| 	}
 | |
| 
 | |
| 	if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) ||
 | |
| 	    xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) {
 | |
| 		xfs_warn(mp,
 | |
| 		"file system too large to be mounted on this system.");
 | |
| 		return XFS_ERROR(EFBIG);
 | |
| 	}
 | |
| 
 | |
| 	if (check_inprogress && sbp->sb_inprogress) {
 | |
| 		xfs_warn(mp, "Offline file system operation in progress!");
 | |
| 		return XFS_ERROR(EFSCORRUPTED);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Version 1 directory format has never worked on Linux.
 | |
| 	 */
 | |
| 	if (unlikely(!xfs_sb_version_hasdirv2(sbp))) {
 | |
| 		xfs_warn(mp, "file system using version 1 directory format");
 | |
| 		return XFS_ERROR(ENOSYS);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int
 | |
| xfs_initialize_perag(
 | |
| 	xfs_mount_t	*mp,
 | |
| 	xfs_agnumber_t	agcount,
 | |
| 	xfs_agnumber_t	*maxagi)
 | |
| {
 | |
| 	xfs_agnumber_t	index;
 | |
| 	xfs_agnumber_t	first_initialised = 0;
 | |
| 	xfs_perag_t	*pag;
 | |
| 	xfs_agino_t	agino;
 | |
| 	xfs_ino_t	ino;
 | |
| 	xfs_sb_t	*sbp = &mp->m_sb;
 | |
| 	int		error = -ENOMEM;
 | |
| 
 | |
| 	/*
 | |
| 	 * Walk the current per-ag tree so we don't try to initialise AGs
 | |
| 	 * that already exist (growfs case). Allocate and insert all the
 | |
| 	 * AGs we don't find ready for initialisation.
 | |
| 	 */
 | |
| 	for (index = 0; index < agcount; index++) {
 | |
| 		pag = xfs_perag_get(mp, index);
 | |
| 		if (pag) {
 | |
| 			xfs_perag_put(pag);
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (!first_initialised)
 | |
| 			first_initialised = index;
 | |
| 
 | |
| 		pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
 | |
| 		if (!pag)
 | |
| 			goto out_unwind;
 | |
| 		pag->pag_agno = index;
 | |
| 		pag->pag_mount = mp;
 | |
| 		spin_lock_init(&pag->pag_ici_lock);
 | |
| 		mutex_init(&pag->pag_ici_reclaim_lock);
 | |
| 		INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
 | |
| 		spin_lock_init(&pag->pag_buf_lock);
 | |
| 		pag->pag_buf_tree = RB_ROOT;
 | |
| 
 | |
| 		if (radix_tree_preload(GFP_NOFS))
 | |
| 			goto out_unwind;
 | |
| 
 | |
| 		spin_lock(&mp->m_perag_lock);
 | |
| 		if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
 | |
| 			BUG();
 | |
| 			spin_unlock(&mp->m_perag_lock);
 | |
| 			radix_tree_preload_end();
 | |
| 			error = -EEXIST;
 | |
| 			goto out_unwind;
 | |
| 		}
 | |
| 		spin_unlock(&mp->m_perag_lock);
 | |
| 		radix_tree_preload_end();
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If we mount with the inode64 option, or no inode overflows
 | |
| 	 * the legacy 32-bit address space clear the inode32 option.
 | |
| 	 */
 | |
| 	agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
 | |
| 	ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
 | |
| 
 | |
| 	if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32)
 | |
| 		mp->m_flags |= XFS_MOUNT_32BITINODES;
 | |
| 	else
 | |
| 		mp->m_flags &= ~XFS_MOUNT_32BITINODES;
 | |
| 
 | |
| 	if (mp->m_flags & XFS_MOUNT_32BITINODES)
 | |
| 		index = xfs_set_inode32(mp);
 | |
| 	else
 | |
| 		index = xfs_set_inode64(mp);
 | |
| 
 | |
| 	if (maxagi)
 | |
| 		*maxagi = index;
 | |
| 	return 0;
 | |
| 
 | |
| out_unwind:
 | |
| 	kmem_free(pag);
 | |
| 	for (; index > first_initialised; index--) {
 | |
| 		pag = radix_tree_delete(&mp->m_perag_tree, index);
 | |
| 		kmem_free(pag);
 | |
| 	}
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| void
 | |
| xfs_sb_from_disk(
 | |
| 	struct xfs_sb	*to,
 | |
| 	xfs_dsb_t	*from)
 | |
| {
 | |
| 	to->sb_magicnum = be32_to_cpu(from->sb_magicnum);
 | |
| 	to->sb_blocksize = be32_to_cpu(from->sb_blocksize);
 | |
| 	to->sb_dblocks = be64_to_cpu(from->sb_dblocks);
 | |
| 	to->sb_rblocks = be64_to_cpu(from->sb_rblocks);
 | |
| 	to->sb_rextents = be64_to_cpu(from->sb_rextents);
 | |
| 	memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid));
 | |
| 	to->sb_logstart = be64_to_cpu(from->sb_logstart);
 | |
| 	to->sb_rootino = be64_to_cpu(from->sb_rootino);
 | |
| 	to->sb_rbmino = be64_to_cpu(from->sb_rbmino);
 | |
| 	to->sb_rsumino = be64_to_cpu(from->sb_rsumino);
 | |
| 	to->sb_rextsize = be32_to_cpu(from->sb_rextsize);
 | |
| 	to->sb_agblocks = be32_to_cpu(from->sb_agblocks);
 | |
| 	to->sb_agcount = be32_to_cpu(from->sb_agcount);
 | |
| 	to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks);
 | |
| 	to->sb_logblocks = be32_to_cpu(from->sb_logblocks);
 | |
| 	to->sb_versionnum = be16_to_cpu(from->sb_versionnum);
 | |
| 	to->sb_sectsize = be16_to_cpu(from->sb_sectsize);
 | |
| 	to->sb_inodesize = be16_to_cpu(from->sb_inodesize);
 | |
| 	to->sb_inopblock = be16_to_cpu(from->sb_inopblock);
 | |
| 	memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname));
 | |
| 	to->sb_blocklog = from->sb_blocklog;
 | |
| 	to->sb_sectlog = from->sb_sectlog;
 | |
| 	to->sb_inodelog = from->sb_inodelog;
 | |
| 	to->sb_inopblog = from->sb_inopblog;
 | |
| 	to->sb_agblklog = from->sb_agblklog;
 | |
| 	to->sb_rextslog = from->sb_rextslog;
 | |
| 	to->sb_inprogress = from->sb_inprogress;
 | |
| 	to->sb_imax_pct = from->sb_imax_pct;
 | |
| 	to->sb_icount = be64_to_cpu(from->sb_icount);
 | |
| 	to->sb_ifree = be64_to_cpu(from->sb_ifree);
 | |
| 	to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks);
 | |
| 	to->sb_frextents = be64_to_cpu(from->sb_frextents);
 | |
| 	to->sb_uquotino = be64_to_cpu(from->sb_uquotino);
 | |
| 	to->sb_gquotino = be64_to_cpu(from->sb_gquotino);
 | |
| 	to->sb_qflags = be16_to_cpu(from->sb_qflags);
 | |
| 	to->sb_flags = from->sb_flags;
 | |
| 	to->sb_shared_vn = from->sb_shared_vn;
 | |
| 	to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt);
 | |
| 	to->sb_unit = be32_to_cpu(from->sb_unit);
 | |
| 	to->sb_width = be32_to_cpu(from->sb_width);
 | |
| 	to->sb_dirblklog = from->sb_dirblklog;
 | |
| 	to->sb_logsectlog = from->sb_logsectlog;
 | |
| 	to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize);
 | |
| 	to->sb_logsunit = be32_to_cpu(from->sb_logsunit);
 | |
| 	to->sb_features2 = be32_to_cpu(from->sb_features2);
 | |
| 	to->sb_bad_features2 = be32_to_cpu(from->sb_bad_features2);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Copy in core superblock to ondisk one.
 | |
|  *
 | |
|  * The fields argument is mask of superblock fields to copy.
 | |
|  */
 | |
| void
 | |
| xfs_sb_to_disk(
 | |
| 	xfs_dsb_t	*to,
 | |
| 	xfs_sb_t	*from,
 | |
| 	__int64_t	fields)
 | |
| {
 | |
| 	xfs_caddr_t	to_ptr = (xfs_caddr_t)to;
 | |
| 	xfs_caddr_t	from_ptr = (xfs_caddr_t)from;
 | |
| 	xfs_sb_field_t	f;
 | |
| 	int		first;
 | |
| 	int		size;
 | |
| 
 | |
| 	ASSERT(fields);
 | |
| 	if (!fields)
 | |
| 		return;
 | |
| 
 | |
| 	while (fields) {
 | |
| 		f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
 | |
| 		first = xfs_sb_info[f].offset;
 | |
| 		size = xfs_sb_info[f + 1].offset - first;
 | |
| 
 | |
| 		ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1);
 | |
| 
 | |
| 		if (size == 1 || xfs_sb_info[f].type == 1) {
 | |
| 			memcpy(to_ptr + first, from_ptr + first, size);
 | |
| 		} else {
 | |
| 			switch (size) {
 | |
| 			case 2:
 | |
| 				*(__be16 *)(to_ptr + first) =
 | |
| 					cpu_to_be16(*(__u16 *)(from_ptr + first));
 | |
| 				break;
 | |
| 			case 4:
 | |
| 				*(__be32 *)(to_ptr + first) =
 | |
| 					cpu_to_be32(*(__u32 *)(from_ptr + first));
 | |
| 				break;
 | |
| 			case 8:
 | |
| 				*(__be64 *)(to_ptr + first) =
 | |
| 					cpu_to_be64(*(__u64 *)(from_ptr + first));
 | |
| 				break;
 | |
| 			default:
 | |
| 				ASSERT(0);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		fields &= ~(1LL << f);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void
 | |
| xfs_sb_verify(
 | |
| 	struct xfs_buf	*bp)
 | |
| {
 | |
| 	struct xfs_mount *mp = bp->b_target->bt_mount;
 | |
| 	struct xfs_sb	sb;
 | |
| 	int		error;
 | |
| 
 | |
| 	xfs_sb_from_disk(&sb, XFS_BUF_TO_SBP(bp));
 | |
| 
 | |
| 	/*
 | |
| 	 * Only check the in progress field for the primary superblock as
 | |
| 	 * mkfs.xfs doesn't clear it from secondary superblocks.
 | |
| 	 */
 | |
| 	error = xfs_mount_validate_sb(mp, &sb, bp->b_bn == XFS_SB_DADDR);
 | |
| 	if (error)
 | |
| 		xfs_buf_ioerror(bp, error);
 | |
| }
 | |
| 
 | |
| static void
 | |
| xfs_sb_read_verify(
 | |
| 	struct xfs_buf	*bp)
 | |
| {
 | |
| 	xfs_sb_verify(bp);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We may be probed for a filesystem match, so we may not want to emit
 | |
|  * messages when the superblock buffer is not actually an XFS superblock.
 | |
|  * If we find an XFS superblock, the run a normal, noisy mount because we are
 | |
|  * really going to mount it and want to know about errors.
 | |
|  */
 | |
| static void
 | |
| xfs_sb_quiet_read_verify(
 | |
| 	struct xfs_buf	*bp)
 | |
| {
 | |
| 	struct xfs_sb	sb;
 | |
| 
 | |
| 	xfs_sb_from_disk(&sb, XFS_BUF_TO_SBP(bp));
 | |
| 
 | |
| 	if (sb.sb_magicnum == XFS_SB_MAGIC) {
 | |
| 		/* XFS filesystem, verify noisily! */
 | |
| 		xfs_sb_read_verify(bp);
 | |
| 		return;
 | |
| 	}
 | |
| 	/* quietly fail */
 | |
| 	xfs_buf_ioerror(bp, EWRONGFS);
 | |
| }
 | |
| 
 | |
| static void
 | |
| xfs_sb_write_verify(
 | |
| 	struct xfs_buf	*bp)
 | |
| {
 | |
| 	xfs_sb_verify(bp);
 | |
| }
 | |
| 
 | |
| const struct xfs_buf_ops xfs_sb_buf_ops = {
 | |
| 	.verify_read = xfs_sb_read_verify,
 | |
| 	.verify_write = xfs_sb_write_verify,
 | |
| };
 | |
| 
 | |
| static const struct xfs_buf_ops xfs_sb_quiet_buf_ops = {
 | |
| 	.verify_read = xfs_sb_quiet_read_verify,
 | |
| 	.verify_write = xfs_sb_write_verify,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * xfs_readsb
 | |
|  *
 | |
|  * Does the initial read of the superblock.
 | |
|  */
 | |
| int
 | |
| xfs_readsb(xfs_mount_t *mp, int flags)
 | |
| {
 | |
| 	unsigned int	sector_size;
 | |
| 	xfs_buf_t	*bp;
 | |
| 	int		error;
 | |
| 	int		loud = !(flags & XFS_MFSI_QUIET);
 | |
| 
 | |
| 	ASSERT(mp->m_sb_bp == NULL);
 | |
| 	ASSERT(mp->m_ddev_targp != NULL);
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocate a (locked) buffer to hold the superblock.
 | |
| 	 * This will be kept around at all times to optimize
 | |
| 	 * access to the superblock.
 | |
| 	 */
 | |
| 	sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
 | |
| 
 | |
| reread:
 | |
| 	bp = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
 | |
| 				   BTOBB(sector_size), 0,
 | |
| 				   loud ? &xfs_sb_buf_ops
 | |
| 				        : &xfs_sb_quiet_buf_ops);
 | |
| 	if (!bp) {
 | |
| 		if (loud)
 | |
| 			xfs_warn(mp, "SB buffer read failed");
 | |
| 		return EIO;
 | |
| 	}
 | |
| 	if (bp->b_error) {
 | |
| 		error = bp->b_error;
 | |
| 		if (loud)
 | |
| 			xfs_warn(mp, "SB validate failed");
 | |
| 		goto release_buf;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize the mount structure from the superblock.
 | |
| 	 */
 | |
| 	xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp));
 | |
| 
 | |
| 	/*
 | |
| 	 * We must be able to do sector-sized and sector-aligned IO.
 | |
| 	 */
 | |
| 	if (sector_size > mp->m_sb.sb_sectsize) {
 | |
| 		if (loud)
 | |
| 			xfs_warn(mp, "device supports %u byte sectors (not %u)",
 | |
| 				sector_size, mp->m_sb.sb_sectsize);
 | |
| 		error = ENOSYS;
 | |
| 		goto release_buf;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If device sector size is smaller than the superblock size,
 | |
| 	 * re-read the superblock so the buffer is correctly sized.
 | |
| 	 */
 | |
| 	if (sector_size < mp->m_sb.sb_sectsize) {
 | |
| 		xfs_buf_relse(bp);
 | |
| 		sector_size = mp->m_sb.sb_sectsize;
 | |
| 		goto reread;
 | |
| 	}
 | |
| 
 | |
| 	/* Initialize per-cpu counters */
 | |
| 	xfs_icsb_reinit_counters(mp);
 | |
| 
 | |
| 	mp->m_sb_bp = bp;
 | |
| 	xfs_buf_unlock(bp);
 | |
| 	return 0;
 | |
| 
 | |
| release_buf:
 | |
| 	xfs_buf_relse(bp);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * xfs_mount_common
 | |
|  *
 | |
|  * Mount initialization code establishing various mount
 | |
|  * fields from the superblock associated with the given
 | |
|  * mount structure
 | |
|  */
 | |
| STATIC void
 | |
| xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp)
 | |
| {
 | |
| 	mp->m_agfrotor = mp->m_agirotor = 0;
 | |
| 	spin_lock_init(&mp->m_agirotor_lock);
 | |
| 	mp->m_maxagi = mp->m_sb.sb_agcount;
 | |
| 	mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG;
 | |
| 	mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT;
 | |
| 	mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT;
 | |
| 	mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1;
 | |
| 	mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
 | |
| 	mp->m_blockmask = sbp->sb_blocksize - 1;
 | |
| 	mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG;
 | |
| 	mp->m_blockwmask = mp->m_blockwsize - 1;
 | |
| 
 | |
| 	mp->m_alloc_mxr[0] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 1);
 | |
| 	mp->m_alloc_mxr[1] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 0);
 | |
| 	mp->m_alloc_mnr[0] = mp->m_alloc_mxr[0] / 2;
 | |
| 	mp->m_alloc_mnr[1] = mp->m_alloc_mxr[1] / 2;
 | |
| 
 | |
| 	mp->m_inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);
 | |
| 	mp->m_inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0);
 | |
| 	mp->m_inobt_mnr[0] = mp->m_inobt_mxr[0] / 2;
 | |
| 	mp->m_inobt_mnr[1] = mp->m_inobt_mxr[1] / 2;
 | |
| 
 | |
| 	mp->m_bmap_dmxr[0] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 1);
 | |
| 	mp->m_bmap_dmxr[1] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 0);
 | |
| 	mp->m_bmap_dmnr[0] = mp->m_bmap_dmxr[0] / 2;
 | |
| 	mp->m_bmap_dmnr[1] = mp->m_bmap_dmxr[1] / 2;
 | |
| 
 | |
| 	mp->m_bsize = XFS_FSB_TO_BB(mp, 1);
 | |
| 	mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK,
 | |
| 					sbp->sb_inopblock);
 | |
| 	mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * xfs_initialize_perag_data
 | |
|  *
 | |
|  * Read in each per-ag structure so we can count up the number of
 | |
|  * allocated inodes, free inodes and used filesystem blocks as this
 | |
|  * information is no longer persistent in the superblock. Once we have
 | |
|  * this information, write it into the in-core superblock structure.
 | |
|  */
 | |
| STATIC int
 | |
| xfs_initialize_perag_data(xfs_mount_t *mp, xfs_agnumber_t agcount)
 | |
| {
 | |
| 	xfs_agnumber_t	index;
 | |
| 	xfs_perag_t	*pag;
 | |
| 	xfs_sb_t	*sbp = &mp->m_sb;
 | |
| 	uint64_t	ifree = 0;
 | |
| 	uint64_t	ialloc = 0;
 | |
| 	uint64_t	bfree = 0;
 | |
| 	uint64_t	bfreelst = 0;
 | |
| 	uint64_t	btree = 0;
 | |
| 	int		error;
 | |
| 
 | |
| 	for (index = 0; index < agcount; index++) {
 | |
| 		/*
 | |
| 		 * read the agf, then the agi. This gets us
 | |
| 		 * all the information we need and populates the
 | |
| 		 * per-ag structures for us.
 | |
| 		 */
 | |
| 		error = xfs_alloc_pagf_init(mp, NULL, index, 0);
 | |
| 		if (error)
 | |
| 			return error;
 | |
| 
 | |
| 		error = xfs_ialloc_pagi_init(mp, NULL, index);
 | |
| 		if (error)
 | |
| 			return error;
 | |
| 		pag = xfs_perag_get(mp, index);
 | |
| 		ifree += pag->pagi_freecount;
 | |
| 		ialloc += pag->pagi_count;
 | |
| 		bfree += pag->pagf_freeblks;
 | |
| 		bfreelst += pag->pagf_flcount;
 | |
| 		btree += pag->pagf_btreeblks;
 | |
| 		xfs_perag_put(pag);
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Overwrite incore superblock counters with just-read data
 | |
| 	 */
 | |
| 	spin_lock(&mp->m_sb_lock);
 | |
| 	sbp->sb_ifree = ifree;
 | |
| 	sbp->sb_icount = ialloc;
 | |
| 	sbp->sb_fdblocks = bfree + bfreelst + btree;
 | |
| 	spin_unlock(&mp->m_sb_lock);
 | |
| 
 | |
| 	/* Fixup the per-cpu counters as well. */
 | |
| 	xfs_icsb_reinit_counters(mp);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update alignment values based on mount options and sb values
 | |
|  */
 | |
| STATIC int
 | |
| xfs_update_alignment(xfs_mount_t *mp)
 | |
| {
 | |
| 	xfs_sb_t	*sbp = &(mp->m_sb);
 | |
| 
 | |
| 	if (mp->m_dalign) {
 | |
| 		/*
 | |
| 		 * If stripe unit and stripe width are not multiples
 | |
| 		 * of the fs blocksize turn off alignment.
 | |
| 		 */
 | |
| 		if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
 | |
| 		    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
 | |
| 			if (mp->m_flags & XFS_MOUNT_RETERR) {
 | |
| 				xfs_warn(mp, "alignment check failed: "
 | |
| 					 "(sunit/swidth vs. blocksize)");
 | |
| 				return XFS_ERROR(EINVAL);
 | |
| 			}
 | |
| 			mp->m_dalign = mp->m_swidth = 0;
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * Convert the stripe unit and width to FSBs.
 | |
| 			 */
 | |
| 			mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
 | |
| 			if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
 | |
| 				if (mp->m_flags & XFS_MOUNT_RETERR) {
 | |
| 					xfs_warn(mp, "alignment check failed: "
 | |
| 						 "(sunit/swidth vs. ag size)");
 | |
| 					return XFS_ERROR(EINVAL);
 | |
| 				}
 | |
| 				xfs_warn(mp,
 | |
| 		"stripe alignment turned off: sunit(%d)/swidth(%d) "
 | |
| 		"incompatible with agsize(%d)",
 | |
| 					mp->m_dalign, mp->m_swidth,
 | |
| 					sbp->sb_agblocks);
 | |
| 
 | |
| 				mp->m_dalign = 0;
 | |
| 				mp->m_swidth = 0;
 | |
| 			} else if (mp->m_dalign) {
 | |
| 				mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
 | |
| 			} else {
 | |
| 				if (mp->m_flags & XFS_MOUNT_RETERR) {
 | |
| 					xfs_warn(mp, "alignment check failed: "
 | |
| 						"sunit(%d) less than bsize(%d)",
 | |
| 						mp->m_dalign,
 | |
| 						mp->m_blockmask +1);
 | |
| 					return XFS_ERROR(EINVAL);
 | |
| 				}
 | |
| 				mp->m_swidth = 0;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Update superblock with new values
 | |
| 		 * and log changes
 | |
| 		 */
 | |
| 		if (xfs_sb_version_hasdalign(sbp)) {
 | |
| 			if (sbp->sb_unit != mp->m_dalign) {
 | |
| 				sbp->sb_unit = mp->m_dalign;
 | |
| 				mp->m_update_flags |= XFS_SB_UNIT;
 | |
| 			}
 | |
| 			if (sbp->sb_width != mp->m_swidth) {
 | |
| 				sbp->sb_width = mp->m_swidth;
 | |
| 				mp->m_update_flags |= XFS_SB_WIDTH;
 | |
| 			}
 | |
| 		}
 | |
| 	} else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
 | |
| 		    xfs_sb_version_hasdalign(&mp->m_sb)) {
 | |
| 			mp->m_dalign = sbp->sb_unit;
 | |
| 			mp->m_swidth = sbp->sb_width;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set the maximum inode count for this filesystem
 | |
|  */
 | |
| STATIC void
 | |
| xfs_set_maxicount(xfs_mount_t *mp)
 | |
| {
 | |
| 	xfs_sb_t	*sbp = &(mp->m_sb);
 | |
| 	__uint64_t	icount;
 | |
| 
 | |
| 	if (sbp->sb_imax_pct) {
 | |
| 		/*
 | |
| 		 * Make sure the maximum inode count is a multiple
 | |
| 		 * of the units we allocate inodes in.
 | |
| 		 */
 | |
| 		icount = sbp->sb_dblocks * sbp->sb_imax_pct;
 | |
| 		do_div(icount, 100);
 | |
| 		do_div(icount, mp->m_ialloc_blks);
 | |
| 		mp->m_maxicount = (icount * mp->m_ialloc_blks)  <<
 | |
| 				   sbp->sb_inopblog;
 | |
| 	} else {
 | |
| 		mp->m_maxicount = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set the default minimum read and write sizes unless
 | |
|  * already specified in a mount option.
 | |
|  * We use smaller I/O sizes when the file system
 | |
|  * is being used for NFS service (wsync mount option).
 | |
|  */
 | |
| STATIC void
 | |
| xfs_set_rw_sizes(xfs_mount_t *mp)
 | |
| {
 | |
| 	xfs_sb_t	*sbp = &(mp->m_sb);
 | |
| 	int		readio_log, writeio_log;
 | |
| 
 | |
| 	if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
 | |
| 		if (mp->m_flags & XFS_MOUNT_WSYNC) {
 | |
| 			readio_log = XFS_WSYNC_READIO_LOG;
 | |
| 			writeio_log = XFS_WSYNC_WRITEIO_LOG;
 | |
| 		} else {
 | |
| 			readio_log = XFS_READIO_LOG_LARGE;
 | |
| 			writeio_log = XFS_WRITEIO_LOG_LARGE;
 | |
| 		}
 | |
| 	} else {
 | |
| 		readio_log = mp->m_readio_log;
 | |
| 		writeio_log = mp->m_writeio_log;
 | |
| 	}
 | |
| 
 | |
| 	if (sbp->sb_blocklog > readio_log) {
 | |
| 		mp->m_readio_log = sbp->sb_blocklog;
 | |
| 	} else {
 | |
| 		mp->m_readio_log = readio_log;
 | |
| 	}
 | |
| 	mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
 | |
| 	if (sbp->sb_blocklog > writeio_log) {
 | |
| 		mp->m_writeio_log = sbp->sb_blocklog;
 | |
| 	} else {
 | |
| 		mp->m_writeio_log = writeio_log;
 | |
| 	}
 | |
| 	mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * precalculate the low space thresholds for dynamic speculative preallocation.
 | |
|  */
 | |
| void
 | |
| xfs_set_low_space_thresholds(
 | |
| 	struct xfs_mount	*mp)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < XFS_LOWSP_MAX; i++) {
 | |
| 		__uint64_t space = mp->m_sb.sb_dblocks;
 | |
| 
 | |
| 		do_div(space, 100);
 | |
| 		mp->m_low_space[i] = space * (i + 1);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Set whether we're using inode alignment.
 | |
|  */
 | |
| STATIC void
 | |
| xfs_set_inoalignment(xfs_mount_t *mp)
 | |
| {
 | |
| 	if (xfs_sb_version_hasalign(&mp->m_sb) &&
 | |
| 	    mp->m_sb.sb_inoalignmt >=
 | |
| 	    XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
 | |
| 		mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
 | |
| 	else
 | |
| 		mp->m_inoalign_mask = 0;
 | |
| 	/*
 | |
| 	 * If we are using stripe alignment, check whether
 | |
| 	 * the stripe unit is a multiple of the inode alignment
 | |
| 	 */
 | |
| 	if (mp->m_dalign && mp->m_inoalign_mask &&
 | |
| 	    !(mp->m_dalign & mp->m_inoalign_mask))
 | |
| 		mp->m_sinoalign = mp->m_dalign;
 | |
| 	else
 | |
| 		mp->m_sinoalign = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check that the data (and log if separate) are an ok size.
 | |
|  */
 | |
| STATIC int
 | |
| xfs_check_sizes(xfs_mount_t *mp)
 | |
| {
 | |
| 	xfs_buf_t	*bp;
 | |
| 	xfs_daddr_t	d;
 | |
| 
 | |
| 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
 | |
| 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
 | |
| 		xfs_warn(mp, "filesystem size mismatch detected");
 | |
| 		return XFS_ERROR(EFBIG);
 | |
| 	}
 | |
| 	bp = xfs_buf_read_uncached(mp->m_ddev_targp,
 | |
| 					d - XFS_FSS_TO_BB(mp, 1),
 | |
| 					XFS_FSS_TO_BB(mp, 1), 0, NULL);
 | |
| 	if (!bp) {
 | |
| 		xfs_warn(mp, "last sector read failed");
 | |
| 		return EIO;
 | |
| 	}
 | |
| 	xfs_buf_relse(bp);
 | |
| 
 | |
| 	if (mp->m_logdev_targp != mp->m_ddev_targp) {
 | |
| 		d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
 | |
| 		if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
 | |
| 			xfs_warn(mp, "log size mismatch detected");
 | |
| 			return XFS_ERROR(EFBIG);
 | |
| 		}
 | |
| 		bp = xfs_buf_read_uncached(mp->m_logdev_targp,
 | |
| 					d - XFS_FSB_TO_BB(mp, 1),
 | |
| 					XFS_FSB_TO_BB(mp, 1), 0, NULL);
 | |
| 		if (!bp) {
 | |
| 			xfs_warn(mp, "log device read failed");
 | |
| 			return EIO;
 | |
| 		}
 | |
| 		xfs_buf_relse(bp);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Clear the quotaflags in memory and in the superblock.
 | |
|  */
 | |
| int
 | |
| xfs_mount_reset_sbqflags(
 | |
| 	struct xfs_mount	*mp)
 | |
| {
 | |
| 	int			error;
 | |
| 	struct xfs_trans	*tp;
 | |
| 
 | |
| 	mp->m_qflags = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * It is OK to look at sb_qflags here in mount path,
 | |
| 	 * without m_sb_lock.
 | |
| 	 */
 | |
| 	if (mp->m_sb.sb_qflags == 0)
 | |
| 		return 0;
 | |
| 	spin_lock(&mp->m_sb_lock);
 | |
| 	mp->m_sb.sb_qflags = 0;
 | |
| 	spin_unlock(&mp->m_sb_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the fs is readonly, let the incore superblock run
 | |
| 	 * with quotas off but don't flush the update out to disk
 | |
| 	 */
 | |
| 	if (mp->m_flags & XFS_MOUNT_RDONLY)
 | |
| 		return 0;
 | |
| 
 | |
| 	tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE);
 | |
| 	error = xfs_trans_reserve(tp, 0, XFS_QM_SBCHANGE_LOG_RES(mp),
 | |
| 				  0, 0, XFS_DEFAULT_LOG_COUNT);
 | |
| 	if (error) {
 | |
| 		xfs_trans_cancel(tp, 0);
 | |
| 		xfs_alert(mp, "%s: Superblock update failed!", __func__);
 | |
| 		return error;
 | |
| 	}
 | |
| 
 | |
| 	xfs_mod_sb(tp, XFS_SB_QFLAGS);
 | |
| 	return xfs_trans_commit(tp, 0);
 | |
| }
 | |
| 
 | |
| __uint64_t
 | |
| xfs_default_resblks(xfs_mount_t *mp)
 | |
| {
 | |
| 	__uint64_t resblks;
 | |
| 
 | |
| 	/*
 | |
| 	 * We default to 5% or 8192 fsbs of space reserved, whichever is
 | |
| 	 * smaller.  This is intended to cover concurrent allocation
 | |
| 	 * transactions when we initially hit enospc. These each require a 4
 | |
| 	 * block reservation. Hence by default we cover roughly 2000 concurrent
 | |
| 	 * allocation reservations.
 | |
| 	 */
 | |
| 	resblks = mp->m_sb.sb_dblocks;
 | |
| 	do_div(resblks, 20);
 | |
| 	resblks = min_t(__uint64_t, resblks, 8192);
 | |
| 	return resblks;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function does the following on an initial mount of a file system:
 | |
|  *	- reads the superblock from disk and init the mount struct
 | |
|  *	- if we're a 32-bit kernel, do a size check on the superblock
 | |
|  *		so we don't mount terabyte filesystems
 | |
|  *	- init mount struct realtime fields
 | |
|  *	- allocate inode hash table for fs
 | |
|  *	- init directory manager
 | |
|  *	- perform recovery and init the log manager
 | |
|  */
 | |
| int
 | |
| xfs_mountfs(
 | |
| 	xfs_mount_t	*mp)
 | |
| {
 | |
| 	xfs_sb_t	*sbp = &(mp->m_sb);
 | |
| 	xfs_inode_t	*rip;
 | |
| 	__uint64_t	resblks;
 | |
| 	uint		quotamount = 0;
 | |
| 	uint		quotaflags = 0;
 | |
| 	int		error = 0;
 | |
| 
 | |
| 	xfs_mount_common(mp, sbp);
 | |
| 
 | |
| 	/*
 | |
| 	 * Check for a mismatched features2 values.  Older kernels
 | |
| 	 * read & wrote into the wrong sb offset for sb_features2
 | |
| 	 * on some platforms due to xfs_sb_t not being 64bit size aligned
 | |
| 	 * when sb_features2 was added, which made older superblock
 | |
| 	 * reading/writing routines swap it as a 64-bit value.
 | |
| 	 *
 | |
| 	 * For backwards compatibility, we make both slots equal.
 | |
| 	 *
 | |
| 	 * If we detect a mismatched field, we OR the set bits into the
 | |
| 	 * existing features2 field in case it has already been modified; we
 | |
| 	 * don't want to lose any features.  We then update the bad location
 | |
| 	 * with the ORed value so that older kernels will see any features2
 | |
| 	 * flags, and mark the two fields as needing updates once the
 | |
| 	 * transaction subsystem is online.
 | |
| 	 */
 | |
| 	if (xfs_sb_has_mismatched_features2(sbp)) {
 | |
| 		xfs_warn(mp, "correcting sb_features alignment problem");
 | |
| 		sbp->sb_features2 |= sbp->sb_bad_features2;
 | |
| 		sbp->sb_bad_features2 = sbp->sb_features2;
 | |
| 		mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2;
 | |
| 
 | |
| 		/*
 | |
| 		 * Re-check for ATTR2 in case it was found in bad_features2
 | |
| 		 * slot.
 | |
| 		 */
 | |
| 		if (xfs_sb_version_hasattr2(&mp->m_sb) &&
 | |
| 		   !(mp->m_flags & XFS_MOUNT_NOATTR2))
 | |
| 			mp->m_flags |= XFS_MOUNT_ATTR2;
 | |
| 	}
 | |
| 
 | |
| 	if (xfs_sb_version_hasattr2(&mp->m_sb) &&
 | |
| 	   (mp->m_flags & XFS_MOUNT_NOATTR2)) {
 | |
| 		xfs_sb_version_removeattr2(&mp->m_sb);
 | |
| 		mp->m_update_flags |= XFS_SB_FEATURES2;
 | |
| 
 | |
| 		/* update sb_versionnum for the clearing of the morebits */
 | |
| 		if (!sbp->sb_features2)
 | |
| 			mp->m_update_flags |= XFS_SB_VERSIONNUM;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Check if sb_agblocks is aligned at stripe boundary
 | |
| 	 * If sb_agblocks is NOT aligned turn off m_dalign since
 | |
| 	 * allocator alignment is within an ag, therefore ag has
 | |
| 	 * to be aligned at stripe boundary.
 | |
| 	 */
 | |
| 	error = xfs_update_alignment(mp);
 | |
| 	if (error)
 | |
| 		goto out;
 | |
| 
 | |
| 	xfs_alloc_compute_maxlevels(mp);
 | |
| 	xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
 | |
| 	xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
 | |
| 	xfs_ialloc_compute_maxlevels(mp);
 | |
| 
 | |
| 	xfs_set_maxicount(mp);
 | |
| 
 | |
| 	error = xfs_uuid_mount(mp);
 | |
| 	if (error)
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * Set the minimum read and write sizes
 | |
| 	 */
 | |
| 	xfs_set_rw_sizes(mp);
 | |
| 
 | |
| 	/* set the low space thresholds for dynamic preallocation */
 | |
| 	xfs_set_low_space_thresholds(mp);
 | |
| 
 | |
| 	/*
 | |
| 	 * Set the inode cluster size.
 | |
| 	 * This may still be overridden by the file system
 | |
| 	 * block size if it is larger than the chosen cluster size.
 | |
| 	 */
 | |
| 	mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
 | |
| 
 | |
| 	/*
 | |
| 	 * Set inode alignment fields
 | |
| 	 */
 | |
| 	xfs_set_inoalignment(mp);
 | |
| 
 | |
| 	/*
 | |
| 	 * Check that the data (and log if separate) are an ok size.
 | |
| 	 */
 | |
| 	error = xfs_check_sizes(mp);
 | |
| 	if (error)
 | |
| 		goto out_remove_uuid;
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize realtime fields in the mount structure
 | |
| 	 */
 | |
| 	error = xfs_rtmount_init(mp);
 | |
| 	if (error) {
 | |
| 		xfs_warn(mp, "RT mount failed");
 | |
| 		goto out_remove_uuid;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 *  Copies the low order bits of the timestamp and the randomly
 | |
| 	 *  set "sequence" number out of a UUID.
 | |
| 	 */
 | |
| 	uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
 | |
| 
 | |
| 	mp->m_dmevmask = 0;	/* not persistent; set after each mount */
 | |
| 
 | |
| 	xfs_dir_mount(mp);
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize the attribute manager's entries.
 | |
| 	 */
 | |
| 	mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100;
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize the precomputed transaction reservations values.
 | |
| 	 */
 | |
| 	xfs_trans_init(mp);
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocate and initialize the per-ag data.
 | |
| 	 */
 | |
| 	spin_lock_init(&mp->m_perag_lock);
 | |
| 	INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
 | |
| 	error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
 | |
| 	if (error) {
 | |
| 		xfs_warn(mp, "Failed per-ag init: %d", error);
 | |
| 		goto out_remove_uuid;
 | |
| 	}
 | |
| 
 | |
| 	if (!sbp->sb_logblocks) {
 | |
| 		xfs_warn(mp, "no log defined");
 | |
| 		XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
 | |
| 		error = XFS_ERROR(EFSCORRUPTED);
 | |
| 		goto out_free_perag;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * log's mount-time initialization. Perform 1st part recovery if needed
 | |
| 	 */
 | |
| 	error = xfs_log_mount(mp, mp->m_logdev_targp,
 | |
| 			      XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
 | |
| 			      XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
 | |
| 	if (error) {
 | |
| 		xfs_warn(mp, "log mount failed");
 | |
| 		goto out_fail_wait;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Now the log is mounted, we know if it was an unclean shutdown or
 | |
| 	 * not. If it was, with the first phase of recovery has completed, we
 | |
| 	 * have consistent AG blocks on disk. We have not recovered EFIs yet,
 | |
| 	 * but they are recovered transactionally in the second recovery phase
 | |
| 	 * later.
 | |
| 	 *
 | |
| 	 * Hence we can safely re-initialise incore superblock counters from
 | |
| 	 * the per-ag data. These may not be correct if the filesystem was not
 | |
| 	 * cleanly unmounted, so we need to wait for recovery to finish before
 | |
| 	 * doing this.
 | |
| 	 *
 | |
| 	 * If the filesystem was cleanly unmounted, then we can trust the
 | |
| 	 * values in the superblock to be correct and we don't need to do
 | |
| 	 * anything here.
 | |
| 	 *
 | |
| 	 * If we are currently making the filesystem, the initialisation will
 | |
| 	 * fail as the perag data is in an undefined state.
 | |
| 	 */
 | |
| 	if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
 | |
| 	    !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
 | |
| 	     !mp->m_sb.sb_inprogress) {
 | |
| 		error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
 | |
| 		if (error)
 | |
| 			goto out_fail_wait;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Get and sanity-check the root inode.
 | |
| 	 * Save the pointer to it in the mount structure.
 | |
| 	 */
 | |
| 	error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
 | |
| 	if (error) {
 | |
| 		xfs_warn(mp, "failed to read root inode");
 | |
| 		goto out_log_dealloc;
 | |
| 	}
 | |
| 
 | |
| 	ASSERT(rip != NULL);
 | |
| 
 | |
| 	if (unlikely(!S_ISDIR(rip->i_d.di_mode))) {
 | |
| 		xfs_warn(mp, "corrupted root inode %llu: not a directory",
 | |
| 			(unsigned long long)rip->i_ino);
 | |
| 		xfs_iunlock(rip, XFS_ILOCK_EXCL);
 | |
| 		XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
 | |
| 				 mp);
 | |
| 		error = XFS_ERROR(EFSCORRUPTED);
 | |
| 		goto out_rele_rip;
 | |
| 	}
 | |
| 	mp->m_rootip = rip;	/* save it */
 | |
| 
 | |
| 	xfs_iunlock(rip, XFS_ILOCK_EXCL);
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize realtime inode pointers in the mount structure
 | |
| 	 */
 | |
| 	error = xfs_rtmount_inodes(mp);
 | |
| 	if (error) {
 | |
| 		/*
 | |
| 		 * Free up the root inode.
 | |
| 		 */
 | |
| 		xfs_warn(mp, "failed to read RT inodes");
 | |
| 		goto out_rele_rip;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If this is a read-only mount defer the superblock updates until
 | |
| 	 * the next remount into writeable mode.  Otherwise we would never
 | |
| 	 * perform the update e.g. for the root filesystem.
 | |
| 	 */
 | |
| 	if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
 | |
| 		error = xfs_mount_log_sb(mp, mp->m_update_flags);
 | |
| 		if (error) {
 | |
| 			xfs_warn(mp, "failed to write sb changes");
 | |
| 			goto out_rtunmount;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialise the XFS quota management subsystem for this mount
 | |
| 	 */
 | |
| 	if (XFS_IS_QUOTA_RUNNING(mp)) {
 | |
| 		error = xfs_qm_newmount(mp, "amount, "aflags);
 | |
| 		if (error)
 | |
| 			goto out_rtunmount;
 | |
| 	} else {
 | |
| 		ASSERT(!XFS_IS_QUOTA_ON(mp));
 | |
| 
 | |
| 		/*
 | |
| 		 * If a file system had quotas running earlier, but decided to
 | |
| 		 * mount without -o uquota/pquota/gquota options, revoke the
 | |
| 		 * quotachecked license.
 | |
| 		 */
 | |
| 		if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
 | |
| 			xfs_notice(mp, "resetting quota flags");
 | |
| 			error = xfs_mount_reset_sbqflags(mp);
 | |
| 			if (error)
 | |
| 				return error;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Finish recovering the file system.  This part needed to be
 | |
| 	 * delayed until after the root and real-time bitmap inodes
 | |
| 	 * were consistently read in.
 | |
| 	 */
 | |
| 	error = xfs_log_mount_finish(mp);
 | |
| 	if (error) {
 | |
| 		xfs_warn(mp, "log mount finish failed");
 | |
| 		goto out_rtunmount;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Complete the quota initialisation, post-log-replay component.
 | |
| 	 */
 | |
| 	if (quotamount) {
 | |
| 		ASSERT(mp->m_qflags == 0);
 | |
| 		mp->m_qflags = quotaflags;
 | |
| 
 | |
| 		xfs_qm_mount_quotas(mp);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Now we are mounted, reserve a small amount of unused space for
 | |
| 	 * privileged transactions. This is needed so that transaction
 | |
| 	 * space required for critical operations can dip into this pool
 | |
| 	 * when at ENOSPC. This is needed for operations like create with
 | |
| 	 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
 | |
| 	 * are not allowed to use this reserved space.
 | |
| 	 *
 | |
| 	 * This may drive us straight to ENOSPC on mount, but that implies
 | |
| 	 * we were already there on the last unmount. Warn if this occurs.
 | |
| 	 */
 | |
| 	if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
 | |
| 		resblks = xfs_default_resblks(mp);
 | |
| 		error = xfs_reserve_blocks(mp, &resblks, NULL);
 | |
| 		if (error)
 | |
| 			xfs_warn(mp,
 | |
| 	"Unable to allocate reserve blocks. Continuing without reserve pool.");
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
|  out_rtunmount:
 | |
| 	xfs_rtunmount_inodes(mp);
 | |
|  out_rele_rip:
 | |
| 	IRELE(rip);
 | |
|  out_log_dealloc:
 | |
| 	xfs_log_unmount(mp);
 | |
|  out_fail_wait:
 | |
| 	if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
 | |
| 		xfs_wait_buftarg(mp->m_logdev_targp);
 | |
| 	xfs_wait_buftarg(mp->m_ddev_targp);
 | |
|  out_free_perag:
 | |
| 	xfs_free_perag(mp);
 | |
|  out_remove_uuid:
 | |
| 	xfs_uuid_unmount(mp);
 | |
|  out:
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This flushes out the inodes,dquots and the superblock, unmounts the
 | |
|  * log and makes sure that incore structures are freed.
 | |
|  */
 | |
| void
 | |
| xfs_unmountfs(
 | |
| 	struct xfs_mount	*mp)
 | |
| {
 | |
| 	__uint64_t		resblks;
 | |
| 	int			error;
 | |
| 
 | |
| 	cancel_delayed_work_sync(&mp->m_eofblocks_work);
 | |
| 
 | |
| 	xfs_qm_unmount_quotas(mp);
 | |
| 	xfs_rtunmount_inodes(mp);
 | |
| 	IRELE(mp->m_rootip);
 | |
| 
 | |
| 	/*
 | |
| 	 * We can potentially deadlock here if we have an inode cluster
 | |
| 	 * that has been freed has its buffer still pinned in memory because
 | |
| 	 * the transaction is still sitting in a iclog. The stale inodes
 | |
| 	 * on that buffer will have their flush locks held until the
 | |
| 	 * transaction hits the disk and the callbacks run. the inode
 | |
| 	 * flush takes the flush lock unconditionally and with nothing to
 | |
| 	 * push out the iclog we will never get that unlocked. hence we
 | |
| 	 * need to force the log first.
 | |
| 	 */
 | |
| 	xfs_log_force(mp, XFS_LOG_SYNC);
 | |
| 
 | |
| 	/*
 | |
| 	 * Flush all pending changes from the AIL.
 | |
| 	 */
 | |
| 	xfs_ail_push_all_sync(mp->m_ail);
 | |
| 
 | |
| 	/*
 | |
| 	 * And reclaim all inodes.  At this point there should be no dirty
 | |
| 	 * inodes and none should be pinned or locked, but use synchronous
 | |
| 	 * reclaim just to be sure. We can stop background inode reclaim
 | |
| 	 * here as well if it is still running.
 | |
| 	 */
 | |
| 	cancel_delayed_work_sync(&mp->m_reclaim_work);
 | |
| 	xfs_reclaim_inodes(mp, SYNC_WAIT);
 | |
| 
 | |
| 	xfs_qm_unmount(mp);
 | |
| 
 | |
| 	/*
 | |
| 	 * Unreserve any blocks we have so that when we unmount we don't account
 | |
| 	 * the reserved free space as used. This is really only necessary for
 | |
| 	 * lazy superblock counting because it trusts the incore superblock
 | |
| 	 * counters to be absolutely correct on clean unmount.
 | |
| 	 *
 | |
| 	 * We don't bother correcting this elsewhere for lazy superblock
 | |
| 	 * counting because on mount of an unclean filesystem we reconstruct the
 | |
| 	 * correct counter value and this is irrelevant.
 | |
| 	 *
 | |
| 	 * For non-lazy counter filesystems, this doesn't matter at all because
 | |
| 	 * we only every apply deltas to the superblock and hence the incore
 | |
| 	 * value does not matter....
 | |
| 	 */
 | |
| 	resblks = 0;
 | |
| 	error = xfs_reserve_blocks(mp, &resblks, NULL);
 | |
| 	if (error)
 | |
| 		xfs_warn(mp, "Unable to free reserved block pool. "
 | |
| 				"Freespace may not be correct on next mount.");
 | |
| 
 | |
| 	error = xfs_log_sbcount(mp);
 | |
| 	if (error)
 | |
| 		xfs_warn(mp, "Unable to update superblock counters. "
 | |
| 				"Freespace may not be correct on next mount.");
 | |
| 
 | |
| 	xfs_log_unmount(mp);
 | |
| 	xfs_uuid_unmount(mp);
 | |
| 
 | |
| #if defined(DEBUG)
 | |
| 	xfs_errortag_clearall(mp, 0);
 | |
| #endif
 | |
| 	xfs_free_perag(mp);
 | |
| }
 | |
| 
 | |
| int
 | |
| xfs_fs_writable(xfs_mount_t *mp)
 | |
| {
 | |
| 	return !(mp->m_super->s_writers.frozen || XFS_FORCED_SHUTDOWN(mp) ||
 | |
| 		(mp->m_flags & XFS_MOUNT_RDONLY));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * xfs_log_sbcount
 | |
|  *
 | |
|  * Sync the superblock counters to disk.
 | |
|  *
 | |
|  * Note this code can be called during the process of freezing, so
 | |
|  * we may need to use the transaction allocator which does not
 | |
|  * block when the transaction subsystem is in its frozen state.
 | |
|  */
 | |
| int
 | |
| xfs_log_sbcount(xfs_mount_t *mp)
 | |
| {
 | |
| 	xfs_trans_t	*tp;
 | |
| 	int		error;
 | |
| 
 | |
| 	if (!xfs_fs_writable(mp))
 | |
| 		return 0;
 | |
| 
 | |
| 	xfs_icsb_sync_counters(mp, 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * we don't need to do this if we are updating the superblock
 | |
| 	 * counters on every modification.
 | |
| 	 */
 | |
| 	if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
 | |
| 		return 0;
 | |
| 
 | |
| 	tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT, KM_SLEEP);
 | |
| 	error = xfs_trans_reserve(tp, 0, XFS_SB_LOG_RES(mp), 0, 0,
 | |
| 				  XFS_DEFAULT_LOG_COUNT);
 | |
| 	if (error) {
 | |
| 		xfs_trans_cancel(tp, 0);
 | |
| 		return error;
 | |
| 	}
 | |
| 
 | |
| 	xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
 | |
| 	xfs_trans_set_sync(tp);
 | |
| 	error = xfs_trans_commit(tp, 0);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * xfs_mod_sb() can be used to copy arbitrary changes to the
 | |
|  * in-core superblock into the superblock buffer to be logged.
 | |
|  * It does not provide the higher level of locking that is
 | |
|  * needed to protect the in-core superblock from concurrent
 | |
|  * access.
 | |
|  */
 | |
| void
 | |
| xfs_mod_sb(xfs_trans_t *tp, __int64_t fields)
 | |
| {
 | |
| 	xfs_buf_t	*bp;
 | |
| 	int		first;
 | |
| 	int		last;
 | |
| 	xfs_mount_t	*mp;
 | |
| 	xfs_sb_field_t	f;
 | |
| 
 | |
| 	ASSERT(fields);
 | |
| 	if (!fields)
 | |
| 		return;
 | |
| 	mp = tp->t_mountp;
 | |
| 	bp = xfs_trans_getsb(tp, mp, 0);
 | |
| 	first = sizeof(xfs_sb_t);
 | |
| 	last = 0;
 | |
| 
 | |
| 	/* translate/copy */
 | |
| 
 | |
| 	xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb, fields);
 | |
| 
 | |
| 	/* find modified range */
 | |
| 	f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields);
 | |
| 	ASSERT((1LL << f) & XFS_SB_MOD_BITS);
 | |
| 	last = xfs_sb_info[f + 1].offset - 1;
 | |
| 
 | |
| 	f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
 | |
| 	ASSERT((1LL << f) & XFS_SB_MOD_BITS);
 | |
| 	first = xfs_sb_info[f].offset;
 | |
| 
 | |
| 	xfs_trans_log_buf(tp, bp, first, last);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply
 | |
|  * a delta to a specified field in the in-core superblock.  Simply
 | |
|  * switch on the field indicated and apply the delta to that field.
 | |
|  * Fields are not allowed to dip below zero, so if the delta would
 | |
|  * do this do not apply it and return EINVAL.
 | |
|  *
 | |
|  * The m_sb_lock must be held when this routine is called.
 | |
|  */
 | |
| STATIC int
 | |
| xfs_mod_incore_sb_unlocked(
 | |
| 	xfs_mount_t	*mp,
 | |
| 	xfs_sb_field_t	field,
 | |
| 	int64_t		delta,
 | |
| 	int		rsvd)
 | |
| {
 | |
| 	int		scounter;	/* short counter for 32 bit fields */
 | |
| 	long long	lcounter;	/* long counter for 64 bit fields */
 | |
| 	long long	res_used, rem;
 | |
| 
 | |
| 	/*
 | |
| 	 * With the in-core superblock spin lock held, switch
 | |
| 	 * on the indicated field.  Apply the delta to the
 | |
| 	 * proper field.  If the fields value would dip below
 | |
| 	 * 0, then do not apply the delta and return EINVAL.
 | |
| 	 */
 | |
| 	switch (field) {
 | |
| 	case XFS_SBS_ICOUNT:
 | |
| 		lcounter = (long long)mp->m_sb.sb_icount;
 | |
| 		lcounter += delta;
 | |
| 		if (lcounter < 0) {
 | |
| 			ASSERT(0);
 | |
| 			return XFS_ERROR(EINVAL);
 | |
| 		}
 | |
| 		mp->m_sb.sb_icount = lcounter;
 | |
| 		return 0;
 | |
| 	case XFS_SBS_IFREE:
 | |
| 		lcounter = (long long)mp->m_sb.sb_ifree;
 | |
| 		lcounter += delta;
 | |
| 		if (lcounter < 0) {
 | |
| 			ASSERT(0);
 | |
| 			return XFS_ERROR(EINVAL);
 | |
| 		}
 | |
| 		mp->m_sb.sb_ifree = lcounter;
 | |
| 		return 0;
 | |
| 	case XFS_SBS_FDBLOCKS:
 | |
| 		lcounter = (long long)
 | |
| 			mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
 | |
| 		res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
 | |
| 
 | |
| 		if (delta > 0) {		/* Putting blocks back */
 | |
| 			if (res_used > delta) {
 | |
| 				mp->m_resblks_avail += delta;
 | |
| 			} else {
 | |
| 				rem = delta - res_used;
 | |
| 				mp->m_resblks_avail = mp->m_resblks;
 | |
| 				lcounter += rem;
 | |
| 			}
 | |
| 		} else {				/* Taking blocks away */
 | |
| 			lcounter += delta;
 | |
| 			if (lcounter >= 0) {
 | |
| 				mp->m_sb.sb_fdblocks = lcounter +
 | |
| 							XFS_ALLOC_SET_ASIDE(mp);
 | |
| 				return 0;
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * We are out of blocks, use any available reserved
 | |
| 			 * blocks if were allowed to.
 | |
| 			 */
 | |
| 			if (!rsvd)
 | |
| 				return XFS_ERROR(ENOSPC);
 | |
| 
 | |
| 			lcounter = (long long)mp->m_resblks_avail + delta;
 | |
| 			if (lcounter >= 0) {
 | |
| 				mp->m_resblks_avail = lcounter;
 | |
| 				return 0;
 | |
| 			}
 | |
| 			printk_once(KERN_WARNING
 | |
| 				"Filesystem \"%s\": reserve blocks depleted! "
 | |
| 				"Consider increasing reserve pool size.",
 | |
| 				mp->m_fsname);
 | |
| 			return XFS_ERROR(ENOSPC);
 | |
| 		}
 | |
| 
 | |
| 		mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
 | |
| 		return 0;
 | |
| 	case XFS_SBS_FREXTENTS:
 | |
| 		lcounter = (long long)mp->m_sb.sb_frextents;
 | |
| 		lcounter += delta;
 | |
| 		if (lcounter < 0) {
 | |
| 			return XFS_ERROR(ENOSPC);
 | |
| 		}
 | |
| 		mp->m_sb.sb_frextents = lcounter;
 | |
| 		return 0;
 | |
| 	case XFS_SBS_DBLOCKS:
 | |
| 		lcounter = (long long)mp->m_sb.sb_dblocks;
 | |
| 		lcounter += delta;
 | |
| 		if (lcounter < 0) {
 | |
| 			ASSERT(0);
 | |
| 			return XFS_ERROR(EINVAL);
 | |
| 		}
 | |
| 		mp->m_sb.sb_dblocks = lcounter;
 | |
| 		return 0;
 | |
| 	case XFS_SBS_AGCOUNT:
 | |
| 		scounter = mp->m_sb.sb_agcount;
 | |
| 		scounter += delta;
 | |
| 		if (scounter < 0) {
 | |
| 			ASSERT(0);
 | |
| 			return XFS_ERROR(EINVAL);
 | |
| 		}
 | |
| 		mp->m_sb.sb_agcount = scounter;
 | |
| 		return 0;
 | |
| 	case XFS_SBS_IMAX_PCT:
 | |
| 		scounter = mp->m_sb.sb_imax_pct;
 | |
| 		scounter += delta;
 | |
| 		if (scounter < 0) {
 | |
| 			ASSERT(0);
 | |
| 			return XFS_ERROR(EINVAL);
 | |
| 		}
 | |
| 		mp->m_sb.sb_imax_pct = scounter;
 | |
| 		return 0;
 | |
| 	case XFS_SBS_REXTSIZE:
 | |
| 		scounter = mp->m_sb.sb_rextsize;
 | |
| 		scounter += delta;
 | |
| 		if (scounter < 0) {
 | |
| 			ASSERT(0);
 | |
| 			return XFS_ERROR(EINVAL);
 | |
| 		}
 | |
| 		mp->m_sb.sb_rextsize = scounter;
 | |
| 		return 0;
 | |
| 	case XFS_SBS_RBMBLOCKS:
 | |
| 		scounter = mp->m_sb.sb_rbmblocks;
 | |
| 		scounter += delta;
 | |
| 		if (scounter < 0) {
 | |
| 			ASSERT(0);
 | |
| 			return XFS_ERROR(EINVAL);
 | |
| 		}
 | |
| 		mp->m_sb.sb_rbmblocks = scounter;
 | |
| 		return 0;
 | |
| 	case XFS_SBS_RBLOCKS:
 | |
| 		lcounter = (long long)mp->m_sb.sb_rblocks;
 | |
| 		lcounter += delta;
 | |
| 		if (lcounter < 0) {
 | |
| 			ASSERT(0);
 | |
| 			return XFS_ERROR(EINVAL);
 | |
| 		}
 | |
| 		mp->m_sb.sb_rblocks = lcounter;
 | |
| 		return 0;
 | |
| 	case XFS_SBS_REXTENTS:
 | |
| 		lcounter = (long long)mp->m_sb.sb_rextents;
 | |
| 		lcounter += delta;
 | |
| 		if (lcounter < 0) {
 | |
| 			ASSERT(0);
 | |
| 			return XFS_ERROR(EINVAL);
 | |
| 		}
 | |
| 		mp->m_sb.sb_rextents = lcounter;
 | |
| 		return 0;
 | |
| 	case XFS_SBS_REXTSLOG:
 | |
| 		scounter = mp->m_sb.sb_rextslog;
 | |
| 		scounter += delta;
 | |
| 		if (scounter < 0) {
 | |
| 			ASSERT(0);
 | |
| 			return XFS_ERROR(EINVAL);
 | |
| 		}
 | |
| 		mp->m_sb.sb_rextslog = scounter;
 | |
| 		return 0;
 | |
| 	default:
 | |
| 		ASSERT(0);
 | |
| 		return XFS_ERROR(EINVAL);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * xfs_mod_incore_sb() is used to change a field in the in-core
 | |
|  * superblock structure by the specified delta.  This modification
 | |
|  * is protected by the m_sb_lock.  Just use the xfs_mod_incore_sb_unlocked()
 | |
|  * routine to do the work.
 | |
|  */
 | |
| int
 | |
| xfs_mod_incore_sb(
 | |
| 	struct xfs_mount	*mp,
 | |
| 	xfs_sb_field_t		field,
 | |
| 	int64_t			delta,
 | |
| 	int			rsvd)
 | |
| {
 | |
| 	int			status;
 | |
| 
 | |
| #ifdef HAVE_PERCPU_SB
 | |
| 	ASSERT(field < XFS_SBS_ICOUNT || field > XFS_SBS_FDBLOCKS);
 | |
| #endif
 | |
| 	spin_lock(&mp->m_sb_lock);
 | |
| 	status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
 | |
| 	spin_unlock(&mp->m_sb_lock);
 | |
| 
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Change more than one field in the in-core superblock structure at a time.
 | |
|  *
 | |
|  * The fields and changes to those fields are specified in the array of
 | |
|  * xfs_mod_sb structures passed in.  Either all of the specified deltas
 | |
|  * will be applied or none of them will.  If any modified field dips below 0,
 | |
|  * then all modifications will be backed out and EINVAL will be returned.
 | |
|  *
 | |
|  * Note that this function may not be used for the superblock values that
 | |
|  * are tracked with the in-memory per-cpu counters - a direct call to
 | |
|  * xfs_icsb_modify_counters is required for these.
 | |
|  */
 | |
| int
 | |
| xfs_mod_incore_sb_batch(
 | |
| 	struct xfs_mount	*mp,
 | |
| 	xfs_mod_sb_t		*msb,
 | |
| 	uint			nmsb,
 | |
| 	int			rsvd)
 | |
| {
 | |
| 	xfs_mod_sb_t		*msbp;
 | |
| 	int			error = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Loop through the array of mod structures and apply each individually.
 | |
| 	 * If any fail, then back out all those which have already been applied.
 | |
| 	 * Do all of this within the scope of the m_sb_lock so that all of the
 | |
| 	 * changes will be atomic.
 | |
| 	 */
 | |
| 	spin_lock(&mp->m_sb_lock);
 | |
| 	for (msbp = msb; msbp < (msb + nmsb); msbp++) {
 | |
| 		ASSERT(msbp->msb_field < XFS_SBS_ICOUNT ||
 | |
| 		       msbp->msb_field > XFS_SBS_FDBLOCKS);
 | |
| 
 | |
| 		error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
 | |
| 						   msbp->msb_delta, rsvd);
 | |
| 		if (error)
 | |
| 			goto unwind;
 | |
| 	}
 | |
| 	spin_unlock(&mp->m_sb_lock);
 | |
| 	return 0;
 | |
| 
 | |
| unwind:
 | |
| 	while (--msbp >= msb) {
 | |
| 		error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
 | |
| 						   -msbp->msb_delta, rsvd);
 | |
| 		ASSERT(error == 0);
 | |
| 	}
 | |
| 	spin_unlock(&mp->m_sb_lock);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * xfs_getsb() is called to obtain the buffer for the superblock.
 | |
|  * The buffer is returned locked and read in from disk.
 | |
|  * The buffer should be released with a call to xfs_brelse().
 | |
|  *
 | |
|  * If the flags parameter is BUF_TRYLOCK, then we'll only return
 | |
|  * the superblock buffer if it can be locked without sleeping.
 | |
|  * If it can't then we'll return NULL.
 | |
|  */
 | |
| struct xfs_buf *
 | |
| xfs_getsb(
 | |
| 	struct xfs_mount	*mp,
 | |
| 	int			flags)
 | |
| {
 | |
| 	struct xfs_buf		*bp = mp->m_sb_bp;
 | |
| 
 | |
| 	if (!xfs_buf_trylock(bp)) {
 | |
| 		if (flags & XBF_TRYLOCK)
 | |
| 			return NULL;
 | |
| 		xfs_buf_lock(bp);
 | |
| 	}
 | |
| 
 | |
| 	xfs_buf_hold(bp);
 | |
| 	ASSERT(XFS_BUF_ISDONE(bp));
 | |
| 	return bp;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Used to free the superblock along various error paths.
 | |
|  */
 | |
| void
 | |
| xfs_freesb(
 | |
| 	struct xfs_mount	*mp)
 | |
| {
 | |
| 	struct xfs_buf		*bp = mp->m_sb_bp;
 | |
| 
 | |
| 	xfs_buf_lock(bp);
 | |
| 	mp->m_sb_bp = NULL;
 | |
| 	xfs_buf_relse(bp);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Used to log changes to the superblock unit and width fields which could
 | |
|  * be altered by the mount options, as well as any potential sb_features2
 | |
|  * fixup. Only the first superblock is updated.
 | |
|  */
 | |
| int
 | |
| xfs_mount_log_sb(
 | |
| 	xfs_mount_t	*mp,
 | |
| 	__int64_t	fields)
 | |
| {
 | |
| 	xfs_trans_t	*tp;
 | |
| 	int		error;
 | |
| 
 | |
| 	ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID |
 | |
| 			 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 |
 | |
| 			 XFS_SB_VERSIONNUM));
 | |
| 
 | |
| 	tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
 | |
| 	error = xfs_trans_reserve(tp, 0, XFS_SB_LOG_RES(mp), 0, 0,
 | |
| 				  XFS_DEFAULT_LOG_COUNT);
 | |
| 	if (error) {
 | |
| 		xfs_trans_cancel(tp, 0);
 | |
| 		return error;
 | |
| 	}
 | |
| 	xfs_mod_sb(tp, fields);
 | |
| 	error = xfs_trans_commit(tp, 0);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If the underlying (data/log/rt) device is readonly, there are some
 | |
|  * operations that cannot proceed.
 | |
|  */
 | |
| int
 | |
| xfs_dev_is_read_only(
 | |
| 	struct xfs_mount	*mp,
 | |
| 	char			*message)
 | |
| {
 | |
| 	if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
 | |
| 	    xfs_readonly_buftarg(mp->m_logdev_targp) ||
 | |
| 	    (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
 | |
| 		xfs_notice(mp, "%s required on read-only device.", message);
 | |
| 		xfs_notice(mp, "write access unavailable, cannot proceed.");
 | |
| 		return EROFS;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef HAVE_PERCPU_SB
 | |
| /*
 | |
|  * Per-cpu incore superblock counters
 | |
|  *
 | |
|  * Simple concept, difficult implementation
 | |
|  *
 | |
|  * Basically, replace the incore superblock counters with a distributed per cpu
 | |
|  * counter for contended fields (e.g.  free block count).
 | |
|  *
 | |
|  * Difficulties arise in that the incore sb is used for ENOSPC checking, and
 | |
|  * hence needs to be accurately read when we are running low on space. Hence
 | |
|  * there is a method to enable and disable the per-cpu counters based on how
 | |
|  * much "stuff" is available in them.
 | |
|  *
 | |
|  * Basically, a counter is enabled if there is enough free resource to justify
 | |
|  * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
 | |
|  * ENOSPC), then we disable the counters to synchronise all callers and
 | |
|  * re-distribute the available resources.
 | |
|  *
 | |
|  * If, once we redistributed the available resources, we still get a failure,
 | |
|  * we disable the per-cpu counter and go through the slow path.
 | |
|  *
 | |
|  * The slow path is the current xfs_mod_incore_sb() function.  This means that
 | |
|  * when we disable a per-cpu counter, we need to drain its resources back to
 | |
|  * the global superblock. We do this after disabling the counter to prevent
 | |
|  * more threads from queueing up on the counter.
 | |
|  *
 | |
|  * Essentially, this means that we still need a lock in the fast path to enable
 | |
|  * synchronisation between the global counters and the per-cpu counters. This
 | |
|  * is not a problem because the lock will be local to a CPU almost all the time
 | |
|  * and have little contention except when we get to ENOSPC conditions.
 | |
|  *
 | |
|  * Basically, this lock becomes a barrier that enables us to lock out the fast
 | |
|  * path while we do things like enabling and disabling counters and
 | |
|  * synchronising the counters.
 | |
|  *
 | |
|  * Locking rules:
 | |
|  *
 | |
|  * 	1. m_sb_lock before picking up per-cpu locks
 | |
|  * 	2. per-cpu locks always picked up via for_each_online_cpu() order
 | |
|  * 	3. accurate counter sync requires m_sb_lock + per cpu locks
 | |
|  * 	4. modifying per-cpu counters requires holding per-cpu lock
 | |
|  * 	5. modifying global counters requires holding m_sb_lock
 | |
|  *	6. enabling or disabling a counter requires holding the m_sb_lock 
 | |
|  *	   and _none_ of the per-cpu locks.
 | |
|  *
 | |
|  * Disabled counters are only ever re-enabled by a balance operation
 | |
|  * that results in more free resources per CPU than a given threshold.
 | |
|  * To ensure counters don't remain disabled, they are rebalanced when
 | |
|  * the global resource goes above a higher threshold (i.e. some hysteresis
 | |
|  * is present to prevent thrashing).
 | |
|  */
 | |
| 
 | |
| #ifdef CONFIG_HOTPLUG_CPU
 | |
| /*
 | |
|  * hot-plug CPU notifier support.
 | |
|  *
 | |
|  * We need a notifier per filesystem as we need to be able to identify
 | |
|  * the filesystem to balance the counters out. This is achieved by
 | |
|  * having a notifier block embedded in the xfs_mount_t and doing pointer
 | |
|  * magic to get the mount pointer from the notifier block address.
 | |
|  */
 | |
| STATIC int
 | |
| xfs_icsb_cpu_notify(
 | |
| 	struct notifier_block *nfb,
 | |
| 	unsigned long action,
 | |
| 	void *hcpu)
 | |
| {
 | |
| 	xfs_icsb_cnts_t *cntp;
 | |
| 	xfs_mount_t	*mp;
 | |
| 
 | |
| 	mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
 | |
| 	cntp = (xfs_icsb_cnts_t *)
 | |
| 			per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
 | |
| 	switch (action) {
 | |
| 	case CPU_UP_PREPARE:
 | |
| 	case CPU_UP_PREPARE_FROZEN:
 | |
| 		/* Easy Case - initialize the area and locks, and
 | |
| 		 * then rebalance when online does everything else for us. */
 | |
| 		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
 | |
| 		break;
 | |
| 	case CPU_ONLINE:
 | |
| 	case CPU_ONLINE_FROZEN:
 | |
| 		xfs_icsb_lock(mp);
 | |
| 		xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
 | |
| 		xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
 | |
| 		xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
 | |
| 		xfs_icsb_unlock(mp);
 | |
| 		break;
 | |
| 	case CPU_DEAD:
 | |
| 	case CPU_DEAD_FROZEN:
 | |
| 		/* Disable all the counters, then fold the dead cpu's
 | |
| 		 * count into the total on the global superblock and
 | |
| 		 * re-enable the counters. */
 | |
| 		xfs_icsb_lock(mp);
 | |
| 		spin_lock(&mp->m_sb_lock);
 | |
| 		xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
 | |
| 		xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
 | |
| 		xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
 | |
| 
 | |
| 		mp->m_sb.sb_icount += cntp->icsb_icount;
 | |
| 		mp->m_sb.sb_ifree += cntp->icsb_ifree;
 | |
| 		mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
 | |
| 
 | |
| 		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
 | |
| 
 | |
| 		xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0);
 | |
| 		xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0);
 | |
| 		xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0);
 | |
| 		spin_unlock(&mp->m_sb_lock);
 | |
| 		xfs_icsb_unlock(mp);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return NOTIFY_OK;
 | |
| }
 | |
| #endif /* CONFIG_HOTPLUG_CPU */
 | |
| 
 | |
| int
 | |
| xfs_icsb_init_counters(
 | |
| 	xfs_mount_t	*mp)
 | |
| {
 | |
| 	xfs_icsb_cnts_t *cntp;
 | |
| 	int		i;
 | |
| 
 | |
| 	mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
 | |
| 	if (mp->m_sb_cnts == NULL)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| #ifdef CONFIG_HOTPLUG_CPU
 | |
| 	mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
 | |
| 	mp->m_icsb_notifier.priority = 0;
 | |
| 	register_hotcpu_notifier(&mp->m_icsb_notifier);
 | |
| #endif /* CONFIG_HOTPLUG_CPU */
 | |
| 
 | |
| 	for_each_online_cpu(i) {
 | |
| 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
 | |
| 		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
 | |
| 	}
 | |
| 
 | |
| 	mutex_init(&mp->m_icsb_mutex);
 | |
| 
 | |
| 	/*
 | |
| 	 * start with all counters disabled so that the
 | |
| 	 * initial balance kicks us off correctly
 | |
| 	 */
 | |
| 	mp->m_icsb_counters = -1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void
 | |
| xfs_icsb_reinit_counters(
 | |
| 	xfs_mount_t	*mp)
 | |
| {
 | |
| 	xfs_icsb_lock(mp);
 | |
| 	/*
 | |
| 	 * start with all counters disabled so that the
 | |
| 	 * initial balance kicks us off correctly
 | |
| 	 */
 | |
| 	mp->m_icsb_counters = -1;
 | |
| 	xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
 | |
| 	xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
 | |
| 	xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
 | |
| 	xfs_icsb_unlock(mp);
 | |
| }
 | |
| 
 | |
| void
 | |
| xfs_icsb_destroy_counters(
 | |
| 	xfs_mount_t	*mp)
 | |
| {
 | |
| 	if (mp->m_sb_cnts) {
 | |
| 		unregister_hotcpu_notifier(&mp->m_icsb_notifier);
 | |
| 		free_percpu(mp->m_sb_cnts);
 | |
| 	}
 | |
| 	mutex_destroy(&mp->m_icsb_mutex);
 | |
| }
 | |
| 
 | |
| STATIC void
 | |
| xfs_icsb_lock_cntr(
 | |
| 	xfs_icsb_cnts_t	*icsbp)
 | |
| {
 | |
| 	while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
 | |
| 		ndelay(1000);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| STATIC void
 | |
| xfs_icsb_unlock_cntr(
 | |
| 	xfs_icsb_cnts_t	*icsbp)
 | |
| {
 | |
| 	clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
 | |
| }
 | |
| 
 | |
| 
 | |
| STATIC void
 | |
| xfs_icsb_lock_all_counters(
 | |
| 	xfs_mount_t	*mp)
 | |
| {
 | |
| 	xfs_icsb_cnts_t *cntp;
 | |
| 	int		i;
 | |
| 
 | |
| 	for_each_online_cpu(i) {
 | |
| 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
 | |
| 		xfs_icsb_lock_cntr(cntp);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| STATIC void
 | |
| xfs_icsb_unlock_all_counters(
 | |
| 	xfs_mount_t	*mp)
 | |
| {
 | |
| 	xfs_icsb_cnts_t *cntp;
 | |
| 	int		i;
 | |
| 
 | |
| 	for_each_online_cpu(i) {
 | |
| 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
 | |
| 		xfs_icsb_unlock_cntr(cntp);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| STATIC void
 | |
| xfs_icsb_count(
 | |
| 	xfs_mount_t	*mp,
 | |
| 	xfs_icsb_cnts_t	*cnt,
 | |
| 	int		flags)
 | |
| {
 | |
| 	xfs_icsb_cnts_t *cntp;
 | |
| 	int		i;
 | |
| 
 | |
| 	memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
 | |
| 
 | |
| 	if (!(flags & XFS_ICSB_LAZY_COUNT))
 | |
| 		xfs_icsb_lock_all_counters(mp);
 | |
| 
 | |
| 	for_each_online_cpu(i) {
 | |
| 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
 | |
| 		cnt->icsb_icount += cntp->icsb_icount;
 | |
| 		cnt->icsb_ifree += cntp->icsb_ifree;
 | |
| 		cnt->icsb_fdblocks += cntp->icsb_fdblocks;
 | |
| 	}
 | |
| 
 | |
| 	if (!(flags & XFS_ICSB_LAZY_COUNT))
 | |
| 		xfs_icsb_unlock_all_counters(mp);
 | |
| }
 | |
| 
 | |
| STATIC int
 | |
| xfs_icsb_counter_disabled(
 | |
| 	xfs_mount_t	*mp,
 | |
| 	xfs_sb_field_t	field)
 | |
| {
 | |
| 	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
 | |
| 	return test_bit(field, &mp->m_icsb_counters);
 | |
| }
 | |
| 
 | |
| STATIC void
 | |
| xfs_icsb_disable_counter(
 | |
| 	xfs_mount_t	*mp,
 | |
| 	xfs_sb_field_t	field)
 | |
| {
 | |
| 	xfs_icsb_cnts_t	cnt;
 | |
| 
 | |
| 	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
 | |
| 
 | |
| 	/*
 | |
| 	 * If we are already disabled, then there is nothing to do
 | |
| 	 * here. We check before locking all the counters to avoid
 | |
| 	 * the expensive lock operation when being called in the
 | |
| 	 * slow path and the counter is already disabled. This is
 | |
| 	 * safe because the only time we set or clear this state is under
 | |
| 	 * the m_icsb_mutex.
 | |
| 	 */
 | |
| 	if (xfs_icsb_counter_disabled(mp, field))
 | |
| 		return;
 | |
| 
 | |
| 	xfs_icsb_lock_all_counters(mp);
 | |
| 	if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
 | |
| 		/* drain back to superblock */
 | |
| 
 | |
| 		xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT);
 | |
| 		switch(field) {
 | |
| 		case XFS_SBS_ICOUNT:
 | |
| 			mp->m_sb.sb_icount = cnt.icsb_icount;
 | |
| 			break;
 | |
| 		case XFS_SBS_IFREE:
 | |
| 			mp->m_sb.sb_ifree = cnt.icsb_ifree;
 | |
| 			break;
 | |
| 		case XFS_SBS_FDBLOCKS:
 | |
| 			mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
 | |
| 			break;
 | |
| 		default:
 | |
| 			BUG();
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	xfs_icsb_unlock_all_counters(mp);
 | |
| }
 | |
| 
 | |
| STATIC void
 | |
| xfs_icsb_enable_counter(
 | |
| 	xfs_mount_t	*mp,
 | |
| 	xfs_sb_field_t	field,
 | |
| 	uint64_t	count,
 | |
| 	uint64_t	resid)
 | |
| {
 | |
| 	xfs_icsb_cnts_t	*cntp;
 | |
| 	int		i;
 | |
| 
 | |
| 	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
 | |
| 
 | |
| 	xfs_icsb_lock_all_counters(mp);
 | |
| 	for_each_online_cpu(i) {
 | |
| 		cntp = per_cpu_ptr(mp->m_sb_cnts, i);
 | |
| 		switch (field) {
 | |
| 		case XFS_SBS_ICOUNT:
 | |
| 			cntp->icsb_icount = count + resid;
 | |
| 			break;
 | |
| 		case XFS_SBS_IFREE:
 | |
| 			cntp->icsb_ifree = count + resid;
 | |
| 			break;
 | |
| 		case XFS_SBS_FDBLOCKS:
 | |
| 			cntp->icsb_fdblocks = count + resid;
 | |
| 			break;
 | |
| 		default:
 | |
| 			BUG();
 | |
| 			break;
 | |
| 		}
 | |
| 		resid = 0;
 | |
| 	}
 | |
| 	clear_bit(field, &mp->m_icsb_counters);
 | |
| 	xfs_icsb_unlock_all_counters(mp);
 | |
| }
 | |
| 
 | |
| void
 | |
| xfs_icsb_sync_counters_locked(
 | |
| 	xfs_mount_t	*mp,
 | |
| 	int		flags)
 | |
| {
 | |
| 	xfs_icsb_cnts_t	cnt;
 | |
| 
 | |
| 	xfs_icsb_count(mp, &cnt, flags);
 | |
| 
 | |
| 	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
 | |
| 		mp->m_sb.sb_icount = cnt.icsb_icount;
 | |
| 	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
 | |
| 		mp->m_sb.sb_ifree = cnt.icsb_ifree;
 | |
| 	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
 | |
| 		mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Accurate update of per-cpu counters to incore superblock
 | |
|  */
 | |
| void
 | |
| xfs_icsb_sync_counters(
 | |
| 	xfs_mount_t	*mp,
 | |
| 	int		flags)
 | |
| {
 | |
| 	spin_lock(&mp->m_sb_lock);
 | |
| 	xfs_icsb_sync_counters_locked(mp, flags);
 | |
| 	spin_unlock(&mp->m_sb_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Balance and enable/disable counters as necessary.
 | |
|  *
 | |
|  * Thresholds for re-enabling counters are somewhat magic.  inode counts are
 | |
|  * chosen to be the same number as single on disk allocation chunk per CPU, and
 | |
|  * free blocks is something far enough zero that we aren't going thrash when we
 | |
|  * get near ENOSPC. We also need to supply a minimum we require per cpu to
 | |
|  * prevent looping endlessly when xfs_alloc_space asks for more than will
 | |
|  * be distributed to a single CPU but each CPU has enough blocks to be
 | |
|  * reenabled.
 | |
|  *
 | |
|  * Note that we can be called when counters are already disabled.
 | |
|  * xfs_icsb_disable_counter() optimises the counter locking in this case to
 | |
|  * prevent locking every per-cpu counter needlessly.
 | |
|  */
 | |
| 
 | |
| #define XFS_ICSB_INO_CNTR_REENABLE	(uint64_t)64
 | |
| #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
 | |
| 		(uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
 | |
| STATIC void
 | |
| xfs_icsb_balance_counter_locked(
 | |
| 	xfs_mount_t	*mp,
 | |
| 	xfs_sb_field_t  field,
 | |
| 	int		min_per_cpu)
 | |
| {
 | |
| 	uint64_t	count, resid;
 | |
| 	int		weight = num_online_cpus();
 | |
| 	uint64_t	min = (uint64_t)min_per_cpu;
 | |
| 
 | |
| 	/* disable counter and sync counter */
 | |
| 	xfs_icsb_disable_counter(mp, field);
 | |
| 
 | |
| 	/* update counters  - first CPU gets residual*/
 | |
| 	switch (field) {
 | |
| 	case XFS_SBS_ICOUNT:
 | |
| 		count = mp->m_sb.sb_icount;
 | |
| 		resid = do_div(count, weight);
 | |
| 		if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
 | |
| 			return;
 | |
| 		break;
 | |
| 	case XFS_SBS_IFREE:
 | |
| 		count = mp->m_sb.sb_ifree;
 | |
| 		resid = do_div(count, weight);
 | |
| 		if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
 | |
| 			return;
 | |
| 		break;
 | |
| 	case XFS_SBS_FDBLOCKS:
 | |
| 		count = mp->m_sb.sb_fdblocks;
 | |
| 		resid = do_div(count, weight);
 | |
| 		if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
 | |
| 			return;
 | |
| 		break;
 | |
| 	default:
 | |
| 		BUG();
 | |
| 		count = resid = 0;	/* quiet, gcc */
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	xfs_icsb_enable_counter(mp, field, count, resid);
 | |
| }
 | |
| 
 | |
| STATIC void
 | |
| xfs_icsb_balance_counter(
 | |
| 	xfs_mount_t	*mp,
 | |
| 	xfs_sb_field_t  fields,
 | |
| 	int		min_per_cpu)
 | |
| {
 | |
| 	spin_lock(&mp->m_sb_lock);
 | |
| 	xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu);
 | |
| 	spin_unlock(&mp->m_sb_lock);
 | |
| }
 | |
| 
 | |
| int
 | |
| xfs_icsb_modify_counters(
 | |
| 	xfs_mount_t	*mp,
 | |
| 	xfs_sb_field_t	field,
 | |
| 	int64_t		delta,
 | |
| 	int		rsvd)
 | |
| {
 | |
| 	xfs_icsb_cnts_t	*icsbp;
 | |
| 	long long	lcounter;	/* long counter for 64 bit fields */
 | |
| 	int		ret = 0;
 | |
| 
 | |
| 	might_sleep();
 | |
| again:
 | |
| 	preempt_disable();
 | |
| 	icsbp = this_cpu_ptr(mp->m_sb_cnts);
 | |
| 
 | |
| 	/*
 | |
| 	 * if the counter is disabled, go to slow path
 | |
| 	 */
 | |
| 	if (unlikely(xfs_icsb_counter_disabled(mp, field)))
 | |
| 		goto slow_path;
 | |
| 	xfs_icsb_lock_cntr(icsbp);
 | |
| 	if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
 | |
| 		xfs_icsb_unlock_cntr(icsbp);
 | |
| 		goto slow_path;
 | |
| 	}
 | |
| 
 | |
| 	switch (field) {
 | |
| 	case XFS_SBS_ICOUNT:
 | |
| 		lcounter = icsbp->icsb_icount;
 | |
| 		lcounter += delta;
 | |
| 		if (unlikely(lcounter < 0))
 | |
| 			goto balance_counter;
 | |
| 		icsbp->icsb_icount = lcounter;
 | |
| 		break;
 | |
| 
 | |
| 	case XFS_SBS_IFREE:
 | |
| 		lcounter = icsbp->icsb_ifree;
 | |
| 		lcounter += delta;
 | |
| 		if (unlikely(lcounter < 0))
 | |
| 			goto balance_counter;
 | |
| 		icsbp->icsb_ifree = lcounter;
 | |
| 		break;
 | |
| 
 | |
| 	case XFS_SBS_FDBLOCKS:
 | |
| 		BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
 | |
| 
 | |
| 		lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
 | |
| 		lcounter += delta;
 | |
| 		if (unlikely(lcounter < 0))
 | |
| 			goto balance_counter;
 | |
| 		icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
 | |
| 		break;
 | |
| 	default:
 | |
| 		BUG();
 | |
| 		break;
 | |
| 	}
 | |
| 	xfs_icsb_unlock_cntr(icsbp);
 | |
| 	preempt_enable();
 | |
| 	return 0;
 | |
| 
 | |
| slow_path:
 | |
| 	preempt_enable();
 | |
| 
 | |
| 	/*
 | |
| 	 * serialise with a mutex so we don't burn lots of cpu on
 | |
| 	 * the superblock lock. We still need to hold the superblock
 | |
| 	 * lock, however, when we modify the global structures.
 | |
| 	 */
 | |
| 	xfs_icsb_lock(mp);
 | |
| 
 | |
| 	/*
 | |
| 	 * Now running atomically.
 | |
| 	 *
 | |
| 	 * If the counter is enabled, someone has beaten us to rebalancing.
 | |
| 	 * Drop the lock and try again in the fast path....
 | |
| 	 */
 | |
| 	if (!(xfs_icsb_counter_disabled(mp, field))) {
 | |
| 		xfs_icsb_unlock(mp);
 | |
| 		goto again;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The counter is currently disabled. Because we are
 | |
| 	 * running atomically here, we know a rebalance cannot
 | |
| 	 * be in progress. Hence we can go straight to operating
 | |
| 	 * on the global superblock. We do not call xfs_mod_incore_sb()
 | |
| 	 * here even though we need to get the m_sb_lock. Doing so
 | |
| 	 * will cause us to re-enter this function and deadlock.
 | |
| 	 * Hence we get the m_sb_lock ourselves and then call
 | |
| 	 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
 | |
| 	 * directly on the global counters.
 | |
| 	 */
 | |
| 	spin_lock(&mp->m_sb_lock);
 | |
| 	ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
 | |
| 	spin_unlock(&mp->m_sb_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * Now that we've modified the global superblock, we
 | |
| 	 * may be able to re-enable the distributed counters
 | |
| 	 * (e.g. lots of space just got freed). After that
 | |
| 	 * we are done.
 | |
| 	 */
 | |
| 	if (ret != ENOSPC)
 | |
| 		xfs_icsb_balance_counter(mp, field, 0);
 | |
| 	xfs_icsb_unlock(mp);
 | |
| 	return ret;
 | |
| 
 | |
| balance_counter:
 | |
| 	xfs_icsb_unlock_cntr(icsbp);
 | |
| 	preempt_enable();
 | |
| 
 | |
| 	/*
 | |
| 	 * We may have multiple threads here if multiple per-cpu
 | |
| 	 * counters run dry at the same time. This will mean we can
 | |
| 	 * do more balances than strictly necessary but it is not
 | |
| 	 * the common slowpath case.
 | |
| 	 */
 | |
| 	xfs_icsb_lock(mp);
 | |
| 
 | |
| 	/*
 | |
| 	 * running atomically.
 | |
| 	 *
 | |
| 	 * This will leave the counter in the correct state for future
 | |
| 	 * accesses. After the rebalance, we simply try again and our retry
 | |
| 	 * will either succeed through the fast path or slow path without
 | |
| 	 * another balance operation being required.
 | |
| 	 */
 | |
| 	xfs_icsb_balance_counter(mp, field, delta);
 | |
| 	xfs_icsb_unlock(mp);
 | |
| 	goto again;
 | |
| }
 | |
| 
 | |
| #endif
 |