 ced55f38d6
			
		
	
	
	ced55f38d6
	
	
	
		
			
			Running AIO is pinning inode in memory using file reference. Once AIO is completed using aio_complete(), file reference is put and inode can be freed from memory. So we have to be sure that calling aio_complete() is the last thing we do with the inode. CC: xfs@oss.sgi.com CC: Ben Myers <bpm@sgi.com> CC: stable@vger.kernel.org Signed-off-by: Jan Kara <jack@suse.cz> Reviewed-by: Ben Myers <bpm@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
		
			
				
	
	
		
			1658 lines
		
	
	
	
		
			41 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1658 lines
		
	
	
	
		
			41 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
 | |
|  * All Rights Reserved.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License as
 | |
|  * published by the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope that it would be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write the Free Software Foundation,
 | |
|  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 | |
|  */
 | |
| #include "xfs.h"
 | |
| #include "xfs_log.h"
 | |
| #include "xfs_sb.h"
 | |
| #include "xfs_ag.h"
 | |
| #include "xfs_trans.h"
 | |
| #include "xfs_mount.h"
 | |
| #include "xfs_bmap_btree.h"
 | |
| #include "xfs_dinode.h"
 | |
| #include "xfs_inode.h"
 | |
| #include "xfs_inode_item.h"
 | |
| #include "xfs_alloc.h"
 | |
| #include "xfs_error.h"
 | |
| #include "xfs_iomap.h"
 | |
| #include "xfs_vnodeops.h"
 | |
| #include "xfs_trace.h"
 | |
| #include "xfs_bmap.h"
 | |
| #include <linux/gfp.h>
 | |
| #include <linux/mpage.h>
 | |
| #include <linux/pagevec.h>
 | |
| #include <linux/writeback.h>
 | |
| 
 | |
| void
 | |
| xfs_count_page_state(
 | |
| 	struct page		*page,
 | |
| 	int			*delalloc,
 | |
| 	int			*unwritten)
 | |
| {
 | |
| 	struct buffer_head	*bh, *head;
 | |
| 
 | |
| 	*delalloc = *unwritten = 0;
 | |
| 
 | |
| 	bh = head = page_buffers(page);
 | |
| 	do {
 | |
| 		if (buffer_unwritten(bh))
 | |
| 			(*unwritten) = 1;
 | |
| 		else if (buffer_delay(bh))
 | |
| 			(*delalloc) = 1;
 | |
| 	} while ((bh = bh->b_this_page) != head);
 | |
| }
 | |
| 
 | |
| STATIC struct block_device *
 | |
| xfs_find_bdev_for_inode(
 | |
| 	struct inode		*inode)
 | |
| {
 | |
| 	struct xfs_inode	*ip = XFS_I(inode);
 | |
| 	struct xfs_mount	*mp = ip->i_mount;
 | |
| 
 | |
| 	if (XFS_IS_REALTIME_INODE(ip))
 | |
| 		return mp->m_rtdev_targp->bt_bdev;
 | |
| 	else
 | |
| 		return mp->m_ddev_targp->bt_bdev;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We're now finished for good with this ioend structure.
 | |
|  * Update the page state via the associated buffer_heads,
 | |
|  * release holds on the inode and bio, and finally free
 | |
|  * up memory.  Do not use the ioend after this.
 | |
|  */
 | |
| STATIC void
 | |
| xfs_destroy_ioend(
 | |
| 	xfs_ioend_t		*ioend)
 | |
| {
 | |
| 	struct buffer_head	*bh, *next;
 | |
| 
 | |
| 	for (bh = ioend->io_buffer_head; bh; bh = next) {
 | |
| 		next = bh->b_private;
 | |
| 		bh->b_end_io(bh, !ioend->io_error);
 | |
| 	}
 | |
| 
 | |
| 	if (ioend->io_iocb) {
 | |
| 		inode_dio_done(ioend->io_inode);
 | |
| 		if (ioend->io_isasync) {
 | |
| 			aio_complete(ioend->io_iocb, ioend->io_error ?
 | |
| 					ioend->io_error : ioend->io_result, 0);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	mempool_free(ioend, xfs_ioend_pool);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Fast and loose check if this write could update the on-disk inode size.
 | |
|  */
 | |
| static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
 | |
| {
 | |
| 	return ioend->io_offset + ioend->io_size >
 | |
| 		XFS_I(ioend->io_inode)->i_d.di_size;
 | |
| }
 | |
| 
 | |
| STATIC int
 | |
| xfs_setfilesize_trans_alloc(
 | |
| 	struct xfs_ioend	*ioend)
 | |
| {
 | |
| 	struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
 | |
| 	struct xfs_trans	*tp;
 | |
| 	int			error;
 | |
| 
 | |
| 	tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
 | |
| 
 | |
| 	error = xfs_trans_reserve(tp, 0, XFS_FSYNC_TS_LOG_RES(mp), 0, 0, 0);
 | |
| 	if (error) {
 | |
| 		xfs_trans_cancel(tp, 0);
 | |
| 		return error;
 | |
| 	}
 | |
| 
 | |
| 	ioend->io_append_trans = tp;
 | |
| 
 | |
| 	/*
 | |
| 	 * We may pass freeze protection with a transaction.  So tell lockdep
 | |
| 	 * we released it.
 | |
| 	 */
 | |
| 	rwsem_release(&ioend->io_inode->i_sb->s_writers.lock_map[SB_FREEZE_FS-1],
 | |
| 		      1, _THIS_IP_);
 | |
| 	/*
 | |
| 	 * We hand off the transaction to the completion thread now, so
 | |
| 	 * clear the flag here.
 | |
| 	 */
 | |
| 	current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update on-disk file size now that data has been written to disk.
 | |
|  */
 | |
| STATIC int
 | |
| xfs_setfilesize(
 | |
| 	struct xfs_ioend	*ioend)
 | |
| {
 | |
| 	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
 | |
| 	struct xfs_trans	*tp = ioend->io_append_trans;
 | |
| 	xfs_fsize_t		isize;
 | |
| 
 | |
| 	/*
 | |
| 	 * The transaction may have been allocated in the I/O submission thread,
 | |
| 	 * thus we need to mark ourselves as beeing in a transaction manually.
 | |
| 	 * Similarly for freeze protection.
 | |
| 	 */
 | |
| 	current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
 | |
| 	rwsem_acquire_read(&VFS_I(ip)->i_sb->s_writers.lock_map[SB_FREEZE_FS-1],
 | |
| 			   0, 1, _THIS_IP_);
 | |
| 
 | |
| 	xfs_ilock(ip, XFS_ILOCK_EXCL);
 | |
| 	isize = xfs_new_eof(ip, ioend->io_offset + ioend->io_size);
 | |
| 	if (!isize) {
 | |
| 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
 | |
| 		xfs_trans_cancel(tp, 0);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	trace_xfs_setfilesize(ip, ioend->io_offset, ioend->io_size);
 | |
| 
 | |
| 	ip->i_d.di_size = isize;
 | |
| 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
 | |
| 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
 | |
| 
 | |
| 	return xfs_trans_commit(tp, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Schedule IO completion handling on the final put of an ioend.
 | |
|  *
 | |
|  * If there is no work to do we might as well call it a day and free the
 | |
|  * ioend right now.
 | |
|  */
 | |
| STATIC void
 | |
| xfs_finish_ioend(
 | |
| 	struct xfs_ioend	*ioend)
 | |
| {
 | |
| 	if (atomic_dec_and_test(&ioend->io_remaining)) {
 | |
| 		struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
 | |
| 
 | |
| 		if (ioend->io_type == XFS_IO_UNWRITTEN)
 | |
| 			queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
 | |
| 		else if (ioend->io_append_trans ||
 | |
| 			 (ioend->io_isdirect && xfs_ioend_is_append(ioend)))
 | |
| 			queue_work(mp->m_data_workqueue, &ioend->io_work);
 | |
| 		else
 | |
| 			xfs_destroy_ioend(ioend);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * IO write completion.
 | |
|  */
 | |
| STATIC void
 | |
| xfs_end_io(
 | |
| 	struct work_struct *work)
 | |
| {
 | |
| 	xfs_ioend_t	*ioend = container_of(work, xfs_ioend_t, io_work);
 | |
| 	struct xfs_inode *ip = XFS_I(ioend->io_inode);
 | |
| 	int		error = 0;
 | |
| 
 | |
| 	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
 | |
| 		ioend->io_error = -EIO;
 | |
| 		goto done;
 | |
| 	}
 | |
| 	if (ioend->io_error)
 | |
| 		goto done;
 | |
| 
 | |
| 	/*
 | |
| 	 * For unwritten extents we need to issue transactions to convert a
 | |
| 	 * range to normal written extens after the data I/O has finished.
 | |
| 	 */
 | |
| 	if (ioend->io_type == XFS_IO_UNWRITTEN) {
 | |
| 		error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
 | |
| 						  ioend->io_size);
 | |
| 	} else if (ioend->io_isdirect && xfs_ioend_is_append(ioend)) {
 | |
| 		/*
 | |
| 		 * For direct I/O we do not know if we need to allocate blocks
 | |
| 		 * or not so we can't preallocate an append transaction as that
 | |
| 		 * results in nested reservations and log space deadlocks. Hence
 | |
| 		 * allocate the transaction here. While this is sub-optimal and
 | |
| 		 * can block IO completion for some time, we're stuck with doing
 | |
| 		 * it this way until we can pass the ioend to the direct IO
 | |
| 		 * allocation callbacks and avoid nesting that way.
 | |
| 		 */
 | |
| 		error = xfs_setfilesize_trans_alloc(ioend);
 | |
| 		if (error)
 | |
| 			goto done;
 | |
| 		error = xfs_setfilesize(ioend);
 | |
| 	} else if (ioend->io_append_trans) {
 | |
| 		error = xfs_setfilesize(ioend);
 | |
| 	} else {
 | |
| 		ASSERT(!xfs_ioend_is_append(ioend));
 | |
| 	}
 | |
| 
 | |
| done:
 | |
| 	if (error)
 | |
| 		ioend->io_error = -error;
 | |
| 	xfs_destroy_ioend(ioend);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Call IO completion handling in caller context on the final put of an ioend.
 | |
|  */
 | |
| STATIC void
 | |
| xfs_finish_ioend_sync(
 | |
| 	struct xfs_ioend	*ioend)
 | |
| {
 | |
| 	if (atomic_dec_and_test(&ioend->io_remaining))
 | |
| 		xfs_end_io(&ioend->io_work);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate and initialise an IO completion structure.
 | |
|  * We need to track unwritten extent write completion here initially.
 | |
|  * We'll need to extend this for updating the ondisk inode size later
 | |
|  * (vs. incore size).
 | |
|  */
 | |
| STATIC xfs_ioend_t *
 | |
| xfs_alloc_ioend(
 | |
| 	struct inode		*inode,
 | |
| 	unsigned int		type)
 | |
| {
 | |
| 	xfs_ioend_t		*ioend;
 | |
| 
 | |
| 	ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
 | |
| 
 | |
| 	/*
 | |
| 	 * Set the count to 1 initially, which will prevent an I/O
 | |
| 	 * completion callback from happening before we have started
 | |
| 	 * all the I/O from calling the completion routine too early.
 | |
| 	 */
 | |
| 	atomic_set(&ioend->io_remaining, 1);
 | |
| 	ioend->io_isasync = 0;
 | |
| 	ioend->io_isdirect = 0;
 | |
| 	ioend->io_error = 0;
 | |
| 	ioend->io_list = NULL;
 | |
| 	ioend->io_type = type;
 | |
| 	ioend->io_inode = inode;
 | |
| 	ioend->io_buffer_head = NULL;
 | |
| 	ioend->io_buffer_tail = NULL;
 | |
| 	ioend->io_offset = 0;
 | |
| 	ioend->io_size = 0;
 | |
| 	ioend->io_iocb = NULL;
 | |
| 	ioend->io_result = 0;
 | |
| 	ioend->io_append_trans = NULL;
 | |
| 
 | |
| 	INIT_WORK(&ioend->io_work, xfs_end_io);
 | |
| 	return ioend;
 | |
| }
 | |
| 
 | |
| STATIC int
 | |
| xfs_map_blocks(
 | |
| 	struct inode		*inode,
 | |
| 	loff_t			offset,
 | |
| 	struct xfs_bmbt_irec	*imap,
 | |
| 	int			type,
 | |
| 	int			nonblocking)
 | |
| {
 | |
| 	struct xfs_inode	*ip = XFS_I(inode);
 | |
| 	struct xfs_mount	*mp = ip->i_mount;
 | |
| 	ssize_t			count = 1 << inode->i_blkbits;
 | |
| 	xfs_fileoff_t		offset_fsb, end_fsb;
 | |
| 	int			error = 0;
 | |
| 	int			bmapi_flags = XFS_BMAPI_ENTIRE;
 | |
| 	int			nimaps = 1;
 | |
| 
 | |
| 	if (XFS_FORCED_SHUTDOWN(mp))
 | |
| 		return -XFS_ERROR(EIO);
 | |
| 
 | |
| 	if (type == XFS_IO_UNWRITTEN)
 | |
| 		bmapi_flags |= XFS_BMAPI_IGSTATE;
 | |
| 
 | |
| 	if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
 | |
| 		if (nonblocking)
 | |
| 			return -XFS_ERROR(EAGAIN);
 | |
| 		xfs_ilock(ip, XFS_ILOCK_SHARED);
 | |
| 	}
 | |
| 
 | |
| 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
 | |
| 	       (ip->i_df.if_flags & XFS_IFEXTENTS));
 | |
| 	ASSERT(offset <= mp->m_super->s_maxbytes);
 | |
| 
 | |
| 	if (offset + count > mp->m_super->s_maxbytes)
 | |
| 		count = mp->m_super->s_maxbytes - offset;
 | |
| 	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
 | |
| 	offset_fsb = XFS_B_TO_FSBT(mp, offset);
 | |
| 	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
 | |
| 				imap, &nimaps, bmapi_flags);
 | |
| 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
 | |
| 
 | |
| 	if (error)
 | |
| 		return -XFS_ERROR(error);
 | |
| 
 | |
| 	if (type == XFS_IO_DELALLOC &&
 | |
| 	    (!nimaps || isnullstartblock(imap->br_startblock))) {
 | |
| 		error = xfs_iomap_write_allocate(ip, offset, count, imap);
 | |
| 		if (!error)
 | |
| 			trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
 | |
| 		return -XFS_ERROR(error);
 | |
| 	}
 | |
| 
 | |
| #ifdef DEBUG
 | |
| 	if (type == XFS_IO_UNWRITTEN) {
 | |
| 		ASSERT(nimaps);
 | |
| 		ASSERT(imap->br_startblock != HOLESTARTBLOCK);
 | |
| 		ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
 | |
| 	}
 | |
| #endif
 | |
| 	if (nimaps)
 | |
| 		trace_xfs_map_blocks_found(ip, offset, count, type, imap);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| STATIC int
 | |
| xfs_imap_valid(
 | |
| 	struct inode		*inode,
 | |
| 	struct xfs_bmbt_irec	*imap,
 | |
| 	xfs_off_t		offset)
 | |
| {
 | |
| 	offset >>= inode->i_blkbits;
 | |
| 
 | |
| 	return offset >= imap->br_startoff &&
 | |
| 		offset < imap->br_startoff + imap->br_blockcount;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * BIO completion handler for buffered IO.
 | |
|  */
 | |
| STATIC void
 | |
| xfs_end_bio(
 | |
| 	struct bio		*bio,
 | |
| 	int			error)
 | |
| {
 | |
| 	xfs_ioend_t		*ioend = bio->bi_private;
 | |
| 
 | |
| 	ASSERT(atomic_read(&bio->bi_cnt) >= 1);
 | |
| 	ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
 | |
| 
 | |
| 	/* Toss bio and pass work off to an xfsdatad thread */
 | |
| 	bio->bi_private = NULL;
 | |
| 	bio->bi_end_io = NULL;
 | |
| 	bio_put(bio);
 | |
| 
 | |
| 	xfs_finish_ioend(ioend);
 | |
| }
 | |
| 
 | |
| STATIC void
 | |
| xfs_submit_ioend_bio(
 | |
| 	struct writeback_control *wbc,
 | |
| 	xfs_ioend_t		*ioend,
 | |
| 	struct bio		*bio)
 | |
| {
 | |
| 	atomic_inc(&ioend->io_remaining);
 | |
| 	bio->bi_private = ioend;
 | |
| 	bio->bi_end_io = xfs_end_bio;
 | |
| 	submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio);
 | |
| }
 | |
| 
 | |
| STATIC struct bio *
 | |
| xfs_alloc_ioend_bio(
 | |
| 	struct buffer_head	*bh)
 | |
| {
 | |
| 	int			nvecs = bio_get_nr_vecs(bh->b_bdev);
 | |
| 	struct bio		*bio = bio_alloc(GFP_NOIO, nvecs);
 | |
| 
 | |
| 	ASSERT(bio->bi_private == NULL);
 | |
| 	bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
 | |
| 	bio->bi_bdev = bh->b_bdev;
 | |
| 	return bio;
 | |
| }
 | |
| 
 | |
| STATIC void
 | |
| xfs_start_buffer_writeback(
 | |
| 	struct buffer_head	*bh)
 | |
| {
 | |
| 	ASSERT(buffer_mapped(bh));
 | |
| 	ASSERT(buffer_locked(bh));
 | |
| 	ASSERT(!buffer_delay(bh));
 | |
| 	ASSERT(!buffer_unwritten(bh));
 | |
| 
 | |
| 	mark_buffer_async_write(bh);
 | |
| 	set_buffer_uptodate(bh);
 | |
| 	clear_buffer_dirty(bh);
 | |
| }
 | |
| 
 | |
| STATIC void
 | |
| xfs_start_page_writeback(
 | |
| 	struct page		*page,
 | |
| 	int			clear_dirty,
 | |
| 	int			buffers)
 | |
| {
 | |
| 	ASSERT(PageLocked(page));
 | |
| 	ASSERT(!PageWriteback(page));
 | |
| 	if (clear_dirty)
 | |
| 		clear_page_dirty_for_io(page);
 | |
| 	set_page_writeback(page);
 | |
| 	unlock_page(page);
 | |
| 	/* If no buffers on the page are to be written, finish it here */
 | |
| 	if (!buffers)
 | |
| 		end_page_writeback(page);
 | |
| }
 | |
| 
 | |
| static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh)
 | |
| {
 | |
| 	return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Submit all of the bios for all of the ioends we have saved up, covering the
 | |
|  * initial writepage page and also any probed pages.
 | |
|  *
 | |
|  * Because we may have multiple ioends spanning a page, we need to start
 | |
|  * writeback on all the buffers before we submit them for I/O. If we mark the
 | |
|  * buffers as we got, then we can end up with a page that only has buffers
 | |
|  * marked async write and I/O complete on can occur before we mark the other
 | |
|  * buffers async write.
 | |
|  *
 | |
|  * The end result of this is that we trip a bug in end_page_writeback() because
 | |
|  * we call it twice for the one page as the code in end_buffer_async_write()
 | |
|  * assumes that all buffers on the page are started at the same time.
 | |
|  *
 | |
|  * The fix is two passes across the ioend list - one to start writeback on the
 | |
|  * buffer_heads, and then submit them for I/O on the second pass.
 | |
|  *
 | |
|  * If @fail is non-zero, it means that we have a situation where some part of
 | |
|  * the submission process has failed after we have marked paged for writeback
 | |
|  * and unlocked them. In this situation, we need to fail the ioend chain rather
 | |
|  * than submit it to IO. This typically only happens on a filesystem shutdown.
 | |
|  */
 | |
| STATIC void
 | |
| xfs_submit_ioend(
 | |
| 	struct writeback_control *wbc,
 | |
| 	xfs_ioend_t		*ioend,
 | |
| 	int			fail)
 | |
| {
 | |
| 	xfs_ioend_t		*head = ioend;
 | |
| 	xfs_ioend_t		*next;
 | |
| 	struct buffer_head	*bh;
 | |
| 	struct bio		*bio;
 | |
| 	sector_t		lastblock = 0;
 | |
| 
 | |
| 	/* Pass 1 - start writeback */
 | |
| 	do {
 | |
| 		next = ioend->io_list;
 | |
| 		for (bh = ioend->io_buffer_head; bh; bh = bh->b_private)
 | |
| 			xfs_start_buffer_writeback(bh);
 | |
| 	} while ((ioend = next) != NULL);
 | |
| 
 | |
| 	/* Pass 2 - submit I/O */
 | |
| 	ioend = head;
 | |
| 	do {
 | |
| 		next = ioend->io_list;
 | |
| 		bio = NULL;
 | |
| 
 | |
| 		/*
 | |
| 		 * If we are failing the IO now, just mark the ioend with an
 | |
| 		 * error and finish it. This will run IO completion immediately
 | |
| 		 * as there is only one reference to the ioend at this point in
 | |
| 		 * time.
 | |
| 		 */
 | |
| 		if (fail) {
 | |
| 			ioend->io_error = -fail;
 | |
| 			xfs_finish_ioend(ioend);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
 | |
| 
 | |
| 			if (!bio) {
 | |
|  retry:
 | |
| 				bio = xfs_alloc_ioend_bio(bh);
 | |
| 			} else if (bh->b_blocknr != lastblock + 1) {
 | |
| 				xfs_submit_ioend_bio(wbc, ioend, bio);
 | |
| 				goto retry;
 | |
| 			}
 | |
| 
 | |
| 			if (bio_add_buffer(bio, bh) != bh->b_size) {
 | |
| 				xfs_submit_ioend_bio(wbc, ioend, bio);
 | |
| 				goto retry;
 | |
| 			}
 | |
| 
 | |
| 			lastblock = bh->b_blocknr;
 | |
| 		}
 | |
| 		if (bio)
 | |
| 			xfs_submit_ioend_bio(wbc, ioend, bio);
 | |
| 		xfs_finish_ioend(ioend);
 | |
| 	} while ((ioend = next) != NULL);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Cancel submission of all buffer_heads so far in this endio.
 | |
|  * Toss the endio too.  Only ever called for the initial page
 | |
|  * in a writepage request, so only ever one page.
 | |
|  */
 | |
| STATIC void
 | |
| xfs_cancel_ioend(
 | |
| 	xfs_ioend_t		*ioend)
 | |
| {
 | |
| 	xfs_ioend_t		*next;
 | |
| 	struct buffer_head	*bh, *next_bh;
 | |
| 
 | |
| 	do {
 | |
| 		next = ioend->io_list;
 | |
| 		bh = ioend->io_buffer_head;
 | |
| 		do {
 | |
| 			next_bh = bh->b_private;
 | |
| 			clear_buffer_async_write(bh);
 | |
| 			unlock_buffer(bh);
 | |
| 		} while ((bh = next_bh) != NULL);
 | |
| 
 | |
| 		mempool_free(ioend, xfs_ioend_pool);
 | |
| 	} while ((ioend = next) != NULL);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Test to see if we've been building up a completion structure for
 | |
|  * earlier buffers -- if so, we try to append to this ioend if we
 | |
|  * can, otherwise we finish off any current ioend and start another.
 | |
|  * Return true if we've finished the given ioend.
 | |
|  */
 | |
| STATIC void
 | |
| xfs_add_to_ioend(
 | |
| 	struct inode		*inode,
 | |
| 	struct buffer_head	*bh,
 | |
| 	xfs_off_t		offset,
 | |
| 	unsigned int		type,
 | |
| 	xfs_ioend_t		**result,
 | |
| 	int			need_ioend)
 | |
| {
 | |
| 	xfs_ioend_t		*ioend = *result;
 | |
| 
 | |
| 	if (!ioend || need_ioend || type != ioend->io_type) {
 | |
| 		xfs_ioend_t	*previous = *result;
 | |
| 
 | |
| 		ioend = xfs_alloc_ioend(inode, type);
 | |
| 		ioend->io_offset = offset;
 | |
| 		ioend->io_buffer_head = bh;
 | |
| 		ioend->io_buffer_tail = bh;
 | |
| 		if (previous)
 | |
| 			previous->io_list = ioend;
 | |
| 		*result = ioend;
 | |
| 	} else {
 | |
| 		ioend->io_buffer_tail->b_private = bh;
 | |
| 		ioend->io_buffer_tail = bh;
 | |
| 	}
 | |
| 
 | |
| 	bh->b_private = NULL;
 | |
| 	ioend->io_size += bh->b_size;
 | |
| }
 | |
| 
 | |
| STATIC void
 | |
| xfs_map_buffer(
 | |
| 	struct inode		*inode,
 | |
| 	struct buffer_head	*bh,
 | |
| 	struct xfs_bmbt_irec	*imap,
 | |
| 	xfs_off_t		offset)
 | |
| {
 | |
| 	sector_t		bn;
 | |
| 	struct xfs_mount	*m = XFS_I(inode)->i_mount;
 | |
| 	xfs_off_t		iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
 | |
| 	xfs_daddr_t		iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
 | |
| 
 | |
| 	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
 | |
| 	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
 | |
| 
 | |
| 	bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
 | |
| 	      ((offset - iomap_offset) >> inode->i_blkbits);
 | |
| 
 | |
| 	ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
 | |
| 
 | |
| 	bh->b_blocknr = bn;
 | |
| 	set_buffer_mapped(bh);
 | |
| }
 | |
| 
 | |
| STATIC void
 | |
| xfs_map_at_offset(
 | |
| 	struct inode		*inode,
 | |
| 	struct buffer_head	*bh,
 | |
| 	struct xfs_bmbt_irec	*imap,
 | |
| 	xfs_off_t		offset)
 | |
| {
 | |
| 	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
 | |
| 	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
 | |
| 
 | |
| 	xfs_map_buffer(inode, bh, imap, offset);
 | |
| 	set_buffer_mapped(bh);
 | |
| 	clear_buffer_delay(bh);
 | |
| 	clear_buffer_unwritten(bh);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Test if a given page is suitable for writing as part of an unwritten
 | |
|  * or delayed allocate extent.
 | |
|  */
 | |
| STATIC int
 | |
| xfs_check_page_type(
 | |
| 	struct page		*page,
 | |
| 	unsigned int		type)
 | |
| {
 | |
| 	if (PageWriteback(page))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (page->mapping && page_has_buffers(page)) {
 | |
| 		struct buffer_head	*bh, *head;
 | |
| 		int			acceptable = 0;
 | |
| 
 | |
| 		bh = head = page_buffers(page);
 | |
| 		do {
 | |
| 			if (buffer_unwritten(bh))
 | |
| 				acceptable += (type == XFS_IO_UNWRITTEN);
 | |
| 			else if (buffer_delay(bh))
 | |
| 				acceptable += (type == XFS_IO_DELALLOC);
 | |
| 			else if (buffer_dirty(bh) && buffer_mapped(bh))
 | |
| 				acceptable += (type == XFS_IO_OVERWRITE);
 | |
| 			else
 | |
| 				break;
 | |
| 		} while ((bh = bh->b_this_page) != head);
 | |
| 
 | |
| 		if (acceptable)
 | |
| 			return 1;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate & map buffers for page given the extent map. Write it out.
 | |
|  * except for the original page of a writepage, this is called on
 | |
|  * delalloc/unwritten pages only, for the original page it is possible
 | |
|  * that the page has no mapping at all.
 | |
|  */
 | |
| STATIC int
 | |
| xfs_convert_page(
 | |
| 	struct inode		*inode,
 | |
| 	struct page		*page,
 | |
| 	loff_t			tindex,
 | |
| 	struct xfs_bmbt_irec	*imap,
 | |
| 	xfs_ioend_t		**ioendp,
 | |
| 	struct writeback_control *wbc)
 | |
| {
 | |
| 	struct buffer_head	*bh, *head;
 | |
| 	xfs_off_t		end_offset;
 | |
| 	unsigned long		p_offset;
 | |
| 	unsigned int		type;
 | |
| 	int			len, page_dirty;
 | |
| 	int			count = 0, done = 0, uptodate = 1;
 | |
|  	xfs_off_t		offset = page_offset(page);
 | |
| 
 | |
| 	if (page->index != tindex)
 | |
| 		goto fail;
 | |
| 	if (!trylock_page(page))
 | |
| 		goto fail;
 | |
| 	if (PageWriteback(page))
 | |
| 		goto fail_unlock_page;
 | |
| 	if (page->mapping != inode->i_mapping)
 | |
| 		goto fail_unlock_page;
 | |
| 	if (!xfs_check_page_type(page, (*ioendp)->io_type))
 | |
| 		goto fail_unlock_page;
 | |
| 
 | |
| 	/*
 | |
| 	 * page_dirty is initially a count of buffers on the page before
 | |
| 	 * EOF and is decremented as we move each into a cleanable state.
 | |
| 	 *
 | |
| 	 * Derivation:
 | |
| 	 *
 | |
| 	 * End offset is the highest offset that this page should represent.
 | |
| 	 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
 | |
| 	 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
 | |
| 	 * hence give us the correct page_dirty count. On any other page,
 | |
| 	 * it will be zero and in that case we need page_dirty to be the
 | |
| 	 * count of buffers on the page.
 | |
| 	 */
 | |
| 	end_offset = min_t(unsigned long long,
 | |
| 			(xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
 | |
| 			i_size_read(inode));
 | |
| 
 | |
| 	len = 1 << inode->i_blkbits;
 | |
| 	p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
 | |
| 					PAGE_CACHE_SIZE);
 | |
| 	p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
 | |
| 	page_dirty = p_offset / len;
 | |
| 
 | |
| 	bh = head = page_buffers(page);
 | |
| 	do {
 | |
| 		if (offset >= end_offset)
 | |
| 			break;
 | |
| 		if (!buffer_uptodate(bh))
 | |
| 			uptodate = 0;
 | |
| 		if (!(PageUptodate(page) || buffer_uptodate(bh))) {
 | |
| 			done = 1;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (buffer_unwritten(bh) || buffer_delay(bh) ||
 | |
| 		    buffer_mapped(bh)) {
 | |
| 			if (buffer_unwritten(bh))
 | |
| 				type = XFS_IO_UNWRITTEN;
 | |
| 			else if (buffer_delay(bh))
 | |
| 				type = XFS_IO_DELALLOC;
 | |
| 			else
 | |
| 				type = XFS_IO_OVERWRITE;
 | |
| 
 | |
| 			if (!xfs_imap_valid(inode, imap, offset)) {
 | |
| 				done = 1;
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			lock_buffer(bh);
 | |
| 			if (type != XFS_IO_OVERWRITE)
 | |
| 				xfs_map_at_offset(inode, bh, imap, offset);
 | |
| 			xfs_add_to_ioend(inode, bh, offset, type,
 | |
| 					 ioendp, done);
 | |
| 
 | |
| 			page_dirty--;
 | |
| 			count++;
 | |
| 		} else {
 | |
| 			done = 1;
 | |
| 		}
 | |
| 	} while (offset += len, (bh = bh->b_this_page) != head);
 | |
| 
 | |
| 	if (uptodate && bh == head)
 | |
| 		SetPageUptodate(page);
 | |
| 
 | |
| 	if (count) {
 | |
| 		if (--wbc->nr_to_write <= 0 &&
 | |
| 		    wbc->sync_mode == WB_SYNC_NONE)
 | |
| 			done = 1;
 | |
| 	}
 | |
| 	xfs_start_page_writeback(page, !page_dirty, count);
 | |
| 
 | |
| 	return done;
 | |
|  fail_unlock_page:
 | |
| 	unlock_page(page);
 | |
|  fail:
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Convert & write out a cluster of pages in the same extent as defined
 | |
|  * by mp and following the start page.
 | |
|  */
 | |
| STATIC void
 | |
| xfs_cluster_write(
 | |
| 	struct inode		*inode,
 | |
| 	pgoff_t			tindex,
 | |
| 	struct xfs_bmbt_irec	*imap,
 | |
| 	xfs_ioend_t		**ioendp,
 | |
| 	struct writeback_control *wbc,
 | |
| 	pgoff_t			tlast)
 | |
| {
 | |
| 	struct pagevec		pvec;
 | |
| 	int			done = 0, i;
 | |
| 
 | |
| 	pagevec_init(&pvec, 0);
 | |
| 	while (!done && tindex <= tlast) {
 | |
| 		unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
 | |
| 
 | |
| 		if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
 | |
| 			break;
 | |
| 
 | |
| 		for (i = 0; i < pagevec_count(&pvec); i++) {
 | |
| 			done = xfs_convert_page(inode, pvec.pages[i], tindex++,
 | |
| 					imap, ioendp, wbc);
 | |
| 			if (done)
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 		pagevec_release(&pvec);
 | |
| 		cond_resched();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| STATIC void
 | |
| xfs_vm_invalidatepage(
 | |
| 	struct page		*page,
 | |
| 	unsigned long		offset)
 | |
| {
 | |
| 	trace_xfs_invalidatepage(page->mapping->host, page, offset);
 | |
| 	block_invalidatepage(page, offset);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If the page has delalloc buffers on it, we need to punch them out before we
 | |
|  * invalidate the page. If we don't, we leave a stale delalloc mapping on the
 | |
|  * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
 | |
|  * is done on that same region - the delalloc extent is returned when none is
 | |
|  * supposed to be there.
 | |
|  *
 | |
|  * We prevent this by truncating away the delalloc regions on the page before
 | |
|  * invalidating it. Because they are delalloc, we can do this without needing a
 | |
|  * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
 | |
|  * truncation without a transaction as there is no space left for block
 | |
|  * reservation (typically why we see a ENOSPC in writeback).
 | |
|  *
 | |
|  * This is not a performance critical path, so for now just do the punching a
 | |
|  * buffer head at a time.
 | |
|  */
 | |
| STATIC void
 | |
| xfs_aops_discard_page(
 | |
| 	struct page		*page)
 | |
| {
 | |
| 	struct inode		*inode = page->mapping->host;
 | |
| 	struct xfs_inode	*ip = XFS_I(inode);
 | |
| 	struct buffer_head	*bh, *head;
 | |
| 	loff_t			offset = page_offset(page);
 | |
| 
 | |
| 	if (!xfs_check_page_type(page, XFS_IO_DELALLOC))
 | |
| 		goto out_invalidate;
 | |
| 
 | |
| 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 | |
| 		goto out_invalidate;
 | |
| 
 | |
| 	xfs_alert(ip->i_mount,
 | |
| 		"page discard on page %p, inode 0x%llx, offset %llu.",
 | |
| 			page, ip->i_ino, offset);
 | |
| 
 | |
| 	xfs_ilock(ip, XFS_ILOCK_EXCL);
 | |
| 	bh = head = page_buffers(page);
 | |
| 	do {
 | |
| 		int		error;
 | |
| 		xfs_fileoff_t	start_fsb;
 | |
| 
 | |
| 		if (!buffer_delay(bh))
 | |
| 			goto next_buffer;
 | |
| 
 | |
| 		start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
 | |
| 		error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
 | |
| 		if (error) {
 | |
| 			/* something screwed, just bail */
 | |
| 			if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
 | |
| 				xfs_alert(ip->i_mount,
 | |
| 			"page discard unable to remove delalloc mapping.");
 | |
| 			}
 | |
| 			break;
 | |
| 		}
 | |
| next_buffer:
 | |
| 		offset += 1 << inode->i_blkbits;
 | |
| 
 | |
| 	} while ((bh = bh->b_this_page) != head);
 | |
| 
 | |
| 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
 | |
| out_invalidate:
 | |
| 	xfs_vm_invalidatepage(page, 0);
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Write out a dirty page.
 | |
|  *
 | |
|  * For delalloc space on the page we need to allocate space and flush it.
 | |
|  * For unwritten space on the page we need to start the conversion to
 | |
|  * regular allocated space.
 | |
|  * For any other dirty buffer heads on the page we should flush them.
 | |
|  */
 | |
| STATIC int
 | |
| xfs_vm_writepage(
 | |
| 	struct page		*page,
 | |
| 	struct writeback_control *wbc)
 | |
| {
 | |
| 	struct inode		*inode = page->mapping->host;
 | |
| 	struct buffer_head	*bh, *head;
 | |
| 	struct xfs_bmbt_irec	imap;
 | |
| 	xfs_ioend_t		*ioend = NULL, *iohead = NULL;
 | |
| 	loff_t			offset;
 | |
| 	unsigned int		type;
 | |
| 	__uint64_t              end_offset;
 | |
| 	pgoff_t                 end_index, last_index;
 | |
| 	ssize_t			len;
 | |
| 	int			err, imap_valid = 0, uptodate = 1;
 | |
| 	int			count = 0;
 | |
| 	int			nonblocking = 0;
 | |
| 
 | |
| 	trace_xfs_writepage(inode, page, 0);
 | |
| 
 | |
| 	ASSERT(page_has_buffers(page));
 | |
| 
 | |
| 	/*
 | |
| 	 * Refuse to write the page out if we are called from reclaim context.
 | |
| 	 *
 | |
| 	 * This avoids stack overflows when called from deeply used stacks in
 | |
| 	 * random callers for direct reclaim or memcg reclaim.  We explicitly
 | |
| 	 * allow reclaim from kswapd as the stack usage there is relatively low.
 | |
| 	 *
 | |
| 	 * This should never happen except in the case of a VM regression so
 | |
| 	 * warn about it.
 | |
| 	 */
 | |
| 	if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
 | |
| 			PF_MEMALLOC))
 | |
| 		goto redirty;
 | |
| 
 | |
| 	/*
 | |
| 	 * Given that we do not allow direct reclaim to call us, we should
 | |
| 	 * never be called while in a filesystem transaction.
 | |
| 	 */
 | |
| 	if (WARN_ON(current->flags & PF_FSTRANS))
 | |
| 		goto redirty;
 | |
| 
 | |
| 	/* Is this page beyond the end of the file? */
 | |
| 	offset = i_size_read(inode);
 | |
| 	end_index = offset >> PAGE_CACHE_SHIFT;
 | |
| 	last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
 | |
| 	if (page->index >= end_index) {
 | |
| 		unsigned offset_into_page = offset & (PAGE_CACHE_SIZE - 1);
 | |
| 
 | |
| 		/*
 | |
| 		 * Just skip the page if it is fully outside i_size, e.g. due
 | |
| 		 * to a truncate operation that is in progress.
 | |
| 		 */
 | |
| 		if (page->index >= end_index + 1 || offset_into_page == 0) {
 | |
| 			unlock_page(page);
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * The page straddles i_size.  It must be zeroed out on each
 | |
| 		 * and every writepage invocation because it may be mmapped.
 | |
| 		 * "A file is mapped in multiples of the page size.  For a file
 | |
| 		 * that is not a multiple of the  page size, the remaining
 | |
| 		 * memory is zeroed when mapped, and writes to that region are
 | |
| 		 * not written out to the file."
 | |
| 		 */
 | |
| 		zero_user_segment(page, offset_into_page, PAGE_CACHE_SIZE);
 | |
| 	}
 | |
| 
 | |
| 	end_offset = min_t(unsigned long long,
 | |
| 			(xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
 | |
| 			offset);
 | |
| 	len = 1 << inode->i_blkbits;
 | |
| 
 | |
| 	bh = head = page_buffers(page);
 | |
| 	offset = page_offset(page);
 | |
| 	type = XFS_IO_OVERWRITE;
 | |
| 
 | |
| 	if (wbc->sync_mode == WB_SYNC_NONE)
 | |
| 		nonblocking = 1;
 | |
| 
 | |
| 	do {
 | |
| 		int new_ioend = 0;
 | |
| 
 | |
| 		if (offset >= end_offset)
 | |
| 			break;
 | |
| 		if (!buffer_uptodate(bh))
 | |
| 			uptodate = 0;
 | |
| 
 | |
| 		/*
 | |
| 		 * set_page_dirty dirties all buffers in a page, independent
 | |
| 		 * of their state.  The dirty state however is entirely
 | |
| 		 * meaningless for holes (!mapped && uptodate), so skip
 | |
| 		 * buffers covering holes here.
 | |
| 		 */
 | |
| 		if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
 | |
| 			imap_valid = 0;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (buffer_unwritten(bh)) {
 | |
| 			if (type != XFS_IO_UNWRITTEN) {
 | |
| 				type = XFS_IO_UNWRITTEN;
 | |
| 				imap_valid = 0;
 | |
| 			}
 | |
| 		} else if (buffer_delay(bh)) {
 | |
| 			if (type != XFS_IO_DELALLOC) {
 | |
| 				type = XFS_IO_DELALLOC;
 | |
| 				imap_valid = 0;
 | |
| 			}
 | |
| 		} else if (buffer_uptodate(bh)) {
 | |
| 			if (type != XFS_IO_OVERWRITE) {
 | |
| 				type = XFS_IO_OVERWRITE;
 | |
| 				imap_valid = 0;
 | |
| 			}
 | |
| 		} else {
 | |
| 			if (PageUptodate(page))
 | |
| 				ASSERT(buffer_mapped(bh));
 | |
| 			/*
 | |
| 			 * This buffer is not uptodate and will not be
 | |
| 			 * written to disk.  Ensure that we will put any
 | |
| 			 * subsequent writeable buffers into a new
 | |
| 			 * ioend.
 | |
| 			 */
 | |
| 			imap_valid = 0;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (imap_valid)
 | |
| 			imap_valid = xfs_imap_valid(inode, &imap, offset);
 | |
| 		if (!imap_valid) {
 | |
| 			/*
 | |
| 			 * If we didn't have a valid mapping then we need to
 | |
| 			 * put the new mapping into a separate ioend structure.
 | |
| 			 * This ensures non-contiguous extents always have
 | |
| 			 * separate ioends, which is particularly important
 | |
| 			 * for unwritten extent conversion at I/O completion
 | |
| 			 * time.
 | |
| 			 */
 | |
| 			new_ioend = 1;
 | |
| 			err = xfs_map_blocks(inode, offset, &imap, type,
 | |
| 					     nonblocking);
 | |
| 			if (err)
 | |
| 				goto error;
 | |
| 			imap_valid = xfs_imap_valid(inode, &imap, offset);
 | |
| 		}
 | |
| 		if (imap_valid) {
 | |
| 			lock_buffer(bh);
 | |
| 			if (type != XFS_IO_OVERWRITE)
 | |
| 				xfs_map_at_offset(inode, bh, &imap, offset);
 | |
| 			xfs_add_to_ioend(inode, bh, offset, type, &ioend,
 | |
| 					 new_ioend);
 | |
| 			count++;
 | |
| 		}
 | |
| 
 | |
| 		if (!iohead)
 | |
| 			iohead = ioend;
 | |
| 
 | |
| 	} while (offset += len, ((bh = bh->b_this_page) != head));
 | |
| 
 | |
| 	if (uptodate && bh == head)
 | |
| 		SetPageUptodate(page);
 | |
| 
 | |
| 	xfs_start_page_writeback(page, 1, count);
 | |
| 
 | |
| 	/* if there is no IO to be submitted for this page, we are done */
 | |
| 	if (!ioend)
 | |
| 		return 0;
 | |
| 
 | |
| 	ASSERT(iohead);
 | |
| 
 | |
| 	/*
 | |
| 	 * Any errors from this point onwards need tobe reported through the IO
 | |
| 	 * completion path as we have marked the initial page as under writeback
 | |
| 	 * and unlocked it.
 | |
| 	 */
 | |
| 	if (imap_valid) {
 | |
| 		xfs_off_t		end_index;
 | |
| 
 | |
| 		end_index = imap.br_startoff + imap.br_blockcount;
 | |
| 
 | |
| 		/* to bytes */
 | |
| 		end_index <<= inode->i_blkbits;
 | |
| 
 | |
| 		/* to pages */
 | |
| 		end_index = (end_index - 1) >> PAGE_CACHE_SHIFT;
 | |
| 
 | |
| 		/* check against file size */
 | |
| 		if (end_index > last_index)
 | |
| 			end_index = last_index;
 | |
| 
 | |
| 		xfs_cluster_write(inode, page->index + 1, &imap, &ioend,
 | |
| 				  wbc, end_index);
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	/*
 | |
| 	 * Reserve log space if we might write beyond the on-disk inode size.
 | |
| 	 */
 | |
| 	err = 0;
 | |
| 	if (ioend->io_type != XFS_IO_UNWRITTEN && xfs_ioend_is_append(ioend))
 | |
| 		err = xfs_setfilesize_trans_alloc(ioend);
 | |
| 
 | |
| 	xfs_submit_ioend(wbc, iohead, err);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| error:
 | |
| 	if (iohead)
 | |
| 		xfs_cancel_ioend(iohead);
 | |
| 
 | |
| 	if (err == -EAGAIN)
 | |
| 		goto redirty;
 | |
| 
 | |
| 	xfs_aops_discard_page(page);
 | |
| 	ClearPageUptodate(page);
 | |
| 	unlock_page(page);
 | |
| 	return err;
 | |
| 
 | |
| redirty:
 | |
| 	redirty_page_for_writepage(wbc, page);
 | |
| 	unlock_page(page);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| STATIC int
 | |
| xfs_vm_writepages(
 | |
| 	struct address_space	*mapping,
 | |
| 	struct writeback_control *wbc)
 | |
| {
 | |
| 	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
 | |
| 	return generic_writepages(mapping, wbc);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called to move a page into cleanable state - and from there
 | |
|  * to be released. The page should already be clean. We always
 | |
|  * have buffer heads in this call.
 | |
|  *
 | |
|  * Returns 1 if the page is ok to release, 0 otherwise.
 | |
|  */
 | |
| STATIC int
 | |
| xfs_vm_releasepage(
 | |
| 	struct page		*page,
 | |
| 	gfp_t			gfp_mask)
 | |
| {
 | |
| 	int			delalloc, unwritten;
 | |
| 
 | |
| 	trace_xfs_releasepage(page->mapping->host, page, 0);
 | |
| 
 | |
| 	xfs_count_page_state(page, &delalloc, &unwritten);
 | |
| 
 | |
| 	if (WARN_ON(delalloc))
 | |
| 		return 0;
 | |
| 	if (WARN_ON(unwritten))
 | |
| 		return 0;
 | |
| 
 | |
| 	return try_to_free_buffers(page);
 | |
| }
 | |
| 
 | |
| STATIC int
 | |
| __xfs_get_blocks(
 | |
| 	struct inode		*inode,
 | |
| 	sector_t		iblock,
 | |
| 	struct buffer_head	*bh_result,
 | |
| 	int			create,
 | |
| 	int			direct)
 | |
| {
 | |
| 	struct xfs_inode	*ip = XFS_I(inode);
 | |
| 	struct xfs_mount	*mp = ip->i_mount;
 | |
| 	xfs_fileoff_t		offset_fsb, end_fsb;
 | |
| 	int			error = 0;
 | |
| 	int			lockmode = 0;
 | |
| 	struct xfs_bmbt_irec	imap;
 | |
| 	int			nimaps = 1;
 | |
| 	xfs_off_t		offset;
 | |
| 	ssize_t			size;
 | |
| 	int			new = 0;
 | |
| 
 | |
| 	if (XFS_FORCED_SHUTDOWN(mp))
 | |
| 		return -XFS_ERROR(EIO);
 | |
| 
 | |
| 	offset = (xfs_off_t)iblock << inode->i_blkbits;
 | |
| 	ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
 | |
| 	size = bh_result->b_size;
 | |
| 
 | |
| 	if (!create && direct && offset >= i_size_read(inode))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Direct I/O is usually done on preallocated files, so try getting
 | |
| 	 * a block mapping without an exclusive lock first.  For buffered
 | |
| 	 * writes we already have the exclusive iolock anyway, so avoiding
 | |
| 	 * a lock roundtrip here by taking the ilock exclusive from the
 | |
| 	 * beginning is a useful micro optimization.
 | |
| 	 */
 | |
| 	if (create && !direct) {
 | |
| 		lockmode = XFS_ILOCK_EXCL;
 | |
| 		xfs_ilock(ip, lockmode);
 | |
| 	} else {
 | |
| 		lockmode = xfs_ilock_map_shared(ip);
 | |
| 	}
 | |
| 
 | |
| 	ASSERT(offset <= mp->m_super->s_maxbytes);
 | |
| 	if (offset + size > mp->m_super->s_maxbytes)
 | |
| 		size = mp->m_super->s_maxbytes - offset;
 | |
| 	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
 | |
| 	offset_fsb = XFS_B_TO_FSBT(mp, offset);
 | |
| 
 | |
| 	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
 | |
| 				&imap, &nimaps, XFS_BMAPI_ENTIRE);
 | |
| 	if (error)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	if (create &&
 | |
| 	    (!nimaps ||
 | |
| 	     (imap.br_startblock == HOLESTARTBLOCK ||
 | |
| 	      imap.br_startblock == DELAYSTARTBLOCK))) {
 | |
| 		if (direct || xfs_get_extsz_hint(ip)) {
 | |
| 			/*
 | |
| 			 * Drop the ilock in preparation for starting the block
 | |
| 			 * allocation transaction.  It will be retaken
 | |
| 			 * exclusively inside xfs_iomap_write_direct for the
 | |
| 			 * actual allocation.
 | |
| 			 */
 | |
| 			xfs_iunlock(ip, lockmode);
 | |
| 			error = xfs_iomap_write_direct(ip, offset, size,
 | |
| 						       &imap, nimaps);
 | |
| 			if (error)
 | |
| 				return -error;
 | |
| 			new = 1;
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * Delalloc reservations do not require a transaction,
 | |
| 			 * we can go on without dropping the lock here. If we
 | |
| 			 * are allocating a new delalloc block, make sure that
 | |
| 			 * we set the new flag so that we mark the buffer new so
 | |
| 			 * that we know that it is newly allocated if the write
 | |
| 			 * fails.
 | |
| 			 */
 | |
| 			if (nimaps && imap.br_startblock == HOLESTARTBLOCK)
 | |
| 				new = 1;
 | |
| 			error = xfs_iomap_write_delay(ip, offset, size, &imap);
 | |
| 			if (error)
 | |
| 				goto out_unlock;
 | |
| 
 | |
| 			xfs_iunlock(ip, lockmode);
 | |
| 		}
 | |
| 
 | |
| 		trace_xfs_get_blocks_alloc(ip, offset, size, 0, &imap);
 | |
| 	} else if (nimaps) {
 | |
| 		trace_xfs_get_blocks_found(ip, offset, size, 0, &imap);
 | |
| 		xfs_iunlock(ip, lockmode);
 | |
| 	} else {
 | |
| 		trace_xfs_get_blocks_notfound(ip, offset, size);
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	if (imap.br_startblock != HOLESTARTBLOCK &&
 | |
| 	    imap.br_startblock != DELAYSTARTBLOCK) {
 | |
| 		/*
 | |
| 		 * For unwritten extents do not report a disk address on
 | |
| 		 * the read case (treat as if we're reading into a hole).
 | |
| 		 */
 | |
| 		if (create || !ISUNWRITTEN(&imap))
 | |
| 			xfs_map_buffer(inode, bh_result, &imap, offset);
 | |
| 		if (create && ISUNWRITTEN(&imap)) {
 | |
| 			if (direct)
 | |
| 				bh_result->b_private = inode;
 | |
| 			set_buffer_unwritten(bh_result);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If this is a realtime file, data may be on a different device.
 | |
| 	 * to that pointed to from the buffer_head b_bdev currently.
 | |
| 	 */
 | |
| 	bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we previously allocated a block out beyond eof and we are now
 | |
| 	 * coming back to use it then we will need to flag it as new even if it
 | |
| 	 * has a disk address.
 | |
| 	 *
 | |
| 	 * With sub-block writes into unwritten extents we also need to mark
 | |
| 	 * the buffer as new so that the unwritten parts of the buffer gets
 | |
| 	 * correctly zeroed.
 | |
| 	 */
 | |
| 	if (create &&
 | |
| 	    ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
 | |
| 	     (offset >= i_size_read(inode)) ||
 | |
| 	     (new || ISUNWRITTEN(&imap))))
 | |
| 		set_buffer_new(bh_result);
 | |
| 
 | |
| 	if (imap.br_startblock == DELAYSTARTBLOCK) {
 | |
| 		BUG_ON(direct);
 | |
| 		if (create) {
 | |
| 			set_buffer_uptodate(bh_result);
 | |
| 			set_buffer_mapped(bh_result);
 | |
| 			set_buffer_delay(bh_result);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If this is O_DIRECT or the mpage code calling tell them how large
 | |
| 	 * the mapping is, so that we can avoid repeated get_blocks calls.
 | |
| 	 */
 | |
| 	if (direct || size > (1 << inode->i_blkbits)) {
 | |
| 		xfs_off_t		mapping_size;
 | |
| 
 | |
| 		mapping_size = imap.br_startoff + imap.br_blockcount - iblock;
 | |
| 		mapping_size <<= inode->i_blkbits;
 | |
| 
 | |
| 		ASSERT(mapping_size > 0);
 | |
| 		if (mapping_size > size)
 | |
| 			mapping_size = size;
 | |
| 		if (mapping_size > LONG_MAX)
 | |
| 			mapping_size = LONG_MAX;
 | |
| 
 | |
| 		bh_result->b_size = mapping_size;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out_unlock:
 | |
| 	xfs_iunlock(ip, lockmode);
 | |
| 	return -error;
 | |
| }
 | |
| 
 | |
| int
 | |
| xfs_get_blocks(
 | |
| 	struct inode		*inode,
 | |
| 	sector_t		iblock,
 | |
| 	struct buffer_head	*bh_result,
 | |
| 	int			create)
 | |
| {
 | |
| 	return __xfs_get_blocks(inode, iblock, bh_result, create, 0);
 | |
| }
 | |
| 
 | |
| STATIC int
 | |
| xfs_get_blocks_direct(
 | |
| 	struct inode		*inode,
 | |
| 	sector_t		iblock,
 | |
| 	struct buffer_head	*bh_result,
 | |
| 	int			create)
 | |
| {
 | |
| 	return __xfs_get_blocks(inode, iblock, bh_result, create, 1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Complete a direct I/O write request.
 | |
|  *
 | |
|  * If the private argument is non-NULL __xfs_get_blocks signals us that we
 | |
|  * need to issue a transaction to convert the range from unwritten to written
 | |
|  * extents.  In case this is regular synchronous I/O we just call xfs_end_io
 | |
|  * to do this and we are done.  But in case this was a successful AIO
 | |
|  * request this handler is called from interrupt context, from which we
 | |
|  * can't start transactions.  In that case offload the I/O completion to
 | |
|  * the workqueues we also use for buffered I/O completion.
 | |
|  */
 | |
| STATIC void
 | |
| xfs_end_io_direct_write(
 | |
| 	struct kiocb		*iocb,
 | |
| 	loff_t			offset,
 | |
| 	ssize_t			size,
 | |
| 	void			*private,
 | |
| 	int			ret,
 | |
| 	bool			is_async)
 | |
| {
 | |
| 	struct xfs_ioend	*ioend = iocb->private;
 | |
| 
 | |
| 	/*
 | |
| 	 * While the generic direct I/O code updates the inode size, it does
 | |
| 	 * so only after the end_io handler is called, which means our
 | |
| 	 * end_io handler thinks the on-disk size is outside the in-core
 | |
| 	 * size.  To prevent this just update it a little bit earlier here.
 | |
| 	 */
 | |
| 	if (offset + size > i_size_read(ioend->io_inode))
 | |
| 		i_size_write(ioend->io_inode, offset + size);
 | |
| 
 | |
| 	/*
 | |
| 	 * blockdev_direct_IO can return an error even after the I/O
 | |
| 	 * completion handler was called.  Thus we need to protect
 | |
| 	 * against double-freeing.
 | |
| 	 */
 | |
| 	iocb->private = NULL;
 | |
| 
 | |
| 	ioend->io_offset = offset;
 | |
| 	ioend->io_size = size;
 | |
| 	ioend->io_iocb = iocb;
 | |
| 	ioend->io_result = ret;
 | |
| 	if (private && size > 0)
 | |
| 		ioend->io_type = XFS_IO_UNWRITTEN;
 | |
| 
 | |
| 	if (is_async) {
 | |
| 		ioend->io_isasync = 1;
 | |
| 		xfs_finish_ioend(ioend);
 | |
| 	} else {
 | |
| 		xfs_finish_ioend_sync(ioend);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| STATIC ssize_t
 | |
| xfs_vm_direct_IO(
 | |
| 	int			rw,
 | |
| 	struct kiocb		*iocb,
 | |
| 	const struct iovec	*iov,
 | |
| 	loff_t			offset,
 | |
| 	unsigned long		nr_segs)
 | |
| {
 | |
| 	struct inode		*inode = iocb->ki_filp->f_mapping->host;
 | |
| 	struct block_device	*bdev = xfs_find_bdev_for_inode(inode);
 | |
| 	struct xfs_ioend	*ioend = NULL;
 | |
| 	ssize_t			ret;
 | |
| 
 | |
| 	if (rw & WRITE) {
 | |
| 		size_t size = iov_length(iov, nr_segs);
 | |
| 
 | |
| 		/*
 | |
| 		 * We cannot preallocate a size update transaction here as we
 | |
| 		 * don't know whether allocation is necessary or not. Hence we
 | |
| 		 * can only tell IO completion that one is necessary if we are
 | |
| 		 * not doing unwritten extent conversion.
 | |
| 		 */
 | |
| 		iocb->private = ioend = xfs_alloc_ioend(inode, XFS_IO_DIRECT);
 | |
| 		if (offset + size > XFS_I(inode)->i_d.di_size)
 | |
| 			ioend->io_isdirect = 1;
 | |
| 
 | |
| 		ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov,
 | |
| 					    offset, nr_segs,
 | |
| 					    xfs_get_blocks_direct,
 | |
| 					    xfs_end_io_direct_write, NULL, 0);
 | |
| 		if (ret != -EIOCBQUEUED && iocb->private)
 | |
| 			goto out_destroy_ioend;
 | |
| 	} else {
 | |
| 		ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov,
 | |
| 					    offset, nr_segs,
 | |
| 					    xfs_get_blocks_direct,
 | |
| 					    NULL, NULL, 0);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| 
 | |
| out_destroy_ioend:
 | |
| 	xfs_destroy_ioend(ioend);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Punch out the delalloc blocks we have already allocated.
 | |
|  *
 | |
|  * Don't bother with xfs_setattr given that nothing can have made it to disk yet
 | |
|  * as the page is still locked at this point.
 | |
|  */
 | |
| STATIC void
 | |
| xfs_vm_kill_delalloc_range(
 | |
| 	struct inode		*inode,
 | |
| 	loff_t			start,
 | |
| 	loff_t			end)
 | |
| {
 | |
| 	struct xfs_inode	*ip = XFS_I(inode);
 | |
| 	xfs_fileoff_t		start_fsb;
 | |
| 	xfs_fileoff_t		end_fsb;
 | |
| 	int			error;
 | |
| 
 | |
| 	start_fsb = XFS_B_TO_FSB(ip->i_mount, start);
 | |
| 	end_fsb = XFS_B_TO_FSB(ip->i_mount, end);
 | |
| 	if (end_fsb <= start_fsb)
 | |
| 		return;
 | |
| 
 | |
| 	xfs_ilock(ip, XFS_ILOCK_EXCL);
 | |
| 	error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
 | |
| 						end_fsb - start_fsb);
 | |
| 	if (error) {
 | |
| 		/* something screwed, just bail */
 | |
| 		if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
 | |
| 			xfs_alert(ip->i_mount,
 | |
| 		"xfs_vm_write_failed: unable to clean up ino %lld",
 | |
| 					ip->i_ino);
 | |
| 		}
 | |
| 	}
 | |
| 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
 | |
| }
 | |
| 
 | |
| STATIC void
 | |
| xfs_vm_write_failed(
 | |
| 	struct inode		*inode,
 | |
| 	struct page		*page,
 | |
| 	loff_t			pos,
 | |
| 	unsigned		len)
 | |
| {
 | |
| 	loff_t			block_offset = pos & PAGE_MASK;
 | |
| 	loff_t			block_start;
 | |
| 	loff_t			block_end;
 | |
| 	loff_t			from = pos & (PAGE_CACHE_SIZE - 1);
 | |
| 	loff_t			to = from + len;
 | |
| 	struct buffer_head	*bh, *head;
 | |
| 
 | |
| 	ASSERT(block_offset + from == pos);
 | |
| 
 | |
| 	head = page_buffers(page);
 | |
| 	block_start = 0;
 | |
| 	for (bh = head; bh != head || !block_start;
 | |
| 	     bh = bh->b_this_page, block_start = block_end,
 | |
| 				   block_offset += bh->b_size) {
 | |
| 		block_end = block_start + bh->b_size;
 | |
| 
 | |
| 		/* skip buffers before the write */
 | |
| 		if (block_end <= from)
 | |
| 			continue;
 | |
| 
 | |
| 		/* if the buffer is after the write, we're done */
 | |
| 		if (block_start >= to)
 | |
| 			break;
 | |
| 
 | |
| 		if (!buffer_delay(bh))
 | |
| 			continue;
 | |
| 
 | |
| 		if (!buffer_new(bh) && block_offset < i_size_read(inode))
 | |
| 			continue;
 | |
| 
 | |
| 		xfs_vm_kill_delalloc_range(inode, block_offset,
 | |
| 					   block_offset + bh->b_size);
 | |
| 	}
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This used to call block_write_begin(), but it unlocks and releases the page
 | |
|  * on error, and we need that page to be able to punch stale delalloc blocks out
 | |
|  * on failure. hence we copy-n-waste it here and call xfs_vm_write_failed() at
 | |
|  * the appropriate point.
 | |
|  */
 | |
| STATIC int
 | |
| xfs_vm_write_begin(
 | |
| 	struct file		*file,
 | |
| 	struct address_space	*mapping,
 | |
| 	loff_t			pos,
 | |
| 	unsigned		len,
 | |
| 	unsigned		flags,
 | |
| 	struct page		**pagep,
 | |
| 	void			**fsdata)
 | |
| {
 | |
| 	pgoff_t			index = pos >> PAGE_CACHE_SHIFT;
 | |
| 	struct page		*page;
 | |
| 	int			status;
 | |
| 
 | |
| 	ASSERT(len <= PAGE_CACHE_SIZE);
 | |
| 
 | |
| 	page = grab_cache_page_write_begin(mapping, index,
 | |
| 					   flags | AOP_FLAG_NOFS);
 | |
| 	if (!page)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	status = __block_write_begin(page, pos, len, xfs_get_blocks);
 | |
| 	if (unlikely(status)) {
 | |
| 		struct inode	*inode = mapping->host;
 | |
| 
 | |
| 		xfs_vm_write_failed(inode, page, pos, len);
 | |
| 		unlock_page(page);
 | |
| 
 | |
| 		if (pos + len > i_size_read(inode))
 | |
| 			truncate_pagecache(inode, pos + len, i_size_read(inode));
 | |
| 
 | |
| 		page_cache_release(page);
 | |
| 		page = NULL;
 | |
| 	}
 | |
| 
 | |
| 	*pagep = page;
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * On failure, we only need to kill delalloc blocks beyond EOF because they
 | |
|  * will never be written. For blocks within EOF, generic_write_end() zeros them
 | |
|  * so they are safe to leave alone and be written with all the other valid data.
 | |
|  */
 | |
| STATIC int
 | |
| xfs_vm_write_end(
 | |
| 	struct file		*file,
 | |
| 	struct address_space	*mapping,
 | |
| 	loff_t			pos,
 | |
| 	unsigned		len,
 | |
| 	unsigned		copied,
 | |
| 	struct page		*page,
 | |
| 	void			*fsdata)
 | |
| {
 | |
| 	int			ret;
 | |
| 
 | |
| 	ASSERT(len <= PAGE_CACHE_SIZE);
 | |
| 
 | |
| 	ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
 | |
| 	if (unlikely(ret < len)) {
 | |
| 		struct inode	*inode = mapping->host;
 | |
| 		size_t		isize = i_size_read(inode);
 | |
| 		loff_t		to = pos + len;
 | |
| 
 | |
| 		if (to > isize) {
 | |
| 			truncate_pagecache(inode, to, isize);
 | |
| 			xfs_vm_kill_delalloc_range(inode, isize, to);
 | |
| 		}
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| STATIC sector_t
 | |
| xfs_vm_bmap(
 | |
| 	struct address_space	*mapping,
 | |
| 	sector_t		block)
 | |
| {
 | |
| 	struct inode		*inode = (struct inode *)mapping->host;
 | |
| 	struct xfs_inode	*ip = XFS_I(inode);
 | |
| 
 | |
| 	trace_xfs_vm_bmap(XFS_I(inode));
 | |
| 	xfs_ilock(ip, XFS_IOLOCK_SHARED);
 | |
| 	filemap_write_and_wait(mapping);
 | |
| 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 | |
| 	return generic_block_bmap(mapping, block, xfs_get_blocks);
 | |
| }
 | |
| 
 | |
| STATIC int
 | |
| xfs_vm_readpage(
 | |
| 	struct file		*unused,
 | |
| 	struct page		*page)
 | |
| {
 | |
| 	return mpage_readpage(page, xfs_get_blocks);
 | |
| }
 | |
| 
 | |
| STATIC int
 | |
| xfs_vm_readpages(
 | |
| 	struct file		*unused,
 | |
| 	struct address_space	*mapping,
 | |
| 	struct list_head	*pages,
 | |
| 	unsigned		nr_pages)
 | |
| {
 | |
| 	return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
 | |
| }
 | |
| 
 | |
| const struct address_space_operations xfs_address_space_operations = {
 | |
| 	.readpage		= xfs_vm_readpage,
 | |
| 	.readpages		= xfs_vm_readpages,
 | |
| 	.writepage		= xfs_vm_writepage,
 | |
| 	.writepages		= xfs_vm_writepages,
 | |
| 	.releasepage		= xfs_vm_releasepage,
 | |
| 	.invalidatepage		= xfs_vm_invalidatepage,
 | |
| 	.write_begin		= xfs_vm_write_begin,
 | |
| 	.write_end		= xfs_vm_write_end,
 | |
| 	.bmap			= xfs_vm_bmap,
 | |
| 	.direct_IO		= xfs_vm_direct_IO,
 | |
| 	.migratepage		= buffer_migrate_page,
 | |
| 	.is_partially_uptodate  = block_is_partially_uptodate,
 | |
| 	.error_remove_page	= generic_error_remove_page,
 | |
| };
 |