 0197518cd3
			
		
	
	
	0197518cd3
	
	
	
		
			
			Introduce a new API vmemmap_free() to free and remove vmemmap pagetables. Since pagetable implements are different, each architecture has to provide its own version of vmemmap_free(), just like vmemmap_populate(). Note: vmemmap_free() is not implemented for ia64, ppc, s390, and sparc. [mhocko@suse.cz: fix implicit declaration of remove_pagetable] Signed-off-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Signed-off-by: Jianguo Wu <wujianguo@huawei.com> Signed-off-by: Wen Congyang <wency@cn.fujitsu.com> Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: Wu Jianguo <wujianguo@huawei.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Signed-off-by: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			2779 lines
		
	
	
	
		
			67 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2779 lines
		
	
	
	
		
			67 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  arch/sparc64/mm/init.c
 | |
|  *
 | |
|  *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
 | |
|  *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
 | |
|  */
 | |
|  
 | |
| #include <linux/module.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/bootmem.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/hugetlb.h>
 | |
| #include <linux/initrd.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/poison.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/kprobes.h>
 | |
| #include <linux/cache.h>
 | |
| #include <linux/sort.h>
 | |
| #include <linux/percpu.h>
 | |
| #include <linux/memblock.h>
 | |
| #include <linux/mmzone.h>
 | |
| #include <linux/gfp.h>
 | |
| 
 | |
| #include <asm/head.h>
 | |
| #include <asm/page.h>
 | |
| #include <asm/pgalloc.h>
 | |
| #include <asm/pgtable.h>
 | |
| #include <asm/oplib.h>
 | |
| #include <asm/iommu.h>
 | |
| #include <asm/io.h>
 | |
| #include <asm/uaccess.h>
 | |
| #include <asm/mmu_context.h>
 | |
| #include <asm/tlbflush.h>
 | |
| #include <asm/dma.h>
 | |
| #include <asm/starfire.h>
 | |
| #include <asm/tlb.h>
 | |
| #include <asm/spitfire.h>
 | |
| #include <asm/sections.h>
 | |
| #include <asm/tsb.h>
 | |
| #include <asm/hypervisor.h>
 | |
| #include <asm/prom.h>
 | |
| #include <asm/mdesc.h>
 | |
| #include <asm/cpudata.h>
 | |
| #include <asm/irq.h>
 | |
| 
 | |
| #include "init_64.h"
 | |
| 
 | |
| unsigned long kern_linear_pte_xor[4] __read_mostly;
 | |
| 
 | |
| /* A bitmap, two bits for every 256MB of physical memory.  These two
 | |
|  * bits determine what page size we use for kernel linear
 | |
|  * translations.  They form an index into kern_linear_pte_xor[].  The
 | |
|  * value in the indexed slot is XOR'd with the TLB miss virtual
 | |
|  * address to form the resulting TTE.  The mapping is:
 | |
|  *
 | |
|  *	0	==>	4MB
 | |
|  *	1	==>	256MB
 | |
|  *	2	==>	2GB
 | |
|  *	3	==>	16GB
 | |
|  *
 | |
|  * All sun4v chips support 256MB pages.  Only SPARC-T4 and later
 | |
|  * support 2GB pages, and hopefully future cpus will support the 16GB
 | |
|  * pages as well.  For slots 2 and 3, we encode a 256MB TTE xor there
 | |
|  * if these larger page sizes are not supported by the cpu.
 | |
|  *
 | |
|  * It would be nice to determine this from the machine description
 | |
|  * 'cpu' properties, but we need to have this table setup before the
 | |
|  * MDESC is initialized.
 | |
|  */
 | |
| unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
 | |
| 
 | |
| #ifndef CONFIG_DEBUG_PAGEALLOC
 | |
| /* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
 | |
|  * Space is allocated for this right after the trap table in
 | |
|  * arch/sparc64/kernel/head.S
 | |
|  */
 | |
| extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
 | |
| #endif
 | |
| 
 | |
| static unsigned long cpu_pgsz_mask;
 | |
| 
 | |
| #define MAX_BANKS	32
 | |
| 
 | |
| static struct linux_prom64_registers pavail[MAX_BANKS];
 | |
| static int pavail_ents;
 | |
| 
 | |
| static int cmp_p64(const void *a, const void *b)
 | |
| {
 | |
| 	const struct linux_prom64_registers *x = a, *y = b;
 | |
| 
 | |
| 	if (x->phys_addr > y->phys_addr)
 | |
| 		return 1;
 | |
| 	if (x->phys_addr < y->phys_addr)
 | |
| 		return -1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void __init read_obp_memory(const char *property,
 | |
| 				   struct linux_prom64_registers *regs,
 | |
| 				   int *num_ents)
 | |
| {
 | |
| 	phandle node = prom_finddevice("/memory");
 | |
| 	int prop_size = prom_getproplen(node, property);
 | |
| 	int ents, ret, i;
 | |
| 
 | |
| 	ents = prop_size / sizeof(struct linux_prom64_registers);
 | |
| 	if (ents > MAX_BANKS) {
 | |
| 		prom_printf("The machine has more %s property entries than "
 | |
| 			    "this kernel can support (%d).\n",
 | |
| 			    property, MAX_BANKS);
 | |
| 		prom_halt();
 | |
| 	}
 | |
| 
 | |
| 	ret = prom_getproperty(node, property, (char *) regs, prop_size);
 | |
| 	if (ret == -1) {
 | |
| 		prom_printf("Couldn't get %s property from /memory.\n",
 | |
| 				property);
 | |
| 		prom_halt();
 | |
| 	}
 | |
| 
 | |
| 	/* Sanitize what we got from the firmware, by page aligning
 | |
| 	 * everything.
 | |
| 	 */
 | |
| 	for (i = 0; i < ents; i++) {
 | |
| 		unsigned long base, size;
 | |
| 
 | |
| 		base = regs[i].phys_addr;
 | |
| 		size = regs[i].reg_size;
 | |
| 
 | |
| 		size &= PAGE_MASK;
 | |
| 		if (base & ~PAGE_MASK) {
 | |
| 			unsigned long new_base = PAGE_ALIGN(base);
 | |
| 
 | |
| 			size -= new_base - base;
 | |
| 			if ((long) size < 0L)
 | |
| 				size = 0UL;
 | |
| 			base = new_base;
 | |
| 		}
 | |
| 		if (size == 0UL) {
 | |
| 			/* If it is empty, simply get rid of it.
 | |
| 			 * This simplifies the logic of the other
 | |
| 			 * functions that process these arrays.
 | |
| 			 */
 | |
| 			memmove(®s[i], ®s[i + 1],
 | |
| 				(ents - i - 1) * sizeof(regs[0]));
 | |
| 			i--;
 | |
| 			ents--;
 | |
| 			continue;
 | |
| 		}
 | |
| 		regs[i].phys_addr = base;
 | |
| 		regs[i].reg_size = size;
 | |
| 	}
 | |
| 
 | |
| 	*num_ents = ents;
 | |
| 
 | |
| 	sort(regs, ents, sizeof(struct linux_prom64_registers),
 | |
| 	     cmp_p64, NULL);
 | |
| }
 | |
| 
 | |
| unsigned long sparc64_valid_addr_bitmap[VALID_ADDR_BITMAP_BYTES /
 | |
| 					sizeof(unsigned long)];
 | |
| EXPORT_SYMBOL(sparc64_valid_addr_bitmap);
 | |
| 
 | |
| /* Kernel physical address base and size in bytes.  */
 | |
| unsigned long kern_base __read_mostly;
 | |
| unsigned long kern_size __read_mostly;
 | |
| 
 | |
| /* Initial ramdisk setup */
 | |
| extern unsigned long sparc_ramdisk_image64;
 | |
| extern unsigned int sparc_ramdisk_image;
 | |
| extern unsigned int sparc_ramdisk_size;
 | |
| 
 | |
| struct page *mem_map_zero __read_mostly;
 | |
| EXPORT_SYMBOL(mem_map_zero);
 | |
| 
 | |
| unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
 | |
| 
 | |
| unsigned long sparc64_kern_pri_context __read_mostly;
 | |
| unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
 | |
| unsigned long sparc64_kern_sec_context __read_mostly;
 | |
| 
 | |
| int num_kernel_image_mappings;
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_DCFLUSH
 | |
| atomic_t dcpage_flushes = ATOMIC_INIT(0);
 | |
| #ifdef CONFIG_SMP
 | |
| atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| inline void flush_dcache_page_impl(struct page *page)
 | |
| {
 | |
| 	BUG_ON(tlb_type == hypervisor);
 | |
| #ifdef CONFIG_DEBUG_DCFLUSH
 | |
| 	atomic_inc(&dcpage_flushes);
 | |
| #endif
 | |
| 
 | |
| #ifdef DCACHE_ALIASING_POSSIBLE
 | |
| 	__flush_dcache_page(page_address(page),
 | |
| 			    ((tlb_type == spitfire) &&
 | |
| 			     page_mapping(page) != NULL));
 | |
| #else
 | |
| 	if (page_mapping(page) != NULL &&
 | |
| 	    tlb_type == spitfire)
 | |
| 		__flush_icache_page(__pa(page_address(page)));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #define PG_dcache_dirty		PG_arch_1
 | |
| #define PG_dcache_cpu_shift	32UL
 | |
| #define PG_dcache_cpu_mask	\
 | |
| 	((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
 | |
| 
 | |
| #define dcache_dirty_cpu(page) \
 | |
| 	(((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
 | |
| 
 | |
| static inline void set_dcache_dirty(struct page *page, int this_cpu)
 | |
| {
 | |
| 	unsigned long mask = this_cpu;
 | |
| 	unsigned long non_cpu_bits;
 | |
| 
 | |
| 	non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
 | |
| 	mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
 | |
| 
 | |
| 	__asm__ __volatile__("1:\n\t"
 | |
| 			     "ldx	[%2], %%g7\n\t"
 | |
| 			     "and	%%g7, %1, %%g1\n\t"
 | |
| 			     "or	%%g1, %0, %%g1\n\t"
 | |
| 			     "casx	[%2], %%g7, %%g1\n\t"
 | |
| 			     "cmp	%%g7, %%g1\n\t"
 | |
| 			     "bne,pn	%%xcc, 1b\n\t"
 | |
| 			     " nop"
 | |
| 			     : /* no outputs */
 | |
| 			     : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
 | |
| 			     : "g1", "g7");
 | |
| }
 | |
| 
 | |
| static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
 | |
| {
 | |
| 	unsigned long mask = (1UL << PG_dcache_dirty);
 | |
| 
 | |
| 	__asm__ __volatile__("! test_and_clear_dcache_dirty\n"
 | |
| 			     "1:\n\t"
 | |
| 			     "ldx	[%2], %%g7\n\t"
 | |
| 			     "srlx	%%g7, %4, %%g1\n\t"
 | |
| 			     "and	%%g1, %3, %%g1\n\t"
 | |
| 			     "cmp	%%g1, %0\n\t"
 | |
| 			     "bne,pn	%%icc, 2f\n\t"
 | |
| 			     " andn	%%g7, %1, %%g1\n\t"
 | |
| 			     "casx	[%2], %%g7, %%g1\n\t"
 | |
| 			     "cmp	%%g7, %%g1\n\t"
 | |
| 			     "bne,pn	%%xcc, 1b\n\t"
 | |
| 			     " nop\n"
 | |
| 			     "2:"
 | |
| 			     : /* no outputs */
 | |
| 			     : "r" (cpu), "r" (mask), "r" (&page->flags),
 | |
| 			       "i" (PG_dcache_cpu_mask),
 | |
| 			       "i" (PG_dcache_cpu_shift)
 | |
| 			     : "g1", "g7");
 | |
| }
 | |
| 
 | |
| static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
 | |
| {
 | |
| 	unsigned long tsb_addr = (unsigned long) ent;
 | |
| 
 | |
| 	if (tlb_type == cheetah_plus || tlb_type == hypervisor)
 | |
| 		tsb_addr = __pa(tsb_addr);
 | |
| 
 | |
| 	__tsb_insert(tsb_addr, tag, pte);
 | |
| }
 | |
| 
 | |
| unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
 | |
| 
 | |
| static void flush_dcache(unsigned long pfn)
 | |
| {
 | |
| 	struct page *page;
 | |
| 
 | |
| 	page = pfn_to_page(pfn);
 | |
| 	if (page) {
 | |
| 		unsigned long pg_flags;
 | |
| 
 | |
| 		pg_flags = page->flags;
 | |
| 		if (pg_flags & (1UL << PG_dcache_dirty)) {
 | |
| 			int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
 | |
| 				   PG_dcache_cpu_mask);
 | |
| 			int this_cpu = get_cpu();
 | |
| 
 | |
| 			/* This is just to optimize away some function calls
 | |
| 			 * in the SMP case.
 | |
| 			 */
 | |
| 			if (cpu == this_cpu)
 | |
| 				flush_dcache_page_impl(page);
 | |
| 			else
 | |
| 				smp_flush_dcache_page_impl(page, cpu);
 | |
| 
 | |
| 			clear_dcache_dirty_cpu(page, cpu);
 | |
| 
 | |
| 			put_cpu();
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* mm->context.lock must be held */
 | |
| static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
 | |
| 				    unsigned long tsb_hash_shift, unsigned long address,
 | |
| 				    unsigned long tte)
 | |
| {
 | |
| 	struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
 | |
| 	unsigned long tag;
 | |
| 
 | |
| 	if (unlikely(!tsb))
 | |
| 		return;
 | |
| 
 | |
| 	tsb += ((address >> tsb_hash_shift) &
 | |
| 		(mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
 | |
| 	tag = (address >> 22UL);
 | |
| 	tsb_insert(tsb, tag, tte);
 | |
| }
 | |
| 
 | |
| #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
 | |
| static inline bool is_hugetlb_pte(pte_t pte)
 | |
| {
 | |
| 	if ((tlb_type == hypervisor &&
 | |
| 	     (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
 | |
| 	    (tlb_type != hypervisor &&
 | |
| 	     (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U))
 | |
| 		return true;
 | |
| 	return false;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
 | |
| {
 | |
| 	struct mm_struct *mm;
 | |
| 	unsigned long flags;
 | |
| 	pte_t pte = *ptep;
 | |
| 
 | |
| 	if (tlb_type != hypervisor) {
 | |
| 		unsigned long pfn = pte_pfn(pte);
 | |
| 
 | |
| 		if (pfn_valid(pfn))
 | |
| 			flush_dcache(pfn);
 | |
| 	}
 | |
| 
 | |
| 	mm = vma->vm_mm;
 | |
| 
 | |
| 	spin_lock_irqsave(&mm->context.lock, flags);
 | |
| 
 | |
| #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
 | |
| 	if (mm->context.huge_pte_count && is_hugetlb_pte(pte))
 | |
| 		__update_mmu_tsb_insert(mm, MM_TSB_HUGE, HPAGE_SHIFT,
 | |
| 					address, pte_val(pte));
 | |
| 	else
 | |
| #endif
 | |
| 		__update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT,
 | |
| 					address, pte_val(pte));
 | |
| 
 | |
| 	spin_unlock_irqrestore(&mm->context.lock, flags);
 | |
| }
 | |
| 
 | |
| void flush_dcache_page(struct page *page)
 | |
| {
 | |
| 	struct address_space *mapping;
 | |
| 	int this_cpu;
 | |
| 
 | |
| 	if (tlb_type == hypervisor)
 | |
| 		return;
 | |
| 
 | |
| 	/* Do not bother with the expensive D-cache flush if it
 | |
| 	 * is merely the zero page.  The 'bigcore' testcase in GDB
 | |
| 	 * causes this case to run millions of times.
 | |
| 	 */
 | |
| 	if (page == ZERO_PAGE(0))
 | |
| 		return;
 | |
| 
 | |
| 	this_cpu = get_cpu();
 | |
| 
 | |
| 	mapping = page_mapping(page);
 | |
| 	if (mapping && !mapping_mapped(mapping)) {
 | |
| 		int dirty = test_bit(PG_dcache_dirty, &page->flags);
 | |
| 		if (dirty) {
 | |
| 			int dirty_cpu = dcache_dirty_cpu(page);
 | |
| 
 | |
| 			if (dirty_cpu == this_cpu)
 | |
| 				goto out;
 | |
| 			smp_flush_dcache_page_impl(page, dirty_cpu);
 | |
| 		}
 | |
| 		set_dcache_dirty(page, this_cpu);
 | |
| 	} else {
 | |
| 		/* We could delay the flush for the !page_mapping
 | |
| 		 * case too.  But that case is for exec env/arg
 | |
| 		 * pages and those are %99 certainly going to get
 | |
| 		 * faulted into the tlb (and thus flushed) anyways.
 | |
| 		 */
 | |
| 		flush_dcache_page_impl(page);
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	put_cpu();
 | |
| }
 | |
| EXPORT_SYMBOL(flush_dcache_page);
 | |
| 
 | |
| void __kprobes flush_icache_range(unsigned long start, unsigned long end)
 | |
| {
 | |
| 	/* Cheetah and Hypervisor platform cpus have coherent I-cache. */
 | |
| 	if (tlb_type == spitfire) {
 | |
| 		unsigned long kaddr;
 | |
| 
 | |
| 		/* This code only runs on Spitfire cpus so this is
 | |
| 		 * why we can assume _PAGE_PADDR_4U.
 | |
| 		 */
 | |
| 		for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
 | |
| 			unsigned long paddr, mask = _PAGE_PADDR_4U;
 | |
| 
 | |
| 			if (kaddr >= PAGE_OFFSET)
 | |
| 				paddr = kaddr & mask;
 | |
| 			else {
 | |
| 				pgd_t *pgdp = pgd_offset_k(kaddr);
 | |
| 				pud_t *pudp = pud_offset(pgdp, kaddr);
 | |
| 				pmd_t *pmdp = pmd_offset(pudp, kaddr);
 | |
| 				pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
 | |
| 
 | |
| 				paddr = pte_val(*ptep) & mask;
 | |
| 			}
 | |
| 			__flush_icache_page(paddr);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(flush_icache_range);
 | |
| 
 | |
| void mmu_info(struct seq_file *m)
 | |
| {
 | |
| 	static const char *pgsz_strings[] = {
 | |
| 		"8K", "64K", "512K", "4MB", "32MB",
 | |
| 		"256MB", "2GB", "16GB",
 | |
| 	};
 | |
| 	int i, printed;
 | |
| 
 | |
| 	if (tlb_type == cheetah)
 | |
| 		seq_printf(m, "MMU Type\t: Cheetah\n");
 | |
| 	else if (tlb_type == cheetah_plus)
 | |
| 		seq_printf(m, "MMU Type\t: Cheetah+\n");
 | |
| 	else if (tlb_type == spitfire)
 | |
| 		seq_printf(m, "MMU Type\t: Spitfire\n");
 | |
| 	else if (tlb_type == hypervisor)
 | |
| 		seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
 | |
| 	else
 | |
| 		seq_printf(m, "MMU Type\t: ???\n");
 | |
| 
 | |
| 	seq_printf(m, "MMU PGSZs\t: ");
 | |
| 	printed = 0;
 | |
| 	for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
 | |
| 		if (cpu_pgsz_mask & (1UL << i)) {
 | |
| 			seq_printf(m, "%s%s",
 | |
| 				   printed ? "," : "", pgsz_strings[i]);
 | |
| 			printed++;
 | |
| 		}
 | |
| 	}
 | |
| 	seq_putc(m, '\n');
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_DCFLUSH
 | |
| 	seq_printf(m, "DCPageFlushes\t: %d\n",
 | |
| 		   atomic_read(&dcpage_flushes));
 | |
| #ifdef CONFIG_SMP
 | |
| 	seq_printf(m, "DCPageFlushesXC\t: %d\n",
 | |
| 		   atomic_read(&dcpage_flushes_xcall));
 | |
| #endif /* CONFIG_SMP */
 | |
| #endif /* CONFIG_DEBUG_DCFLUSH */
 | |
| }
 | |
| 
 | |
| struct linux_prom_translation prom_trans[512] __read_mostly;
 | |
| unsigned int prom_trans_ents __read_mostly;
 | |
| 
 | |
| unsigned long kern_locked_tte_data;
 | |
| 
 | |
| /* The obp translations are saved based on 8k pagesize, since obp can
 | |
|  * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
 | |
|  * HI_OBP_ADDRESS range are handled in ktlb.S.
 | |
|  */
 | |
| static inline int in_obp_range(unsigned long vaddr)
 | |
| {
 | |
| 	return (vaddr >= LOW_OBP_ADDRESS &&
 | |
| 		vaddr < HI_OBP_ADDRESS);
 | |
| }
 | |
| 
 | |
| static int cmp_ptrans(const void *a, const void *b)
 | |
| {
 | |
| 	const struct linux_prom_translation *x = a, *y = b;
 | |
| 
 | |
| 	if (x->virt > y->virt)
 | |
| 		return 1;
 | |
| 	if (x->virt < y->virt)
 | |
| 		return -1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Read OBP translations property into 'prom_trans[]'.  */
 | |
| static void __init read_obp_translations(void)
 | |
| {
 | |
| 	int n, node, ents, first, last, i;
 | |
| 
 | |
| 	node = prom_finddevice("/virtual-memory");
 | |
| 	n = prom_getproplen(node, "translations");
 | |
| 	if (unlikely(n == 0 || n == -1)) {
 | |
| 		prom_printf("prom_mappings: Couldn't get size.\n");
 | |
| 		prom_halt();
 | |
| 	}
 | |
| 	if (unlikely(n > sizeof(prom_trans))) {
 | |
| 		prom_printf("prom_mappings: Size %d is too big.\n", n);
 | |
| 		prom_halt();
 | |
| 	}
 | |
| 
 | |
| 	if ((n = prom_getproperty(node, "translations",
 | |
| 				  (char *)&prom_trans[0],
 | |
| 				  sizeof(prom_trans))) == -1) {
 | |
| 		prom_printf("prom_mappings: Couldn't get property.\n");
 | |
| 		prom_halt();
 | |
| 	}
 | |
| 
 | |
| 	n = n / sizeof(struct linux_prom_translation);
 | |
| 
 | |
| 	ents = n;
 | |
| 
 | |
| 	sort(prom_trans, ents, sizeof(struct linux_prom_translation),
 | |
| 	     cmp_ptrans, NULL);
 | |
| 
 | |
| 	/* Now kick out all the non-OBP entries.  */
 | |
| 	for (i = 0; i < ents; i++) {
 | |
| 		if (in_obp_range(prom_trans[i].virt))
 | |
| 			break;
 | |
| 	}
 | |
| 	first = i;
 | |
| 	for (; i < ents; i++) {
 | |
| 		if (!in_obp_range(prom_trans[i].virt))
 | |
| 			break;
 | |
| 	}
 | |
| 	last = i;
 | |
| 
 | |
| 	for (i = 0; i < (last - first); i++) {
 | |
| 		struct linux_prom_translation *src = &prom_trans[i + first];
 | |
| 		struct linux_prom_translation *dest = &prom_trans[i];
 | |
| 
 | |
| 		*dest = *src;
 | |
| 	}
 | |
| 	for (; i < ents; i++) {
 | |
| 		struct linux_prom_translation *dest = &prom_trans[i];
 | |
| 		dest->virt = dest->size = dest->data = 0x0UL;
 | |
| 	}
 | |
| 
 | |
| 	prom_trans_ents = last - first;
 | |
| 
 | |
| 	if (tlb_type == spitfire) {
 | |
| 		/* Clear diag TTE bits. */
 | |
| 		for (i = 0; i < prom_trans_ents; i++)
 | |
| 			prom_trans[i].data &= ~0x0003fe0000000000UL;
 | |
| 	}
 | |
| 
 | |
| 	/* Force execute bit on.  */
 | |
| 	for (i = 0; i < prom_trans_ents; i++)
 | |
| 		prom_trans[i].data |= (tlb_type == hypervisor ?
 | |
| 				       _PAGE_EXEC_4V : _PAGE_EXEC_4U);
 | |
| }
 | |
| 
 | |
| static void __init hypervisor_tlb_lock(unsigned long vaddr,
 | |
| 				       unsigned long pte,
 | |
| 				       unsigned long mmu)
 | |
| {
 | |
| 	unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
 | |
| 
 | |
| 	if (ret != 0) {
 | |
| 		prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
 | |
| 			    "errors with %lx\n", vaddr, 0, pte, mmu, ret);
 | |
| 		prom_halt();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static unsigned long kern_large_tte(unsigned long paddr);
 | |
| 
 | |
| static void __init remap_kernel(void)
 | |
| {
 | |
| 	unsigned long phys_page, tte_vaddr, tte_data;
 | |
| 	int i, tlb_ent = sparc64_highest_locked_tlbent();
 | |
| 
 | |
| 	tte_vaddr = (unsigned long) KERNBASE;
 | |
| 	phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
 | |
| 	tte_data = kern_large_tte(phys_page);
 | |
| 
 | |
| 	kern_locked_tte_data = tte_data;
 | |
| 
 | |
| 	/* Now lock us into the TLBs via Hypervisor or OBP. */
 | |
| 	if (tlb_type == hypervisor) {
 | |
| 		for (i = 0; i < num_kernel_image_mappings; i++) {
 | |
| 			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
 | |
| 			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
 | |
| 			tte_vaddr += 0x400000;
 | |
| 			tte_data += 0x400000;
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i = 0; i < num_kernel_image_mappings; i++) {
 | |
| 			prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
 | |
| 			prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
 | |
| 			tte_vaddr += 0x400000;
 | |
| 			tte_data += 0x400000;
 | |
| 		}
 | |
| 		sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
 | |
| 	}
 | |
| 	if (tlb_type == cheetah_plus) {
 | |
| 		sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
 | |
| 					    CTX_CHEETAH_PLUS_NUC);
 | |
| 		sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
 | |
| 		sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| static void __init inherit_prom_mappings(void)
 | |
| {
 | |
| 	/* Now fixup OBP's idea about where we really are mapped. */
 | |
| 	printk("Remapping the kernel... ");
 | |
| 	remap_kernel();
 | |
| 	printk("done.\n");
 | |
| }
 | |
| 
 | |
| void prom_world(int enter)
 | |
| {
 | |
| 	if (!enter)
 | |
| 		set_fs(get_fs());
 | |
| 
 | |
| 	__asm__ __volatile__("flushw");
 | |
| }
 | |
| 
 | |
| void __flush_dcache_range(unsigned long start, unsigned long end)
 | |
| {
 | |
| 	unsigned long va;
 | |
| 
 | |
| 	if (tlb_type == spitfire) {
 | |
| 		int n = 0;
 | |
| 
 | |
| 		for (va = start; va < end; va += 32) {
 | |
| 			spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
 | |
| 			if (++n >= 512)
 | |
| 				break;
 | |
| 		}
 | |
| 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
 | |
| 		start = __pa(start);
 | |
| 		end = __pa(end);
 | |
| 		for (va = start; va < end; va += 32)
 | |
| 			__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
 | |
| 					     "membar #Sync"
 | |
| 					     : /* no outputs */
 | |
| 					     : "r" (va),
 | |
| 					       "i" (ASI_DCACHE_INVALIDATE));
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(__flush_dcache_range);
 | |
| 
 | |
| /* get_new_mmu_context() uses "cache + 1".  */
 | |
| DEFINE_SPINLOCK(ctx_alloc_lock);
 | |
| unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
 | |
| #define MAX_CTX_NR	(1UL << CTX_NR_BITS)
 | |
| #define CTX_BMAP_SLOTS	BITS_TO_LONGS(MAX_CTX_NR)
 | |
| DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
 | |
| 
 | |
| /* Caller does TLB context flushing on local CPU if necessary.
 | |
|  * The caller also ensures that CTX_VALID(mm->context) is false.
 | |
|  *
 | |
|  * We must be careful about boundary cases so that we never
 | |
|  * let the user have CTX 0 (nucleus) or we ever use a CTX
 | |
|  * version of zero (and thus NO_CONTEXT would not be caught
 | |
|  * by version mis-match tests in mmu_context.h).
 | |
|  *
 | |
|  * Always invoked with interrupts disabled.
 | |
|  */
 | |
| void get_new_mmu_context(struct mm_struct *mm)
 | |
| {
 | |
| 	unsigned long ctx, new_ctx;
 | |
| 	unsigned long orig_pgsz_bits;
 | |
| 	unsigned long flags;
 | |
| 	int new_version;
 | |
| 
 | |
| 	spin_lock_irqsave(&ctx_alloc_lock, flags);
 | |
| 	orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
 | |
| 	ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
 | |
| 	new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
 | |
| 	new_version = 0;
 | |
| 	if (new_ctx >= (1 << CTX_NR_BITS)) {
 | |
| 		new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
 | |
| 		if (new_ctx >= ctx) {
 | |
| 			int i;
 | |
| 			new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
 | |
| 				CTX_FIRST_VERSION;
 | |
| 			if (new_ctx == 1)
 | |
| 				new_ctx = CTX_FIRST_VERSION;
 | |
| 
 | |
| 			/* Don't call memset, for 16 entries that's just
 | |
| 			 * plain silly...
 | |
| 			 */
 | |
| 			mmu_context_bmap[0] = 3;
 | |
| 			mmu_context_bmap[1] = 0;
 | |
| 			mmu_context_bmap[2] = 0;
 | |
| 			mmu_context_bmap[3] = 0;
 | |
| 			for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
 | |
| 				mmu_context_bmap[i + 0] = 0;
 | |
| 				mmu_context_bmap[i + 1] = 0;
 | |
| 				mmu_context_bmap[i + 2] = 0;
 | |
| 				mmu_context_bmap[i + 3] = 0;
 | |
| 			}
 | |
| 			new_version = 1;
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 	mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
 | |
| 	new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
 | |
| out:
 | |
| 	tlb_context_cache = new_ctx;
 | |
| 	mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
 | |
| 	spin_unlock_irqrestore(&ctx_alloc_lock, flags);
 | |
| 
 | |
| 	if (unlikely(new_version))
 | |
| 		smp_new_mmu_context_version();
 | |
| }
 | |
| 
 | |
| static int numa_enabled = 1;
 | |
| static int numa_debug;
 | |
| 
 | |
| static int __init early_numa(char *p)
 | |
| {
 | |
| 	if (!p)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (strstr(p, "off"))
 | |
| 		numa_enabled = 0;
 | |
| 
 | |
| 	if (strstr(p, "debug"))
 | |
| 		numa_debug = 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| early_param("numa", early_numa);
 | |
| 
 | |
| #define numadbg(f, a...) \
 | |
| do {	if (numa_debug) \
 | |
| 		printk(KERN_INFO f, ## a); \
 | |
| } while (0)
 | |
| 
 | |
| static void __init find_ramdisk(unsigned long phys_base)
 | |
| {
 | |
| #ifdef CONFIG_BLK_DEV_INITRD
 | |
| 	if (sparc_ramdisk_image || sparc_ramdisk_image64) {
 | |
| 		unsigned long ramdisk_image;
 | |
| 
 | |
| 		/* Older versions of the bootloader only supported a
 | |
| 		 * 32-bit physical address for the ramdisk image
 | |
| 		 * location, stored at sparc_ramdisk_image.  Newer
 | |
| 		 * SILO versions set sparc_ramdisk_image to zero and
 | |
| 		 * provide a full 64-bit physical address at
 | |
| 		 * sparc_ramdisk_image64.
 | |
| 		 */
 | |
| 		ramdisk_image = sparc_ramdisk_image;
 | |
| 		if (!ramdisk_image)
 | |
| 			ramdisk_image = sparc_ramdisk_image64;
 | |
| 
 | |
| 		/* Another bootloader quirk.  The bootloader normalizes
 | |
| 		 * the physical address to KERNBASE, so we have to
 | |
| 		 * factor that back out and add in the lowest valid
 | |
| 		 * physical page address to get the true physical address.
 | |
| 		 */
 | |
| 		ramdisk_image -= KERNBASE;
 | |
| 		ramdisk_image += phys_base;
 | |
| 
 | |
| 		numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
 | |
| 			ramdisk_image, sparc_ramdisk_size);
 | |
| 
 | |
| 		initrd_start = ramdisk_image;
 | |
| 		initrd_end = ramdisk_image + sparc_ramdisk_size;
 | |
| 
 | |
| 		memblock_reserve(initrd_start, sparc_ramdisk_size);
 | |
| 
 | |
| 		initrd_start += PAGE_OFFSET;
 | |
| 		initrd_end += PAGE_OFFSET;
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| 
 | |
| struct node_mem_mask {
 | |
| 	unsigned long mask;
 | |
| 	unsigned long val;
 | |
| };
 | |
| static struct node_mem_mask node_masks[MAX_NUMNODES];
 | |
| static int num_node_masks;
 | |
| 
 | |
| int numa_cpu_lookup_table[NR_CPUS];
 | |
| cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
 | |
| 
 | |
| #ifdef CONFIG_NEED_MULTIPLE_NODES
 | |
| 
 | |
| struct mdesc_mblock {
 | |
| 	u64	base;
 | |
| 	u64	size;
 | |
| 	u64	offset; /* RA-to-PA */
 | |
| };
 | |
| static struct mdesc_mblock *mblocks;
 | |
| static int num_mblocks;
 | |
| 
 | |
| static unsigned long ra_to_pa(unsigned long addr)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < num_mblocks; i++) {
 | |
| 		struct mdesc_mblock *m = &mblocks[i];
 | |
| 
 | |
| 		if (addr >= m->base &&
 | |
| 		    addr < (m->base + m->size)) {
 | |
| 			addr += m->offset;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	return addr;
 | |
| }
 | |
| 
 | |
| static int find_node(unsigned long addr)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	addr = ra_to_pa(addr);
 | |
| 	for (i = 0; i < num_node_masks; i++) {
 | |
| 		struct node_mem_mask *p = &node_masks[i];
 | |
| 
 | |
| 		if ((addr & p->mask) == p->val)
 | |
| 			return i;
 | |
| 	}
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| static u64 memblock_nid_range(u64 start, u64 end, int *nid)
 | |
| {
 | |
| 	*nid = find_node(start);
 | |
| 	start += PAGE_SIZE;
 | |
| 	while (start < end) {
 | |
| 		int n = find_node(start);
 | |
| 
 | |
| 		if (n != *nid)
 | |
| 			break;
 | |
| 		start += PAGE_SIZE;
 | |
| 	}
 | |
| 
 | |
| 	if (start > end)
 | |
| 		start = end;
 | |
| 
 | |
| 	return start;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* This must be invoked after performing all of the necessary
 | |
|  * memblock_set_node() calls for 'nid'.  We need to be able to get
 | |
|  * correct data from get_pfn_range_for_nid().
 | |
|  */
 | |
| static void __init allocate_node_data(int nid)
 | |
| {
 | |
| 	struct pglist_data *p;
 | |
| 	unsigned long start_pfn, end_pfn;
 | |
| #ifdef CONFIG_NEED_MULTIPLE_NODES
 | |
| 	unsigned long paddr;
 | |
| 
 | |
| 	paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid);
 | |
| 	if (!paddr) {
 | |
| 		prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
 | |
| 		prom_halt();
 | |
| 	}
 | |
| 	NODE_DATA(nid) = __va(paddr);
 | |
| 	memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
 | |
| 
 | |
| 	NODE_DATA(nid)->node_id = nid;
 | |
| #endif
 | |
| 
 | |
| 	p = NODE_DATA(nid);
 | |
| 
 | |
| 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
 | |
| 	p->node_start_pfn = start_pfn;
 | |
| 	p->node_spanned_pages = end_pfn - start_pfn;
 | |
| }
 | |
| 
 | |
| static void init_node_masks_nonnuma(void)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	numadbg("Initializing tables for non-numa.\n");
 | |
| 
 | |
| 	node_masks[0].mask = node_masks[0].val = 0;
 | |
| 	num_node_masks = 1;
 | |
| 
 | |
| 	for (i = 0; i < NR_CPUS; i++)
 | |
| 		numa_cpu_lookup_table[i] = 0;
 | |
| 
 | |
| 	cpumask_setall(&numa_cpumask_lookup_table[0]);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NEED_MULTIPLE_NODES
 | |
| struct pglist_data *node_data[MAX_NUMNODES];
 | |
| 
 | |
| EXPORT_SYMBOL(numa_cpu_lookup_table);
 | |
| EXPORT_SYMBOL(numa_cpumask_lookup_table);
 | |
| EXPORT_SYMBOL(node_data);
 | |
| 
 | |
| struct mdesc_mlgroup {
 | |
| 	u64	node;
 | |
| 	u64	latency;
 | |
| 	u64	match;
 | |
| 	u64	mask;
 | |
| };
 | |
| static struct mdesc_mlgroup *mlgroups;
 | |
| static int num_mlgroups;
 | |
| 
 | |
| static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
 | |
| 				   u32 cfg_handle)
 | |
| {
 | |
| 	u64 arc;
 | |
| 
 | |
| 	mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
 | |
| 		u64 target = mdesc_arc_target(md, arc);
 | |
| 		const u64 *val;
 | |
| 
 | |
| 		val = mdesc_get_property(md, target,
 | |
| 					 "cfg-handle", NULL);
 | |
| 		if (val && *val == cfg_handle)
 | |
| 			return 0;
 | |
| 	}
 | |
| 	return -ENODEV;
 | |
| }
 | |
| 
 | |
| static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
 | |
| 				    u32 cfg_handle)
 | |
| {
 | |
| 	u64 arc, candidate, best_latency = ~(u64)0;
 | |
| 
 | |
| 	candidate = MDESC_NODE_NULL;
 | |
| 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
 | |
| 		u64 target = mdesc_arc_target(md, arc);
 | |
| 		const char *name = mdesc_node_name(md, target);
 | |
| 		const u64 *val;
 | |
| 
 | |
| 		if (strcmp(name, "pio-latency-group"))
 | |
| 			continue;
 | |
| 
 | |
| 		val = mdesc_get_property(md, target, "latency", NULL);
 | |
| 		if (!val)
 | |
| 			continue;
 | |
| 
 | |
| 		if (*val < best_latency) {
 | |
| 			candidate = target;
 | |
| 			best_latency = *val;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (candidate == MDESC_NODE_NULL)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
 | |
| }
 | |
| 
 | |
| int of_node_to_nid(struct device_node *dp)
 | |
| {
 | |
| 	const struct linux_prom64_registers *regs;
 | |
| 	struct mdesc_handle *md;
 | |
| 	u32 cfg_handle;
 | |
| 	int count, nid;
 | |
| 	u64 grp;
 | |
| 
 | |
| 	/* This is the right thing to do on currently supported
 | |
| 	 * SUN4U NUMA platforms as well, as the PCI controller does
 | |
| 	 * not sit behind any particular memory controller.
 | |
| 	 */
 | |
| 	if (!mlgroups)
 | |
| 		return -1;
 | |
| 
 | |
| 	regs = of_get_property(dp, "reg", NULL);
 | |
| 	if (!regs)
 | |
| 		return -1;
 | |
| 
 | |
| 	cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
 | |
| 
 | |
| 	md = mdesc_grab();
 | |
| 
 | |
| 	count = 0;
 | |
| 	nid = -1;
 | |
| 	mdesc_for_each_node_by_name(md, grp, "group") {
 | |
| 		if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
 | |
| 			nid = count;
 | |
| 			break;
 | |
| 		}
 | |
| 		count++;
 | |
| 	}
 | |
| 
 | |
| 	mdesc_release(md);
 | |
| 
 | |
| 	return nid;
 | |
| }
 | |
| 
 | |
| static void __init add_node_ranges(void)
 | |
| {
 | |
| 	struct memblock_region *reg;
 | |
| 
 | |
| 	for_each_memblock(memory, reg) {
 | |
| 		unsigned long size = reg->size;
 | |
| 		unsigned long start, end;
 | |
| 
 | |
| 		start = reg->base;
 | |
| 		end = start + size;
 | |
| 		while (start < end) {
 | |
| 			unsigned long this_end;
 | |
| 			int nid;
 | |
| 
 | |
| 			this_end = memblock_nid_range(start, end, &nid);
 | |
| 
 | |
| 			numadbg("Setting memblock NUMA node nid[%d] "
 | |
| 				"start[%lx] end[%lx]\n",
 | |
| 				nid, start, this_end);
 | |
| 
 | |
| 			memblock_set_node(start, this_end - start, nid);
 | |
| 			start = this_end;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int __init grab_mlgroups(struct mdesc_handle *md)
 | |
| {
 | |
| 	unsigned long paddr;
 | |
| 	int count = 0;
 | |
| 	u64 node;
 | |
| 
 | |
| 	mdesc_for_each_node_by_name(md, node, "memory-latency-group")
 | |
| 		count++;
 | |
| 	if (!count)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup),
 | |
| 			  SMP_CACHE_BYTES);
 | |
| 	if (!paddr)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	mlgroups = __va(paddr);
 | |
| 	num_mlgroups = count;
 | |
| 
 | |
| 	count = 0;
 | |
| 	mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
 | |
| 		struct mdesc_mlgroup *m = &mlgroups[count++];
 | |
| 		const u64 *val;
 | |
| 
 | |
| 		m->node = node;
 | |
| 
 | |
| 		val = mdesc_get_property(md, node, "latency", NULL);
 | |
| 		m->latency = *val;
 | |
| 		val = mdesc_get_property(md, node, "address-match", NULL);
 | |
| 		m->match = *val;
 | |
| 		val = mdesc_get_property(md, node, "address-mask", NULL);
 | |
| 		m->mask = *val;
 | |
| 
 | |
| 		numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
 | |
| 			"match[%llx] mask[%llx]\n",
 | |
| 			count - 1, m->node, m->latency, m->match, m->mask);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __init grab_mblocks(struct mdesc_handle *md)
 | |
| {
 | |
| 	unsigned long paddr;
 | |
| 	int count = 0;
 | |
| 	u64 node;
 | |
| 
 | |
| 	mdesc_for_each_node_by_name(md, node, "mblock")
 | |
| 		count++;
 | |
| 	if (!count)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	paddr = memblock_alloc(count * sizeof(struct mdesc_mblock),
 | |
| 			  SMP_CACHE_BYTES);
 | |
| 	if (!paddr)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	mblocks = __va(paddr);
 | |
| 	num_mblocks = count;
 | |
| 
 | |
| 	count = 0;
 | |
| 	mdesc_for_each_node_by_name(md, node, "mblock") {
 | |
| 		struct mdesc_mblock *m = &mblocks[count++];
 | |
| 		const u64 *val;
 | |
| 
 | |
| 		val = mdesc_get_property(md, node, "base", NULL);
 | |
| 		m->base = *val;
 | |
| 		val = mdesc_get_property(md, node, "size", NULL);
 | |
| 		m->size = *val;
 | |
| 		val = mdesc_get_property(md, node,
 | |
| 					 "address-congruence-offset", NULL);
 | |
| 		m->offset = *val;
 | |
| 
 | |
| 		numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
 | |
| 			count - 1, m->base, m->size, m->offset);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
 | |
| 					       u64 grp, cpumask_t *mask)
 | |
| {
 | |
| 	u64 arc;
 | |
| 
 | |
| 	cpumask_clear(mask);
 | |
| 
 | |
| 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
 | |
| 		u64 target = mdesc_arc_target(md, arc);
 | |
| 		const char *name = mdesc_node_name(md, target);
 | |
| 		const u64 *id;
 | |
| 
 | |
| 		if (strcmp(name, "cpu"))
 | |
| 			continue;
 | |
| 		id = mdesc_get_property(md, target, "id", NULL);
 | |
| 		if (*id < nr_cpu_ids)
 | |
| 			cpumask_set_cpu(*id, mask);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < num_mlgroups; i++) {
 | |
| 		struct mdesc_mlgroup *m = &mlgroups[i];
 | |
| 		if (m->node == node)
 | |
| 			return m;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
 | |
| 				      int index)
 | |
| {
 | |
| 	struct mdesc_mlgroup *candidate = NULL;
 | |
| 	u64 arc, best_latency = ~(u64)0;
 | |
| 	struct node_mem_mask *n;
 | |
| 
 | |
| 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
 | |
| 		u64 target = mdesc_arc_target(md, arc);
 | |
| 		struct mdesc_mlgroup *m = find_mlgroup(target);
 | |
| 		if (!m)
 | |
| 			continue;
 | |
| 		if (m->latency < best_latency) {
 | |
| 			candidate = m;
 | |
| 			best_latency = m->latency;
 | |
| 		}
 | |
| 	}
 | |
| 	if (!candidate)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	if (num_node_masks != index) {
 | |
| 		printk(KERN_ERR "Inconsistent NUMA state, "
 | |
| 		       "index[%d] != num_node_masks[%d]\n",
 | |
| 		       index, num_node_masks);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	n = &node_masks[num_node_masks++];
 | |
| 
 | |
| 	n->mask = candidate->mask;
 | |
| 	n->val = candidate->match;
 | |
| 
 | |
| 	numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n",
 | |
| 		index, n->mask, n->val, candidate->latency);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
 | |
| 					 int index)
 | |
| {
 | |
| 	cpumask_t mask;
 | |
| 	int cpu;
 | |
| 
 | |
| 	numa_parse_mdesc_group_cpus(md, grp, &mask);
 | |
| 
 | |
| 	for_each_cpu(cpu, &mask)
 | |
| 		numa_cpu_lookup_table[cpu] = index;
 | |
| 	cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
 | |
| 
 | |
| 	if (numa_debug) {
 | |
| 		printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
 | |
| 		for_each_cpu(cpu, &mask)
 | |
| 			printk("%d ", cpu);
 | |
| 		printk("]\n");
 | |
| 	}
 | |
| 
 | |
| 	return numa_attach_mlgroup(md, grp, index);
 | |
| }
 | |
| 
 | |
| static int __init numa_parse_mdesc(void)
 | |
| {
 | |
| 	struct mdesc_handle *md = mdesc_grab();
 | |
| 	int i, err, count;
 | |
| 	u64 node;
 | |
| 
 | |
| 	node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
 | |
| 	if (node == MDESC_NODE_NULL) {
 | |
| 		mdesc_release(md);
 | |
| 		return -ENOENT;
 | |
| 	}
 | |
| 
 | |
| 	err = grab_mblocks(md);
 | |
| 	if (err < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	err = grab_mlgroups(md);
 | |
| 	if (err < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	count = 0;
 | |
| 	mdesc_for_each_node_by_name(md, node, "group") {
 | |
| 		err = numa_parse_mdesc_group(md, node, count);
 | |
| 		if (err < 0)
 | |
| 			break;
 | |
| 		count++;
 | |
| 	}
 | |
| 
 | |
| 	add_node_ranges();
 | |
| 
 | |
| 	for (i = 0; i < num_node_masks; i++) {
 | |
| 		allocate_node_data(i);
 | |
| 		node_set_online(i);
 | |
| 	}
 | |
| 
 | |
| 	err = 0;
 | |
| out:
 | |
| 	mdesc_release(md);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int __init numa_parse_jbus(void)
 | |
| {
 | |
| 	unsigned long cpu, index;
 | |
| 
 | |
| 	/* NUMA node id is encoded in bits 36 and higher, and there is
 | |
| 	 * a 1-to-1 mapping from CPU ID to NUMA node ID.
 | |
| 	 */
 | |
| 	index = 0;
 | |
| 	for_each_present_cpu(cpu) {
 | |
| 		numa_cpu_lookup_table[cpu] = index;
 | |
| 		cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
 | |
| 		node_masks[index].mask = ~((1UL << 36UL) - 1UL);
 | |
| 		node_masks[index].val = cpu << 36UL;
 | |
| 
 | |
| 		index++;
 | |
| 	}
 | |
| 	num_node_masks = index;
 | |
| 
 | |
| 	add_node_ranges();
 | |
| 
 | |
| 	for (index = 0; index < num_node_masks; index++) {
 | |
| 		allocate_node_data(index);
 | |
| 		node_set_online(index);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __init numa_parse_sun4u(void)
 | |
| {
 | |
| 	if (tlb_type == cheetah || tlb_type == cheetah_plus) {
 | |
| 		unsigned long ver;
 | |
| 
 | |
| 		__asm__ ("rdpr %%ver, %0" : "=r" (ver));
 | |
| 		if ((ver >> 32UL) == __JALAPENO_ID ||
 | |
| 		    (ver >> 32UL) == __SERRANO_ID)
 | |
| 			return numa_parse_jbus();
 | |
| 	}
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| static int __init bootmem_init_numa(void)
 | |
| {
 | |
| 	int err = -1;
 | |
| 
 | |
| 	numadbg("bootmem_init_numa()\n");
 | |
| 
 | |
| 	if (numa_enabled) {
 | |
| 		if (tlb_type == hypervisor)
 | |
| 			err = numa_parse_mdesc();
 | |
| 		else
 | |
| 			err = numa_parse_sun4u();
 | |
| 	}
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| static int bootmem_init_numa(void)
 | |
| {
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| static void __init bootmem_init_nonnuma(void)
 | |
| {
 | |
| 	unsigned long top_of_ram = memblock_end_of_DRAM();
 | |
| 	unsigned long total_ram = memblock_phys_mem_size();
 | |
| 
 | |
| 	numadbg("bootmem_init_nonnuma()\n");
 | |
| 
 | |
| 	printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
 | |
| 	       top_of_ram, total_ram);
 | |
| 	printk(KERN_INFO "Memory hole size: %ldMB\n",
 | |
| 	       (top_of_ram - total_ram) >> 20);
 | |
| 
 | |
| 	init_node_masks_nonnuma();
 | |
| 	memblock_set_node(0, (phys_addr_t)ULLONG_MAX, 0);
 | |
| 	allocate_node_data(0);
 | |
| 	node_set_online(0);
 | |
| }
 | |
| 
 | |
| static unsigned long __init bootmem_init(unsigned long phys_base)
 | |
| {
 | |
| 	unsigned long end_pfn;
 | |
| 
 | |
| 	end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
 | |
| 	max_pfn = max_low_pfn = end_pfn;
 | |
| 	min_low_pfn = (phys_base >> PAGE_SHIFT);
 | |
| 
 | |
| 	if (bootmem_init_numa() < 0)
 | |
| 		bootmem_init_nonnuma();
 | |
| 
 | |
| 	/* Dump memblock with node info. */
 | |
| 	memblock_dump_all();
 | |
| 
 | |
| 	/* XXX cpu notifier XXX */
 | |
| 
 | |
| 	sparse_memory_present_with_active_regions(MAX_NUMNODES);
 | |
| 	sparse_init();
 | |
| 
 | |
| 	return end_pfn;
 | |
| }
 | |
| 
 | |
| static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
 | |
| static int pall_ents __initdata;
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_PAGEALLOC
 | |
| static unsigned long __ref kernel_map_range(unsigned long pstart,
 | |
| 					    unsigned long pend, pgprot_t prot)
 | |
| {
 | |
| 	unsigned long vstart = PAGE_OFFSET + pstart;
 | |
| 	unsigned long vend = PAGE_OFFSET + pend;
 | |
| 	unsigned long alloc_bytes = 0UL;
 | |
| 
 | |
| 	if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
 | |
| 		prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
 | |
| 			    vstart, vend);
 | |
| 		prom_halt();
 | |
| 	}
 | |
| 
 | |
| 	while (vstart < vend) {
 | |
| 		unsigned long this_end, paddr = __pa(vstart);
 | |
| 		pgd_t *pgd = pgd_offset_k(vstart);
 | |
| 		pud_t *pud;
 | |
| 		pmd_t *pmd;
 | |
| 		pte_t *pte;
 | |
| 
 | |
| 		pud = pud_offset(pgd, vstart);
 | |
| 		if (pud_none(*pud)) {
 | |
| 			pmd_t *new;
 | |
| 
 | |
| 			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
 | |
| 			alloc_bytes += PAGE_SIZE;
 | |
| 			pud_populate(&init_mm, pud, new);
 | |
| 		}
 | |
| 
 | |
| 		pmd = pmd_offset(pud, vstart);
 | |
| 		if (!pmd_present(*pmd)) {
 | |
| 			pte_t *new;
 | |
| 
 | |
| 			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
 | |
| 			alloc_bytes += PAGE_SIZE;
 | |
| 			pmd_populate_kernel(&init_mm, pmd, new);
 | |
| 		}
 | |
| 
 | |
| 		pte = pte_offset_kernel(pmd, vstart);
 | |
| 		this_end = (vstart + PMD_SIZE) & PMD_MASK;
 | |
| 		if (this_end > vend)
 | |
| 			this_end = vend;
 | |
| 
 | |
| 		while (vstart < this_end) {
 | |
| 			pte_val(*pte) = (paddr | pgprot_val(prot));
 | |
| 
 | |
| 			vstart += PAGE_SIZE;
 | |
| 			paddr += PAGE_SIZE;
 | |
| 			pte++;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return alloc_bytes;
 | |
| }
 | |
| 
 | |
| extern unsigned int kvmap_linear_patch[1];
 | |
| #endif /* CONFIG_DEBUG_PAGEALLOC */
 | |
| 
 | |
| static void __init kpte_set_val(unsigned long index, unsigned long val)
 | |
| {
 | |
| 	unsigned long *ptr = kpte_linear_bitmap;
 | |
| 
 | |
| 	val <<= ((index % (BITS_PER_LONG / 2)) * 2);
 | |
| 	ptr += (index / (BITS_PER_LONG / 2));
 | |
| 
 | |
| 	*ptr |= val;
 | |
| }
 | |
| 
 | |
| static const unsigned long kpte_shift_min = 28; /* 256MB */
 | |
| static const unsigned long kpte_shift_max = 34; /* 16GB */
 | |
| static const unsigned long kpte_shift_incr = 3;
 | |
| 
 | |
| static unsigned long kpte_mark_using_shift(unsigned long start, unsigned long end,
 | |
| 					   unsigned long shift)
 | |
| {
 | |
| 	unsigned long size = (1UL << shift);
 | |
| 	unsigned long mask = (size - 1UL);
 | |
| 	unsigned long remains = end - start;
 | |
| 	unsigned long val;
 | |
| 
 | |
| 	if (remains < size || (start & mask))
 | |
| 		return start;
 | |
| 
 | |
| 	/* VAL maps:
 | |
| 	 *
 | |
| 	 *	shift 28 --> kern_linear_pte_xor index 1
 | |
| 	 *	shift 31 --> kern_linear_pte_xor index 2
 | |
| 	 *	shift 34 --> kern_linear_pte_xor index 3
 | |
| 	 */
 | |
| 	val = ((shift - kpte_shift_min) / kpte_shift_incr) + 1;
 | |
| 
 | |
| 	remains &= ~mask;
 | |
| 	if (shift != kpte_shift_max)
 | |
| 		remains = size;
 | |
| 
 | |
| 	while (remains) {
 | |
| 		unsigned long index = start >> kpte_shift_min;
 | |
| 
 | |
| 		kpte_set_val(index, val);
 | |
| 
 | |
| 		start += 1UL << kpte_shift_min;
 | |
| 		remains -= 1UL << kpte_shift_min;
 | |
| 	}
 | |
| 
 | |
| 	return start;
 | |
| }
 | |
| 
 | |
| static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
 | |
| {
 | |
| 	unsigned long smallest_size, smallest_mask;
 | |
| 	unsigned long s;
 | |
| 
 | |
| 	smallest_size = (1UL << kpte_shift_min);
 | |
| 	smallest_mask = (smallest_size - 1UL);
 | |
| 
 | |
| 	while (start < end) {
 | |
| 		unsigned long orig_start = start;
 | |
| 
 | |
| 		for (s = kpte_shift_max; s >= kpte_shift_min; s -= kpte_shift_incr) {
 | |
| 			start = kpte_mark_using_shift(start, end, s);
 | |
| 
 | |
| 			if (start != orig_start)
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 		if (start == orig_start)
 | |
| 			start = (start + smallest_size) & ~smallest_mask;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __init init_kpte_bitmap(void)
 | |
| {
 | |
| 	unsigned long i;
 | |
| 
 | |
| 	for (i = 0; i < pall_ents; i++) {
 | |
| 		unsigned long phys_start, phys_end;
 | |
| 
 | |
| 		phys_start = pall[i].phys_addr;
 | |
| 		phys_end = phys_start + pall[i].reg_size;
 | |
| 
 | |
| 		mark_kpte_bitmap(phys_start, phys_end);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __init kernel_physical_mapping_init(void)
 | |
| {
 | |
| #ifdef CONFIG_DEBUG_PAGEALLOC
 | |
| 	unsigned long i, mem_alloced = 0UL;
 | |
| 
 | |
| 	for (i = 0; i < pall_ents; i++) {
 | |
| 		unsigned long phys_start, phys_end;
 | |
| 
 | |
| 		phys_start = pall[i].phys_addr;
 | |
| 		phys_end = phys_start + pall[i].reg_size;
 | |
| 
 | |
| 		mem_alloced += kernel_map_range(phys_start, phys_end,
 | |
| 						PAGE_KERNEL);
 | |
| 	}
 | |
| 
 | |
| 	printk("Allocated %ld bytes for kernel page tables.\n",
 | |
| 	       mem_alloced);
 | |
| 
 | |
| 	kvmap_linear_patch[0] = 0x01000000; /* nop */
 | |
| 	flushi(&kvmap_linear_patch[0]);
 | |
| 
 | |
| 	__flush_tlb_all();
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_PAGEALLOC
 | |
| void kernel_map_pages(struct page *page, int numpages, int enable)
 | |
| {
 | |
| 	unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
 | |
| 	unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
 | |
| 
 | |
| 	kernel_map_range(phys_start, phys_end,
 | |
| 			 (enable ? PAGE_KERNEL : __pgprot(0)));
 | |
| 
 | |
| 	flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
 | |
| 			       PAGE_OFFSET + phys_end);
 | |
| 
 | |
| 	/* we should perform an IPI and flush all tlbs,
 | |
| 	 * but that can deadlock->flush only current cpu.
 | |
| 	 */
 | |
| 	__flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
 | |
| 				 PAGE_OFFSET + phys_end);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| unsigned long __init find_ecache_flush_span(unsigned long size)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < pavail_ents; i++) {
 | |
| 		if (pavail[i].reg_size >= size)
 | |
| 			return pavail[i].phys_addr;
 | |
| 	}
 | |
| 
 | |
| 	return ~0UL;
 | |
| }
 | |
| 
 | |
| static void __init tsb_phys_patch(void)
 | |
| {
 | |
| 	struct tsb_ldquad_phys_patch_entry *pquad;
 | |
| 	struct tsb_phys_patch_entry *p;
 | |
| 
 | |
| 	pquad = &__tsb_ldquad_phys_patch;
 | |
| 	while (pquad < &__tsb_ldquad_phys_patch_end) {
 | |
| 		unsigned long addr = pquad->addr;
 | |
| 
 | |
| 		if (tlb_type == hypervisor)
 | |
| 			*(unsigned int *) addr = pquad->sun4v_insn;
 | |
| 		else
 | |
| 			*(unsigned int *) addr = pquad->sun4u_insn;
 | |
| 		wmb();
 | |
| 		__asm__ __volatile__("flush	%0"
 | |
| 				     : /* no outputs */
 | |
| 				     : "r" (addr));
 | |
| 
 | |
| 		pquad++;
 | |
| 	}
 | |
| 
 | |
| 	p = &__tsb_phys_patch;
 | |
| 	while (p < &__tsb_phys_patch_end) {
 | |
| 		unsigned long addr = p->addr;
 | |
| 
 | |
| 		*(unsigned int *) addr = p->insn;
 | |
| 		wmb();
 | |
| 		__asm__ __volatile__("flush	%0"
 | |
| 				     : /* no outputs */
 | |
| 				     : "r" (addr));
 | |
| 
 | |
| 		p++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Don't mark as init, we give this to the Hypervisor.  */
 | |
| #ifndef CONFIG_DEBUG_PAGEALLOC
 | |
| #define NUM_KTSB_DESCR	2
 | |
| #else
 | |
| #define NUM_KTSB_DESCR	1
 | |
| #endif
 | |
| static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
 | |
| extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
 | |
| 
 | |
| static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
 | |
| {
 | |
| 	pa >>= KTSB_PHYS_SHIFT;
 | |
| 
 | |
| 	while (start < end) {
 | |
| 		unsigned int *ia = (unsigned int *)(unsigned long)*start;
 | |
| 
 | |
| 		ia[0] = (ia[0] & ~0x3fffff) | (pa >> 10);
 | |
| 		__asm__ __volatile__("flush	%0" : : "r" (ia));
 | |
| 
 | |
| 		ia[1] = (ia[1] & ~0x3ff) | (pa & 0x3ff);
 | |
| 		__asm__ __volatile__("flush	%0" : : "r" (ia + 1));
 | |
| 
 | |
| 		start++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void ktsb_phys_patch(void)
 | |
| {
 | |
| 	extern unsigned int __swapper_tsb_phys_patch;
 | |
| 	extern unsigned int __swapper_tsb_phys_patch_end;
 | |
| 	unsigned long ktsb_pa;
 | |
| 
 | |
| 	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
 | |
| 	patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
 | |
| 			    &__swapper_tsb_phys_patch_end, ktsb_pa);
 | |
| #ifndef CONFIG_DEBUG_PAGEALLOC
 | |
| 	{
 | |
| 	extern unsigned int __swapper_4m_tsb_phys_patch;
 | |
| 	extern unsigned int __swapper_4m_tsb_phys_patch_end;
 | |
| 	ktsb_pa = (kern_base +
 | |
| 		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
 | |
| 	patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
 | |
| 			    &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void __init sun4v_ktsb_init(void)
 | |
| {
 | |
| 	unsigned long ktsb_pa;
 | |
| 
 | |
| 	/* First KTSB for PAGE_SIZE mappings.  */
 | |
| 	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
 | |
| 
 | |
| 	switch (PAGE_SIZE) {
 | |
| 	case 8 * 1024:
 | |
| 	default:
 | |
| 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
 | |
| 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
 | |
| 		break;
 | |
| 
 | |
| 	case 64 * 1024:
 | |
| 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
 | |
| 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
 | |
| 		break;
 | |
| 
 | |
| 	case 512 * 1024:
 | |
| 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
 | |
| 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
 | |
| 		break;
 | |
| 
 | |
| 	case 4 * 1024 * 1024:
 | |
| 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
 | |
| 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	ktsb_descr[0].assoc = 1;
 | |
| 	ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
 | |
| 	ktsb_descr[0].ctx_idx = 0;
 | |
| 	ktsb_descr[0].tsb_base = ktsb_pa;
 | |
| 	ktsb_descr[0].resv = 0;
 | |
| 
 | |
| #ifndef CONFIG_DEBUG_PAGEALLOC
 | |
| 	/* Second KTSB for 4MB/256MB/2GB/16GB mappings.  */
 | |
| 	ktsb_pa = (kern_base +
 | |
| 		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
 | |
| 
 | |
| 	ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
 | |
| 	ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
 | |
| 				    HV_PGSZ_MASK_256MB |
 | |
| 				    HV_PGSZ_MASK_2GB |
 | |
| 				    HV_PGSZ_MASK_16GB) &
 | |
| 				   cpu_pgsz_mask);
 | |
| 	ktsb_descr[1].assoc = 1;
 | |
| 	ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
 | |
| 	ktsb_descr[1].ctx_idx = 0;
 | |
| 	ktsb_descr[1].tsb_base = ktsb_pa;
 | |
| 	ktsb_descr[1].resv = 0;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void __cpuinit sun4v_ktsb_register(void)
 | |
| {
 | |
| 	unsigned long pa, ret;
 | |
| 
 | |
| 	pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
 | |
| 
 | |
| 	ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
 | |
| 	if (ret != 0) {
 | |
| 		prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
 | |
| 			    "errors with %lx\n", pa, ret);
 | |
| 		prom_halt();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __init sun4u_linear_pte_xor_finalize(void)
 | |
| {
 | |
| #ifndef CONFIG_DEBUG_PAGEALLOC
 | |
| 	/* This is where we would add Panther support for
 | |
| 	 * 32MB and 256MB pages.
 | |
| 	 */
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void __init sun4v_linear_pte_xor_finalize(void)
 | |
| {
 | |
| #ifndef CONFIG_DEBUG_PAGEALLOC
 | |
| 	if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
 | |
| 		kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
 | |
| 			0xfffff80000000000UL;
 | |
| 		kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
 | |
| 					   _PAGE_P_4V | _PAGE_W_4V);
 | |
| 	} else {
 | |
| 		kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
 | |
| 	}
 | |
| 
 | |
| 	if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
 | |
| 		kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^
 | |
| 			0xfffff80000000000UL;
 | |
| 		kern_linear_pte_xor[2] |= (_PAGE_CP_4V | _PAGE_CV_4V |
 | |
| 					   _PAGE_P_4V | _PAGE_W_4V);
 | |
| 	} else {
 | |
| 		kern_linear_pte_xor[2] = kern_linear_pte_xor[1];
 | |
| 	}
 | |
| 
 | |
| 	if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
 | |
| 		kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^
 | |
| 			0xfffff80000000000UL;
 | |
| 		kern_linear_pte_xor[3] |= (_PAGE_CP_4V | _PAGE_CV_4V |
 | |
| 					   _PAGE_P_4V | _PAGE_W_4V);
 | |
| 	} else {
 | |
| 		kern_linear_pte_xor[3] = kern_linear_pte_xor[2];
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* paging_init() sets up the page tables */
 | |
| 
 | |
| static unsigned long last_valid_pfn;
 | |
| pgd_t swapper_pg_dir[2048];
 | |
| 
 | |
| static void sun4u_pgprot_init(void);
 | |
| static void sun4v_pgprot_init(void);
 | |
| 
 | |
| void __init paging_init(void)
 | |
| {
 | |
| 	unsigned long end_pfn, shift, phys_base;
 | |
| 	unsigned long real_end, i;
 | |
| 	int node;
 | |
| 
 | |
| 	/* These build time checkes make sure that the dcache_dirty_cpu()
 | |
| 	 * page->flags usage will work.
 | |
| 	 *
 | |
| 	 * When a page gets marked as dcache-dirty, we store the
 | |
| 	 * cpu number starting at bit 32 in the page->flags.  Also,
 | |
| 	 * functions like clear_dcache_dirty_cpu use the cpu mask
 | |
| 	 * in 13-bit signed-immediate instruction fields.
 | |
| 	 */
 | |
| 
 | |
| 	/*
 | |
| 	 * Page flags must not reach into upper 32 bits that are used
 | |
| 	 * for the cpu number
 | |
| 	 */
 | |
| 	BUILD_BUG_ON(NR_PAGEFLAGS > 32);
 | |
| 
 | |
| 	/*
 | |
| 	 * The bit fields placed in the high range must not reach below
 | |
| 	 * the 32 bit boundary. Otherwise we cannot place the cpu field
 | |
| 	 * at the 32 bit boundary.
 | |
| 	 */
 | |
| 	BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
 | |
| 		ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
 | |
| 
 | |
| 	BUILD_BUG_ON(NR_CPUS > 4096);
 | |
| 
 | |
| 	kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
 | |
| 	kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
 | |
| 
 | |
| 	/* Invalidate both kernel TSBs.  */
 | |
| 	memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
 | |
| #ifndef CONFIG_DEBUG_PAGEALLOC
 | |
| 	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
 | |
| #endif
 | |
| 
 | |
| 	if (tlb_type == hypervisor)
 | |
| 		sun4v_pgprot_init();
 | |
| 	else
 | |
| 		sun4u_pgprot_init();
 | |
| 
 | |
| 	if (tlb_type == cheetah_plus ||
 | |
| 	    tlb_type == hypervisor) {
 | |
| 		tsb_phys_patch();
 | |
| 		ktsb_phys_patch();
 | |
| 	}
 | |
| 
 | |
| 	if (tlb_type == hypervisor)
 | |
| 		sun4v_patch_tlb_handlers();
 | |
| 
 | |
| 	/* Find available physical memory...
 | |
| 	 *
 | |
| 	 * Read it twice in order to work around a bug in openfirmware.
 | |
| 	 * The call to grab this table itself can cause openfirmware to
 | |
| 	 * allocate memory, which in turn can take away some space from
 | |
| 	 * the list of available memory.  Reading it twice makes sure
 | |
| 	 * we really do get the final value.
 | |
| 	 */
 | |
| 	read_obp_translations();
 | |
| 	read_obp_memory("reg", &pall[0], &pall_ents);
 | |
| 	read_obp_memory("available", &pavail[0], &pavail_ents);
 | |
| 	read_obp_memory("available", &pavail[0], &pavail_ents);
 | |
| 
 | |
| 	phys_base = 0xffffffffffffffffUL;
 | |
| 	for (i = 0; i < pavail_ents; i++) {
 | |
| 		phys_base = min(phys_base, pavail[i].phys_addr);
 | |
| 		memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
 | |
| 	}
 | |
| 
 | |
| 	memblock_reserve(kern_base, kern_size);
 | |
| 
 | |
| 	find_ramdisk(phys_base);
 | |
| 
 | |
| 	memblock_enforce_memory_limit(cmdline_memory_size);
 | |
| 
 | |
| 	memblock_allow_resize();
 | |
| 	memblock_dump_all();
 | |
| 
 | |
| 	set_bit(0, mmu_context_bmap);
 | |
| 
 | |
| 	shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
 | |
| 
 | |
| 	real_end = (unsigned long)_end;
 | |
| 	num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << 22);
 | |
| 	printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
 | |
| 	       num_kernel_image_mappings);
 | |
| 
 | |
| 	/* Set kernel pgd to upper alias so physical page computations
 | |
| 	 * work.
 | |
| 	 */
 | |
| 	init_mm.pgd += ((shift) / (sizeof(pgd_t)));
 | |
| 	
 | |
| 	memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
 | |
| 
 | |
| 	/* Now can init the kernel/bad page tables. */
 | |
| 	pud_set(pud_offset(&swapper_pg_dir[0], 0),
 | |
| 		swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
 | |
| 	
 | |
| 	inherit_prom_mappings();
 | |
| 	
 | |
| 	init_kpte_bitmap();
 | |
| 
 | |
| 	/* Ok, we can use our TLB miss and window trap handlers safely.  */
 | |
| 	setup_tba();
 | |
| 
 | |
| 	__flush_tlb_all();
 | |
| 
 | |
| 	prom_build_devicetree();
 | |
| 	of_populate_present_mask();
 | |
| #ifndef CONFIG_SMP
 | |
| 	of_fill_in_cpu_data();
 | |
| #endif
 | |
| 
 | |
| 	if (tlb_type == hypervisor) {
 | |
| 		sun4v_mdesc_init();
 | |
| 		mdesc_populate_present_mask(cpu_all_mask);
 | |
| #ifndef CONFIG_SMP
 | |
| 		mdesc_fill_in_cpu_data(cpu_all_mask);
 | |
| #endif
 | |
| 		mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);
 | |
| 
 | |
| 		sun4v_linear_pte_xor_finalize();
 | |
| 
 | |
| 		sun4v_ktsb_init();
 | |
| 		sun4v_ktsb_register();
 | |
| 	} else {
 | |
| 		unsigned long impl, ver;
 | |
| 
 | |
| 		cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
 | |
| 				 HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);
 | |
| 
 | |
| 		__asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
 | |
| 		impl = ((ver >> 32) & 0xffff);
 | |
| 		if (impl == PANTHER_IMPL)
 | |
| 			cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
 | |
| 					  HV_PGSZ_MASK_256MB);
 | |
| 
 | |
| 		sun4u_linear_pte_xor_finalize();
 | |
| 	}
 | |
| 
 | |
| 	/* Flush the TLBs and the 4M TSB so that the updated linear
 | |
| 	 * pte XOR settings are realized for all mappings.
 | |
| 	 */
 | |
| 	__flush_tlb_all();
 | |
| #ifndef CONFIG_DEBUG_PAGEALLOC
 | |
| 	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
 | |
| #endif
 | |
| 	__flush_tlb_all();
 | |
| 
 | |
| 	/* Setup bootmem... */
 | |
| 	last_valid_pfn = end_pfn = bootmem_init(phys_base);
 | |
| 
 | |
| 	/* Once the OF device tree and MDESC have been setup, we know
 | |
| 	 * the list of possible cpus.  Therefore we can allocate the
 | |
| 	 * IRQ stacks.
 | |
| 	 */
 | |
| 	for_each_possible_cpu(i) {
 | |
| 		node = cpu_to_node(i);
 | |
| 
 | |
| 		softirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
 | |
| 							THREAD_SIZE,
 | |
| 							THREAD_SIZE, 0);
 | |
| 		hardirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
 | |
| 							THREAD_SIZE,
 | |
| 							THREAD_SIZE, 0);
 | |
| 	}
 | |
| 
 | |
| 	kernel_physical_mapping_init();
 | |
| 
 | |
| 	{
 | |
| 		unsigned long max_zone_pfns[MAX_NR_ZONES];
 | |
| 
 | |
| 		memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
 | |
| 
 | |
| 		max_zone_pfns[ZONE_NORMAL] = end_pfn;
 | |
| 
 | |
| 		free_area_init_nodes(max_zone_pfns);
 | |
| 	}
 | |
| 
 | |
| 	printk("Booting Linux...\n");
 | |
| }
 | |
| 
 | |
| int page_in_phys_avail(unsigned long paddr)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	paddr &= PAGE_MASK;
 | |
| 
 | |
| 	for (i = 0; i < pavail_ents; i++) {
 | |
| 		unsigned long start, end;
 | |
| 
 | |
| 		start = pavail[i].phys_addr;
 | |
| 		end = start + pavail[i].reg_size;
 | |
| 
 | |
| 		if (paddr >= start && paddr < end)
 | |
| 			return 1;
 | |
| 	}
 | |
| 	if (paddr >= kern_base && paddr < (kern_base + kern_size))
 | |
| 		return 1;
 | |
| #ifdef CONFIG_BLK_DEV_INITRD
 | |
| 	if (paddr >= __pa(initrd_start) &&
 | |
| 	    paddr < __pa(PAGE_ALIGN(initrd_end)))
 | |
| 		return 1;
 | |
| #endif
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
 | |
| static int pavail_rescan_ents __initdata;
 | |
| 
 | |
| /* Certain OBP calls, such as fetching "available" properties, can
 | |
|  * claim physical memory.  So, along with initializing the valid
 | |
|  * address bitmap, what we do here is refetch the physical available
 | |
|  * memory list again, and make sure it provides at least as much
 | |
|  * memory as 'pavail' does.
 | |
|  */
 | |
| static void __init setup_valid_addr_bitmap_from_pavail(unsigned long *bitmap)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
 | |
| 
 | |
| 	for (i = 0; i < pavail_ents; i++) {
 | |
| 		unsigned long old_start, old_end;
 | |
| 
 | |
| 		old_start = pavail[i].phys_addr;
 | |
| 		old_end = old_start + pavail[i].reg_size;
 | |
| 		while (old_start < old_end) {
 | |
| 			int n;
 | |
| 
 | |
| 			for (n = 0; n < pavail_rescan_ents; n++) {
 | |
| 				unsigned long new_start, new_end;
 | |
| 
 | |
| 				new_start = pavail_rescan[n].phys_addr;
 | |
| 				new_end = new_start +
 | |
| 					pavail_rescan[n].reg_size;
 | |
| 
 | |
| 				if (new_start <= old_start &&
 | |
| 				    new_end >= (old_start + PAGE_SIZE)) {
 | |
| 					set_bit(old_start >> 22, bitmap);
 | |
| 					goto do_next_page;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			prom_printf("mem_init: Lost memory in pavail\n");
 | |
| 			prom_printf("mem_init: OLD start[%lx] size[%lx]\n",
 | |
| 				    pavail[i].phys_addr,
 | |
| 				    pavail[i].reg_size);
 | |
| 			prom_printf("mem_init: NEW start[%lx] size[%lx]\n",
 | |
| 				    pavail_rescan[i].phys_addr,
 | |
| 				    pavail_rescan[i].reg_size);
 | |
| 			prom_printf("mem_init: Cannot continue, aborting.\n");
 | |
| 			prom_halt();
 | |
| 
 | |
| 		do_next_page:
 | |
| 			old_start += PAGE_SIZE;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __init patch_tlb_miss_handler_bitmap(void)
 | |
| {
 | |
| 	extern unsigned int valid_addr_bitmap_insn[];
 | |
| 	extern unsigned int valid_addr_bitmap_patch[];
 | |
| 
 | |
| 	valid_addr_bitmap_insn[1] = valid_addr_bitmap_patch[1];
 | |
| 	mb();
 | |
| 	valid_addr_bitmap_insn[0] = valid_addr_bitmap_patch[0];
 | |
| 	flushi(&valid_addr_bitmap_insn[0]);
 | |
| }
 | |
| 
 | |
| static void __init register_page_bootmem_info(void)
 | |
| {
 | |
| #ifdef CONFIG_NEED_MULTIPLE_NODES
 | |
| 	int i;
 | |
| 
 | |
| 	for_each_online_node(i)
 | |
| 		if (NODE_DATA(i)->node_spanned_pages)
 | |
| 			register_page_bootmem_info_node(NODE_DATA(i));
 | |
| #endif
 | |
| }
 | |
| void __init mem_init(void)
 | |
| {
 | |
| 	unsigned long codepages, datapages, initpages;
 | |
| 	unsigned long addr, last;
 | |
| 
 | |
| 	addr = PAGE_OFFSET + kern_base;
 | |
| 	last = PAGE_ALIGN(kern_size) + addr;
 | |
| 	while (addr < last) {
 | |
| 		set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
 | |
| 		addr += PAGE_SIZE;
 | |
| 	}
 | |
| 
 | |
| 	setup_valid_addr_bitmap_from_pavail(sparc64_valid_addr_bitmap);
 | |
| 	patch_tlb_miss_handler_bitmap();
 | |
| 
 | |
| 	high_memory = __va(last_valid_pfn << PAGE_SHIFT);
 | |
| 
 | |
| 	register_page_bootmem_info();
 | |
| 	totalram_pages = free_all_bootmem();
 | |
| 
 | |
| 	/* We subtract one to account for the mem_map_zero page
 | |
| 	 * allocated below.
 | |
| 	 */
 | |
| 	totalram_pages -= 1;
 | |
| 	num_physpages = totalram_pages;
 | |
| 
 | |
| 	/*
 | |
| 	 * Set up the zero page, mark it reserved, so that page count
 | |
| 	 * is not manipulated when freeing the page from user ptes.
 | |
| 	 */
 | |
| 	mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
 | |
| 	if (mem_map_zero == NULL) {
 | |
| 		prom_printf("paging_init: Cannot alloc zero page.\n");
 | |
| 		prom_halt();
 | |
| 	}
 | |
| 	SetPageReserved(mem_map_zero);
 | |
| 
 | |
| 	codepages = (((unsigned long) _etext) - ((unsigned long) _start));
 | |
| 	codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
 | |
| 	datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
 | |
| 	datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
 | |
| 	initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
 | |
| 	initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
 | |
| 
 | |
| 	printk("Memory: %luk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
 | |
| 	       nr_free_pages() << (PAGE_SHIFT-10),
 | |
| 	       codepages << (PAGE_SHIFT-10),
 | |
| 	       datapages << (PAGE_SHIFT-10), 
 | |
| 	       initpages << (PAGE_SHIFT-10), 
 | |
| 	       PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
 | |
| 
 | |
| 	if (tlb_type == cheetah || tlb_type == cheetah_plus)
 | |
| 		cheetah_ecache_flush_init();
 | |
| }
 | |
| 
 | |
| void free_initmem(void)
 | |
| {
 | |
| 	unsigned long addr, initend;
 | |
| 	int do_free = 1;
 | |
| 
 | |
| 	/* If the physical memory maps were trimmed by kernel command
 | |
| 	 * line options, don't even try freeing this initmem stuff up.
 | |
| 	 * The kernel image could have been in the trimmed out region
 | |
| 	 * and if so the freeing below will free invalid page structs.
 | |
| 	 */
 | |
| 	if (cmdline_memory_size)
 | |
| 		do_free = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
 | |
| 	 */
 | |
| 	addr = PAGE_ALIGN((unsigned long)(__init_begin));
 | |
| 	initend = (unsigned long)(__init_end) & PAGE_MASK;
 | |
| 	for (; addr < initend; addr += PAGE_SIZE) {
 | |
| 		unsigned long page;
 | |
| 		struct page *p;
 | |
| 
 | |
| 		page = (addr +
 | |
| 			((unsigned long) __va(kern_base)) -
 | |
| 			((unsigned long) KERNBASE));
 | |
| 		memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
 | |
| 
 | |
| 		if (do_free) {
 | |
| 			p = virt_to_page(page);
 | |
| 
 | |
| 			ClearPageReserved(p);
 | |
| 			init_page_count(p);
 | |
| 			__free_page(p);
 | |
| 			num_physpages++;
 | |
| 			totalram_pages++;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_BLK_DEV_INITRD
 | |
| void free_initrd_mem(unsigned long start, unsigned long end)
 | |
| {
 | |
| 	if (start < end)
 | |
| 		printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
 | |
| 	for (; start < end; start += PAGE_SIZE) {
 | |
| 		struct page *p = virt_to_page(start);
 | |
| 
 | |
| 		ClearPageReserved(p);
 | |
| 		init_page_count(p);
 | |
| 		__free_page(p);
 | |
| 		num_physpages++;
 | |
| 		totalram_pages++;
 | |
| 	}
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #define _PAGE_CACHE_4U	(_PAGE_CP_4U | _PAGE_CV_4U)
 | |
| #define _PAGE_CACHE_4V	(_PAGE_CP_4V | _PAGE_CV_4V)
 | |
| #define __DIRTY_BITS_4U	 (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
 | |
| #define __DIRTY_BITS_4V	 (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
 | |
| #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
 | |
| #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
 | |
| 
 | |
| pgprot_t PAGE_KERNEL __read_mostly;
 | |
| EXPORT_SYMBOL(PAGE_KERNEL);
 | |
| 
 | |
| pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
 | |
| pgprot_t PAGE_COPY __read_mostly;
 | |
| 
 | |
| pgprot_t PAGE_SHARED __read_mostly;
 | |
| EXPORT_SYMBOL(PAGE_SHARED);
 | |
| 
 | |
| unsigned long pg_iobits __read_mostly;
 | |
| 
 | |
| unsigned long _PAGE_IE __read_mostly;
 | |
| EXPORT_SYMBOL(_PAGE_IE);
 | |
| 
 | |
| unsigned long _PAGE_E __read_mostly;
 | |
| EXPORT_SYMBOL(_PAGE_E);
 | |
| 
 | |
| unsigned long _PAGE_CACHE __read_mostly;
 | |
| EXPORT_SYMBOL(_PAGE_CACHE);
 | |
| 
 | |
| #ifdef CONFIG_SPARSEMEM_VMEMMAP
 | |
| unsigned long vmemmap_table[VMEMMAP_SIZE];
 | |
| 
 | |
| static long __meminitdata addr_start, addr_end;
 | |
| static int __meminitdata node_start;
 | |
| 
 | |
| int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node)
 | |
| {
 | |
| 	unsigned long vstart = (unsigned long) start;
 | |
| 	unsigned long vend = (unsigned long) (start + nr);
 | |
| 	unsigned long phys_start = (vstart - VMEMMAP_BASE);
 | |
| 	unsigned long phys_end = (vend - VMEMMAP_BASE);
 | |
| 	unsigned long addr = phys_start & VMEMMAP_CHUNK_MASK;
 | |
| 	unsigned long end = VMEMMAP_ALIGN(phys_end);
 | |
| 	unsigned long pte_base;
 | |
| 
 | |
| 	pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
 | |
| 		    _PAGE_CP_4U | _PAGE_CV_4U |
 | |
| 		    _PAGE_P_4U | _PAGE_W_4U);
 | |
| 	if (tlb_type == hypervisor)
 | |
| 		pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
 | |
| 			    _PAGE_CP_4V | _PAGE_CV_4V |
 | |
| 			    _PAGE_P_4V | _PAGE_W_4V);
 | |
| 
 | |
| 	for (; addr < end; addr += VMEMMAP_CHUNK) {
 | |
| 		unsigned long *vmem_pp =
 | |
| 			vmemmap_table + (addr >> VMEMMAP_CHUNK_SHIFT);
 | |
| 		void *block;
 | |
| 
 | |
| 		if (!(*vmem_pp & _PAGE_VALID)) {
 | |
| 			block = vmemmap_alloc_block(1UL << 22, node);
 | |
| 			if (!block)
 | |
| 				return -ENOMEM;
 | |
| 
 | |
| 			*vmem_pp = pte_base | __pa(block);
 | |
| 
 | |
| 			/* check to see if we have contiguous blocks */
 | |
| 			if (addr_end != addr || node_start != node) {
 | |
| 				if (addr_start)
 | |
| 					printk(KERN_DEBUG " [%lx-%lx] on node %d\n",
 | |
| 					       addr_start, addr_end-1, node_start);
 | |
| 				addr_start = addr;
 | |
| 				node_start = node;
 | |
| 			}
 | |
| 			addr_end = addr + VMEMMAP_CHUNK;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void __meminit vmemmap_populate_print_last(void)
 | |
| {
 | |
| 	if (addr_start) {
 | |
| 		printk(KERN_DEBUG " [%lx-%lx] on node %d\n",
 | |
| 		       addr_start, addr_end-1, node_start);
 | |
| 		addr_start = 0;
 | |
| 		addr_end = 0;
 | |
| 		node_start = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void vmemmap_free(struct page *memmap, unsigned long nr_pages)
 | |
| {
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_SPARSEMEM_VMEMMAP */
 | |
| 
 | |
| static void prot_init_common(unsigned long page_none,
 | |
| 			     unsigned long page_shared,
 | |
| 			     unsigned long page_copy,
 | |
| 			     unsigned long page_readonly,
 | |
| 			     unsigned long page_exec_bit)
 | |
| {
 | |
| 	PAGE_COPY = __pgprot(page_copy);
 | |
| 	PAGE_SHARED = __pgprot(page_shared);
 | |
| 
 | |
| 	protection_map[0x0] = __pgprot(page_none);
 | |
| 	protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
 | |
| 	protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
 | |
| 	protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
 | |
| 	protection_map[0x4] = __pgprot(page_readonly);
 | |
| 	protection_map[0x5] = __pgprot(page_readonly);
 | |
| 	protection_map[0x6] = __pgprot(page_copy);
 | |
| 	protection_map[0x7] = __pgprot(page_copy);
 | |
| 	protection_map[0x8] = __pgprot(page_none);
 | |
| 	protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
 | |
| 	protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
 | |
| 	protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
 | |
| 	protection_map[0xc] = __pgprot(page_readonly);
 | |
| 	protection_map[0xd] = __pgprot(page_readonly);
 | |
| 	protection_map[0xe] = __pgprot(page_shared);
 | |
| 	protection_map[0xf] = __pgprot(page_shared);
 | |
| }
 | |
| 
 | |
| static void __init sun4u_pgprot_init(void)
 | |
| {
 | |
| 	unsigned long page_none, page_shared, page_copy, page_readonly;
 | |
| 	unsigned long page_exec_bit;
 | |
| 	int i;
 | |
| 
 | |
| 	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
 | |
| 				_PAGE_CACHE_4U | _PAGE_P_4U |
 | |
| 				__ACCESS_BITS_4U | __DIRTY_BITS_4U |
 | |
| 				_PAGE_EXEC_4U);
 | |
| 	PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
 | |
| 				       _PAGE_CACHE_4U | _PAGE_P_4U |
 | |
| 				       __ACCESS_BITS_4U | __DIRTY_BITS_4U |
 | |
| 				       _PAGE_EXEC_4U | _PAGE_L_4U);
 | |
| 
 | |
| 	_PAGE_IE = _PAGE_IE_4U;
 | |
| 	_PAGE_E = _PAGE_E_4U;
 | |
| 	_PAGE_CACHE = _PAGE_CACHE_4U;
 | |
| 
 | |
| 	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
 | |
| 		     __ACCESS_BITS_4U | _PAGE_E_4U);
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_PAGEALLOC
 | |
| 	kern_linear_pte_xor[0] = _PAGE_VALID ^ 0xfffff80000000000UL;
 | |
| #else
 | |
| 	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
 | |
| 		0xfffff80000000000UL;
 | |
| #endif
 | |
| 	kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
 | |
| 				   _PAGE_P_4U | _PAGE_W_4U);
 | |
| 
 | |
| 	for (i = 1; i < 4; i++)
 | |
| 		kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
 | |
| 
 | |
| 	_PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
 | |
| 			      _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
 | |
| 			      _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
 | |
| 
 | |
| 
 | |
| 	page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
 | |
| 	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
 | |
| 		       __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
 | |
| 	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
 | |
| 		       __ACCESS_BITS_4U | _PAGE_EXEC_4U);
 | |
| 	page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
 | |
| 			   __ACCESS_BITS_4U | _PAGE_EXEC_4U);
 | |
| 
 | |
| 	page_exec_bit = _PAGE_EXEC_4U;
 | |
| 
 | |
| 	prot_init_common(page_none, page_shared, page_copy, page_readonly,
 | |
| 			 page_exec_bit);
 | |
| }
 | |
| 
 | |
| static void __init sun4v_pgprot_init(void)
 | |
| {
 | |
| 	unsigned long page_none, page_shared, page_copy, page_readonly;
 | |
| 	unsigned long page_exec_bit;
 | |
| 	int i;
 | |
| 
 | |
| 	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
 | |
| 				_PAGE_CACHE_4V | _PAGE_P_4V |
 | |
| 				__ACCESS_BITS_4V | __DIRTY_BITS_4V |
 | |
| 				_PAGE_EXEC_4V);
 | |
| 	PAGE_KERNEL_LOCKED = PAGE_KERNEL;
 | |
| 
 | |
| 	_PAGE_IE = _PAGE_IE_4V;
 | |
| 	_PAGE_E = _PAGE_E_4V;
 | |
| 	_PAGE_CACHE = _PAGE_CACHE_4V;
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_PAGEALLOC
 | |
| 	kern_linear_pte_xor[0] = _PAGE_VALID ^ 0xfffff80000000000UL;
 | |
| #else
 | |
| 	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
 | |
| 		0xfffff80000000000UL;
 | |
| #endif
 | |
| 	kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
 | |
| 				   _PAGE_P_4V | _PAGE_W_4V);
 | |
| 
 | |
| 	for (i = 1; i < 4; i++)
 | |
| 		kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
 | |
| 
 | |
| 	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
 | |
| 		     __ACCESS_BITS_4V | _PAGE_E_4V);
 | |
| 
 | |
| 	_PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
 | |
| 			     _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
 | |
| 			     _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
 | |
| 			     _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
 | |
| 
 | |
| 	page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
 | |
| 	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
 | |
| 		       __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
 | |
| 	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
 | |
| 		       __ACCESS_BITS_4V | _PAGE_EXEC_4V);
 | |
| 	page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
 | |
| 			 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
 | |
| 
 | |
| 	page_exec_bit = _PAGE_EXEC_4V;
 | |
| 
 | |
| 	prot_init_common(page_none, page_shared, page_copy, page_readonly,
 | |
| 			 page_exec_bit);
 | |
| }
 | |
| 
 | |
| unsigned long pte_sz_bits(unsigned long sz)
 | |
| {
 | |
| 	if (tlb_type == hypervisor) {
 | |
| 		switch (sz) {
 | |
| 		case 8 * 1024:
 | |
| 		default:
 | |
| 			return _PAGE_SZ8K_4V;
 | |
| 		case 64 * 1024:
 | |
| 			return _PAGE_SZ64K_4V;
 | |
| 		case 512 * 1024:
 | |
| 			return _PAGE_SZ512K_4V;
 | |
| 		case 4 * 1024 * 1024:
 | |
| 			return _PAGE_SZ4MB_4V;
 | |
| 		}
 | |
| 	} else {
 | |
| 		switch (sz) {
 | |
| 		case 8 * 1024:
 | |
| 		default:
 | |
| 			return _PAGE_SZ8K_4U;
 | |
| 		case 64 * 1024:
 | |
| 			return _PAGE_SZ64K_4U;
 | |
| 		case 512 * 1024:
 | |
| 			return _PAGE_SZ512K_4U;
 | |
| 		case 4 * 1024 * 1024:
 | |
| 			return _PAGE_SZ4MB_4U;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
 | |
| {
 | |
| 	pte_t pte;
 | |
| 
 | |
| 	pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
 | |
| 	pte_val(pte) |= (((unsigned long)space) << 32);
 | |
| 	pte_val(pte) |= pte_sz_bits(page_size);
 | |
| 
 | |
| 	return pte;
 | |
| }
 | |
| 
 | |
| static unsigned long kern_large_tte(unsigned long paddr)
 | |
| {
 | |
| 	unsigned long val;
 | |
| 
 | |
| 	val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
 | |
| 	       _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
 | |
| 	       _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
 | |
| 	if (tlb_type == hypervisor)
 | |
| 		val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
 | |
| 		       _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
 | |
| 		       _PAGE_EXEC_4V | _PAGE_W_4V);
 | |
| 
 | |
| 	return val | paddr;
 | |
| }
 | |
| 
 | |
| /* If not locked, zap it. */
 | |
| void __flush_tlb_all(void)
 | |
| {
 | |
| 	unsigned long pstate;
 | |
| 	int i;
 | |
| 
 | |
| 	__asm__ __volatile__("flushw\n\t"
 | |
| 			     "rdpr	%%pstate, %0\n\t"
 | |
| 			     "wrpr	%0, %1, %%pstate"
 | |
| 			     : "=r" (pstate)
 | |
| 			     : "i" (PSTATE_IE));
 | |
| 	if (tlb_type == hypervisor) {
 | |
| 		sun4v_mmu_demap_all();
 | |
| 	} else if (tlb_type == spitfire) {
 | |
| 		for (i = 0; i < 64; i++) {
 | |
| 			/* Spitfire Errata #32 workaround */
 | |
| 			/* NOTE: Always runs on spitfire, so no
 | |
| 			 *       cheetah+ page size encodings.
 | |
| 			 */
 | |
| 			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
 | |
| 					     "flush	%%g6"
 | |
| 					     : /* No outputs */
 | |
| 					     : "r" (0),
 | |
| 					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
 | |
| 
 | |
| 			if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
 | |
| 				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
 | |
| 						     "membar #Sync"
 | |
| 						     : /* no outputs */
 | |
| 						     : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
 | |
| 				spitfire_put_dtlb_data(i, 0x0UL);
 | |
| 			}
 | |
| 
 | |
| 			/* Spitfire Errata #32 workaround */
 | |
| 			/* NOTE: Always runs on spitfire, so no
 | |
| 			 *       cheetah+ page size encodings.
 | |
| 			 */
 | |
| 			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
 | |
| 					     "flush	%%g6"
 | |
| 					     : /* No outputs */
 | |
| 					     : "r" (0),
 | |
| 					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
 | |
| 
 | |
| 			if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
 | |
| 				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
 | |
| 						     "membar #Sync"
 | |
| 						     : /* no outputs */
 | |
| 						     : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
 | |
| 				spitfire_put_itlb_data(i, 0x0UL);
 | |
| 			}
 | |
| 		}
 | |
| 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
 | |
| 		cheetah_flush_dtlb_all();
 | |
| 		cheetah_flush_itlb_all();
 | |
| 	}
 | |
| 	__asm__ __volatile__("wrpr	%0, 0, %%pstate"
 | |
| 			     : : "r" (pstate));
 | |
| }
 | |
| 
 | |
| static pte_t *get_from_cache(struct mm_struct *mm)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	pte_t *ret;
 | |
| 
 | |
| 	spin_lock(&mm->page_table_lock);
 | |
| 	page = mm->context.pgtable_page;
 | |
| 	ret = NULL;
 | |
| 	if (page) {
 | |
| 		void *p = page_address(page);
 | |
| 
 | |
| 		mm->context.pgtable_page = NULL;
 | |
| 
 | |
| 		ret = (pte_t *) (p + (PAGE_SIZE / 2));
 | |
| 	}
 | |
| 	spin_unlock(&mm->page_table_lock);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static struct page *__alloc_for_cache(struct mm_struct *mm)
 | |
| {
 | |
| 	struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK |
 | |
| 				       __GFP_REPEAT | __GFP_ZERO);
 | |
| 
 | |
| 	if (page) {
 | |
| 		spin_lock(&mm->page_table_lock);
 | |
| 		if (!mm->context.pgtable_page) {
 | |
| 			atomic_set(&page->_count, 2);
 | |
| 			mm->context.pgtable_page = page;
 | |
| 		}
 | |
| 		spin_unlock(&mm->page_table_lock);
 | |
| 	}
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
 | |
| 			    unsigned long address)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	pte_t *pte;
 | |
| 
 | |
| 	pte = get_from_cache(mm);
 | |
| 	if (pte)
 | |
| 		return pte;
 | |
| 
 | |
| 	page = __alloc_for_cache(mm);
 | |
| 	if (page)
 | |
| 		pte = (pte_t *) page_address(page);
 | |
| 
 | |
| 	return pte;
 | |
| }
 | |
| 
 | |
| pgtable_t pte_alloc_one(struct mm_struct *mm,
 | |
| 			unsigned long address)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	pte_t *pte;
 | |
| 
 | |
| 	pte = get_from_cache(mm);
 | |
| 	if (pte)
 | |
| 		return pte;
 | |
| 
 | |
| 	page = __alloc_for_cache(mm);
 | |
| 	if (page) {
 | |
| 		pgtable_page_ctor(page);
 | |
| 		pte = (pte_t *) page_address(page);
 | |
| 	}
 | |
| 
 | |
| 	return pte;
 | |
| }
 | |
| 
 | |
| void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
 | |
| {
 | |
| 	struct page *page = virt_to_page(pte);
 | |
| 	if (put_page_testzero(page))
 | |
| 		free_hot_cold_page(page, 0);
 | |
| }
 | |
| 
 | |
| static void __pte_free(pgtable_t pte)
 | |
| {
 | |
| 	struct page *page = virt_to_page(pte);
 | |
| 	if (put_page_testzero(page)) {
 | |
| 		pgtable_page_dtor(page);
 | |
| 		free_hot_cold_page(page, 0);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void pte_free(struct mm_struct *mm, pgtable_t pte)
 | |
| {
 | |
| 	__pte_free(pte);
 | |
| }
 | |
| 
 | |
| void pgtable_free(void *table, bool is_page)
 | |
| {
 | |
| 	if (is_page)
 | |
| 		__pte_free(table);
 | |
| 	else
 | |
| 		kmem_cache_free(pgtable_cache, table);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | |
| static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot, bool for_modify)
 | |
| {
 | |
| 	if (pgprot_val(pgprot) & _PAGE_VALID)
 | |
| 		pmd_val(pmd) |= PMD_HUGE_PRESENT;
 | |
| 	if (tlb_type == hypervisor) {
 | |
| 		if (pgprot_val(pgprot) & _PAGE_WRITE_4V)
 | |
| 			pmd_val(pmd) |= PMD_HUGE_WRITE;
 | |
| 		if (pgprot_val(pgprot) & _PAGE_EXEC_4V)
 | |
| 			pmd_val(pmd) |= PMD_HUGE_EXEC;
 | |
| 
 | |
| 		if (!for_modify) {
 | |
| 			if (pgprot_val(pgprot) & _PAGE_ACCESSED_4V)
 | |
| 				pmd_val(pmd) |= PMD_HUGE_ACCESSED;
 | |
| 			if (pgprot_val(pgprot) & _PAGE_MODIFIED_4V)
 | |
| 				pmd_val(pmd) |= PMD_HUGE_DIRTY;
 | |
| 		}
 | |
| 	} else {
 | |
| 		if (pgprot_val(pgprot) & _PAGE_WRITE_4U)
 | |
| 			pmd_val(pmd) |= PMD_HUGE_WRITE;
 | |
| 		if (pgprot_val(pgprot) & _PAGE_EXEC_4U)
 | |
| 			pmd_val(pmd) |= PMD_HUGE_EXEC;
 | |
| 
 | |
| 		if (!for_modify) {
 | |
| 			if (pgprot_val(pgprot) & _PAGE_ACCESSED_4U)
 | |
| 				pmd_val(pmd) |= PMD_HUGE_ACCESSED;
 | |
| 			if (pgprot_val(pgprot) & _PAGE_MODIFIED_4U)
 | |
| 				pmd_val(pmd) |= PMD_HUGE_DIRTY;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return pmd;
 | |
| }
 | |
| 
 | |
| pmd_t pfn_pmd(unsigned long page_nr, pgprot_t pgprot)
 | |
| {
 | |
| 	pmd_t pmd;
 | |
| 
 | |
| 	pmd_val(pmd) = (page_nr << ((PAGE_SHIFT - PMD_PADDR_SHIFT)));
 | |
| 	pmd_val(pmd) |= PMD_ISHUGE;
 | |
| 	pmd = pmd_set_protbits(pmd, pgprot, false);
 | |
| 	return pmd;
 | |
| }
 | |
| 
 | |
| pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
 | |
| {
 | |
| 	pmd_val(pmd) &= ~(PMD_HUGE_PRESENT |
 | |
| 			  PMD_HUGE_WRITE |
 | |
| 			  PMD_HUGE_EXEC);
 | |
| 	pmd = pmd_set_protbits(pmd, newprot, true);
 | |
| 	return pmd;
 | |
| }
 | |
| 
 | |
| pgprot_t pmd_pgprot(pmd_t entry)
 | |
| {
 | |
| 	unsigned long pte = 0;
 | |
| 
 | |
| 	if (pmd_val(entry) & PMD_HUGE_PRESENT)
 | |
| 		pte |= _PAGE_VALID;
 | |
| 
 | |
| 	if (tlb_type == hypervisor) {
 | |
| 		if (pmd_val(entry) & PMD_HUGE_PRESENT)
 | |
| 			pte |= _PAGE_PRESENT_4V;
 | |
| 		if (pmd_val(entry) & PMD_HUGE_EXEC)
 | |
| 			pte |= _PAGE_EXEC_4V;
 | |
| 		if (pmd_val(entry) & PMD_HUGE_WRITE)
 | |
| 			pte |= _PAGE_W_4V;
 | |
| 		if (pmd_val(entry) & PMD_HUGE_ACCESSED)
 | |
| 			pte |= _PAGE_ACCESSED_4V;
 | |
| 		if (pmd_val(entry) & PMD_HUGE_DIRTY)
 | |
| 			pte |= _PAGE_MODIFIED_4V;
 | |
| 		pte |= _PAGE_CP_4V|_PAGE_CV_4V;
 | |
| 	} else {
 | |
| 		if (pmd_val(entry) & PMD_HUGE_PRESENT)
 | |
| 			pte |= _PAGE_PRESENT_4U;
 | |
| 		if (pmd_val(entry) & PMD_HUGE_EXEC)
 | |
| 			pte |= _PAGE_EXEC_4U;
 | |
| 		if (pmd_val(entry) & PMD_HUGE_WRITE)
 | |
| 			pte |= _PAGE_W_4U;
 | |
| 		if (pmd_val(entry) & PMD_HUGE_ACCESSED)
 | |
| 			pte |= _PAGE_ACCESSED_4U;
 | |
| 		if (pmd_val(entry) & PMD_HUGE_DIRTY)
 | |
| 			pte |= _PAGE_MODIFIED_4U;
 | |
| 		pte |= _PAGE_CP_4U|_PAGE_CV_4U;
 | |
| 	}
 | |
| 
 | |
| 	return __pgprot(pte);
 | |
| }
 | |
| 
 | |
| void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
 | |
| 			  pmd_t *pmd)
 | |
| {
 | |
| 	unsigned long pte, flags;
 | |
| 	struct mm_struct *mm;
 | |
| 	pmd_t entry = *pmd;
 | |
| 	pgprot_t prot;
 | |
| 
 | |
| 	if (!pmd_large(entry) || !pmd_young(entry))
 | |
| 		return;
 | |
| 
 | |
| 	pte = (pmd_val(entry) & ~PMD_HUGE_PROTBITS);
 | |
| 	pte <<= PMD_PADDR_SHIFT;
 | |
| 	pte |= _PAGE_VALID;
 | |
| 
 | |
| 	prot = pmd_pgprot(entry);
 | |
| 
 | |
| 	if (tlb_type == hypervisor)
 | |
| 		pgprot_val(prot) |= _PAGE_SZHUGE_4V;
 | |
| 	else
 | |
| 		pgprot_val(prot) |= _PAGE_SZHUGE_4U;
 | |
| 
 | |
| 	pte |= pgprot_val(prot);
 | |
| 
 | |
| 	mm = vma->vm_mm;
 | |
| 
 | |
| 	spin_lock_irqsave(&mm->context.lock, flags);
 | |
| 
 | |
| 	if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
 | |
| 		__update_mmu_tsb_insert(mm, MM_TSB_HUGE, HPAGE_SHIFT,
 | |
| 					addr, pte);
 | |
| 
 | |
| 	spin_unlock_irqrestore(&mm->context.lock, flags);
 | |
| }
 | |
| #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 | |
| 
 | |
| #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
 | |
| static void context_reload(void *__data)
 | |
| {
 | |
| 	struct mm_struct *mm = __data;
 | |
| 
 | |
| 	if (mm == current->mm)
 | |
| 		load_secondary_context(mm);
 | |
| }
 | |
| 
 | |
| void hugetlb_setup(struct pt_regs *regs)
 | |
| {
 | |
| 	struct mm_struct *mm = current->mm;
 | |
| 	struct tsb_config *tp;
 | |
| 
 | |
| 	if (in_atomic() || !mm) {
 | |
| 		const struct exception_table_entry *entry;
 | |
| 
 | |
| 		entry = search_exception_tables(regs->tpc);
 | |
| 		if (entry) {
 | |
| 			regs->tpc = entry->fixup;
 | |
| 			regs->tnpc = regs->tpc + 4;
 | |
| 			return;
 | |
| 		}
 | |
| 		pr_alert("Unexpected HugeTLB setup in atomic context.\n");
 | |
| 		die_if_kernel("HugeTSB in atomic", regs);
 | |
| 	}
 | |
| 
 | |
| 	tp = &mm->context.tsb_block[MM_TSB_HUGE];
 | |
| 	if (likely(tp->tsb == NULL))
 | |
| 		tsb_grow(mm, MM_TSB_HUGE, 0);
 | |
| 
 | |
| 	tsb_context_switch(mm);
 | |
| 	smp_tsb_sync(mm);
 | |
| 
 | |
| 	/* On UltraSPARC-III+ and later, configure the second half of
 | |
| 	 * the Data-TLB for huge pages.
 | |
| 	 */
 | |
| 	if (tlb_type == cheetah_plus) {
 | |
| 		unsigned long ctx;
 | |
| 
 | |
| 		spin_lock(&ctx_alloc_lock);
 | |
| 		ctx = mm->context.sparc64_ctx_val;
 | |
| 		ctx &= ~CTX_PGSZ_MASK;
 | |
| 		ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
 | |
| 		ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
 | |
| 
 | |
| 		if (ctx != mm->context.sparc64_ctx_val) {
 | |
| 			/* When changing the page size fields, we
 | |
| 			 * must perform a context flush so that no
 | |
| 			 * stale entries match.  This flush must
 | |
| 			 * occur with the original context register
 | |
| 			 * settings.
 | |
| 			 */
 | |
| 			do_flush_tlb_mm(mm);
 | |
| 
 | |
| 			/* Reload the context register of all processors
 | |
| 			 * also executing in this address space.
 | |
| 			 */
 | |
| 			mm->context.sparc64_ctx_val = ctx;
 | |
| 			on_each_cpu(context_reload, mm, 0);
 | |
| 		}
 | |
| 		spin_unlock(&ctx_alloc_lock);
 | |
| 	}
 | |
| }
 | |
| #endif
 |