 f594972083
			
		
	
	
	f594972083
	
	
	
		
			
			This patch moves the definition of the of_drconf_cell struct to asm/prom.h to make it available for all powerpc/pseries code. Signed-off-by: Nathan Fontenot <nfont@linux.vnet.ibm.com> Acked-by: Rob Herring <rob.herring@calxeda.com> Acked-by: Grant Likely <grant.likely@secretlab.ca> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
		
			
				
	
	
		
			1521 lines
		
	
	
	
		
			36 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1521 lines
		
	
	
	
		
			36 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * pSeries NUMA support
 | |
|  *
 | |
|  * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License
 | |
|  * as published by the Free Software Foundation; either version
 | |
|  * 2 of the License, or (at your option) any later version.
 | |
|  */
 | |
| #include <linux/threads.h>
 | |
| #include <linux/bootmem.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/mmzone.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/nodemask.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/notifier.h>
 | |
| #include <linux/memblock.h>
 | |
| #include <linux/of.h>
 | |
| #include <linux/pfn.h>
 | |
| #include <linux/cpuset.h>
 | |
| #include <linux/node.h>
 | |
| #include <asm/sparsemem.h>
 | |
| #include <asm/prom.h>
 | |
| #include <asm/smp.h>
 | |
| #include <asm/firmware.h>
 | |
| #include <asm/paca.h>
 | |
| #include <asm/hvcall.h>
 | |
| #include <asm/setup.h>
 | |
| 
 | |
| static int numa_enabled = 1;
 | |
| 
 | |
| static char *cmdline __initdata;
 | |
| 
 | |
| static int numa_debug;
 | |
| #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
 | |
| 
 | |
| int numa_cpu_lookup_table[NR_CPUS];
 | |
| cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
 | |
| struct pglist_data *node_data[MAX_NUMNODES];
 | |
| 
 | |
| EXPORT_SYMBOL(numa_cpu_lookup_table);
 | |
| EXPORT_SYMBOL(node_to_cpumask_map);
 | |
| EXPORT_SYMBOL(node_data);
 | |
| 
 | |
| static int min_common_depth;
 | |
| static int n_mem_addr_cells, n_mem_size_cells;
 | |
| static int form1_affinity;
 | |
| 
 | |
| #define MAX_DISTANCE_REF_POINTS 4
 | |
| static int distance_ref_points_depth;
 | |
| static const unsigned int *distance_ref_points;
 | |
| static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
 | |
| 
 | |
| /*
 | |
|  * Allocate node_to_cpumask_map based on number of available nodes
 | |
|  * Requires node_possible_map to be valid.
 | |
|  *
 | |
|  * Note: cpumask_of_node() is not valid until after this is done.
 | |
|  */
 | |
| static void __init setup_node_to_cpumask_map(void)
 | |
| {
 | |
| 	unsigned int node, num = 0;
 | |
| 
 | |
| 	/* setup nr_node_ids if not done yet */
 | |
| 	if (nr_node_ids == MAX_NUMNODES) {
 | |
| 		for_each_node_mask(node, node_possible_map)
 | |
| 			num = node;
 | |
| 		nr_node_ids = num + 1;
 | |
| 	}
 | |
| 
 | |
| 	/* allocate the map */
 | |
| 	for (node = 0; node < nr_node_ids; node++)
 | |
| 		alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
 | |
| 
 | |
| 	/* cpumask_of_node() will now work */
 | |
| 	dbg("Node to cpumask map for %d nodes\n", nr_node_ids);
 | |
| }
 | |
| 
 | |
| static int __cpuinit fake_numa_create_new_node(unsigned long end_pfn,
 | |
| 						unsigned int *nid)
 | |
| {
 | |
| 	unsigned long long mem;
 | |
| 	char *p = cmdline;
 | |
| 	static unsigned int fake_nid;
 | |
| 	static unsigned long long curr_boundary;
 | |
| 
 | |
| 	/*
 | |
| 	 * Modify node id, iff we started creating NUMA nodes
 | |
| 	 * We want to continue from where we left of the last time
 | |
| 	 */
 | |
| 	if (fake_nid)
 | |
| 		*nid = fake_nid;
 | |
| 	/*
 | |
| 	 * In case there are no more arguments to parse, the
 | |
| 	 * node_id should be the same as the last fake node id
 | |
| 	 * (we've handled this above).
 | |
| 	 */
 | |
| 	if (!p)
 | |
| 		return 0;
 | |
| 
 | |
| 	mem = memparse(p, &p);
 | |
| 	if (!mem)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (mem < curr_boundary)
 | |
| 		return 0;
 | |
| 
 | |
| 	curr_boundary = mem;
 | |
| 
 | |
| 	if ((end_pfn << PAGE_SHIFT) > mem) {
 | |
| 		/*
 | |
| 		 * Skip commas and spaces
 | |
| 		 */
 | |
| 		while (*p == ',' || *p == ' ' || *p == '\t')
 | |
| 			p++;
 | |
| 
 | |
| 		cmdline = p;
 | |
| 		fake_nid++;
 | |
| 		*nid = fake_nid;
 | |
| 		dbg("created new fake_node with id %d\n", fake_nid);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * get_node_active_region - Return active region containing pfn
 | |
|  * Active range returned is empty if none found.
 | |
|  * @pfn: The page to return the region for
 | |
|  * @node_ar: Returned set to the active region containing @pfn
 | |
|  */
 | |
| static void __init get_node_active_region(unsigned long pfn,
 | |
| 					  struct node_active_region *node_ar)
 | |
| {
 | |
| 	unsigned long start_pfn, end_pfn;
 | |
| 	int i, nid;
 | |
| 
 | |
| 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
 | |
| 		if (pfn >= start_pfn && pfn < end_pfn) {
 | |
| 			node_ar->nid = nid;
 | |
| 			node_ar->start_pfn = start_pfn;
 | |
| 			node_ar->end_pfn = end_pfn;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void map_cpu_to_node(int cpu, int node)
 | |
| {
 | |
| 	numa_cpu_lookup_table[cpu] = node;
 | |
| 
 | |
| 	dbg("adding cpu %d to node %d\n", cpu, node);
 | |
| 
 | |
| 	if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
 | |
| 		cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
 | |
| }
 | |
| 
 | |
| #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
 | |
| static void unmap_cpu_from_node(unsigned long cpu)
 | |
| {
 | |
| 	int node = numa_cpu_lookup_table[cpu];
 | |
| 
 | |
| 	dbg("removing cpu %lu from node %d\n", cpu, node);
 | |
| 
 | |
| 	if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
 | |
| 		cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
 | |
| 	} else {
 | |
| 		printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
 | |
| 		       cpu, node);
 | |
| 	}
 | |
| }
 | |
| #endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
 | |
| 
 | |
| /* must hold reference to node during call */
 | |
| static const int *of_get_associativity(struct device_node *dev)
 | |
| {
 | |
| 	return of_get_property(dev, "ibm,associativity", NULL);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns the property linux,drconf-usable-memory if
 | |
|  * it exists (the property exists only in kexec/kdump kernels,
 | |
|  * added by kexec-tools)
 | |
|  */
 | |
| static const u32 *of_get_usable_memory(struct device_node *memory)
 | |
| {
 | |
| 	const u32 *prop;
 | |
| 	u32 len;
 | |
| 	prop = of_get_property(memory, "linux,drconf-usable-memory", &len);
 | |
| 	if (!prop || len < sizeof(unsigned int))
 | |
| 		return 0;
 | |
| 	return prop;
 | |
| }
 | |
| 
 | |
| int __node_distance(int a, int b)
 | |
| {
 | |
| 	int i;
 | |
| 	int distance = LOCAL_DISTANCE;
 | |
| 
 | |
| 	if (!form1_affinity)
 | |
| 		return distance;
 | |
| 
 | |
| 	for (i = 0; i < distance_ref_points_depth; i++) {
 | |
| 		if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
 | |
| 			break;
 | |
| 
 | |
| 		/* Double the distance for each NUMA level */
 | |
| 		distance *= 2;
 | |
| 	}
 | |
| 
 | |
| 	return distance;
 | |
| }
 | |
| 
 | |
| static void initialize_distance_lookup_table(int nid,
 | |
| 		const unsigned int *associativity)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (!form1_affinity)
 | |
| 		return;
 | |
| 
 | |
| 	for (i = 0; i < distance_ref_points_depth; i++) {
 | |
| 		distance_lookup_table[nid][i] =
 | |
| 			associativity[distance_ref_points[i]];
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
 | |
|  * info is found.
 | |
|  */
 | |
| static int associativity_to_nid(const unsigned int *associativity)
 | |
| {
 | |
| 	int nid = -1;
 | |
| 
 | |
| 	if (min_common_depth == -1)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (associativity[0] >= min_common_depth)
 | |
| 		nid = associativity[min_common_depth];
 | |
| 
 | |
| 	/* POWER4 LPAR uses 0xffff as invalid node */
 | |
| 	if (nid == 0xffff || nid >= MAX_NUMNODES)
 | |
| 		nid = -1;
 | |
| 
 | |
| 	if (nid > 0 && associativity[0] >= distance_ref_points_depth)
 | |
| 		initialize_distance_lookup_table(nid, associativity);
 | |
| 
 | |
| out:
 | |
| 	return nid;
 | |
| }
 | |
| 
 | |
| /* Returns the nid associated with the given device tree node,
 | |
|  * or -1 if not found.
 | |
|  */
 | |
| static int of_node_to_nid_single(struct device_node *device)
 | |
| {
 | |
| 	int nid = -1;
 | |
| 	const unsigned int *tmp;
 | |
| 
 | |
| 	tmp = of_get_associativity(device);
 | |
| 	if (tmp)
 | |
| 		nid = associativity_to_nid(tmp);
 | |
| 	return nid;
 | |
| }
 | |
| 
 | |
| /* Walk the device tree upwards, looking for an associativity id */
 | |
| int of_node_to_nid(struct device_node *device)
 | |
| {
 | |
| 	struct device_node *tmp;
 | |
| 	int nid = -1;
 | |
| 
 | |
| 	of_node_get(device);
 | |
| 	while (device) {
 | |
| 		nid = of_node_to_nid_single(device);
 | |
| 		if (nid != -1)
 | |
| 			break;
 | |
| 
 | |
| 	        tmp = device;
 | |
| 		device = of_get_parent(tmp);
 | |
| 		of_node_put(tmp);
 | |
| 	}
 | |
| 	of_node_put(device);
 | |
| 
 | |
| 	return nid;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(of_node_to_nid);
 | |
| 
 | |
| static int __init find_min_common_depth(void)
 | |
| {
 | |
| 	int depth;
 | |
| 	struct device_node *chosen;
 | |
| 	struct device_node *root;
 | |
| 	const char *vec5;
 | |
| 
 | |
| 	if (firmware_has_feature(FW_FEATURE_OPAL))
 | |
| 		root = of_find_node_by_path("/ibm,opal");
 | |
| 	else
 | |
| 		root = of_find_node_by_path("/rtas");
 | |
| 	if (!root)
 | |
| 		root = of_find_node_by_path("/");
 | |
| 
 | |
| 	/*
 | |
| 	 * This property is a set of 32-bit integers, each representing
 | |
| 	 * an index into the ibm,associativity nodes.
 | |
| 	 *
 | |
| 	 * With form 0 affinity the first integer is for an SMP configuration
 | |
| 	 * (should be all 0's) and the second is for a normal NUMA
 | |
| 	 * configuration. We have only one level of NUMA.
 | |
| 	 *
 | |
| 	 * With form 1 affinity the first integer is the most significant
 | |
| 	 * NUMA boundary and the following are progressively less significant
 | |
| 	 * boundaries. There can be more than one level of NUMA.
 | |
| 	 */
 | |
| 	distance_ref_points = of_get_property(root,
 | |
| 					"ibm,associativity-reference-points",
 | |
| 					&distance_ref_points_depth);
 | |
| 
 | |
| 	if (!distance_ref_points) {
 | |
| 		dbg("NUMA: ibm,associativity-reference-points not found.\n");
 | |
| 		goto err;
 | |
| 	}
 | |
| 
 | |
| 	distance_ref_points_depth /= sizeof(int);
 | |
| 
 | |
| #define VEC5_AFFINITY_BYTE	5
 | |
| #define VEC5_AFFINITY		0x80
 | |
| 
 | |
| 	if (firmware_has_feature(FW_FEATURE_OPAL))
 | |
| 		form1_affinity = 1;
 | |
| 	else {
 | |
| 		chosen = of_find_node_by_path("/chosen");
 | |
| 		if (chosen) {
 | |
| 			vec5 = of_get_property(chosen,
 | |
| 					       "ibm,architecture-vec-5", NULL);
 | |
| 			if (vec5 && (vec5[VEC5_AFFINITY_BYTE] &
 | |
| 							VEC5_AFFINITY)) {
 | |
| 				dbg("Using form 1 affinity\n");
 | |
| 				form1_affinity = 1;
 | |
| 			}
 | |
| 
 | |
| 			of_node_put(chosen);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (form1_affinity) {
 | |
| 		depth = distance_ref_points[0];
 | |
| 	} else {
 | |
| 		if (distance_ref_points_depth < 2) {
 | |
| 			printk(KERN_WARNING "NUMA: "
 | |
| 				"short ibm,associativity-reference-points\n");
 | |
| 			goto err;
 | |
| 		}
 | |
| 
 | |
| 		depth = distance_ref_points[1];
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Warn and cap if the hardware supports more than
 | |
| 	 * MAX_DISTANCE_REF_POINTS domains.
 | |
| 	 */
 | |
| 	if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
 | |
| 		printk(KERN_WARNING "NUMA: distance array capped at "
 | |
| 			"%d entries\n", MAX_DISTANCE_REF_POINTS);
 | |
| 		distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
 | |
| 	}
 | |
| 
 | |
| 	of_node_put(root);
 | |
| 	return depth;
 | |
| 
 | |
| err:
 | |
| 	of_node_put(root);
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
 | |
| {
 | |
| 	struct device_node *memory = NULL;
 | |
| 
 | |
| 	memory = of_find_node_by_type(memory, "memory");
 | |
| 	if (!memory)
 | |
| 		panic("numa.c: No memory nodes found!");
 | |
| 
 | |
| 	*n_addr_cells = of_n_addr_cells(memory);
 | |
| 	*n_size_cells = of_n_size_cells(memory);
 | |
| 	of_node_put(memory);
 | |
| }
 | |
| 
 | |
| static unsigned long read_n_cells(int n, const unsigned int **buf)
 | |
| {
 | |
| 	unsigned long result = 0;
 | |
| 
 | |
| 	while (n--) {
 | |
| 		result = (result << 32) | **buf;
 | |
| 		(*buf)++;
 | |
| 	}
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Read the next memblock list entry from the ibm,dynamic-memory property
 | |
|  * and return the information in the provided of_drconf_cell structure.
 | |
|  */
 | |
| static void read_drconf_cell(struct of_drconf_cell *drmem, const u32 **cellp)
 | |
| {
 | |
| 	const u32 *cp;
 | |
| 
 | |
| 	drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp);
 | |
| 
 | |
| 	cp = *cellp;
 | |
| 	drmem->drc_index = cp[0];
 | |
| 	drmem->reserved = cp[1];
 | |
| 	drmem->aa_index = cp[2];
 | |
| 	drmem->flags = cp[3];
 | |
| 
 | |
| 	*cellp = cp + 4;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Retrieve and validate the ibm,dynamic-memory property of the device tree.
 | |
|  *
 | |
|  * The layout of the ibm,dynamic-memory property is a number N of memblock
 | |
|  * list entries followed by N memblock list entries.  Each memblock list entry
 | |
|  * contains information as laid out in the of_drconf_cell struct above.
 | |
|  */
 | |
| static int of_get_drconf_memory(struct device_node *memory, const u32 **dm)
 | |
| {
 | |
| 	const u32 *prop;
 | |
| 	u32 len, entries;
 | |
| 
 | |
| 	prop = of_get_property(memory, "ibm,dynamic-memory", &len);
 | |
| 	if (!prop || len < sizeof(unsigned int))
 | |
| 		return 0;
 | |
| 
 | |
| 	entries = *prop++;
 | |
| 
 | |
| 	/* Now that we know the number of entries, revalidate the size
 | |
| 	 * of the property read in to ensure we have everything
 | |
| 	 */
 | |
| 	if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int))
 | |
| 		return 0;
 | |
| 
 | |
| 	*dm = prop;
 | |
| 	return entries;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Retrieve and validate the ibm,lmb-size property for drconf memory
 | |
|  * from the device tree.
 | |
|  */
 | |
| static u64 of_get_lmb_size(struct device_node *memory)
 | |
| {
 | |
| 	const u32 *prop;
 | |
| 	u32 len;
 | |
| 
 | |
| 	prop = of_get_property(memory, "ibm,lmb-size", &len);
 | |
| 	if (!prop || len < sizeof(unsigned int))
 | |
| 		return 0;
 | |
| 
 | |
| 	return read_n_cells(n_mem_size_cells, &prop);
 | |
| }
 | |
| 
 | |
| struct assoc_arrays {
 | |
| 	u32	n_arrays;
 | |
| 	u32	array_sz;
 | |
| 	const u32 *arrays;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Retrieve and validate the list of associativity arrays for drconf
 | |
|  * memory from the ibm,associativity-lookup-arrays property of the
 | |
|  * device tree..
 | |
|  *
 | |
|  * The layout of the ibm,associativity-lookup-arrays property is a number N
 | |
|  * indicating the number of associativity arrays, followed by a number M
 | |
|  * indicating the size of each associativity array, followed by a list
 | |
|  * of N associativity arrays.
 | |
|  */
 | |
| static int of_get_assoc_arrays(struct device_node *memory,
 | |
| 			       struct assoc_arrays *aa)
 | |
| {
 | |
| 	const u32 *prop;
 | |
| 	u32 len;
 | |
| 
 | |
| 	prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
 | |
| 	if (!prop || len < 2 * sizeof(unsigned int))
 | |
| 		return -1;
 | |
| 
 | |
| 	aa->n_arrays = *prop++;
 | |
| 	aa->array_sz = *prop++;
 | |
| 
 | |
| 	/* Now that we know the number of arrays and size of each array,
 | |
| 	 * revalidate the size of the property read in.
 | |
| 	 */
 | |
| 	if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
 | |
| 		return -1;
 | |
| 
 | |
| 	aa->arrays = prop;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is like of_node_to_nid_single() for memory represented in the
 | |
|  * ibm,dynamic-reconfiguration-memory node.
 | |
|  */
 | |
| static int of_drconf_to_nid_single(struct of_drconf_cell *drmem,
 | |
| 				   struct assoc_arrays *aa)
 | |
| {
 | |
| 	int default_nid = 0;
 | |
| 	int nid = default_nid;
 | |
| 	int index;
 | |
| 
 | |
| 	if (min_common_depth > 0 && min_common_depth <= aa->array_sz &&
 | |
| 	    !(drmem->flags & DRCONF_MEM_AI_INVALID) &&
 | |
| 	    drmem->aa_index < aa->n_arrays) {
 | |
| 		index = drmem->aa_index * aa->array_sz + min_common_depth - 1;
 | |
| 		nid = aa->arrays[index];
 | |
| 
 | |
| 		if (nid == 0xffff || nid >= MAX_NUMNODES)
 | |
| 			nid = default_nid;
 | |
| 	}
 | |
| 
 | |
| 	return nid;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Figure out to which domain a cpu belongs and stick it there.
 | |
|  * Return the id of the domain used.
 | |
|  */
 | |
| static int __cpuinit numa_setup_cpu(unsigned long lcpu)
 | |
| {
 | |
| 	int nid = 0;
 | |
| 	struct device_node *cpu = of_get_cpu_node(lcpu, NULL);
 | |
| 
 | |
| 	if (!cpu) {
 | |
| 		WARN_ON(1);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	nid = of_node_to_nid_single(cpu);
 | |
| 
 | |
| 	if (nid < 0 || !node_online(nid))
 | |
| 		nid = first_online_node;
 | |
| out:
 | |
| 	map_cpu_to_node(lcpu, nid);
 | |
| 
 | |
| 	of_node_put(cpu);
 | |
| 
 | |
| 	return nid;
 | |
| }
 | |
| 
 | |
| static int __cpuinit cpu_numa_callback(struct notifier_block *nfb,
 | |
| 			     unsigned long action,
 | |
| 			     void *hcpu)
 | |
| {
 | |
| 	unsigned long lcpu = (unsigned long)hcpu;
 | |
| 	int ret = NOTIFY_DONE;
 | |
| 
 | |
| 	switch (action) {
 | |
| 	case CPU_UP_PREPARE:
 | |
| 	case CPU_UP_PREPARE_FROZEN:
 | |
| 		numa_setup_cpu(lcpu);
 | |
| 		ret = NOTIFY_OK;
 | |
| 		break;
 | |
| #ifdef CONFIG_HOTPLUG_CPU
 | |
| 	case CPU_DEAD:
 | |
| 	case CPU_DEAD_FROZEN:
 | |
| 	case CPU_UP_CANCELED:
 | |
| 	case CPU_UP_CANCELED_FROZEN:
 | |
| 		unmap_cpu_from_node(lcpu);
 | |
| 		break;
 | |
| 		ret = NOTIFY_OK;
 | |
| #endif
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check and possibly modify a memory region to enforce the memory limit.
 | |
|  *
 | |
|  * Returns the size the region should have to enforce the memory limit.
 | |
|  * This will either be the original value of size, a truncated value,
 | |
|  * or zero. If the returned value of size is 0 the region should be
 | |
|  * discarded as it lies wholly above the memory limit.
 | |
|  */
 | |
| static unsigned long __init numa_enforce_memory_limit(unsigned long start,
 | |
| 						      unsigned long size)
 | |
| {
 | |
| 	/*
 | |
| 	 * We use memblock_end_of_DRAM() in here instead of memory_limit because
 | |
| 	 * we've already adjusted it for the limit and it takes care of
 | |
| 	 * having memory holes below the limit.  Also, in the case of
 | |
| 	 * iommu_is_off, memory_limit is not set but is implicitly enforced.
 | |
| 	 */
 | |
| 
 | |
| 	if (start + size <= memblock_end_of_DRAM())
 | |
| 		return size;
 | |
| 
 | |
| 	if (start >= memblock_end_of_DRAM())
 | |
| 		return 0;
 | |
| 
 | |
| 	return memblock_end_of_DRAM() - start;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Reads the counter for a given entry in
 | |
|  * linux,drconf-usable-memory property
 | |
|  */
 | |
| static inline int __init read_usm_ranges(const u32 **usm)
 | |
| {
 | |
| 	/*
 | |
| 	 * For each lmb in ibm,dynamic-memory a corresponding
 | |
| 	 * entry in linux,drconf-usable-memory property contains
 | |
| 	 * a counter followed by that many (base, size) duple.
 | |
| 	 * read the counter from linux,drconf-usable-memory
 | |
| 	 */
 | |
| 	return read_n_cells(n_mem_size_cells, usm);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
 | |
|  * node.  This assumes n_mem_{addr,size}_cells have been set.
 | |
|  */
 | |
| static void __init parse_drconf_memory(struct device_node *memory)
 | |
| {
 | |
| 	const u32 *uninitialized_var(dm), *usm;
 | |
| 	unsigned int n, rc, ranges, is_kexec_kdump = 0;
 | |
| 	unsigned long lmb_size, base, size, sz;
 | |
| 	int nid;
 | |
| 	struct assoc_arrays aa = { .arrays = NULL };
 | |
| 
 | |
| 	n = of_get_drconf_memory(memory, &dm);
 | |
| 	if (!n)
 | |
| 		return;
 | |
| 
 | |
| 	lmb_size = of_get_lmb_size(memory);
 | |
| 	if (!lmb_size)
 | |
| 		return;
 | |
| 
 | |
| 	rc = of_get_assoc_arrays(memory, &aa);
 | |
| 	if (rc)
 | |
| 		return;
 | |
| 
 | |
| 	/* check if this is a kexec/kdump kernel */
 | |
| 	usm = of_get_usable_memory(memory);
 | |
| 	if (usm != NULL)
 | |
| 		is_kexec_kdump = 1;
 | |
| 
 | |
| 	for (; n != 0; --n) {
 | |
| 		struct of_drconf_cell drmem;
 | |
| 
 | |
| 		read_drconf_cell(&drmem, &dm);
 | |
| 
 | |
| 		/* skip this block if the reserved bit is set in flags (0x80)
 | |
| 		   or if the block is not assigned to this partition (0x8) */
 | |
| 		if ((drmem.flags & DRCONF_MEM_RESERVED)
 | |
| 		    || !(drmem.flags & DRCONF_MEM_ASSIGNED))
 | |
| 			continue;
 | |
| 
 | |
| 		base = drmem.base_addr;
 | |
| 		size = lmb_size;
 | |
| 		ranges = 1;
 | |
| 
 | |
| 		if (is_kexec_kdump) {
 | |
| 			ranges = read_usm_ranges(&usm);
 | |
| 			if (!ranges) /* there are no (base, size) duple */
 | |
| 				continue;
 | |
| 		}
 | |
| 		do {
 | |
| 			if (is_kexec_kdump) {
 | |
| 				base = read_n_cells(n_mem_addr_cells, &usm);
 | |
| 				size = read_n_cells(n_mem_size_cells, &usm);
 | |
| 			}
 | |
| 			nid = of_drconf_to_nid_single(&drmem, &aa);
 | |
| 			fake_numa_create_new_node(
 | |
| 				((base + size) >> PAGE_SHIFT),
 | |
| 					   &nid);
 | |
| 			node_set_online(nid);
 | |
| 			sz = numa_enforce_memory_limit(base, size);
 | |
| 			if (sz)
 | |
| 				memblock_set_node(base, sz, nid);
 | |
| 		} while (--ranges);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int __init parse_numa_properties(void)
 | |
| {
 | |
| 	struct device_node *memory;
 | |
| 	int default_nid = 0;
 | |
| 	unsigned long i;
 | |
| 
 | |
| 	if (numa_enabled == 0) {
 | |
| 		printk(KERN_WARNING "NUMA disabled by user\n");
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	min_common_depth = find_min_common_depth();
 | |
| 
 | |
| 	if (min_common_depth < 0)
 | |
| 		return min_common_depth;
 | |
| 
 | |
| 	dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
 | |
| 
 | |
| 	/*
 | |
| 	 * Even though we connect cpus to numa domains later in SMP
 | |
| 	 * init, we need to know the node ids now. This is because
 | |
| 	 * each node to be onlined must have NODE_DATA etc backing it.
 | |
| 	 */
 | |
| 	for_each_present_cpu(i) {
 | |
| 		struct device_node *cpu;
 | |
| 		int nid;
 | |
| 
 | |
| 		cpu = of_get_cpu_node(i, NULL);
 | |
| 		BUG_ON(!cpu);
 | |
| 		nid = of_node_to_nid_single(cpu);
 | |
| 		of_node_put(cpu);
 | |
| 
 | |
| 		/*
 | |
| 		 * Don't fall back to default_nid yet -- we will plug
 | |
| 		 * cpus into nodes once the memory scan has discovered
 | |
| 		 * the topology.
 | |
| 		 */
 | |
| 		if (nid < 0)
 | |
| 			continue;
 | |
| 		node_set_online(nid);
 | |
| 	}
 | |
| 
 | |
| 	get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
 | |
| 
 | |
| 	for_each_node_by_type(memory, "memory") {
 | |
| 		unsigned long start;
 | |
| 		unsigned long size;
 | |
| 		int nid;
 | |
| 		int ranges;
 | |
| 		const unsigned int *memcell_buf;
 | |
| 		unsigned int len;
 | |
| 
 | |
| 		memcell_buf = of_get_property(memory,
 | |
| 			"linux,usable-memory", &len);
 | |
| 		if (!memcell_buf || len <= 0)
 | |
| 			memcell_buf = of_get_property(memory, "reg", &len);
 | |
| 		if (!memcell_buf || len <= 0)
 | |
| 			continue;
 | |
| 
 | |
| 		/* ranges in cell */
 | |
| 		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
 | |
| new_range:
 | |
| 		/* these are order-sensitive, and modify the buffer pointer */
 | |
| 		start = read_n_cells(n_mem_addr_cells, &memcell_buf);
 | |
| 		size = read_n_cells(n_mem_size_cells, &memcell_buf);
 | |
| 
 | |
| 		/*
 | |
| 		 * Assumption: either all memory nodes or none will
 | |
| 		 * have associativity properties.  If none, then
 | |
| 		 * everything goes to default_nid.
 | |
| 		 */
 | |
| 		nid = of_node_to_nid_single(memory);
 | |
| 		if (nid < 0)
 | |
| 			nid = default_nid;
 | |
| 
 | |
| 		fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
 | |
| 		node_set_online(nid);
 | |
| 
 | |
| 		if (!(size = numa_enforce_memory_limit(start, size))) {
 | |
| 			if (--ranges)
 | |
| 				goto new_range;
 | |
| 			else
 | |
| 				continue;
 | |
| 		}
 | |
| 
 | |
| 		memblock_set_node(start, size, nid);
 | |
| 
 | |
| 		if (--ranges)
 | |
| 			goto new_range;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Now do the same thing for each MEMBLOCK listed in the
 | |
| 	 * ibm,dynamic-memory property in the
 | |
| 	 * ibm,dynamic-reconfiguration-memory node.
 | |
| 	 */
 | |
| 	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
 | |
| 	if (memory)
 | |
| 		parse_drconf_memory(memory);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void __init setup_nonnuma(void)
 | |
| {
 | |
| 	unsigned long top_of_ram = memblock_end_of_DRAM();
 | |
| 	unsigned long total_ram = memblock_phys_mem_size();
 | |
| 	unsigned long start_pfn, end_pfn;
 | |
| 	unsigned int nid = 0;
 | |
| 	struct memblock_region *reg;
 | |
| 
 | |
| 	printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
 | |
| 	       top_of_ram, total_ram);
 | |
| 	printk(KERN_DEBUG "Memory hole size: %ldMB\n",
 | |
| 	       (top_of_ram - total_ram) >> 20);
 | |
| 
 | |
| 	for_each_memblock(memory, reg) {
 | |
| 		start_pfn = memblock_region_memory_base_pfn(reg);
 | |
| 		end_pfn = memblock_region_memory_end_pfn(reg);
 | |
| 
 | |
| 		fake_numa_create_new_node(end_pfn, &nid);
 | |
| 		memblock_set_node(PFN_PHYS(start_pfn),
 | |
| 				  PFN_PHYS(end_pfn - start_pfn), nid);
 | |
| 		node_set_online(nid);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void __init dump_numa_cpu_topology(void)
 | |
| {
 | |
| 	unsigned int node;
 | |
| 	unsigned int cpu, count;
 | |
| 
 | |
| 	if (min_common_depth == -1 || !numa_enabled)
 | |
| 		return;
 | |
| 
 | |
| 	for_each_online_node(node) {
 | |
| 		printk(KERN_DEBUG "Node %d CPUs:", node);
 | |
| 
 | |
| 		count = 0;
 | |
| 		/*
 | |
| 		 * If we used a CPU iterator here we would miss printing
 | |
| 		 * the holes in the cpumap.
 | |
| 		 */
 | |
| 		for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
 | |
| 			if (cpumask_test_cpu(cpu,
 | |
| 					node_to_cpumask_map[node])) {
 | |
| 				if (count == 0)
 | |
| 					printk(" %u", cpu);
 | |
| 				++count;
 | |
| 			} else {
 | |
| 				if (count > 1)
 | |
| 					printk("-%u", cpu - 1);
 | |
| 				count = 0;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (count > 1)
 | |
| 			printk("-%u", nr_cpu_ids - 1);
 | |
| 		printk("\n");
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __init dump_numa_memory_topology(void)
 | |
| {
 | |
| 	unsigned int node;
 | |
| 	unsigned int count;
 | |
| 
 | |
| 	if (min_common_depth == -1 || !numa_enabled)
 | |
| 		return;
 | |
| 
 | |
| 	for_each_online_node(node) {
 | |
| 		unsigned long i;
 | |
| 
 | |
| 		printk(KERN_DEBUG "Node %d Memory:", node);
 | |
| 
 | |
| 		count = 0;
 | |
| 
 | |
| 		for (i = 0; i < memblock_end_of_DRAM();
 | |
| 		     i += (1 << SECTION_SIZE_BITS)) {
 | |
| 			if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) {
 | |
| 				if (count == 0)
 | |
| 					printk(" 0x%lx", i);
 | |
| 				++count;
 | |
| 			} else {
 | |
| 				if (count > 0)
 | |
| 					printk("-0x%lx", i);
 | |
| 				count = 0;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (count > 0)
 | |
| 			printk("-0x%lx", i);
 | |
| 		printk("\n");
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate some memory, satisfying the memblock or bootmem allocator where
 | |
|  * required. nid is the preferred node and end is the physical address of
 | |
|  * the highest address in the node.
 | |
|  *
 | |
|  * Returns the virtual address of the memory.
 | |
|  */
 | |
| static void __init *careful_zallocation(int nid, unsigned long size,
 | |
| 				       unsigned long align,
 | |
| 				       unsigned long end_pfn)
 | |
| {
 | |
| 	void *ret;
 | |
| 	int new_nid;
 | |
| 	unsigned long ret_paddr;
 | |
| 
 | |
| 	ret_paddr = __memblock_alloc_base(size, align, end_pfn << PAGE_SHIFT);
 | |
| 
 | |
| 	/* retry over all memory */
 | |
| 	if (!ret_paddr)
 | |
| 		ret_paddr = __memblock_alloc_base(size, align, memblock_end_of_DRAM());
 | |
| 
 | |
| 	if (!ret_paddr)
 | |
| 		panic("numa.c: cannot allocate %lu bytes for node %d",
 | |
| 		      size, nid);
 | |
| 
 | |
| 	ret = __va(ret_paddr);
 | |
| 
 | |
| 	/*
 | |
| 	 * We initialize the nodes in numeric order: 0, 1, 2...
 | |
| 	 * and hand over control from the MEMBLOCK allocator to the
 | |
| 	 * bootmem allocator.  If this function is called for
 | |
| 	 * node 5, then we know that all nodes <5 are using the
 | |
| 	 * bootmem allocator instead of the MEMBLOCK allocator.
 | |
| 	 *
 | |
| 	 * So, check the nid from which this allocation came
 | |
| 	 * and double check to see if we need to use bootmem
 | |
| 	 * instead of the MEMBLOCK.  We don't free the MEMBLOCK memory
 | |
| 	 * since it would be useless.
 | |
| 	 */
 | |
| 	new_nid = early_pfn_to_nid(ret_paddr >> PAGE_SHIFT);
 | |
| 	if (new_nid < nid) {
 | |
| 		ret = __alloc_bootmem_node(NODE_DATA(new_nid),
 | |
| 				size, align, 0);
 | |
| 
 | |
| 		dbg("alloc_bootmem %p %lx\n", ret, size);
 | |
| 	}
 | |
| 
 | |
| 	memset(ret, 0, size);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static struct notifier_block __cpuinitdata ppc64_numa_nb = {
 | |
| 	.notifier_call = cpu_numa_callback,
 | |
| 	.priority = 1 /* Must run before sched domains notifier. */
 | |
| };
 | |
| 
 | |
| static void __init mark_reserved_regions_for_nid(int nid)
 | |
| {
 | |
| 	struct pglist_data *node = NODE_DATA(nid);
 | |
| 	struct memblock_region *reg;
 | |
| 
 | |
| 	for_each_memblock(reserved, reg) {
 | |
| 		unsigned long physbase = reg->base;
 | |
| 		unsigned long size = reg->size;
 | |
| 		unsigned long start_pfn = physbase >> PAGE_SHIFT;
 | |
| 		unsigned long end_pfn = PFN_UP(physbase + size);
 | |
| 		struct node_active_region node_ar;
 | |
| 		unsigned long node_end_pfn = node->node_start_pfn +
 | |
| 					     node->node_spanned_pages;
 | |
| 
 | |
| 		/*
 | |
| 		 * Check to make sure that this memblock.reserved area is
 | |
| 		 * within the bounds of the node that we care about.
 | |
| 		 * Checking the nid of the start and end points is not
 | |
| 		 * sufficient because the reserved area could span the
 | |
| 		 * entire node.
 | |
| 		 */
 | |
| 		if (end_pfn <= node->node_start_pfn ||
 | |
| 		    start_pfn >= node_end_pfn)
 | |
| 			continue;
 | |
| 
 | |
| 		get_node_active_region(start_pfn, &node_ar);
 | |
| 		while (start_pfn < end_pfn &&
 | |
| 			node_ar.start_pfn < node_ar.end_pfn) {
 | |
| 			unsigned long reserve_size = size;
 | |
| 			/*
 | |
| 			 * if reserved region extends past active region
 | |
| 			 * then trim size to active region
 | |
| 			 */
 | |
| 			if (end_pfn > node_ar.end_pfn)
 | |
| 				reserve_size = (node_ar.end_pfn << PAGE_SHIFT)
 | |
| 					- physbase;
 | |
| 			/*
 | |
| 			 * Only worry about *this* node, others may not
 | |
| 			 * yet have valid NODE_DATA().
 | |
| 			 */
 | |
| 			if (node_ar.nid == nid) {
 | |
| 				dbg("reserve_bootmem %lx %lx nid=%d\n",
 | |
| 					physbase, reserve_size, node_ar.nid);
 | |
| 				reserve_bootmem_node(NODE_DATA(node_ar.nid),
 | |
| 						physbase, reserve_size,
 | |
| 						BOOTMEM_DEFAULT);
 | |
| 			}
 | |
| 			/*
 | |
| 			 * if reserved region is contained in the active region
 | |
| 			 * then done.
 | |
| 			 */
 | |
| 			if (end_pfn <= node_ar.end_pfn)
 | |
| 				break;
 | |
| 
 | |
| 			/*
 | |
| 			 * reserved region extends past the active region
 | |
| 			 *   get next active region that contains this
 | |
| 			 *   reserved region
 | |
| 			 */
 | |
| 			start_pfn = node_ar.end_pfn;
 | |
| 			physbase = start_pfn << PAGE_SHIFT;
 | |
| 			size = size - reserve_size;
 | |
| 			get_node_active_region(start_pfn, &node_ar);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| void __init do_init_bootmem(void)
 | |
| {
 | |
| 	int nid;
 | |
| 
 | |
| 	min_low_pfn = 0;
 | |
| 	max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
 | |
| 	max_pfn = max_low_pfn;
 | |
| 
 | |
| 	if (parse_numa_properties())
 | |
| 		setup_nonnuma();
 | |
| 	else
 | |
| 		dump_numa_memory_topology();
 | |
| 
 | |
| 	for_each_online_node(nid) {
 | |
| 		unsigned long start_pfn, end_pfn;
 | |
| 		void *bootmem_vaddr;
 | |
| 		unsigned long bootmap_pages;
 | |
| 
 | |
| 		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
 | |
| 
 | |
| 		/*
 | |
| 		 * Allocate the node structure node local if possible
 | |
| 		 *
 | |
| 		 * Be careful moving this around, as it relies on all
 | |
| 		 * previous nodes' bootmem to be initialized and have
 | |
| 		 * all reserved areas marked.
 | |
| 		 */
 | |
| 		NODE_DATA(nid) = careful_zallocation(nid,
 | |
| 					sizeof(struct pglist_data),
 | |
| 					SMP_CACHE_BYTES, end_pfn);
 | |
| 
 | |
|   		dbg("node %d\n", nid);
 | |
| 		dbg("NODE_DATA() = %p\n", NODE_DATA(nid));
 | |
| 
 | |
| 		NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
 | |
| 		NODE_DATA(nid)->node_start_pfn = start_pfn;
 | |
| 		NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn;
 | |
| 
 | |
| 		if (NODE_DATA(nid)->node_spanned_pages == 0)
 | |
|   			continue;
 | |
| 
 | |
|   		dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT);
 | |
|   		dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT);
 | |
| 
 | |
| 		bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
 | |
| 		bootmem_vaddr = careful_zallocation(nid,
 | |
| 					bootmap_pages << PAGE_SHIFT,
 | |
| 					PAGE_SIZE, end_pfn);
 | |
| 
 | |
| 		dbg("bootmap_vaddr = %p\n", bootmem_vaddr);
 | |
| 
 | |
| 		init_bootmem_node(NODE_DATA(nid),
 | |
| 				  __pa(bootmem_vaddr) >> PAGE_SHIFT,
 | |
| 				  start_pfn, end_pfn);
 | |
| 
 | |
| 		free_bootmem_with_active_regions(nid, end_pfn);
 | |
| 		/*
 | |
| 		 * Be very careful about moving this around.  Future
 | |
| 		 * calls to careful_zallocation() depend on this getting
 | |
| 		 * done correctly.
 | |
| 		 */
 | |
| 		mark_reserved_regions_for_nid(nid);
 | |
| 		sparse_memory_present_with_active_regions(nid);
 | |
| 	}
 | |
| 
 | |
| 	init_bootmem_done = 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Now bootmem is initialised we can create the node to cpumask
 | |
| 	 * lookup tables and setup the cpu callback to populate them.
 | |
| 	 */
 | |
| 	setup_node_to_cpumask_map();
 | |
| 
 | |
| 	register_cpu_notifier(&ppc64_numa_nb);
 | |
| 	cpu_numa_callback(&ppc64_numa_nb, CPU_UP_PREPARE,
 | |
| 			  (void *)(unsigned long)boot_cpuid);
 | |
| }
 | |
| 
 | |
| void __init paging_init(void)
 | |
| {
 | |
| 	unsigned long max_zone_pfns[MAX_NR_ZONES];
 | |
| 	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
 | |
| 	max_zone_pfns[ZONE_DMA] = memblock_end_of_DRAM() >> PAGE_SHIFT;
 | |
| 	free_area_init_nodes(max_zone_pfns);
 | |
| }
 | |
| 
 | |
| static int __init early_numa(char *p)
 | |
| {
 | |
| 	if (!p)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (strstr(p, "off"))
 | |
| 		numa_enabled = 0;
 | |
| 
 | |
| 	if (strstr(p, "debug"))
 | |
| 		numa_debug = 1;
 | |
| 
 | |
| 	p = strstr(p, "fake=");
 | |
| 	if (p)
 | |
| 		cmdline = p + strlen("fake=");
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| early_param("numa", early_numa);
 | |
| 
 | |
| #ifdef CONFIG_MEMORY_HOTPLUG
 | |
| /*
 | |
|  * Find the node associated with a hot added memory section for
 | |
|  * memory represented in the device tree by the property
 | |
|  * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
 | |
|  */
 | |
| static int hot_add_drconf_scn_to_nid(struct device_node *memory,
 | |
| 				     unsigned long scn_addr)
 | |
| {
 | |
| 	const u32 *dm;
 | |
| 	unsigned int drconf_cell_cnt, rc;
 | |
| 	unsigned long lmb_size;
 | |
| 	struct assoc_arrays aa;
 | |
| 	int nid = -1;
 | |
| 
 | |
| 	drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
 | |
| 	if (!drconf_cell_cnt)
 | |
| 		return -1;
 | |
| 
 | |
| 	lmb_size = of_get_lmb_size(memory);
 | |
| 	if (!lmb_size)
 | |
| 		return -1;
 | |
| 
 | |
| 	rc = of_get_assoc_arrays(memory, &aa);
 | |
| 	if (rc)
 | |
| 		return -1;
 | |
| 
 | |
| 	for (; drconf_cell_cnt != 0; --drconf_cell_cnt) {
 | |
| 		struct of_drconf_cell drmem;
 | |
| 
 | |
| 		read_drconf_cell(&drmem, &dm);
 | |
| 
 | |
| 		/* skip this block if it is reserved or not assigned to
 | |
| 		 * this partition */
 | |
| 		if ((drmem.flags & DRCONF_MEM_RESERVED)
 | |
| 		    || !(drmem.flags & DRCONF_MEM_ASSIGNED))
 | |
| 			continue;
 | |
| 
 | |
| 		if ((scn_addr < drmem.base_addr)
 | |
| 		    || (scn_addr >= (drmem.base_addr + lmb_size)))
 | |
| 			continue;
 | |
| 
 | |
| 		nid = of_drconf_to_nid_single(&drmem, &aa);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return nid;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find the node associated with a hot added memory section for memory
 | |
|  * represented in the device tree as a node (i.e. memory@XXXX) for
 | |
|  * each memblock.
 | |
|  */
 | |
| int hot_add_node_scn_to_nid(unsigned long scn_addr)
 | |
| {
 | |
| 	struct device_node *memory;
 | |
| 	int nid = -1;
 | |
| 
 | |
| 	for_each_node_by_type(memory, "memory") {
 | |
| 		unsigned long start, size;
 | |
| 		int ranges;
 | |
| 		const unsigned int *memcell_buf;
 | |
| 		unsigned int len;
 | |
| 
 | |
| 		memcell_buf = of_get_property(memory, "reg", &len);
 | |
| 		if (!memcell_buf || len <= 0)
 | |
| 			continue;
 | |
| 
 | |
| 		/* ranges in cell */
 | |
| 		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
 | |
| 
 | |
| 		while (ranges--) {
 | |
| 			start = read_n_cells(n_mem_addr_cells, &memcell_buf);
 | |
| 			size = read_n_cells(n_mem_size_cells, &memcell_buf);
 | |
| 
 | |
| 			if ((scn_addr < start) || (scn_addr >= (start + size)))
 | |
| 				continue;
 | |
| 
 | |
| 			nid = of_node_to_nid_single(memory);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (nid >= 0)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	of_node_put(memory);
 | |
| 
 | |
| 	return nid;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find the node associated with a hot added memory section.  Section
 | |
|  * corresponds to a SPARSEMEM section, not an MEMBLOCK.  It is assumed that
 | |
|  * sections are fully contained within a single MEMBLOCK.
 | |
|  */
 | |
| int hot_add_scn_to_nid(unsigned long scn_addr)
 | |
| {
 | |
| 	struct device_node *memory = NULL;
 | |
| 	int nid, found = 0;
 | |
| 
 | |
| 	if (!numa_enabled || (min_common_depth < 0))
 | |
| 		return first_online_node;
 | |
| 
 | |
| 	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
 | |
| 	if (memory) {
 | |
| 		nid = hot_add_drconf_scn_to_nid(memory, scn_addr);
 | |
| 		of_node_put(memory);
 | |
| 	} else {
 | |
| 		nid = hot_add_node_scn_to_nid(scn_addr);
 | |
| 	}
 | |
| 
 | |
| 	if (nid < 0 || !node_online(nid))
 | |
| 		nid = first_online_node;
 | |
| 
 | |
| 	if (NODE_DATA(nid)->node_spanned_pages)
 | |
| 		return nid;
 | |
| 
 | |
| 	for_each_online_node(nid) {
 | |
| 		if (NODE_DATA(nid)->node_spanned_pages) {
 | |
| 			found = 1;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	BUG_ON(!found);
 | |
| 	return nid;
 | |
| }
 | |
| 
 | |
| static u64 hot_add_drconf_memory_max(void)
 | |
| {
 | |
|         struct device_node *memory = NULL;
 | |
|         unsigned int drconf_cell_cnt = 0;
 | |
|         u64 lmb_size = 0;
 | |
|         const u32 *dm = 0;
 | |
| 
 | |
|         memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
 | |
|         if (memory) {
 | |
|                 drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
 | |
|                 lmb_size = of_get_lmb_size(memory);
 | |
|                 of_node_put(memory);
 | |
|         }
 | |
|         return lmb_size * drconf_cell_cnt;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * memory_hotplug_max - return max address of memory that may be added
 | |
|  *
 | |
|  * This is currently only used on systems that support drconfig memory
 | |
|  * hotplug.
 | |
|  */
 | |
| u64 memory_hotplug_max(void)
 | |
| {
 | |
|         return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
 | |
| }
 | |
| #endif /* CONFIG_MEMORY_HOTPLUG */
 | |
| 
 | |
| /* Virtual Processor Home Node (VPHN) support */
 | |
| #ifdef CONFIG_PPC_SPLPAR
 | |
| static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS];
 | |
| static cpumask_t cpu_associativity_changes_mask;
 | |
| static int vphn_enabled;
 | |
| static void set_topology_timer(void);
 | |
| 
 | |
| /*
 | |
|  * Store the current values of the associativity change counters in the
 | |
|  * hypervisor.
 | |
|  */
 | |
| static void setup_cpu_associativity_change_counters(void)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	/* The VPHN feature supports a maximum of 8 reference points */
 | |
| 	BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8);
 | |
| 
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		int i;
 | |
| 		u8 *counts = vphn_cpu_change_counts[cpu];
 | |
| 		volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
 | |
| 
 | |
| 		for (i = 0; i < distance_ref_points_depth; i++)
 | |
| 			counts[i] = hypervisor_counts[i];
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The hypervisor maintains a set of 8 associativity change counters in
 | |
|  * the VPA of each cpu that correspond to the associativity levels in the
 | |
|  * ibm,associativity-reference-points property. When an associativity
 | |
|  * level changes, the corresponding counter is incremented.
 | |
|  *
 | |
|  * Set a bit in cpu_associativity_changes_mask for each cpu whose home
 | |
|  * node associativity levels have changed.
 | |
|  *
 | |
|  * Returns the number of cpus with unhandled associativity changes.
 | |
|  */
 | |
| static int update_cpu_associativity_changes_mask(void)
 | |
| {
 | |
| 	int cpu, nr_cpus = 0;
 | |
| 	cpumask_t *changes = &cpu_associativity_changes_mask;
 | |
| 
 | |
| 	cpumask_clear(changes);
 | |
| 
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		int i, changed = 0;
 | |
| 		u8 *counts = vphn_cpu_change_counts[cpu];
 | |
| 		volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
 | |
| 
 | |
| 		for (i = 0; i < distance_ref_points_depth; i++) {
 | |
| 			if (hypervisor_counts[i] != counts[i]) {
 | |
| 				counts[i] = hypervisor_counts[i];
 | |
| 				changed = 1;
 | |
| 			}
 | |
| 		}
 | |
| 		if (changed) {
 | |
| 			cpumask_set_cpu(cpu, changes);
 | |
| 			nr_cpus++;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return nr_cpus;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * 6 64-bit registers unpacked into 12 32-bit associativity values. To form
 | |
|  * the complete property we have to add the length in the first cell.
 | |
|  */
 | |
| #define VPHN_ASSOC_BUFSIZE (6*sizeof(u64)/sizeof(u32) + 1)
 | |
| 
 | |
| /*
 | |
|  * Convert the associativity domain numbers returned from the hypervisor
 | |
|  * to the sequence they would appear in the ibm,associativity property.
 | |
|  */
 | |
| static int vphn_unpack_associativity(const long *packed, unsigned int *unpacked)
 | |
| {
 | |
| 	int i, nr_assoc_doms = 0;
 | |
| 	const u16 *field = (const u16*) packed;
 | |
| 
 | |
| #define VPHN_FIELD_UNUSED	(0xffff)
 | |
| #define VPHN_FIELD_MSB		(0x8000)
 | |
| #define VPHN_FIELD_MASK		(~VPHN_FIELD_MSB)
 | |
| 
 | |
| 	for (i = 1; i < VPHN_ASSOC_BUFSIZE; i++) {
 | |
| 		if (*field == VPHN_FIELD_UNUSED) {
 | |
| 			/* All significant fields processed, and remaining
 | |
| 			 * fields contain the reserved value of all 1's.
 | |
| 			 * Just store them.
 | |
| 			 */
 | |
| 			unpacked[i] = *((u32*)field);
 | |
| 			field += 2;
 | |
| 		} else if (*field & VPHN_FIELD_MSB) {
 | |
| 			/* Data is in the lower 15 bits of this field */
 | |
| 			unpacked[i] = *field & VPHN_FIELD_MASK;
 | |
| 			field++;
 | |
| 			nr_assoc_doms++;
 | |
| 		} else {
 | |
| 			/* Data is in the lower 15 bits of this field
 | |
| 			 * concatenated with the next 16 bit field
 | |
| 			 */
 | |
| 			unpacked[i] = *((u32*)field);
 | |
| 			field += 2;
 | |
| 			nr_assoc_doms++;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* The first cell contains the length of the property */
 | |
| 	unpacked[0] = nr_assoc_doms;
 | |
| 
 | |
| 	return nr_assoc_doms;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Retrieve the new associativity information for a virtual processor's
 | |
|  * home node.
 | |
|  */
 | |
| static long hcall_vphn(unsigned long cpu, unsigned int *associativity)
 | |
| {
 | |
| 	long rc;
 | |
| 	long retbuf[PLPAR_HCALL9_BUFSIZE] = {0};
 | |
| 	u64 flags = 1;
 | |
| 	int hwcpu = get_hard_smp_processor_id(cpu);
 | |
| 
 | |
| 	rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu);
 | |
| 	vphn_unpack_associativity(retbuf, associativity);
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static long vphn_get_associativity(unsigned long cpu,
 | |
| 					unsigned int *associativity)
 | |
| {
 | |
| 	long rc;
 | |
| 
 | |
| 	rc = hcall_vphn(cpu, associativity);
 | |
| 
 | |
| 	switch (rc) {
 | |
| 	case H_FUNCTION:
 | |
| 		printk(KERN_INFO
 | |
| 			"VPHN is not supported. Disabling polling...\n");
 | |
| 		stop_topology_update();
 | |
| 		break;
 | |
| 	case H_HARDWARE:
 | |
| 		printk(KERN_ERR
 | |
| 			"hcall_vphn() experienced a hardware fault "
 | |
| 			"preventing VPHN. Disabling polling...\n");
 | |
| 		stop_topology_update();
 | |
| 	}
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update the node maps and sysfs entries for each cpu whose home node
 | |
|  * has changed. Returns 1 when the topology has changed, and 0 otherwise.
 | |
|  */
 | |
| int arch_update_cpu_topology(void)
 | |
| {
 | |
| 	int cpu, nid, old_nid, changed = 0;
 | |
| 	unsigned int associativity[VPHN_ASSOC_BUFSIZE] = {0};
 | |
| 	struct device *dev;
 | |
| 
 | |
| 	for_each_cpu(cpu,&cpu_associativity_changes_mask) {
 | |
| 		vphn_get_associativity(cpu, associativity);
 | |
| 		nid = associativity_to_nid(associativity);
 | |
| 
 | |
| 		if (nid < 0 || !node_online(nid))
 | |
| 			nid = first_online_node;
 | |
| 
 | |
| 		old_nid = numa_cpu_lookup_table[cpu];
 | |
| 
 | |
| 		/* Disable hotplug while we update the cpu
 | |
| 		 * masks and sysfs.
 | |
| 		 */
 | |
| 		get_online_cpus();
 | |
| 		unregister_cpu_under_node(cpu, old_nid);
 | |
| 		unmap_cpu_from_node(cpu);
 | |
| 		map_cpu_to_node(cpu, nid);
 | |
| 		register_cpu_under_node(cpu, nid);
 | |
| 		put_online_cpus();
 | |
| 
 | |
| 		dev = get_cpu_device(cpu);
 | |
| 		if (dev)
 | |
| 			kobject_uevent(&dev->kobj, KOBJ_CHANGE);
 | |
| 		changed = 1;
 | |
| 	}
 | |
| 
 | |
| 	return changed;
 | |
| }
 | |
| 
 | |
| static void topology_work_fn(struct work_struct *work)
 | |
| {
 | |
| 	rebuild_sched_domains();
 | |
| }
 | |
| static DECLARE_WORK(topology_work, topology_work_fn);
 | |
| 
 | |
| void topology_schedule_update(void)
 | |
| {
 | |
| 	schedule_work(&topology_work);
 | |
| }
 | |
| 
 | |
| static void topology_timer_fn(unsigned long ignored)
 | |
| {
 | |
| 	if (!vphn_enabled)
 | |
| 		return;
 | |
| 	if (update_cpu_associativity_changes_mask() > 0)
 | |
| 		topology_schedule_update();
 | |
| 	set_topology_timer();
 | |
| }
 | |
| static struct timer_list topology_timer =
 | |
| 	TIMER_INITIALIZER(topology_timer_fn, 0, 0);
 | |
| 
 | |
| static void set_topology_timer(void)
 | |
| {
 | |
| 	topology_timer.data = 0;
 | |
| 	topology_timer.expires = jiffies + 60 * HZ;
 | |
| 	add_timer(&topology_timer);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Start polling for VPHN associativity changes.
 | |
|  */
 | |
| int start_topology_update(void)
 | |
| {
 | |
| 	int rc = 0;
 | |
| 
 | |
| 	/* Disabled until races with load balancing are fixed */
 | |
| 	if (0 && firmware_has_feature(FW_FEATURE_VPHN) &&
 | |
| 	    get_lppaca()->shared_proc) {
 | |
| 		vphn_enabled = 1;
 | |
| 		setup_cpu_associativity_change_counters();
 | |
| 		init_timer_deferrable(&topology_timer);
 | |
| 		set_topology_timer();
 | |
| 		rc = 1;
 | |
| 	}
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| __initcall(start_topology_update);
 | |
| 
 | |
| /*
 | |
|  * Disable polling for VPHN associativity changes.
 | |
|  */
 | |
| int stop_topology_update(void)
 | |
| {
 | |
| 	vphn_enabled = 0;
 | |
| 	return del_timer_sync(&topology_timer);
 | |
| }
 | |
| #endif /* CONFIG_PPC_SPLPAR */
 |