 9043a2650c
			
		
	
	
	9043a2650c
	
	
	
		
			
			lockdep, but it's a mechanical change. Cheers, Rusty. -----BEGIN PGP SIGNATURE----- Version: GnuPG v1.4.11 (GNU/Linux) iQIcBAABAgAGBQJRJAcuAAoJENkgDmzRrbjxsw0P/3eXb+LddYnx0V0uHYdKpCUf 4vdW7X0fX3Z+aUK69IWRL/6ahoO4TpaHYGHBDjEoivyQ0GDq14X7JNWsYYt3LdMf 3wmDgRc2cn/mZOJbFeVpNV8ox5l/xc0CUvV+iQ8tMjfQItXMXgWUFZKMECsXKSO6 eex3lrw9M2jAX2uL8LQPp9W8xtKu24nSZRC6tH5riE/8fCzi1cZPPAqfxP5c8Lee ZXtbCRSyAFENZLpKyMe1PC7HvtJyi5NDn9xwOQiXULZV/VOlvP94DGBLIKCM/6dn 4QvZxpG0P0uOlpCgRAVLyh/z7g4XY4VF/fHopLCmEcqLsvgD+V2LQpQ9zWUalLPC Z+pUpz2vu0gIddPU1nR8R6oGpEdJ8O12aJle62p/RSXWZGx12qUQ+Tamu0tgKcv1 AsiJfbUGNDYfxgU6sHsoQjl2f68LTVckCU1C1LqEbW/S104EIORtGx30CHM4LRiO 32kDC5TtgYDBKQAIqJ4bL48ZMh+9W3uX40p7xzOI5khHQjvswUKa3jcxupU0C1uv lx8KXo7pn8WT33QGysWC782wJCgJuzSc2vRn+KQoqoynuHGM6agaEtR59gil3QWO rQEcxH63BBRDgHlg4FM9IkJwwsnC3PWKL8gbX0uAWXAPMbgapJkuuGZAwt0WDGVK +GszxsFkCjlW0mK0egTb =tiSY -----END PGP SIGNATURE----- Merge tag 'modules-next-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux Pull module update from Rusty Russell: "The sweeping change is to make add_taint() explicitly indicate whether to disable lockdep, but it's a mechanical change." * tag 'modules-next-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux: MODSIGN: Add option to not sign modules during modules_install MODSIGN: Add -s <signature> option to sign-file MODSIGN: Specify the hash algorithm on sign-file command line MODSIGN: Simplify Makefile with a Kconfig helper module: clean up load_module a little more. modpost: Ignore ARC specific non-alloc sections module: constify within_module_* taint: add explicit flag to show whether lock dep is still OK. module: printk message when module signature fail taints kernel.
		
			
				
	
	
		
			1773 lines
		
	
	
	
		
			45 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1773 lines
		
	
	
	
		
			45 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  Copyright (C) 1995-1996  Gary Thomas (gdt@linuxppc.org)
 | |
|  *  Copyright 2007-2010 Freescale Semiconductor, Inc.
 | |
|  *
 | |
|  *  This program is free software; you can redistribute it and/or
 | |
|  *  modify it under the terms of the GNU General Public License
 | |
|  *  as published by the Free Software Foundation; either version
 | |
|  *  2 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  *  Modified by Cort Dougan (cort@cs.nmt.edu)
 | |
|  *  and Paul Mackerras (paulus@samba.org)
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * This file handles the architecture-dependent parts of hardware exceptions
 | |
|  */
 | |
| 
 | |
| #include <linux/errno.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/stddef.h>
 | |
| #include <linux/unistd.h>
 | |
| #include <linux/ptrace.h>
 | |
| #include <linux/user.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/prctl.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/kprobes.h>
 | |
| #include <linux/kexec.h>
 | |
| #include <linux/backlight.h>
 | |
| #include <linux/bug.h>
 | |
| #include <linux/kdebug.h>
 | |
| #include <linux/debugfs.h>
 | |
| #include <linux/ratelimit.h>
 | |
| 
 | |
| #include <asm/emulated_ops.h>
 | |
| #include <asm/pgtable.h>
 | |
| #include <asm/uaccess.h>
 | |
| #include <asm/io.h>
 | |
| #include <asm/machdep.h>
 | |
| #include <asm/rtas.h>
 | |
| #include <asm/pmc.h>
 | |
| #ifdef CONFIG_PPC32
 | |
| #include <asm/reg.h>
 | |
| #endif
 | |
| #ifdef CONFIG_PMAC_BACKLIGHT
 | |
| #include <asm/backlight.h>
 | |
| #endif
 | |
| #ifdef CONFIG_PPC64
 | |
| #include <asm/firmware.h>
 | |
| #include <asm/processor.h>
 | |
| #endif
 | |
| #include <asm/kexec.h>
 | |
| #include <asm/ppc-opcode.h>
 | |
| #include <asm/rio.h>
 | |
| #include <asm/fadump.h>
 | |
| #include <asm/switch_to.h>
 | |
| #include <asm/tm.h>
 | |
| #include <asm/debug.h>
 | |
| 
 | |
| #if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC)
 | |
| int (*__debugger)(struct pt_regs *regs) __read_mostly;
 | |
| int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly;
 | |
| int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly;
 | |
| int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly;
 | |
| int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly;
 | |
| int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly;
 | |
| int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly;
 | |
| 
 | |
| EXPORT_SYMBOL(__debugger);
 | |
| EXPORT_SYMBOL(__debugger_ipi);
 | |
| EXPORT_SYMBOL(__debugger_bpt);
 | |
| EXPORT_SYMBOL(__debugger_sstep);
 | |
| EXPORT_SYMBOL(__debugger_iabr_match);
 | |
| EXPORT_SYMBOL(__debugger_break_match);
 | |
| EXPORT_SYMBOL(__debugger_fault_handler);
 | |
| #endif
 | |
| 
 | |
| /* Transactional Memory trap debug */
 | |
| #ifdef TM_DEBUG_SW
 | |
| #define TM_DEBUG(x...) printk(KERN_INFO x)
 | |
| #else
 | |
| #define TM_DEBUG(x...) do { } while(0)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Trap & Exception support
 | |
|  */
 | |
| 
 | |
| #ifdef CONFIG_PMAC_BACKLIGHT
 | |
| static void pmac_backlight_unblank(void)
 | |
| {
 | |
| 	mutex_lock(&pmac_backlight_mutex);
 | |
| 	if (pmac_backlight) {
 | |
| 		struct backlight_properties *props;
 | |
| 
 | |
| 		props = &pmac_backlight->props;
 | |
| 		props->brightness = props->max_brightness;
 | |
| 		props->power = FB_BLANK_UNBLANK;
 | |
| 		backlight_update_status(pmac_backlight);
 | |
| 	}
 | |
| 	mutex_unlock(&pmac_backlight_mutex);
 | |
| }
 | |
| #else
 | |
| static inline void pmac_backlight_unblank(void) { }
 | |
| #endif
 | |
| 
 | |
| static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
 | |
| static int die_owner = -1;
 | |
| static unsigned int die_nest_count;
 | |
| static int die_counter;
 | |
| 
 | |
| static unsigned __kprobes long oops_begin(struct pt_regs *regs)
 | |
| {
 | |
| 	int cpu;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (debugger(regs))
 | |
| 		return 1;
 | |
| 
 | |
| 	oops_enter();
 | |
| 
 | |
| 	/* racy, but better than risking deadlock. */
 | |
| 	raw_local_irq_save(flags);
 | |
| 	cpu = smp_processor_id();
 | |
| 	if (!arch_spin_trylock(&die_lock)) {
 | |
| 		if (cpu == die_owner)
 | |
| 			/* nested oops. should stop eventually */;
 | |
| 		else
 | |
| 			arch_spin_lock(&die_lock);
 | |
| 	}
 | |
| 	die_nest_count++;
 | |
| 	die_owner = cpu;
 | |
| 	console_verbose();
 | |
| 	bust_spinlocks(1);
 | |
| 	if (machine_is(powermac))
 | |
| 		pmac_backlight_unblank();
 | |
| 	return flags;
 | |
| }
 | |
| 
 | |
| static void __kprobes oops_end(unsigned long flags, struct pt_regs *regs,
 | |
| 			       int signr)
 | |
| {
 | |
| 	bust_spinlocks(0);
 | |
| 	die_owner = -1;
 | |
| 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
 | |
| 	die_nest_count--;
 | |
| 	oops_exit();
 | |
| 	printk("\n");
 | |
| 	if (!die_nest_count)
 | |
| 		/* Nest count reaches zero, release the lock. */
 | |
| 		arch_spin_unlock(&die_lock);
 | |
| 	raw_local_irq_restore(flags);
 | |
| 
 | |
| 	crash_fadump(regs, "die oops");
 | |
| 
 | |
| 	/*
 | |
| 	 * A system reset (0x100) is a request to dump, so we always send
 | |
| 	 * it through the crashdump code.
 | |
| 	 */
 | |
| 	if (kexec_should_crash(current) || (TRAP(regs) == 0x100)) {
 | |
| 		crash_kexec(regs);
 | |
| 
 | |
| 		/*
 | |
| 		 * We aren't the primary crash CPU. We need to send it
 | |
| 		 * to a holding pattern to avoid it ending up in the panic
 | |
| 		 * code.
 | |
| 		 */
 | |
| 		crash_kexec_secondary(regs);
 | |
| 	}
 | |
| 
 | |
| 	if (!signr)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * While our oops output is serialised by a spinlock, output
 | |
| 	 * from panic() called below can race and corrupt it. If we
 | |
| 	 * know we are going to panic, delay for 1 second so we have a
 | |
| 	 * chance to get clean backtraces from all CPUs that are oopsing.
 | |
| 	 */
 | |
| 	if (in_interrupt() || panic_on_oops || !current->pid ||
 | |
| 	    is_global_init(current)) {
 | |
| 		mdelay(MSEC_PER_SEC);
 | |
| 	}
 | |
| 
 | |
| 	if (in_interrupt())
 | |
| 		panic("Fatal exception in interrupt");
 | |
| 	if (panic_on_oops)
 | |
| 		panic("Fatal exception");
 | |
| 	do_exit(signr);
 | |
| }
 | |
| 
 | |
| static int __kprobes __die(const char *str, struct pt_regs *regs, long err)
 | |
| {
 | |
| 	printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
 | |
| #ifdef CONFIG_PREEMPT
 | |
| 	printk("PREEMPT ");
 | |
| #endif
 | |
| #ifdef CONFIG_SMP
 | |
| 	printk("SMP NR_CPUS=%d ", NR_CPUS);
 | |
| #endif
 | |
| #ifdef CONFIG_DEBUG_PAGEALLOC
 | |
| 	printk("DEBUG_PAGEALLOC ");
 | |
| #endif
 | |
| #ifdef CONFIG_NUMA
 | |
| 	printk("NUMA ");
 | |
| #endif
 | |
| 	printk("%s\n", ppc_md.name ? ppc_md.name : "");
 | |
| 
 | |
| 	if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP)
 | |
| 		return 1;
 | |
| 
 | |
| 	print_modules();
 | |
| 	show_regs(regs);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void die(const char *str, struct pt_regs *regs, long err)
 | |
| {
 | |
| 	unsigned long flags = oops_begin(regs);
 | |
| 
 | |
| 	if (__die(str, regs, err))
 | |
| 		err = 0;
 | |
| 	oops_end(flags, regs, err);
 | |
| }
 | |
| 
 | |
| void user_single_step_siginfo(struct task_struct *tsk,
 | |
| 				struct pt_regs *regs, siginfo_t *info)
 | |
| {
 | |
| 	memset(info, 0, sizeof(*info));
 | |
| 	info->si_signo = SIGTRAP;
 | |
| 	info->si_code = TRAP_TRACE;
 | |
| 	info->si_addr = (void __user *)regs->nip;
 | |
| }
 | |
| 
 | |
| void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
 | |
| {
 | |
| 	siginfo_t info;
 | |
| 	const char fmt32[] = KERN_INFO "%s[%d]: unhandled signal %d " \
 | |
| 			"at %08lx nip %08lx lr %08lx code %x\n";
 | |
| 	const char fmt64[] = KERN_INFO "%s[%d]: unhandled signal %d " \
 | |
| 			"at %016lx nip %016lx lr %016lx code %x\n";
 | |
| 
 | |
| 	if (!user_mode(regs)) {
 | |
| 		die("Exception in kernel mode", regs, signr);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (show_unhandled_signals && unhandled_signal(current, signr)) {
 | |
| 		printk_ratelimited(regs->msr & MSR_64BIT ? fmt64 : fmt32,
 | |
| 				   current->comm, current->pid, signr,
 | |
| 				   addr, regs->nip, regs->link, code);
 | |
| 	}
 | |
| 
 | |
| 	if (arch_irqs_disabled() && !arch_irq_disabled_regs(regs))
 | |
| 		local_irq_enable();
 | |
| 
 | |
| 	current->thread.trap_nr = code;
 | |
| 	memset(&info, 0, sizeof(info));
 | |
| 	info.si_signo = signr;
 | |
| 	info.si_code = code;
 | |
| 	info.si_addr = (void __user *) addr;
 | |
| 	force_sig_info(signr, &info, current);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PPC64
 | |
| void system_reset_exception(struct pt_regs *regs)
 | |
| {
 | |
| 	/* See if any machine dependent calls */
 | |
| 	if (ppc_md.system_reset_exception) {
 | |
| 		if (ppc_md.system_reset_exception(regs))
 | |
| 			return;
 | |
| 	}
 | |
| 
 | |
| 	die("System Reset", regs, SIGABRT);
 | |
| 
 | |
| 	/* Must die if the interrupt is not recoverable */
 | |
| 	if (!(regs->msr & MSR_RI))
 | |
| 		panic("Unrecoverable System Reset");
 | |
| 
 | |
| 	/* What should we do here? We could issue a shutdown or hard reset. */
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * I/O accesses can cause machine checks on powermacs.
 | |
|  * Check if the NIP corresponds to the address of a sync
 | |
|  * instruction for which there is an entry in the exception
 | |
|  * table.
 | |
|  * Note that the 601 only takes a machine check on TEA
 | |
|  * (transfer error ack) signal assertion, and does not
 | |
|  * set any of the top 16 bits of SRR1.
 | |
|  *  -- paulus.
 | |
|  */
 | |
| static inline int check_io_access(struct pt_regs *regs)
 | |
| {
 | |
| #ifdef CONFIG_PPC32
 | |
| 	unsigned long msr = regs->msr;
 | |
| 	const struct exception_table_entry *entry;
 | |
| 	unsigned int *nip = (unsigned int *)regs->nip;
 | |
| 
 | |
| 	if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000)))
 | |
| 	    && (entry = search_exception_tables(regs->nip)) != NULL) {
 | |
| 		/*
 | |
| 		 * Check that it's a sync instruction, or somewhere
 | |
| 		 * in the twi; isync; nop sequence that inb/inw/inl uses.
 | |
| 		 * As the address is in the exception table
 | |
| 		 * we should be able to read the instr there.
 | |
| 		 * For the debug message, we look at the preceding
 | |
| 		 * load or store.
 | |
| 		 */
 | |
| 		if (*nip == 0x60000000)		/* nop */
 | |
| 			nip -= 2;
 | |
| 		else if (*nip == 0x4c00012c)	/* isync */
 | |
| 			--nip;
 | |
| 		if (*nip == 0x7c0004ac || (*nip >> 26) == 3) {
 | |
| 			/* sync or twi */
 | |
| 			unsigned int rb;
 | |
| 
 | |
| 			--nip;
 | |
| 			rb = (*nip >> 11) & 0x1f;
 | |
| 			printk(KERN_DEBUG "%s bad port %lx at %p\n",
 | |
| 			       (*nip & 0x100)? "OUT to": "IN from",
 | |
| 			       regs->gpr[rb] - _IO_BASE, nip);
 | |
| 			regs->msr |= MSR_RI;
 | |
| 			regs->nip = entry->fixup;
 | |
| 			return 1;
 | |
| 		}
 | |
| 	}
 | |
| #endif /* CONFIG_PPC32 */
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PPC_ADV_DEBUG_REGS
 | |
| /* On 4xx, the reason for the machine check or program exception
 | |
|    is in the ESR. */
 | |
| #define get_reason(regs)	((regs)->dsisr)
 | |
| #ifndef CONFIG_FSL_BOOKE
 | |
| #define get_mc_reason(regs)	((regs)->dsisr)
 | |
| #else
 | |
| #define get_mc_reason(regs)	(mfspr(SPRN_MCSR))
 | |
| #endif
 | |
| #define REASON_FP		ESR_FP
 | |
| #define REASON_ILLEGAL		(ESR_PIL | ESR_PUO)
 | |
| #define REASON_PRIVILEGED	ESR_PPR
 | |
| #define REASON_TRAP		ESR_PTR
 | |
| 
 | |
| /* single-step stuff */
 | |
| #define single_stepping(regs)	(current->thread.dbcr0 & DBCR0_IC)
 | |
| #define clear_single_step(regs)	(current->thread.dbcr0 &= ~DBCR0_IC)
 | |
| 
 | |
| #else
 | |
| /* On non-4xx, the reason for the machine check or program
 | |
|    exception is in the MSR. */
 | |
| #define get_reason(regs)	((regs)->msr)
 | |
| #define get_mc_reason(regs)	((regs)->msr)
 | |
| #define REASON_TM		0x200000
 | |
| #define REASON_FP		0x100000
 | |
| #define REASON_ILLEGAL		0x80000
 | |
| #define REASON_PRIVILEGED	0x40000
 | |
| #define REASON_TRAP		0x20000
 | |
| 
 | |
| #define single_stepping(regs)	((regs)->msr & MSR_SE)
 | |
| #define clear_single_step(regs)	((regs)->msr &= ~MSR_SE)
 | |
| #endif
 | |
| 
 | |
| #if defined(CONFIG_4xx)
 | |
| int machine_check_4xx(struct pt_regs *regs)
 | |
| {
 | |
| 	unsigned long reason = get_mc_reason(regs);
 | |
| 
 | |
| 	if (reason & ESR_IMCP) {
 | |
| 		printk("Instruction");
 | |
| 		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
 | |
| 	} else
 | |
| 		printk("Data");
 | |
| 	printk(" machine check in kernel mode.\n");
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int machine_check_440A(struct pt_regs *regs)
 | |
| {
 | |
| 	unsigned long reason = get_mc_reason(regs);
 | |
| 
 | |
| 	printk("Machine check in kernel mode.\n");
 | |
| 	if (reason & ESR_IMCP){
 | |
| 		printk("Instruction Synchronous Machine Check exception\n");
 | |
| 		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
 | |
| 	}
 | |
| 	else {
 | |
| 		u32 mcsr = mfspr(SPRN_MCSR);
 | |
| 		if (mcsr & MCSR_IB)
 | |
| 			printk("Instruction Read PLB Error\n");
 | |
| 		if (mcsr & MCSR_DRB)
 | |
| 			printk("Data Read PLB Error\n");
 | |
| 		if (mcsr & MCSR_DWB)
 | |
| 			printk("Data Write PLB Error\n");
 | |
| 		if (mcsr & MCSR_TLBP)
 | |
| 			printk("TLB Parity Error\n");
 | |
| 		if (mcsr & MCSR_ICP){
 | |
| 			flush_instruction_cache();
 | |
| 			printk("I-Cache Parity Error\n");
 | |
| 		}
 | |
| 		if (mcsr & MCSR_DCSP)
 | |
| 			printk("D-Cache Search Parity Error\n");
 | |
| 		if (mcsr & MCSR_DCFP)
 | |
| 			printk("D-Cache Flush Parity Error\n");
 | |
| 		if (mcsr & MCSR_IMPE)
 | |
| 			printk("Machine Check exception is imprecise\n");
 | |
| 
 | |
| 		/* Clear MCSR */
 | |
| 		mtspr(SPRN_MCSR, mcsr);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int machine_check_47x(struct pt_regs *regs)
 | |
| {
 | |
| 	unsigned long reason = get_mc_reason(regs);
 | |
| 	u32 mcsr;
 | |
| 
 | |
| 	printk(KERN_ERR "Machine check in kernel mode.\n");
 | |
| 	if (reason & ESR_IMCP) {
 | |
| 		printk(KERN_ERR
 | |
| 		       "Instruction Synchronous Machine Check exception\n");
 | |
| 		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	mcsr = mfspr(SPRN_MCSR);
 | |
| 	if (mcsr & MCSR_IB)
 | |
| 		printk(KERN_ERR "Instruction Read PLB Error\n");
 | |
| 	if (mcsr & MCSR_DRB)
 | |
| 		printk(KERN_ERR "Data Read PLB Error\n");
 | |
| 	if (mcsr & MCSR_DWB)
 | |
| 		printk(KERN_ERR "Data Write PLB Error\n");
 | |
| 	if (mcsr & MCSR_TLBP)
 | |
| 		printk(KERN_ERR "TLB Parity Error\n");
 | |
| 	if (mcsr & MCSR_ICP) {
 | |
| 		flush_instruction_cache();
 | |
| 		printk(KERN_ERR "I-Cache Parity Error\n");
 | |
| 	}
 | |
| 	if (mcsr & MCSR_DCSP)
 | |
| 		printk(KERN_ERR "D-Cache Search Parity Error\n");
 | |
| 	if (mcsr & PPC47x_MCSR_GPR)
 | |
| 		printk(KERN_ERR "GPR Parity Error\n");
 | |
| 	if (mcsr & PPC47x_MCSR_FPR)
 | |
| 		printk(KERN_ERR "FPR Parity Error\n");
 | |
| 	if (mcsr & PPC47x_MCSR_IPR)
 | |
| 		printk(KERN_ERR "Machine Check exception is imprecise\n");
 | |
| 
 | |
| 	/* Clear MCSR */
 | |
| 	mtspr(SPRN_MCSR, mcsr);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| #elif defined(CONFIG_E500)
 | |
| int machine_check_e500mc(struct pt_regs *regs)
 | |
| {
 | |
| 	unsigned long mcsr = mfspr(SPRN_MCSR);
 | |
| 	unsigned long reason = mcsr;
 | |
| 	int recoverable = 1;
 | |
| 
 | |
| 	if (reason & MCSR_LD) {
 | |
| 		recoverable = fsl_rio_mcheck_exception(regs);
 | |
| 		if (recoverable == 1)
 | |
| 			goto silent_out;
 | |
| 	}
 | |
| 
 | |
| 	printk("Machine check in kernel mode.\n");
 | |
| 	printk("Caused by (from MCSR=%lx): ", reason);
 | |
| 
 | |
| 	if (reason & MCSR_MCP)
 | |
| 		printk("Machine Check Signal\n");
 | |
| 
 | |
| 	if (reason & MCSR_ICPERR) {
 | |
| 		printk("Instruction Cache Parity Error\n");
 | |
| 
 | |
| 		/*
 | |
| 		 * This is recoverable by invalidating the i-cache.
 | |
| 		 */
 | |
| 		mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI);
 | |
| 		while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI)
 | |
| 			;
 | |
| 
 | |
| 		/*
 | |
| 		 * This will generally be accompanied by an instruction
 | |
| 		 * fetch error report -- only treat MCSR_IF as fatal
 | |
| 		 * if it wasn't due to an L1 parity error.
 | |
| 		 */
 | |
| 		reason &= ~MCSR_IF;
 | |
| 	}
 | |
| 
 | |
| 	if (reason & MCSR_DCPERR_MC) {
 | |
| 		printk("Data Cache Parity Error\n");
 | |
| 
 | |
| 		/*
 | |
| 		 * In write shadow mode we auto-recover from the error, but it
 | |
| 		 * may still get logged and cause a machine check.  We should
 | |
| 		 * only treat the non-write shadow case as non-recoverable.
 | |
| 		 */
 | |
| 		if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS))
 | |
| 			recoverable = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (reason & MCSR_L2MMU_MHIT) {
 | |
| 		printk("Hit on multiple TLB entries\n");
 | |
| 		recoverable = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (reason & MCSR_NMI)
 | |
| 		printk("Non-maskable interrupt\n");
 | |
| 
 | |
| 	if (reason & MCSR_IF) {
 | |
| 		printk("Instruction Fetch Error Report\n");
 | |
| 		recoverable = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (reason & MCSR_LD) {
 | |
| 		printk("Load Error Report\n");
 | |
| 		recoverable = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (reason & MCSR_ST) {
 | |
| 		printk("Store Error Report\n");
 | |
| 		recoverable = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (reason & MCSR_LDG) {
 | |
| 		printk("Guarded Load Error Report\n");
 | |
| 		recoverable = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (reason & MCSR_TLBSYNC)
 | |
| 		printk("Simultaneous tlbsync operations\n");
 | |
| 
 | |
| 	if (reason & MCSR_BSL2_ERR) {
 | |
| 		printk("Level 2 Cache Error\n");
 | |
| 		recoverable = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (reason & MCSR_MAV) {
 | |
| 		u64 addr;
 | |
| 
 | |
| 		addr = mfspr(SPRN_MCAR);
 | |
| 		addr |= (u64)mfspr(SPRN_MCARU) << 32;
 | |
| 
 | |
| 		printk("Machine Check %s Address: %#llx\n",
 | |
| 		       reason & MCSR_MEA ? "Effective" : "Physical", addr);
 | |
| 	}
 | |
| 
 | |
| silent_out:
 | |
| 	mtspr(SPRN_MCSR, mcsr);
 | |
| 	return mfspr(SPRN_MCSR) == 0 && recoverable;
 | |
| }
 | |
| 
 | |
| int machine_check_e500(struct pt_regs *regs)
 | |
| {
 | |
| 	unsigned long reason = get_mc_reason(regs);
 | |
| 
 | |
| 	if (reason & MCSR_BUS_RBERR) {
 | |
| 		if (fsl_rio_mcheck_exception(regs))
 | |
| 			return 1;
 | |
| 	}
 | |
| 
 | |
| 	printk("Machine check in kernel mode.\n");
 | |
| 	printk("Caused by (from MCSR=%lx): ", reason);
 | |
| 
 | |
| 	if (reason & MCSR_MCP)
 | |
| 		printk("Machine Check Signal\n");
 | |
| 	if (reason & MCSR_ICPERR)
 | |
| 		printk("Instruction Cache Parity Error\n");
 | |
| 	if (reason & MCSR_DCP_PERR)
 | |
| 		printk("Data Cache Push Parity Error\n");
 | |
| 	if (reason & MCSR_DCPERR)
 | |
| 		printk("Data Cache Parity Error\n");
 | |
| 	if (reason & MCSR_BUS_IAERR)
 | |
| 		printk("Bus - Instruction Address Error\n");
 | |
| 	if (reason & MCSR_BUS_RAERR)
 | |
| 		printk("Bus - Read Address Error\n");
 | |
| 	if (reason & MCSR_BUS_WAERR)
 | |
| 		printk("Bus - Write Address Error\n");
 | |
| 	if (reason & MCSR_BUS_IBERR)
 | |
| 		printk("Bus - Instruction Data Error\n");
 | |
| 	if (reason & MCSR_BUS_RBERR)
 | |
| 		printk("Bus - Read Data Bus Error\n");
 | |
| 	if (reason & MCSR_BUS_WBERR)
 | |
| 		printk("Bus - Read Data Bus Error\n");
 | |
| 	if (reason & MCSR_BUS_IPERR)
 | |
| 		printk("Bus - Instruction Parity Error\n");
 | |
| 	if (reason & MCSR_BUS_RPERR)
 | |
| 		printk("Bus - Read Parity Error\n");
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int machine_check_generic(struct pt_regs *regs)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #elif defined(CONFIG_E200)
 | |
| int machine_check_e200(struct pt_regs *regs)
 | |
| {
 | |
| 	unsigned long reason = get_mc_reason(regs);
 | |
| 
 | |
| 	printk("Machine check in kernel mode.\n");
 | |
| 	printk("Caused by (from MCSR=%lx): ", reason);
 | |
| 
 | |
| 	if (reason & MCSR_MCP)
 | |
| 		printk("Machine Check Signal\n");
 | |
| 	if (reason & MCSR_CP_PERR)
 | |
| 		printk("Cache Push Parity Error\n");
 | |
| 	if (reason & MCSR_CPERR)
 | |
| 		printk("Cache Parity Error\n");
 | |
| 	if (reason & MCSR_EXCP_ERR)
 | |
| 		printk("ISI, ITLB, or Bus Error on first instruction fetch for an exception handler\n");
 | |
| 	if (reason & MCSR_BUS_IRERR)
 | |
| 		printk("Bus - Read Bus Error on instruction fetch\n");
 | |
| 	if (reason & MCSR_BUS_DRERR)
 | |
| 		printk("Bus - Read Bus Error on data load\n");
 | |
| 	if (reason & MCSR_BUS_WRERR)
 | |
| 		printk("Bus - Write Bus Error on buffered store or cache line push\n");
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| #else
 | |
| int machine_check_generic(struct pt_regs *regs)
 | |
| {
 | |
| 	unsigned long reason = get_mc_reason(regs);
 | |
| 
 | |
| 	printk("Machine check in kernel mode.\n");
 | |
| 	printk("Caused by (from SRR1=%lx): ", reason);
 | |
| 	switch (reason & 0x601F0000) {
 | |
| 	case 0x80000:
 | |
| 		printk("Machine check signal\n");
 | |
| 		break;
 | |
| 	case 0:		/* for 601 */
 | |
| 	case 0x40000:
 | |
| 	case 0x140000:	/* 7450 MSS error and TEA */
 | |
| 		printk("Transfer error ack signal\n");
 | |
| 		break;
 | |
| 	case 0x20000:
 | |
| 		printk("Data parity error signal\n");
 | |
| 		break;
 | |
| 	case 0x10000:
 | |
| 		printk("Address parity error signal\n");
 | |
| 		break;
 | |
| 	case 0x20000000:
 | |
| 		printk("L1 Data Cache error\n");
 | |
| 		break;
 | |
| 	case 0x40000000:
 | |
| 		printk("L1 Instruction Cache error\n");
 | |
| 		break;
 | |
| 	case 0x00100000:
 | |
| 		printk("L2 data cache parity error\n");
 | |
| 		break;
 | |
| 	default:
 | |
| 		printk("Unknown values in msr\n");
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| #endif /* everything else */
 | |
| 
 | |
| void machine_check_exception(struct pt_regs *regs)
 | |
| {
 | |
| 	int recover = 0;
 | |
| 
 | |
| 	__get_cpu_var(irq_stat).mce_exceptions++;
 | |
| 
 | |
| 	/* See if any machine dependent calls. In theory, we would want
 | |
| 	 * to call the CPU first, and call the ppc_md. one if the CPU
 | |
| 	 * one returns a positive number. However there is existing code
 | |
| 	 * that assumes the board gets a first chance, so let's keep it
 | |
| 	 * that way for now and fix things later. --BenH.
 | |
| 	 */
 | |
| 	if (ppc_md.machine_check_exception)
 | |
| 		recover = ppc_md.machine_check_exception(regs);
 | |
| 	else if (cur_cpu_spec->machine_check)
 | |
| 		recover = cur_cpu_spec->machine_check(regs);
 | |
| 
 | |
| 	if (recover > 0)
 | |
| 		return;
 | |
| 
 | |
| #if defined(CONFIG_8xx) && defined(CONFIG_PCI)
 | |
| 	/* the qspan pci read routines can cause machine checks -- Cort
 | |
| 	 *
 | |
| 	 * yuck !!! that totally needs to go away ! There are better ways
 | |
| 	 * to deal with that than having a wart in the mcheck handler.
 | |
| 	 * -- BenH
 | |
| 	 */
 | |
| 	bad_page_fault(regs, regs->dar, SIGBUS);
 | |
| 	return;
 | |
| #endif
 | |
| 
 | |
| 	if (debugger_fault_handler(regs))
 | |
| 		return;
 | |
| 
 | |
| 	if (check_io_access(regs))
 | |
| 		return;
 | |
| 
 | |
| 	die("Machine check", regs, SIGBUS);
 | |
| 
 | |
| 	/* Must die if the interrupt is not recoverable */
 | |
| 	if (!(regs->msr & MSR_RI))
 | |
| 		panic("Unrecoverable Machine check");
 | |
| }
 | |
| 
 | |
| void SMIException(struct pt_regs *regs)
 | |
| {
 | |
| 	die("System Management Interrupt", regs, SIGABRT);
 | |
| }
 | |
| 
 | |
| void unknown_exception(struct pt_regs *regs)
 | |
| {
 | |
| 	printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
 | |
| 	       regs->nip, regs->msr, regs->trap);
 | |
| 
 | |
| 	_exception(SIGTRAP, regs, 0, 0);
 | |
| }
 | |
| 
 | |
| void instruction_breakpoint_exception(struct pt_regs *regs)
 | |
| {
 | |
| 	if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5,
 | |
| 					5, SIGTRAP) == NOTIFY_STOP)
 | |
| 		return;
 | |
| 	if (debugger_iabr_match(regs))
 | |
| 		return;
 | |
| 	_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
 | |
| }
 | |
| 
 | |
| void RunModeException(struct pt_regs *regs)
 | |
| {
 | |
| 	_exception(SIGTRAP, regs, 0, 0);
 | |
| }
 | |
| 
 | |
| void __kprobes single_step_exception(struct pt_regs *regs)
 | |
| {
 | |
| 	clear_single_step(regs);
 | |
| 
 | |
| 	if (notify_die(DIE_SSTEP, "single_step", regs, 5,
 | |
| 					5, SIGTRAP) == NOTIFY_STOP)
 | |
| 		return;
 | |
| 	if (debugger_sstep(regs))
 | |
| 		return;
 | |
| 
 | |
| 	_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * After we have successfully emulated an instruction, we have to
 | |
|  * check if the instruction was being single-stepped, and if so,
 | |
|  * pretend we got a single-step exception.  This was pointed out
 | |
|  * by Kumar Gala.  -- paulus
 | |
|  */
 | |
| static void emulate_single_step(struct pt_regs *regs)
 | |
| {
 | |
| 	if (single_stepping(regs))
 | |
| 		single_step_exception(regs);
 | |
| }
 | |
| 
 | |
| static inline int __parse_fpscr(unsigned long fpscr)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	/* Invalid operation */
 | |
| 	if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX))
 | |
| 		ret = FPE_FLTINV;
 | |
| 
 | |
| 	/* Overflow */
 | |
| 	else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX))
 | |
| 		ret = FPE_FLTOVF;
 | |
| 
 | |
| 	/* Underflow */
 | |
| 	else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX))
 | |
| 		ret = FPE_FLTUND;
 | |
| 
 | |
| 	/* Divide by zero */
 | |
| 	else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX))
 | |
| 		ret = FPE_FLTDIV;
 | |
| 
 | |
| 	/* Inexact result */
 | |
| 	else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX))
 | |
| 		ret = FPE_FLTRES;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void parse_fpe(struct pt_regs *regs)
 | |
| {
 | |
| 	int code = 0;
 | |
| 
 | |
| 	flush_fp_to_thread(current);
 | |
| 
 | |
| 	code = __parse_fpscr(current->thread.fpscr.val);
 | |
| 
 | |
| 	_exception(SIGFPE, regs, code, regs->nip);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Illegal instruction emulation support.  Originally written to
 | |
|  * provide the PVR to user applications using the mfspr rd, PVR.
 | |
|  * Return non-zero if we can't emulate, or -EFAULT if the associated
 | |
|  * memory access caused an access fault.  Return zero on success.
 | |
|  *
 | |
|  * There are a couple of ways to do this, either "decode" the instruction
 | |
|  * or directly match lots of bits.  In this case, matching lots of
 | |
|  * bits is faster and easier.
 | |
|  *
 | |
|  */
 | |
| static int emulate_string_inst(struct pt_regs *regs, u32 instword)
 | |
| {
 | |
| 	u8 rT = (instword >> 21) & 0x1f;
 | |
| 	u8 rA = (instword >> 16) & 0x1f;
 | |
| 	u8 NB_RB = (instword >> 11) & 0x1f;
 | |
| 	u32 num_bytes;
 | |
| 	unsigned long EA;
 | |
| 	int pos = 0;
 | |
| 
 | |
| 	/* Early out if we are an invalid form of lswx */
 | |
| 	if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX)
 | |
| 		if ((rT == rA) || (rT == NB_RB))
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 	EA = (rA == 0) ? 0 : regs->gpr[rA];
 | |
| 
 | |
| 	switch (instword & PPC_INST_STRING_MASK) {
 | |
| 		case PPC_INST_LSWX:
 | |
| 		case PPC_INST_STSWX:
 | |
| 			EA += NB_RB;
 | |
| 			num_bytes = regs->xer & 0x7f;
 | |
| 			break;
 | |
| 		case PPC_INST_LSWI:
 | |
| 		case PPC_INST_STSWI:
 | |
| 			num_bytes = (NB_RB == 0) ? 32 : NB_RB;
 | |
| 			break;
 | |
| 		default:
 | |
| 			return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	while (num_bytes != 0)
 | |
| 	{
 | |
| 		u8 val;
 | |
| 		u32 shift = 8 * (3 - (pos & 0x3));
 | |
| 
 | |
| 		switch ((instword & PPC_INST_STRING_MASK)) {
 | |
| 			case PPC_INST_LSWX:
 | |
| 			case PPC_INST_LSWI:
 | |
| 				if (get_user(val, (u8 __user *)EA))
 | |
| 					return -EFAULT;
 | |
| 				/* first time updating this reg,
 | |
| 				 * zero it out */
 | |
| 				if (pos == 0)
 | |
| 					regs->gpr[rT] = 0;
 | |
| 				regs->gpr[rT] |= val << shift;
 | |
| 				break;
 | |
| 			case PPC_INST_STSWI:
 | |
| 			case PPC_INST_STSWX:
 | |
| 				val = regs->gpr[rT] >> shift;
 | |
| 				if (put_user(val, (u8 __user *)EA))
 | |
| 					return -EFAULT;
 | |
| 				break;
 | |
| 		}
 | |
| 		/* move EA to next address */
 | |
| 		EA += 1;
 | |
| 		num_bytes--;
 | |
| 
 | |
| 		/* manage our position within the register */
 | |
| 		if (++pos == 4) {
 | |
| 			pos = 0;
 | |
| 			if (++rT == 32)
 | |
| 				rT = 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword)
 | |
| {
 | |
| 	u32 ra,rs;
 | |
| 	unsigned long tmp;
 | |
| 
 | |
| 	ra = (instword >> 16) & 0x1f;
 | |
| 	rs = (instword >> 21) & 0x1f;
 | |
| 
 | |
| 	tmp = regs->gpr[rs];
 | |
| 	tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL);
 | |
| 	tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL);
 | |
| 	tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
 | |
| 	regs->gpr[ra] = tmp;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int emulate_isel(struct pt_regs *regs, u32 instword)
 | |
| {
 | |
| 	u8 rT = (instword >> 21) & 0x1f;
 | |
| 	u8 rA = (instword >> 16) & 0x1f;
 | |
| 	u8 rB = (instword >> 11) & 0x1f;
 | |
| 	u8 BC = (instword >> 6) & 0x1f;
 | |
| 	u8 bit;
 | |
| 	unsigned long tmp;
 | |
| 
 | |
| 	tmp = (rA == 0) ? 0 : regs->gpr[rA];
 | |
| 	bit = (regs->ccr >> (31 - BC)) & 0x1;
 | |
| 
 | |
| 	regs->gpr[rT] = bit ? tmp : regs->gpr[rB];
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int emulate_instruction(struct pt_regs *regs)
 | |
| {
 | |
| 	u32 instword;
 | |
| 	u32 rd;
 | |
| 
 | |
| 	if (!user_mode(regs) || (regs->msr & MSR_LE))
 | |
| 		return -EINVAL;
 | |
| 	CHECK_FULL_REGS(regs);
 | |
| 
 | |
| 	if (get_user(instword, (u32 __user *)(regs->nip)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	/* Emulate the mfspr rD, PVR. */
 | |
| 	if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) {
 | |
| 		PPC_WARN_EMULATED(mfpvr, regs);
 | |
| 		rd = (instword >> 21) & 0x1f;
 | |
| 		regs->gpr[rd] = mfspr(SPRN_PVR);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Emulating the dcba insn is just a no-op.  */
 | |
| 	if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) {
 | |
| 		PPC_WARN_EMULATED(dcba, regs);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Emulate the mcrxr insn.  */
 | |
| 	if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) {
 | |
| 		int shift = (instword >> 21) & 0x1c;
 | |
| 		unsigned long msk = 0xf0000000UL >> shift;
 | |
| 
 | |
| 		PPC_WARN_EMULATED(mcrxr, regs);
 | |
| 		regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk);
 | |
| 		regs->xer &= ~0xf0000000UL;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Emulate load/store string insn. */
 | |
| 	if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) {
 | |
| 		PPC_WARN_EMULATED(string, regs);
 | |
| 		return emulate_string_inst(regs, instword);
 | |
| 	}
 | |
| 
 | |
| 	/* Emulate the popcntb (Population Count Bytes) instruction. */
 | |
| 	if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) {
 | |
| 		PPC_WARN_EMULATED(popcntb, regs);
 | |
| 		return emulate_popcntb_inst(regs, instword);
 | |
| 	}
 | |
| 
 | |
| 	/* Emulate isel (Integer Select) instruction */
 | |
| 	if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) {
 | |
| 		PPC_WARN_EMULATED(isel, regs);
 | |
| 		return emulate_isel(regs, instword);
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_PPC64
 | |
| 	/* Emulate the mfspr rD, DSCR. */
 | |
| 	if (((instword & PPC_INST_MFSPR_DSCR_MASK) == PPC_INST_MFSPR_DSCR) &&
 | |
| 			cpu_has_feature(CPU_FTR_DSCR)) {
 | |
| 		PPC_WARN_EMULATED(mfdscr, regs);
 | |
| 		rd = (instword >> 21) & 0x1f;
 | |
| 		regs->gpr[rd] = mfspr(SPRN_DSCR);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	/* Emulate the mtspr DSCR, rD. */
 | |
| 	if (((instword & PPC_INST_MTSPR_DSCR_MASK) == PPC_INST_MTSPR_DSCR) &&
 | |
| 			cpu_has_feature(CPU_FTR_DSCR)) {
 | |
| 		PPC_WARN_EMULATED(mtdscr, regs);
 | |
| 		rd = (instword >> 21) & 0x1f;
 | |
| 		current->thread.dscr = regs->gpr[rd];
 | |
| 		current->thread.dscr_inherit = 1;
 | |
| 		mtspr(SPRN_DSCR, current->thread.dscr);
 | |
| 		return 0;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| int is_valid_bugaddr(unsigned long addr)
 | |
| {
 | |
| 	return is_kernel_addr(addr);
 | |
| }
 | |
| 
 | |
| void __kprobes program_check_exception(struct pt_regs *regs)
 | |
| {
 | |
| 	unsigned int reason = get_reason(regs);
 | |
| 	extern int do_mathemu(struct pt_regs *regs);
 | |
| 
 | |
| 	/* We can now get here via a FP Unavailable exception if the core
 | |
| 	 * has no FPU, in that case the reason flags will be 0 */
 | |
| 
 | |
| 	if (reason & REASON_FP) {
 | |
| 		/* IEEE FP exception */
 | |
| 		parse_fpe(regs);
 | |
| 		return;
 | |
| 	}
 | |
| 	if (reason & REASON_TRAP) {
 | |
| 		/* Debugger is first in line to stop recursive faults in
 | |
| 		 * rcu_lock, notify_die, or atomic_notifier_call_chain */
 | |
| 		if (debugger_bpt(regs))
 | |
| 			return;
 | |
| 
 | |
| 		/* trap exception */
 | |
| 		if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP)
 | |
| 				== NOTIFY_STOP)
 | |
| 			return;
 | |
| 
 | |
| 		if (!(regs->msr & MSR_PR) &&  /* not user-mode */
 | |
| 		    report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
 | |
| 			regs->nip += 4;
 | |
| 			return;
 | |
| 		}
 | |
| 		_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
 | |
| 		return;
 | |
| 	}
 | |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 | |
| 	if (reason & REASON_TM) {
 | |
| 		/* This is a TM "Bad Thing Exception" program check.
 | |
| 		 * This occurs when:
 | |
| 		 * -  An rfid/hrfid/mtmsrd attempts to cause an illegal
 | |
| 		 *    transition in TM states.
 | |
| 		 * -  A trechkpt is attempted when transactional.
 | |
| 		 * -  A treclaim is attempted when non transactional.
 | |
| 		 * -  A tend is illegally attempted.
 | |
| 		 * -  writing a TM SPR when transactional.
 | |
| 		 */
 | |
| 		if (!user_mode(regs) &&
 | |
| 		    report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
 | |
| 			regs->nip += 4;
 | |
| 			return;
 | |
| 		}
 | |
| 		/* If usermode caused this, it's done something illegal and
 | |
| 		 * gets a SIGILL slap on the wrist.  We call it an illegal
 | |
| 		 * operand to distinguish from the instruction just being bad
 | |
| 		 * (e.g. executing a 'tend' on a CPU without TM!); it's an
 | |
| 		 * illegal /placement/ of a valid instruction.
 | |
| 		 */
 | |
| 		if (user_mode(regs)) {
 | |
| 			_exception(SIGILL, regs, ILL_ILLOPN, regs->nip);
 | |
| 			return;
 | |
| 		} else {
 | |
| 			printk(KERN_EMERG "Unexpected TM Bad Thing exception "
 | |
| 			       "at %lx (msr 0x%x)\n", regs->nip, reason);
 | |
| 			die("Unrecoverable exception", regs, SIGABRT);
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	/* We restore the interrupt state now */
 | |
| 	if (!arch_irq_disabled_regs(regs))
 | |
| 		local_irq_enable();
 | |
| 
 | |
| #ifdef CONFIG_MATH_EMULATION
 | |
| 	/* (reason & REASON_ILLEGAL) would be the obvious thing here,
 | |
| 	 * but there seems to be a hardware bug on the 405GP (RevD)
 | |
| 	 * that means ESR is sometimes set incorrectly - either to
 | |
| 	 * ESR_DST (!?) or 0.  In the process of chasing this with the
 | |
| 	 * hardware people - not sure if it can happen on any illegal
 | |
| 	 * instruction or only on FP instructions, whether there is a
 | |
| 	 * pattern to occurrences etc. -dgibson 31/Mar/2003 */
 | |
| 	switch (do_mathemu(regs)) {
 | |
| 	case 0:
 | |
| 		emulate_single_step(regs);
 | |
| 		return;
 | |
| 	case 1: {
 | |
| 			int code = 0;
 | |
| 			code = __parse_fpscr(current->thread.fpscr.val);
 | |
| 			_exception(SIGFPE, regs, code, regs->nip);
 | |
| 			return;
 | |
| 		}
 | |
| 	case -EFAULT:
 | |
| 		_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
 | |
| 		return;
 | |
| 	}
 | |
| 	/* fall through on any other errors */
 | |
| #endif /* CONFIG_MATH_EMULATION */
 | |
| 
 | |
| 	/* Try to emulate it if we should. */
 | |
| 	if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) {
 | |
| 		switch (emulate_instruction(regs)) {
 | |
| 		case 0:
 | |
| 			regs->nip += 4;
 | |
| 			emulate_single_step(regs);
 | |
| 			return;
 | |
| 		case -EFAULT:
 | |
| 			_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (reason & REASON_PRIVILEGED)
 | |
| 		_exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
 | |
| 	else
 | |
| 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
 | |
| }
 | |
| 
 | |
| void alignment_exception(struct pt_regs *regs)
 | |
| {
 | |
| 	int sig, code, fixed = 0;
 | |
| 
 | |
| 	/* We restore the interrupt state now */
 | |
| 	if (!arch_irq_disabled_regs(regs))
 | |
| 		local_irq_enable();
 | |
| 
 | |
| 	/* we don't implement logging of alignment exceptions */
 | |
| 	if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS))
 | |
| 		fixed = fix_alignment(regs);
 | |
| 
 | |
| 	if (fixed == 1) {
 | |
| 		regs->nip += 4;	/* skip over emulated instruction */
 | |
| 		emulate_single_step(regs);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Operand address was bad */
 | |
| 	if (fixed == -EFAULT) {
 | |
| 		sig = SIGSEGV;
 | |
| 		code = SEGV_ACCERR;
 | |
| 	} else {
 | |
| 		sig = SIGBUS;
 | |
| 		code = BUS_ADRALN;
 | |
| 	}
 | |
| 	if (user_mode(regs))
 | |
| 		_exception(sig, regs, code, regs->dar);
 | |
| 	else
 | |
| 		bad_page_fault(regs, regs->dar, sig);
 | |
| }
 | |
| 
 | |
| void StackOverflow(struct pt_regs *regs)
 | |
| {
 | |
| 	printk(KERN_CRIT "Kernel stack overflow in process %p, r1=%lx\n",
 | |
| 	       current, regs->gpr[1]);
 | |
| 	debugger(regs);
 | |
| 	show_regs(regs);
 | |
| 	panic("kernel stack overflow");
 | |
| }
 | |
| 
 | |
| void nonrecoverable_exception(struct pt_regs *regs)
 | |
| {
 | |
| 	printk(KERN_ERR "Non-recoverable exception at PC=%lx MSR=%lx\n",
 | |
| 	       regs->nip, regs->msr);
 | |
| 	debugger(regs);
 | |
| 	die("nonrecoverable exception", regs, SIGKILL);
 | |
| }
 | |
| 
 | |
| void trace_syscall(struct pt_regs *regs)
 | |
| {
 | |
| 	printk("Task: %p(%d), PC: %08lX/%08lX, Syscall: %3ld, Result: %s%ld    %s\n",
 | |
| 	       current, task_pid_nr(current), regs->nip, regs->link, regs->gpr[0],
 | |
| 	       regs->ccr&0x10000000?"Error=":"", regs->gpr[3], print_tainted());
 | |
| }
 | |
| 
 | |
| void kernel_fp_unavailable_exception(struct pt_regs *regs)
 | |
| {
 | |
| 	printk(KERN_EMERG "Unrecoverable FP Unavailable Exception "
 | |
| 			  "%lx at %lx\n", regs->trap, regs->nip);
 | |
| 	die("Unrecoverable FP Unavailable Exception", regs, SIGABRT);
 | |
| }
 | |
| 
 | |
| void altivec_unavailable_exception(struct pt_regs *regs)
 | |
| {
 | |
| 	if (user_mode(regs)) {
 | |
| 		/* A user program has executed an altivec instruction,
 | |
| 		   but this kernel doesn't support altivec. */
 | |
| 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception "
 | |
| 			"%lx at %lx\n", regs->trap, regs->nip);
 | |
| 	die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT);
 | |
| }
 | |
| 
 | |
| void vsx_unavailable_exception(struct pt_regs *regs)
 | |
| {
 | |
| 	if (user_mode(regs)) {
 | |
| 		/* A user program has executed an vsx instruction,
 | |
| 		   but this kernel doesn't support vsx. */
 | |
| 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception "
 | |
| 			"%lx at %lx\n", regs->trap, regs->nip);
 | |
| 	die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT);
 | |
| }
 | |
| 
 | |
| void tm_unavailable_exception(struct pt_regs *regs)
 | |
| {
 | |
| 	/* We restore the interrupt state now */
 | |
| 	if (!arch_irq_disabled_regs(regs))
 | |
| 		local_irq_enable();
 | |
| 
 | |
| 	/* Currently we never expect a TMU exception.  Catch
 | |
| 	 * this and kill the process!
 | |
| 	 */
 | |
| 	printk(KERN_EMERG "Unexpected TM unavailable exception at %lx "
 | |
| 	       "(msr %lx)\n",
 | |
| 	       regs->nip, regs->msr);
 | |
| 
 | |
| 	if (user_mode(regs)) {
 | |
| 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	die("Unexpected TM unavailable exception", regs, SIGABRT);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 | |
| 
 | |
| extern void do_load_up_fpu(struct pt_regs *regs);
 | |
| 
 | |
| void fp_unavailable_tm(struct pt_regs *regs)
 | |
| {
 | |
| 	/* Note:  This does not handle any kind of FP laziness. */
 | |
| 
 | |
| 	TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n",
 | |
| 		 regs->nip, regs->msr);
 | |
| 	tm_enable();
 | |
| 
 | |
|         /* We can only have got here if the task started using FP after
 | |
|          * beginning the transaction.  So, the transactional regs are just a
 | |
|          * copy of the checkpointed ones.  But, we still need to recheckpoint
 | |
|          * as we're enabling FP for the process; it will return, abort the
 | |
|          * transaction, and probably retry but now with FP enabled.  So the
 | |
|          * checkpointed FP registers need to be loaded.
 | |
| 	 */
 | |
| 	tm_reclaim(¤t->thread, current->thread.regs->msr,
 | |
| 		   TM_CAUSE_FAC_UNAV);
 | |
| 	/* Reclaim didn't save out any FPRs to transact_fprs. */
 | |
| 
 | |
| 	/* Enable FP for the task: */
 | |
| 	regs->msr |= (MSR_FP | current->thread.fpexc_mode);
 | |
| 
 | |
| 	/* This loads and recheckpoints the FP registers from
 | |
| 	 * thread.fpr[].  They will remain in registers after the
 | |
| 	 * checkpoint so we don't need to reload them after.
 | |
| 	 */
 | |
| 	tm_recheckpoint(¤t->thread, regs->msr);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_ALTIVEC
 | |
| extern void do_load_up_altivec(struct pt_regs *regs);
 | |
| 
 | |
| void altivec_unavailable_tm(struct pt_regs *regs)
 | |
| {
 | |
| 	/* See the comments in fp_unavailable_tm().  This function operates
 | |
| 	 * the same way.
 | |
| 	 */
 | |
| 
 | |
| 	TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx,"
 | |
| 		 "MSR=%lx\n",
 | |
| 		 regs->nip, regs->msr);
 | |
| 	tm_enable();
 | |
| 	tm_reclaim(¤t->thread, current->thread.regs->msr,
 | |
| 		   TM_CAUSE_FAC_UNAV);
 | |
| 	regs->msr |= MSR_VEC;
 | |
| 	tm_recheckpoint(¤t->thread, regs->msr);
 | |
| 	current->thread.used_vr = 1;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_VSX
 | |
| void vsx_unavailable_tm(struct pt_regs *regs)
 | |
| {
 | |
| 	/* See the comments in fp_unavailable_tm().  This works similarly,
 | |
| 	 * though we're loading both FP and VEC registers in here.
 | |
| 	 *
 | |
| 	 * If FP isn't in use, load FP regs.  If VEC isn't in use, load VEC
 | |
| 	 * regs.  Either way, set MSR_VSX.
 | |
| 	 */
 | |
| 
 | |
| 	TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx,"
 | |
| 		 "MSR=%lx\n",
 | |
| 		 regs->nip, regs->msr);
 | |
| 
 | |
| 	tm_enable();
 | |
| 	/* This reclaims FP and/or VR regs if they're already enabled */
 | |
| 	tm_reclaim(¤t->thread, current->thread.regs->msr,
 | |
| 		   TM_CAUSE_FAC_UNAV);
 | |
| 
 | |
| 	regs->msr |= MSR_VEC | MSR_FP | current->thread.fpexc_mode |
 | |
| 		MSR_VSX;
 | |
| 	/* This loads & recheckpoints FP and VRs. */
 | |
| 	tm_recheckpoint(¤t->thread, regs->msr);
 | |
| 	current->thread.used_vsr = 1;
 | |
| }
 | |
| #endif
 | |
| #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
 | |
| 
 | |
| void performance_monitor_exception(struct pt_regs *regs)
 | |
| {
 | |
| 	__get_cpu_var(irq_stat).pmu_irqs++;
 | |
| 
 | |
| 	perf_irq(regs);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_8xx
 | |
| void SoftwareEmulation(struct pt_regs *regs)
 | |
| {
 | |
| 	extern int do_mathemu(struct pt_regs *);
 | |
| 	extern int Soft_emulate_8xx(struct pt_regs *);
 | |
| #if defined(CONFIG_MATH_EMULATION) || defined(CONFIG_8XX_MINIMAL_FPEMU)
 | |
| 	int errcode;
 | |
| #endif
 | |
| 
 | |
| 	CHECK_FULL_REGS(regs);
 | |
| 
 | |
| 	if (!user_mode(regs)) {
 | |
| 		debugger(regs);
 | |
| 		die("Kernel Mode Software FPU Emulation", regs, SIGFPE);
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_MATH_EMULATION
 | |
| 	errcode = do_mathemu(regs);
 | |
| 	if (errcode >= 0)
 | |
| 		PPC_WARN_EMULATED(math, regs);
 | |
| 
 | |
| 	switch (errcode) {
 | |
| 	case 0:
 | |
| 		emulate_single_step(regs);
 | |
| 		return;
 | |
| 	case 1: {
 | |
| 			int code = 0;
 | |
| 			code = __parse_fpscr(current->thread.fpscr.val);
 | |
| 			_exception(SIGFPE, regs, code, regs->nip);
 | |
| 			return;
 | |
| 		}
 | |
| 	case -EFAULT:
 | |
| 		_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
 | |
| 		return;
 | |
| 	default:
 | |
| 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| #elif defined(CONFIG_8XX_MINIMAL_FPEMU)
 | |
| 	errcode = Soft_emulate_8xx(regs);
 | |
| 	if (errcode >= 0)
 | |
| 		PPC_WARN_EMULATED(8xx, regs);
 | |
| 
 | |
| 	switch (errcode) {
 | |
| 	case 0:
 | |
| 		emulate_single_step(regs);
 | |
| 		return;
 | |
| 	case 1:
 | |
| 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
 | |
| 		return;
 | |
| 	case -EFAULT:
 | |
| 		_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
 | |
| 		return;
 | |
| 	}
 | |
| #else
 | |
| 	_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
 | |
| #endif
 | |
| }
 | |
| #endif /* CONFIG_8xx */
 | |
| 
 | |
| #ifdef CONFIG_PPC_ADV_DEBUG_REGS
 | |
| static void handle_debug(struct pt_regs *regs, unsigned long debug_status)
 | |
| {
 | |
| 	int changed = 0;
 | |
| 	/*
 | |
| 	 * Determine the cause of the debug event, clear the
 | |
| 	 * event flags and send a trap to the handler. Torez
 | |
| 	 */
 | |
| 	if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) {
 | |
| 		dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W);
 | |
| #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
 | |
| 		current->thread.dbcr2 &= ~DBCR2_DAC12MODE;
 | |
| #endif
 | |
| 		do_send_trap(regs, mfspr(SPRN_DAC1), debug_status, TRAP_HWBKPT,
 | |
| 			     5);
 | |
| 		changed |= 0x01;
 | |
| 	}  else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) {
 | |
| 		dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W);
 | |
| 		do_send_trap(regs, mfspr(SPRN_DAC2), debug_status, TRAP_HWBKPT,
 | |
| 			     6);
 | |
| 		changed |= 0x01;
 | |
| 	}  else if (debug_status & DBSR_IAC1) {
 | |
| 		current->thread.dbcr0 &= ~DBCR0_IAC1;
 | |
| 		dbcr_iac_range(current) &= ~DBCR_IAC12MODE;
 | |
| 		do_send_trap(regs, mfspr(SPRN_IAC1), debug_status, TRAP_HWBKPT,
 | |
| 			     1);
 | |
| 		changed |= 0x01;
 | |
| 	}  else if (debug_status & DBSR_IAC2) {
 | |
| 		current->thread.dbcr0 &= ~DBCR0_IAC2;
 | |
| 		do_send_trap(regs, mfspr(SPRN_IAC2), debug_status, TRAP_HWBKPT,
 | |
| 			     2);
 | |
| 		changed |= 0x01;
 | |
| 	}  else if (debug_status & DBSR_IAC3) {
 | |
| 		current->thread.dbcr0 &= ~DBCR0_IAC3;
 | |
| 		dbcr_iac_range(current) &= ~DBCR_IAC34MODE;
 | |
| 		do_send_trap(regs, mfspr(SPRN_IAC3), debug_status, TRAP_HWBKPT,
 | |
| 			     3);
 | |
| 		changed |= 0x01;
 | |
| 	}  else if (debug_status & DBSR_IAC4) {
 | |
| 		current->thread.dbcr0 &= ~DBCR0_IAC4;
 | |
| 		do_send_trap(regs, mfspr(SPRN_IAC4), debug_status, TRAP_HWBKPT,
 | |
| 			     4);
 | |
| 		changed |= 0x01;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * At the point this routine was called, the MSR(DE) was turned off.
 | |
| 	 * Check all other debug flags and see if that bit needs to be turned
 | |
| 	 * back on or not.
 | |
| 	 */
 | |
| 	if (DBCR_ACTIVE_EVENTS(current->thread.dbcr0, current->thread.dbcr1))
 | |
| 		regs->msr |= MSR_DE;
 | |
| 	else
 | |
| 		/* Make sure the IDM flag is off */
 | |
| 		current->thread.dbcr0 &= ~DBCR0_IDM;
 | |
| 
 | |
| 	if (changed & 0x01)
 | |
| 		mtspr(SPRN_DBCR0, current->thread.dbcr0);
 | |
| }
 | |
| 
 | |
| void __kprobes DebugException(struct pt_regs *regs, unsigned long debug_status)
 | |
| {
 | |
| 	current->thread.dbsr = debug_status;
 | |
| 
 | |
| 	/* Hack alert: On BookE, Branch Taken stops on the branch itself, while
 | |
| 	 * on server, it stops on the target of the branch. In order to simulate
 | |
| 	 * the server behaviour, we thus restart right away with a single step
 | |
| 	 * instead of stopping here when hitting a BT
 | |
| 	 */
 | |
| 	if (debug_status & DBSR_BT) {
 | |
| 		regs->msr &= ~MSR_DE;
 | |
| 
 | |
| 		/* Disable BT */
 | |
| 		mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT);
 | |
| 		/* Clear the BT event */
 | |
| 		mtspr(SPRN_DBSR, DBSR_BT);
 | |
| 
 | |
| 		/* Do the single step trick only when coming from userspace */
 | |
| 		if (user_mode(regs)) {
 | |
| 			current->thread.dbcr0 &= ~DBCR0_BT;
 | |
| 			current->thread.dbcr0 |= DBCR0_IDM | DBCR0_IC;
 | |
| 			regs->msr |= MSR_DE;
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		if (notify_die(DIE_SSTEP, "block_step", regs, 5,
 | |
| 			       5, SIGTRAP) == NOTIFY_STOP) {
 | |
| 			return;
 | |
| 		}
 | |
| 		if (debugger_sstep(regs))
 | |
| 			return;
 | |
| 	} else if (debug_status & DBSR_IC) { 	/* Instruction complete */
 | |
| 		regs->msr &= ~MSR_DE;
 | |
| 
 | |
| 		/* Disable instruction completion */
 | |
| 		mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC);
 | |
| 		/* Clear the instruction completion event */
 | |
| 		mtspr(SPRN_DBSR, DBSR_IC);
 | |
| 
 | |
| 		if (notify_die(DIE_SSTEP, "single_step", regs, 5,
 | |
| 			       5, SIGTRAP) == NOTIFY_STOP) {
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		if (debugger_sstep(regs))
 | |
| 			return;
 | |
| 
 | |
| 		if (user_mode(regs)) {
 | |
| 			current->thread.dbcr0 &= ~DBCR0_IC;
 | |
| 			if (DBCR_ACTIVE_EVENTS(current->thread.dbcr0,
 | |
| 					       current->thread.dbcr1))
 | |
| 				regs->msr |= MSR_DE;
 | |
| 			else
 | |
| 				/* Make sure the IDM bit is off */
 | |
| 				current->thread.dbcr0 &= ~DBCR0_IDM;
 | |
| 		}
 | |
| 
 | |
| 		_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
 | |
| 	} else
 | |
| 		handle_debug(regs, debug_status);
 | |
| }
 | |
| #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
 | |
| 
 | |
| #if !defined(CONFIG_TAU_INT)
 | |
| void TAUException(struct pt_regs *regs)
 | |
| {
 | |
| 	printk("TAU trap at PC: %lx, MSR: %lx, vector=%lx    %s\n",
 | |
| 	       regs->nip, regs->msr, regs->trap, print_tainted());
 | |
| }
 | |
| #endif /* CONFIG_INT_TAU */
 | |
| 
 | |
| #ifdef CONFIG_ALTIVEC
 | |
| void altivec_assist_exception(struct pt_regs *regs)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	if (!user_mode(regs)) {
 | |
| 		printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode"
 | |
| 		       " at %lx\n", regs->nip);
 | |
| 		die("Kernel VMX/Altivec assist exception", regs, SIGILL);
 | |
| 	}
 | |
| 
 | |
| 	flush_altivec_to_thread(current);
 | |
| 
 | |
| 	PPC_WARN_EMULATED(altivec, regs);
 | |
| 	err = emulate_altivec(regs);
 | |
| 	if (err == 0) {
 | |
| 		regs->nip += 4;		/* skip emulated instruction */
 | |
| 		emulate_single_step(regs);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (err == -EFAULT) {
 | |
| 		/* got an error reading the instruction */
 | |
| 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
 | |
| 	} else {
 | |
| 		/* didn't recognize the instruction */
 | |
| 		/* XXX quick hack for now: set the non-Java bit in the VSCR */
 | |
| 		printk_ratelimited(KERN_ERR "Unrecognized altivec instruction "
 | |
| 				   "in %s at %lx\n", current->comm, regs->nip);
 | |
| 		current->thread.vscr.u[3] |= 0x10000;
 | |
| 	}
 | |
| }
 | |
| #endif /* CONFIG_ALTIVEC */
 | |
| 
 | |
| #ifdef CONFIG_VSX
 | |
| void vsx_assist_exception(struct pt_regs *regs)
 | |
| {
 | |
| 	if (!user_mode(regs)) {
 | |
| 		printk(KERN_EMERG "VSX assist exception in kernel mode"
 | |
| 		       " at %lx\n", regs->nip);
 | |
| 		die("Kernel VSX assist exception", regs, SIGILL);
 | |
| 	}
 | |
| 
 | |
| 	flush_vsx_to_thread(current);
 | |
| 	printk(KERN_INFO "VSX assist not supported at %lx\n", regs->nip);
 | |
| 	_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
 | |
| }
 | |
| #endif /* CONFIG_VSX */
 | |
| 
 | |
| #ifdef CONFIG_FSL_BOOKE
 | |
| void CacheLockingException(struct pt_regs *regs, unsigned long address,
 | |
| 			   unsigned long error_code)
 | |
| {
 | |
| 	/* We treat cache locking instructions from the user
 | |
| 	 * as priv ops, in the future we could try to do
 | |
| 	 * something smarter
 | |
| 	 */
 | |
| 	if (error_code & (ESR_DLK|ESR_ILK))
 | |
| 		_exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
 | |
| 	return;
 | |
| }
 | |
| #endif /* CONFIG_FSL_BOOKE */
 | |
| 
 | |
| #ifdef CONFIG_SPE
 | |
| void SPEFloatingPointException(struct pt_regs *regs)
 | |
| {
 | |
| 	extern int do_spe_mathemu(struct pt_regs *regs);
 | |
| 	unsigned long spefscr;
 | |
| 	int fpexc_mode;
 | |
| 	int code = 0;
 | |
| 	int err;
 | |
| 
 | |
| 	flush_spe_to_thread(current);
 | |
| 
 | |
| 	spefscr = current->thread.spefscr;
 | |
| 	fpexc_mode = current->thread.fpexc_mode;
 | |
| 
 | |
| 	if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) {
 | |
| 		code = FPE_FLTOVF;
 | |
| 	}
 | |
| 	else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) {
 | |
| 		code = FPE_FLTUND;
 | |
| 	}
 | |
| 	else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV))
 | |
| 		code = FPE_FLTDIV;
 | |
| 	else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) {
 | |
| 		code = FPE_FLTINV;
 | |
| 	}
 | |
| 	else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES))
 | |
| 		code = FPE_FLTRES;
 | |
| 
 | |
| 	err = do_spe_mathemu(regs);
 | |
| 	if (err == 0) {
 | |
| 		regs->nip += 4;		/* skip emulated instruction */
 | |
| 		emulate_single_step(regs);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (err == -EFAULT) {
 | |
| 		/* got an error reading the instruction */
 | |
| 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
 | |
| 	} else if (err == -EINVAL) {
 | |
| 		/* didn't recognize the instruction */
 | |
| 		printk(KERN_ERR "unrecognized spe instruction "
 | |
| 		       "in %s at %lx\n", current->comm, regs->nip);
 | |
| 	} else {
 | |
| 		_exception(SIGFPE, regs, code, regs->nip);
 | |
| 	}
 | |
| 
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| void SPEFloatingPointRoundException(struct pt_regs *regs)
 | |
| {
 | |
| 	extern int speround_handler(struct pt_regs *regs);
 | |
| 	int err;
 | |
| 
 | |
| 	preempt_disable();
 | |
| 	if (regs->msr & MSR_SPE)
 | |
| 		giveup_spe(current);
 | |
| 	preempt_enable();
 | |
| 
 | |
| 	regs->nip -= 4;
 | |
| 	err = speround_handler(regs);
 | |
| 	if (err == 0) {
 | |
| 		regs->nip += 4;		/* skip emulated instruction */
 | |
| 		emulate_single_step(regs);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (err == -EFAULT) {
 | |
| 		/* got an error reading the instruction */
 | |
| 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
 | |
| 	} else if (err == -EINVAL) {
 | |
| 		/* didn't recognize the instruction */
 | |
| 		printk(KERN_ERR "unrecognized spe instruction "
 | |
| 		       "in %s at %lx\n", current->comm, regs->nip);
 | |
| 	} else {
 | |
| 		_exception(SIGFPE, regs, 0, regs->nip);
 | |
| 		return;
 | |
| 	}
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * We enter here if we get an unrecoverable exception, that is, one
 | |
|  * that happened at a point where the RI (recoverable interrupt) bit
 | |
|  * in the MSR is 0.  This indicates that SRR0/1 are live, and that
 | |
|  * we therefore lost state by taking this exception.
 | |
|  */
 | |
| void unrecoverable_exception(struct pt_regs *regs)
 | |
| {
 | |
| 	printk(KERN_EMERG "Unrecoverable exception %lx at %lx\n",
 | |
| 	       regs->trap, regs->nip);
 | |
| 	die("Unrecoverable exception", regs, SIGABRT);
 | |
| }
 | |
| 
 | |
| #if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x)
 | |
| /*
 | |
|  * Default handler for a Watchdog exception,
 | |
|  * spins until a reboot occurs
 | |
|  */
 | |
| void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs)
 | |
| {
 | |
| 	/* Generic WatchdogHandler, implement your own */
 | |
| 	mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE));
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| void WatchdogException(struct pt_regs *regs)
 | |
| {
 | |
| 	printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n");
 | |
| 	WatchdogHandler(regs);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * We enter here if we discover during exception entry that we are
 | |
|  * running in supervisor mode with a userspace value in the stack pointer.
 | |
|  */
 | |
| void kernel_bad_stack(struct pt_regs *regs)
 | |
| {
 | |
| 	printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n",
 | |
| 	       regs->gpr[1], regs->nip);
 | |
| 	die("Bad kernel stack pointer", regs, SIGABRT);
 | |
| }
 | |
| 
 | |
| void __init trap_init(void)
 | |
| {
 | |
| }
 | |
| 
 | |
| 
 | |
| #ifdef CONFIG_PPC_EMULATED_STATS
 | |
| 
 | |
| #define WARN_EMULATED_SETUP(type)	.type = { .name = #type }
 | |
| 
 | |
| struct ppc_emulated ppc_emulated = {
 | |
| #ifdef CONFIG_ALTIVEC
 | |
| 	WARN_EMULATED_SETUP(altivec),
 | |
| #endif
 | |
| 	WARN_EMULATED_SETUP(dcba),
 | |
| 	WARN_EMULATED_SETUP(dcbz),
 | |
| 	WARN_EMULATED_SETUP(fp_pair),
 | |
| 	WARN_EMULATED_SETUP(isel),
 | |
| 	WARN_EMULATED_SETUP(mcrxr),
 | |
| 	WARN_EMULATED_SETUP(mfpvr),
 | |
| 	WARN_EMULATED_SETUP(multiple),
 | |
| 	WARN_EMULATED_SETUP(popcntb),
 | |
| 	WARN_EMULATED_SETUP(spe),
 | |
| 	WARN_EMULATED_SETUP(string),
 | |
| 	WARN_EMULATED_SETUP(unaligned),
 | |
| #ifdef CONFIG_MATH_EMULATION
 | |
| 	WARN_EMULATED_SETUP(math),
 | |
| #elif defined(CONFIG_8XX_MINIMAL_FPEMU)
 | |
| 	WARN_EMULATED_SETUP(8xx),
 | |
| #endif
 | |
| #ifdef CONFIG_VSX
 | |
| 	WARN_EMULATED_SETUP(vsx),
 | |
| #endif
 | |
| #ifdef CONFIG_PPC64
 | |
| 	WARN_EMULATED_SETUP(mfdscr),
 | |
| 	WARN_EMULATED_SETUP(mtdscr),
 | |
| #endif
 | |
| };
 | |
| 
 | |
| u32 ppc_warn_emulated;
 | |
| 
 | |
| void ppc_warn_emulated_print(const char *type)
 | |
| {
 | |
| 	pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm,
 | |
| 			    type);
 | |
| }
 | |
| 
 | |
| static int __init ppc_warn_emulated_init(void)
 | |
| {
 | |
| 	struct dentry *dir, *d;
 | |
| 	unsigned int i;
 | |
| 	struct ppc_emulated_entry *entries = (void *)&ppc_emulated;
 | |
| 
 | |
| 	if (!powerpc_debugfs_root)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	dir = debugfs_create_dir("emulated_instructions",
 | |
| 				 powerpc_debugfs_root);
 | |
| 	if (!dir)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	d = debugfs_create_u32("do_warn", S_IRUGO | S_IWUSR, dir,
 | |
| 			       &ppc_warn_emulated);
 | |
| 	if (!d)
 | |
| 		goto fail;
 | |
| 
 | |
| 	for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++) {
 | |
| 		d = debugfs_create_u32(entries[i].name, S_IRUGO | S_IWUSR, dir,
 | |
| 				       (u32 *)&entries[i].val.counter);
 | |
| 		if (!d)
 | |
| 			goto fail;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| fail:
 | |
| 	debugfs_remove_recursive(dir);
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| device_initcall(ppc_warn_emulated_init);
 | |
| 
 | |
| #endif /* CONFIG_PPC_EMULATED_STATS */
 |