 266d7ad7f4
			
		
	
	
	266d7ad7f4
	
	
	
		
			
			Pull timer changes from Ingo Molnar:
 "Main changes:
   - ntp: Add CONFIG_RTC_SYSTOHC: a generic RTC driver facility
     complementing the existing CONFIG_RTC_HCTOSYS, which uses NTP to
     keep the hardware clock updated.
   - posix-timers: Fix clock_adjtime to always return timex data on
     success.  This is changing the ABI, but no breakage was expected
     and found - caution is warranted nevertheless.
   - platform persistent clock improvements/cleanups.
   - clockevents: refactor timer broadcast handling to be more generic
     and less duplicated with matching architecture code (mostly ARM
     motivated.)
   - various fixes and cleanups"
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  timers/x86/hpet: Use HPET_COUNTER to specify the hpet counter in vread_hpet()
  posix-cpu-timers: Fix nanosleep task_struct leak
  clockevents: Fix generic broadcast for FEAT_C3STOP
  time, Fix setting of hardware clock in NTP code
  hrtimer: Prevent hrtimer_enqueue_reprogram race
  clockevents: Add generic timer broadcast function
  clockevents: Add generic timer broadcast receiver
  timekeeping: Switch HAS_PERSISTENT_CLOCK to ALWAYS_USE_PERSISTENT_CLOCK
  x86/time/rtc: Don't print extended CMOS year when reading RTC
  x86: Select HAS_PERSISTENT_CLOCK on x86
  timekeeping: Add CONFIG_HAS_PERSISTENT_CLOCK option
  rtc: Skip the suspend/resume handling if persistent clock exist
  timekeeping: Add persistent_clock_exist flag
  posix-timers: Fix clock_adjtime to always return timex data on success
  Round the calculated scale factor in set_cyc2ns_scale()
  NTP: Add a CONFIG_RTC_SYSTOHC configuration
  MAINTAINERS: Update John Stultz's email
  time: create __getnstimeofday for WARNless calls
		
	
			
		
			
				
	
	
		
			1058 lines
		
	
	
	
		
			27 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1058 lines
		
	
	
	
		
			27 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Common time routines among all ppc machines.
 | |
|  *
 | |
|  * Written by Cort Dougan (cort@cs.nmt.edu) to merge
 | |
|  * Paul Mackerras' version and mine for PReP and Pmac.
 | |
|  * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
 | |
|  * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
 | |
|  *
 | |
|  * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
 | |
|  * to make clock more stable (2.4.0-test5). The only thing
 | |
|  * that this code assumes is that the timebases have been synchronized
 | |
|  * by firmware on SMP and are never stopped (never do sleep
 | |
|  * on SMP then, nap and doze are OK).
 | |
|  * 
 | |
|  * Speeded up do_gettimeofday by getting rid of references to
 | |
|  * xtime (which required locks for consistency). (mikejc@us.ibm.com)
 | |
|  *
 | |
|  * TODO (not necessarily in this file):
 | |
|  * - improve precision and reproducibility of timebase frequency
 | |
|  * measurement at boot time.
 | |
|  * - for astronomical applications: add a new function to get
 | |
|  * non ambiguous timestamps even around leap seconds. This needs
 | |
|  * a new timestamp format and a good name.
 | |
|  *
 | |
|  * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
 | |
|  *             "A Kernel Model for Precision Timekeeping" by Dave Mills
 | |
|  *
 | |
|  *      This program is free software; you can redistribute it and/or
 | |
|  *      modify it under the terms of the GNU General Public License
 | |
|  *      as published by the Free Software Foundation; either version
 | |
|  *      2 of the License, or (at your option) any later version.
 | |
|  */
 | |
| 
 | |
| #include <linux/errno.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/param.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/timex.h>
 | |
| #include <linux/kernel_stat.h>
 | |
| #include <linux/time.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/profile.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/security.h>
 | |
| #include <linux/percpu.h>
 | |
| #include <linux/rtc.h>
 | |
| #include <linux/jiffies.h>
 | |
| #include <linux/posix-timers.h>
 | |
| #include <linux/irq.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/irq_work.h>
 | |
| #include <asm/trace.h>
 | |
| 
 | |
| #include <asm/io.h>
 | |
| #include <asm/processor.h>
 | |
| #include <asm/nvram.h>
 | |
| #include <asm/cache.h>
 | |
| #include <asm/machdep.h>
 | |
| #include <asm/uaccess.h>
 | |
| #include <asm/time.h>
 | |
| #include <asm/prom.h>
 | |
| #include <asm/irq.h>
 | |
| #include <asm/div64.h>
 | |
| #include <asm/smp.h>
 | |
| #include <asm/vdso_datapage.h>
 | |
| #include <asm/firmware.h>
 | |
| #include <asm/cputime.h>
 | |
| 
 | |
| /* powerpc clocksource/clockevent code */
 | |
| 
 | |
| #include <linux/clockchips.h>
 | |
| #include <linux/timekeeper_internal.h>
 | |
| 
 | |
| static cycle_t rtc_read(struct clocksource *);
 | |
| static struct clocksource clocksource_rtc = {
 | |
| 	.name         = "rtc",
 | |
| 	.rating       = 400,
 | |
| 	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
 | |
| 	.mask         = CLOCKSOURCE_MASK(64),
 | |
| 	.read         = rtc_read,
 | |
| };
 | |
| 
 | |
| static cycle_t timebase_read(struct clocksource *);
 | |
| static struct clocksource clocksource_timebase = {
 | |
| 	.name         = "timebase",
 | |
| 	.rating       = 400,
 | |
| 	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
 | |
| 	.mask         = CLOCKSOURCE_MASK(64),
 | |
| 	.read         = timebase_read,
 | |
| };
 | |
| 
 | |
| #define DECREMENTER_MAX	0x7fffffff
 | |
| 
 | |
| static int decrementer_set_next_event(unsigned long evt,
 | |
| 				      struct clock_event_device *dev);
 | |
| static void decrementer_set_mode(enum clock_event_mode mode,
 | |
| 				 struct clock_event_device *dev);
 | |
| 
 | |
| struct clock_event_device decrementer_clockevent = {
 | |
| 	.name           = "decrementer",
 | |
| 	.rating         = 200,
 | |
| 	.irq            = 0,
 | |
| 	.set_next_event = decrementer_set_next_event,
 | |
| 	.set_mode       = decrementer_set_mode,
 | |
| 	.features       = CLOCK_EVT_FEAT_ONESHOT,
 | |
| };
 | |
| EXPORT_SYMBOL(decrementer_clockevent);
 | |
| 
 | |
| DEFINE_PER_CPU(u64, decrementers_next_tb);
 | |
| static DEFINE_PER_CPU(struct clock_event_device, decrementers);
 | |
| 
 | |
| #define XSEC_PER_SEC (1024*1024)
 | |
| 
 | |
| #ifdef CONFIG_PPC64
 | |
| #define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC)
 | |
| #else
 | |
| /* compute ((xsec << 12) * max) >> 32 */
 | |
| #define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max)
 | |
| #endif
 | |
| 
 | |
| unsigned long tb_ticks_per_jiffy;
 | |
| unsigned long tb_ticks_per_usec = 100; /* sane default */
 | |
| EXPORT_SYMBOL(tb_ticks_per_usec);
 | |
| unsigned long tb_ticks_per_sec;
 | |
| EXPORT_SYMBOL(tb_ticks_per_sec);	/* for cputime_t conversions */
 | |
| 
 | |
| DEFINE_SPINLOCK(rtc_lock);
 | |
| EXPORT_SYMBOL_GPL(rtc_lock);
 | |
| 
 | |
| static u64 tb_to_ns_scale __read_mostly;
 | |
| static unsigned tb_to_ns_shift __read_mostly;
 | |
| static u64 boot_tb __read_mostly;
 | |
| 
 | |
| extern struct timezone sys_tz;
 | |
| static long timezone_offset;
 | |
| 
 | |
| unsigned long ppc_proc_freq;
 | |
| EXPORT_SYMBOL_GPL(ppc_proc_freq);
 | |
| unsigned long ppc_tb_freq;
 | |
| EXPORT_SYMBOL_GPL(ppc_tb_freq);
 | |
| 
 | |
| #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
 | |
| /*
 | |
|  * Factors for converting from cputime_t (timebase ticks) to
 | |
|  * jiffies, microseconds, seconds, and clock_t (1/USER_HZ seconds).
 | |
|  * These are all stored as 0.64 fixed-point binary fractions.
 | |
|  */
 | |
| u64 __cputime_jiffies_factor;
 | |
| EXPORT_SYMBOL(__cputime_jiffies_factor);
 | |
| u64 __cputime_usec_factor;
 | |
| EXPORT_SYMBOL(__cputime_usec_factor);
 | |
| u64 __cputime_sec_factor;
 | |
| EXPORT_SYMBOL(__cputime_sec_factor);
 | |
| u64 __cputime_clockt_factor;
 | |
| EXPORT_SYMBOL(__cputime_clockt_factor);
 | |
| DEFINE_PER_CPU(unsigned long, cputime_last_delta);
 | |
| DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
 | |
| 
 | |
| cputime_t cputime_one_jiffy;
 | |
| 
 | |
| void (*dtl_consumer)(struct dtl_entry *, u64);
 | |
| 
 | |
| static void calc_cputime_factors(void)
 | |
| {
 | |
| 	struct div_result res;
 | |
| 
 | |
| 	div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
 | |
| 	__cputime_jiffies_factor = res.result_low;
 | |
| 	div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
 | |
| 	__cputime_usec_factor = res.result_low;
 | |
| 	div128_by_32(1, 0, tb_ticks_per_sec, &res);
 | |
| 	__cputime_sec_factor = res.result_low;
 | |
| 	div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
 | |
| 	__cputime_clockt_factor = res.result_low;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Read the SPURR on systems that have it, otherwise the PURR,
 | |
|  * or if that doesn't exist return the timebase value passed in.
 | |
|  */
 | |
| static u64 read_spurr(u64 tb)
 | |
| {
 | |
| 	if (cpu_has_feature(CPU_FTR_SPURR))
 | |
| 		return mfspr(SPRN_SPURR);
 | |
| 	if (cpu_has_feature(CPU_FTR_PURR))
 | |
| 		return mfspr(SPRN_PURR);
 | |
| 	return tb;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PPC_SPLPAR
 | |
| 
 | |
| /*
 | |
|  * Scan the dispatch trace log and count up the stolen time.
 | |
|  * Should be called with interrupts disabled.
 | |
|  */
 | |
| static u64 scan_dispatch_log(u64 stop_tb)
 | |
| {
 | |
| 	u64 i = local_paca->dtl_ridx;
 | |
| 	struct dtl_entry *dtl = local_paca->dtl_curr;
 | |
| 	struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
 | |
| 	struct lppaca *vpa = local_paca->lppaca_ptr;
 | |
| 	u64 tb_delta;
 | |
| 	u64 stolen = 0;
 | |
| 	u64 dtb;
 | |
| 
 | |
| 	if (!dtl)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (i == vpa->dtl_idx)
 | |
| 		return 0;
 | |
| 	while (i < vpa->dtl_idx) {
 | |
| 		if (dtl_consumer)
 | |
| 			dtl_consumer(dtl, i);
 | |
| 		dtb = dtl->timebase;
 | |
| 		tb_delta = dtl->enqueue_to_dispatch_time +
 | |
| 			dtl->ready_to_enqueue_time;
 | |
| 		barrier();
 | |
| 		if (i + N_DISPATCH_LOG < vpa->dtl_idx) {
 | |
| 			/* buffer has overflowed */
 | |
| 			i = vpa->dtl_idx - N_DISPATCH_LOG;
 | |
| 			dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (dtb > stop_tb)
 | |
| 			break;
 | |
| 		stolen += tb_delta;
 | |
| 		++i;
 | |
| 		++dtl;
 | |
| 		if (dtl == dtl_end)
 | |
| 			dtl = local_paca->dispatch_log;
 | |
| 	}
 | |
| 	local_paca->dtl_ridx = i;
 | |
| 	local_paca->dtl_curr = dtl;
 | |
| 	return stolen;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Accumulate stolen time by scanning the dispatch trace log.
 | |
|  * Called on entry from user mode.
 | |
|  */
 | |
| void accumulate_stolen_time(void)
 | |
| {
 | |
| 	u64 sst, ust;
 | |
| 
 | |
| 	u8 save_soft_enabled = local_paca->soft_enabled;
 | |
| 
 | |
| 	/* We are called early in the exception entry, before
 | |
| 	 * soft/hard_enabled are sync'ed to the expected state
 | |
| 	 * for the exception. We are hard disabled but the PACA
 | |
| 	 * needs to reflect that so various debug stuff doesn't
 | |
| 	 * complain
 | |
| 	 */
 | |
| 	local_paca->soft_enabled = 0;
 | |
| 
 | |
| 	sst = scan_dispatch_log(local_paca->starttime_user);
 | |
| 	ust = scan_dispatch_log(local_paca->starttime);
 | |
| 	local_paca->system_time -= sst;
 | |
| 	local_paca->user_time -= ust;
 | |
| 	local_paca->stolen_time += ust + sst;
 | |
| 
 | |
| 	local_paca->soft_enabled = save_soft_enabled;
 | |
| }
 | |
| 
 | |
| static inline u64 calculate_stolen_time(u64 stop_tb)
 | |
| {
 | |
| 	u64 stolen = 0;
 | |
| 
 | |
| 	if (get_paca()->dtl_ridx != get_paca()->lppaca_ptr->dtl_idx) {
 | |
| 		stolen = scan_dispatch_log(stop_tb);
 | |
| 		get_paca()->system_time -= stolen;
 | |
| 	}
 | |
| 
 | |
| 	stolen += get_paca()->stolen_time;
 | |
| 	get_paca()->stolen_time = 0;
 | |
| 	return stolen;
 | |
| }
 | |
| 
 | |
| #else /* CONFIG_PPC_SPLPAR */
 | |
| static inline u64 calculate_stolen_time(u64 stop_tb)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_PPC_SPLPAR */
 | |
| 
 | |
| /*
 | |
|  * Account time for a transition between system, hard irq
 | |
|  * or soft irq state.
 | |
|  */
 | |
| static u64 vtime_delta(struct task_struct *tsk,
 | |
| 			u64 *sys_scaled, u64 *stolen)
 | |
| {
 | |
| 	u64 now, nowscaled, deltascaled;
 | |
| 	u64 udelta, delta, user_scaled;
 | |
| 
 | |
| 	WARN_ON_ONCE(!irqs_disabled());
 | |
| 
 | |
| 	now = mftb();
 | |
| 	nowscaled = read_spurr(now);
 | |
| 	get_paca()->system_time += now - get_paca()->starttime;
 | |
| 	get_paca()->starttime = now;
 | |
| 	deltascaled = nowscaled - get_paca()->startspurr;
 | |
| 	get_paca()->startspurr = nowscaled;
 | |
| 
 | |
| 	*stolen = calculate_stolen_time(now);
 | |
| 
 | |
| 	delta = get_paca()->system_time;
 | |
| 	get_paca()->system_time = 0;
 | |
| 	udelta = get_paca()->user_time - get_paca()->utime_sspurr;
 | |
| 	get_paca()->utime_sspurr = get_paca()->user_time;
 | |
| 
 | |
| 	/*
 | |
| 	 * Because we don't read the SPURR on every kernel entry/exit,
 | |
| 	 * deltascaled includes both user and system SPURR ticks.
 | |
| 	 * Apportion these ticks to system SPURR ticks and user
 | |
| 	 * SPURR ticks in the same ratio as the system time (delta)
 | |
| 	 * and user time (udelta) values obtained from the timebase
 | |
| 	 * over the same interval.  The system ticks get accounted here;
 | |
| 	 * the user ticks get saved up in paca->user_time_scaled to be
 | |
| 	 * used by account_process_tick.
 | |
| 	 */
 | |
| 	*sys_scaled = delta;
 | |
| 	user_scaled = udelta;
 | |
| 	if (deltascaled != delta + udelta) {
 | |
| 		if (udelta) {
 | |
| 			*sys_scaled = deltascaled * delta / (delta + udelta);
 | |
| 			user_scaled = deltascaled - *sys_scaled;
 | |
| 		} else {
 | |
| 			*sys_scaled = deltascaled;
 | |
| 		}
 | |
| 	}
 | |
| 	get_paca()->user_time_scaled += user_scaled;
 | |
| 
 | |
| 	return delta;
 | |
| }
 | |
| 
 | |
| void vtime_account_system(struct task_struct *tsk)
 | |
| {
 | |
| 	u64 delta, sys_scaled, stolen;
 | |
| 
 | |
| 	delta = vtime_delta(tsk, &sys_scaled, &stolen);
 | |
| 	account_system_time(tsk, 0, delta, sys_scaled);
 | |
| 	if (stolen)
 | |
| 		account_steal_time(stolen);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(vtime_account_system);
 | |
| 
 | |
| void vtime_account_idle(struct task_struct *tsk)
 | |
| {
 | |
| 	u64 delta, sys_scaled, stolen;
 | |
| 
 | |
| 	delta = vtime_delta(tsk, &sys_scaled, &stolen);
 | |
| 	account_idle_time(delta + stolen);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Transfer the user time accumulated in the paca
 | |
|  * by the exception entry and exit code to the generic
 | |
|  * process user time records.
 | |
|  * Must be called with interrupts disabled.
 | |
|  * Assumes that vtime_account_system/idle() has been called
 | |
|  * recently (i.e. since the last entry from usermode) so that
 | |
|  * get_paca()->user_time_scaled is up to date.
 | |
|  */
 | |
| void vtime_account_user(struct task_struct *tsk)
 | |
| {
 | |
| 	cputime_t utime, utimescaled;
 | |
| 
 | |
| 	utime = get_paca()->user_time;
 | |
| 	utimescaled = get_paca()->user_time_scaled;
 | |
| 	get_paca()->user_time = 0;
 | |
| 	get_paca()->user_time_scaled = 0;
 | |
| 	get_paca()->utime_sspurr = 0;
 | |
| 	account_user_time(tsk, utime, utimescaled);
 | |
| }
 | |
| 
 | |
| #else /* ! CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
 | |
| #define calc_cputime_factors()
 | |
| #endif
 | |
| 
 | |
| void __delay(unsigned long loops)
 | |
| {
 | |
| 	unsigned long start;
 | |
| 	int diff;
 | |
| 
 | |
| 	if (__USE_RTC()) {
 | |
| 		start = get_rtcl();
 | |
| 		do {
 | |
| 			/* the RTCL register wraps at 1000000000 */
 | |
| 			diff = get_rtcl() - start;
 | |
| 			if (diff < 0)
 | |
| 				diff += 1000000000;
 | |
| 		} while (diff < loops);
 | |
| 	} else {
 | |
| 		start = get_tbl();
 | |
| 		while (get_tbl() - start < loops)
 | |
| 			HMT_low();
 | |
| 		HMT_medium();
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(__delay);
 | |
| 
 | |
| void udelay(unsigned long usecs)
 | |
| {
 | |
| 	__delay(tb_ticks_per_usec * usecs);
 | |
| }
 | |
| EXPORT_SYMBOL(udelay);
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| unsigned long profile_pc(struct pt_regs *regs)
 | |
| {
 | |
| 	unsigned long pc = instruction_pointer(regs);
 | |
| 
 | |
| 	if (in_lock_functions(pc))
 | |
| 		return regs->link;
 | |
| 
 | |
| 	return pc;
 | |
| }
 | |
| EXPORT_SYMBOL(profile_pc);
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_IRQ_WORK
 | |
| 
 | |
| /*
 | |
|  * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
 | |
|  */
 | |
| #ifdef CONFIG_PPC64
 | |
| static inline unsigned long test_irq_work_pending(void)
 | |
| {
 | |
| 	unsigned long x;
 | |
| 
 | |
| 	asm volatile("lbz %0,%1(13)"
 | |
| 		: "=r" (x)
 | |
| 		: "i" (offsetof(struct paca_struct, irq_work_pending)));
 | |
| 	return x;
 | |
| }
 | |
| 
 | |
| static inline void set_irq_work_pending_flag(void)
 | |
| {
 | |
| 	asm volatile("stb %0,%1(13)" : :
 | |
| 		"r" (1),
 | |
| 		"i" (offsetof(struct paca_struct, irq_work_pending)));
 | |
| }
 | |
| 
 | |
| static inline void clear_irq_work_pending(void)
 | |
| {
 | |
| 	asm volatile("stb %0,%1(13)" : :
 | |
| 		"r" (0),
 | |
| 		"i" (offsetof(struct paca_struct, irq_work_pending)));
 | |
| }
 | |
| 
 | |
| #else /* 32-bit */
 | |
| 
 | |
| DEFINE_PER_CPU(u8, irq_work_pending);
 | |
| 
 | |
| #define set_irq_work_pending_flag()	__get_cpu_var(irq_work_pending) = 1
 | |
| #define test_irq_work_pending()		__get_cpu_var(irq_work_pending)
 | |
| #define clear_irq_work_pending()	__get_cpu_var(irq_work_pending) = 0
 | |
| 
 | |
| #endif /* 32 vs 64 bit */
 | |
| 
 | |
| void arch_irq_work_raise(void)
 | |
| {
 | |
| 	preempt_disable();
 | |
| 	set_irq_work_pending_flag();
 | |
| 	set_dec(1);
 | |
| 	preempt_enable();
 | |
| }
 | |
| 
 | |
| #else  /* CONFIG_IRQ_WORK */
 | |
| 
 | |
| #define test_irq_work_pending()	0
 | |
| #define clear_irq_work_pending()
 | |
| 
 | |
| #endif /* CONFIG_IRQ_WORK */
 | |
| 
 | |
| /*
 | |
|  * timer_interrupt - gets called when the decrementer overflows,
 | |
|  * with interrupts disabled.
 | |
|  */
 | |
| void timer_interrupt(struct pt_regs * regs)
 | |
| {
 | |
| 	struct pt_regs *old_regs;
 | |
| 	u64 *next_tb = &__get_cpu_var(decrementers_next_tb);
 | |
| 	struct clock_event_device *evt = &__get_cpu_var(decrementers);
 | |
| 	u64 now;
 | |
| 
 | |
| 	/* Ensure a positive value is written to the decrementer, or else
 | |
| 	 * some CPUs will continue to take decrementer exceptions.
 | |
| 	 */
 | |
| 	set_dec(DECREMENTER_MAX);
 | |
| 
 | |
| 	/* Some implementations of hotplug will get timer interrupts while
 | |
| 	 * offline, just ignore these and we also need to set
 | |
| 	 * decrementers_next_tb as MAX to make sure __check_irq_replay
 | |
| 	 * don't replay timer interrupt when return, otherwise we'll trap
 | |
| 	 * here infinitely :(
 | |
| 	 */
 | |
| 	if (!cpu_online(smp_processor_id())) {
 | |
| 		*next_tb = ~(u64)0;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Conditionally hard-enable interrupts now that the DEC has been
 | |
| 	 * bumped to its maximum value
 | |
| 	 */
 | |
| 	may_hard_irq_enable();
 | |
| 
 | |
| 	__get_cpu_var(irq_stat).timer_irqs++;
 | |
| 
 | |
| #if defined(CONFIG_PPC32) && defined(CONFIG_PMAC)
 | |
| 	if (atomic_read(&ppc_n_lost_interrupts) != 0)
 | |
| 		do_IRQ(regs);
 | |
| #endif
 | |
| 
 | |
| 	old_regs = set_irq_regs(regs);
 | |
| 	irq_enter();
 | |
| 
 | |
| 	trace_timer_interrupt_entry(regs);
 | |
| 
 | |
| 	if (test_irq_work_pending()) {
 | |
| 		clear_irq_work_pending();
 | |
| 		irq_work_run();
 | |
| 	}
 | |
| 
 | |
| 	now = get_tb_or_rtc();
 | |
| 	if (now >= *next_tb) {
 | |
| 		*next_tb = ~(u64)0;
 | |
| 		if (evt->event_handler)
 | |
| 			evt->event_handler(evt);
 | |
| 	} else {
 | |
| 		now = *next_tb - now;
 | |
| 		if (now <= DECREMENTER_MAX)
 | |
| 			set_dec((int)now);
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_PPC64
 | |
| 	/* collect purr register values often, for accurate calculations */
 | |
| 	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
 | |
| 		struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
 | |
| 		cu->current_tb = mfspr(SPRN_PURR);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	trace_timer_interrupt_exit(regs);
 | |
| 
 | |
| 	irq_exit();
 | |
| 	set_irq_regs(old_regs);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Hypervisor decrementer interrupts shouldn't occur but are sometimes
 | |
|  * left pending on exit from a KVM guest.  We don't need to do anything
 | |
|  * to clear them, as they are edge-triggered.
 | |
|  */
 | |
| void hdec_interrupt(struct pt_regs *regs)
 | |
| {
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SUSPEND
 | |
| static void generic_suspend_disable_irqs(void)
 | |
| {
 | |
| 	/* Disable the decrementer, so that it doesn't interfere
 | |
| 	 * with suspending.
 | |
| 	 */
 | |
| 
 | |
| 	set_dec(DECREMENTER_MAX);
 | |
| 	local_irq_disable();
 | |
| 	set_dec(DECREMENTER_MAX);
 | |
| }
 | |
| 
 | |
| static void generic_suspend_enable_irqs(void)
 | |
| {
 | |
| 	local_irq_enable();
 | |
| }
 | |
| 
 | |
| /* Overrides the weak version in kernel/power/main.c */
 | |
| void arch_suspend_disable_irqs(void)
 | |
| {
 | |
| 	if (ppc_md.suspend_disable_irqs)
 | |
| 		ppc_md.suspend_disable_irqs();
 | |
| 	generic_suspend_disable_irqs();
 | |
| }
 | |
| 
 | |
| /* Overrides the weak version in kernel/power/main.c */
 | |
| void arch_suspend_enable_irqs(void)
 | |
| {
 | |
| 	generic_suspend_enable_irqs();
 | |
| 	if (ppc_md.suspend_enable_irqs)
 | |
| 		ppc_md.suspend_enable_irqs();
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Scheduler clock - returns current time in nanosec units.
 | |
|  *
 | |
|  * Note: mulhdu(a, b) (multiply high double unsigned) returns
 | |
|  * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
 | |
|  * are 64-bit unsigned numbers.
 | |
|  */
 | |
| unsigned long long sched_clock(void)
 | |
| {
 | |
| 	if (__USE_RTC())
 | |
| 		return get_rtc();
 | |
| 	return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
 | |
| }
 | |
| 
 | |
| static int __init get_freq(char *name, int cells, unsigned long *val)
 | |
| {
 | |
| 	struct device_node *cpu;
 | |
| 	const unsigned int *fp;
 | |
| 	int found = 0;
 | |
| 
 | |
| 	/* The cpu node should have timebase and clock frequency properties */
 | |
| 	cpu = of_find_node_by_type(NULL, "cpu");
 | |
| 
 | |
| 	if (cpu) {
 | |
| 		fp = of_get_property(cpu, name, NULL);
 | |
| 		if (fp) {
 | |
| 			found = 1;
 | |
| 			*val = of_read_ulong(fp, cells);
 | |
| 		}
 | |
| 
 | |
| 		of_node_put(cpu);
 | |
| 	}
 | |
| 
 | |
| 	return found;
 | |
| }
 | |
| 
 | |
| /* should become __cpuinit when secondary_cpu_time_init also is */
 | |
| void start_cpu_decrementer(void)
 | |
| {
 | |
| #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
 | |
| 	/* Clear any pending timer interrupts */
 | |
| 	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
 | |
| 
 | |
| 	/* Enable decrementer interrupt */
 | |
| 	mtspr(SPRN_TCR, TCR_DIE);
 | |
| #endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
 | |
| }
 | |
| 
 | |
| void __init generic_calibrate_decr(void)
 | |
| {
 | |
| 	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */
 | |
| 
 | |
| 	if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
 | |
| 	    !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
 | |
| 
 | |
| 		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
 | |
| 				"(not found)\n");
 | |
| 	}
 | |
| 
 | |
| 	ppc_proc_freq = DEFAULT_PROC_FREQ;	/* hardcoded default */
 | |
| 
 | |
| 	if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
 | |
| 	    !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
 | |
| 
 | |
| 		printk(KERN_ERR "WARNING: Estimating processor frequency "
 | |
| 				"(not found)\n");
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int update_persistent_clock(struct timespec now)
 | |
| {
 | |
| 	struct rtc_time tm;
 | |
| 
 | |
| 	if (!ppc_md.set_rtc_time)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	to_tm(now.tv_sec + 1 + timezone_offset, &tm);
 | |
| 	tm.tm_year -= 1900;
 | |
| 	tm.tm_mon -= 1;
 | |
| 
 | |
| 	return ppc_md.set_rtc_time(&tm);
 | |
| }
 | |
| 
 | |
| static void __read_persistent_clock(struct timespec *ts)
 | |
| {
 | |
| 	struct rtc_time tm;
 | |
| 	static int first = 1;
 | |
| 
 | |
| 	ts->tv_nsec = 0;
 | |
| 	/* XXX this is a litle fragile but will work okay in the short term */
 | |
| 	if (first) {
 | |
| 		first = 0;
 | |
| 		if (ppc_md.time_init)
 | |
| 			timezone_offset = ppc_md.time_init();
 | |
| 
 | |
| 		/* get_boot_time() isn't guaranteed to be safe to call late */
 | |
| 		if (ppc_md.get_boot_time) {
 | |
| 			ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| 	if (!ppc_md.get_rtc_time) {
 | |
| 		ts->tv_sec = 0;
 | |
| 		return;
 | |
| 	}
 | |
| 	ppc_md.get_rtc_time(&tm);
 | |
| 
 | |
| 	ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
 | |
| 			    tm.tm_hour, tm.tm_min, tm.tm_sec);
 | |
| }
 | |
| 
 | |
| void read_persistent_clock(struct timespec *ts)
 | |
| {
 | |
| 	__read_persistent_clock(ts);
 | |
| 
 | |
| 	/* Sanitize it in case real time clock is set below EPOCH */
 | |
| 	if (ts->tv_sec < 0) {
 | |
| 		ts->tv_sec = 0;
 | |
| 		ts->tv_nsec = 0;
 | |
| 	}
 | |
| 		
 | |
| }
 | |
| 
 | |
| /* clocksource code */
 | |
| static cycle_t rtc_read(struct clocksource *cs)
 | |
| {
 | |
| 	return (cycle_t)get_rtc();
 | |
| }
 | |
| 
 | |
| static cycle_t timebase_read(struct clocksource *cs)
 | |
| {
 | |
| 	return (cycle_t)get_tb();
 | |
| }
 | |
| 
 | |
| void update_vsyscall_old(struct timespec *wall_time, struct timespec *wtm,
 | |
| 			struct clocksource *clock, u32 mult)
 | |
| {
 | |
| 	u64 new_tb_to_xs, new_stamp_xsec;
 | |
| 	u32 frac_sec;
 | |
| 
 | |
| 	if (clock != &clocksource_timebase)
 | |
| 		return;
 | |
| 
 | |
| 	/* Make userspace gettimeofday spin until we're done. */
 | |
| 	++vdso_data->tb_update_count;
 | |
| 	smp_mb();
 | |
| 
 | |
| 	/* 19342813113834067 ~= 2^(20+64) / 1e9 */
 | |
| 	new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift);
 | |
| 	new_stamp_xsec = (u64) wall_time->tv_nsec * XSEC_PER_SEC;
 | |
| 	do_div(new_stamp_xsec, 1000000000);
 | |
| 	new_stamp_xsec += (u64) wall_time->tv_sec * XSEC_PER_SEC;
 | |
| 
 | |
| 	BUG_ON(wall_time->tv_nsec >= NSEC_PER_SEC);
 | |
| 	/* this is tv_nsec / 1e9 as a 0.32 fraction */
 | |
| 	frac_sec = ((u64) wall_time->tv_nsec * 18446744073ULL) >> 32;
 | |
| 
 | |
| 	/*
 | |
| 	 * tb_update_count is used to allow the userspace gettimeofday code
 | |
| 	 * to assure itself that it sees a consistent view of the tb_to_xs and
 | |
| 	 * stamp_xsec variables.  It reads the tb_update_count, then reads
 | |
| 	 * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
 | |
| 	 * the two values of tb_update_count match and are even then the
 | |
| 	 * tb_to_xs and stamp_xsec values are consistent.  If not, then it
 | |
| 	 * loops back and reads them again until this criteria is met.
 | |
| 	 * We expect the caller to have done the first increment of
 | |
| 	 * vdso_data->tb_update_count already.
 | |
| 	 */
 | |
| 	vdso_data->tb_orig_stamp = clock->cycle_last;
 | |
| 	vdso_data->stamp_xsec = new_stamp_xsec;
 | |
| 	vdso_data->tb_to_xs = new_tb_to_xs;
 | |
| 	vdso_data->wtom_clock_sec = wtm->tv_sec;
 | |
| 	vdso_data->wtom_clock_nsec = wtm->tv_nsec;
 | |
| 	vdso_data->stamp_xtime = *wall_time;
 | |
| 	vdso_data->stamp_sec_fraction = frac_sec;
 | |
| 	smp_wmb();
 | |
| 	++(vdso_data->tb_update_count);
 | |
| }
 | |
| 
 | |
| void update_vsyscall_tz(void)
 | |
| {
 | |
| 	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
 | |
| 	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
 | |
| }
 | |
| 
 | |
| static void __init clocksource_init(void)
 | |
| {
 | |
| 	struct clocksource *clock;
 | |
| 
 | |
| 	if (__USE_RTC())
 | |
| 		clock = &clocksource_rtc;
 | |
| 	else
 | |
| 		clock = &clocksource_timebase;
 | |
| 
 | |
| 	if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
 | |
| 		printk(KERN_ERR "clocksource: %s is already registered\n",
 | |
| 		       clock->name);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
 | |
| 	       clock->name, clock->mult, clock->shift);
 | |
| }
 | |
| 
 | |
| static int decrementer_set_next_event(unsigned long evt,
 | |
| 				      struct clock_event_device *dev)
 | |
| {
 | |
| 	__get_cpu_var(decrementers_next_tb) = get_tb_or_rtc() + evt;
 | |
| 	set_dec(evt);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void decrementer_set_mode(enum clock_event_mode mode,
 | |
| 				 struct clock_event_device *dev)
 | |
| {
 | |
| 	if (mode != CLOCK_EVT_MODE_ONESHOT)
 | |
| 		decrementer_set_next_event(DECREMENTER_MAX, dev);
 | |
| }
 | |
| 
 | |
| static void register_decrementer_clockevent(int cpu)
 | |
| {
 | |
| 	struct clock_event_device *dec = &per_cpu(decrementers, cpu);
 | |
| 
 | |
| 	*dec = decrementer_clockevent;
 | |
| 	dec->cpumask = cpumask_of(cpu);
 | |
| 
 | |
| 	printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
 | |
| 		    dec->name, dec->mult, dec->shift, cpu);
 | |
| 
 | |
| 	clockevents_register_device(dec);
 | |
| }
 | |
| 
 | |
| static void __init init_decrementer_clockevent(void)
 | |
| {
 | |
| 	int cpu = smp_processor_id();
 | |
| 
 | |
| 	clockevents_calc_mult_shift(&decrementer_clockevent, ppc_tb_freq, 4);
 | |
| 
 | |
| 	decrementer_clockevent.max_delta_ns =
 | |
| 		clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
 | |
| 	decrementer_clockevent.min_delta_ns =
 | |
| 		clockevent_delta2ns(2, &decrementer_clockevent);
 | |
| 
 | |
| 	register_decrementer_clockevent(cpu);
 | |
| }
 | |
| 
 | |
| void secondary_cpu_time_init(void)
 | |
| {
 | |
| 	/* Start the decrementer on CPUs that have manual control
 | |
| 	 * such as BookE
 | |
| 	 */
 | |
| 	start_cpu_decrementer();
 | |
| 
 | |
| 	/* FIME: Should make unrelatred change to move snapshot_timebase
 | |
| 	 * call here ! */
 | |
| 	register_decrementer_clockevent(smp_processor_id());
 | |
| }
 | |
| 
 | |
| /* This function is only called on the boot processor */
 | |
| void __init time_init(void)
 | |
| {
 | |
| 	struct div_result res;
 | |
| 	u64 scale;
 | |
| 	unsigned shift;
 | |
| 
 | |
| 	if (__USE_RTC()) {
 | |
| 		/* 601 processor: dec counts down by 128 every 128ns */
 | |
| 		ppc_tb_freq = 1000000000;
 | |
| 	} else {
 | |
| 		/* Normal PowerPC with timebase register */
 | |
| 		ppc_md.calibrate_decr();
 | |
| 		printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
 | |
| 		       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
 | |
| 		printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
 | |
| 		       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
 | |
| 	}
 | |
| 
 | |
| 	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
 | |
| 	tb_ticks_per_sec = ppc_tb_freq;
 | |
| 	tb_ticks_per_usec = ppc_tb_freq / 1000000;
 | |
| 	calc_cputime_factors();
 | |
| 	setup_cputime_one_jiffy();
 | |
| 
 | |
| 	/*
 | |
| 	 * Compute scale factor for sched_clock.
 | |
| 	 * The calibrate_decr() function has set tb_ticks_per_sec,
 | |
| 	 * which is the timebase frequency.
 | |
| 	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
 | |
| 	 * the 128-bit result as a 64.64 fixed-point number.
 | |
| 	 * We then shift that number right until it is less than 1.0,
 | |
| 	 * giving us the scale factor and shift count to use in
 | |
| 	 * sched_clock().
 | |
| 	 */
 | |
| 	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
 | |
| 	scale = res.result_low;
 | |
| 	for (shift = 0; res.result_high != 0; ++shift) {
 | |
| 		scale = (scale >> 1) | (res.result_high << 63);
 | |
| 		res.result_high >>= 1;
 | |
| 	}
 | |
| 	tb_to_ns_scale = scale;
 | |
| 	tb_to_ns_shift = shift;
 | |
| 	/* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
 | |
| 	boot_tb = get_tb_or_rtc();
 | |
| 
 | |
| 	/* If platform provided a timezone (pmac), we correct the time */
 | |
| 	if (timezone_offset) {
 | |
| 		sys_tz.tz_minuteswest = -timezone_offset / 60;
 | |
| 		sys_tz.tz_dsttime = 0;
 | |
| 	}
 | |
| 
 | |
| 	vdso_data->tb_update_count = 0;
 | |
| 	vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
 | |
| 
 | |
| 	/* Start the decrementer on CPUs that have manual control
 | |
| 	 * such as BookE
 | |
| 	 */
 | |
| 	start_cpu_decrementer();
 | |
| 
 | |
| 	/* Register the clocksource */
 | |
| 	clocksource_init();
 | |
| 
 | |
| 	init_decrementer_clockevent();
 | |
| }
 | |
| 
 | |
| 
 | |
| #define FEBRUARY	2
 | |
| #define	STARTOFTIME	1970
 | |
| #define SECDAY		86400L
 | |
| #define SECYR		(SECDAY * 365)
 | |
| #define	leapyear(year)		((year) % 4 == 0 && \
 | |
| 				 ((year) % 100 != 0 || (year) % 400 == 0))
 | |
| #define	days_in_year(a) 	(leapyear(a) ? 366 : 365)
 | |
| #define	days_in_month(a) 	(month_days[(a) - 1])
 | |
| 
 | |
| static int month_days[12] = {
 | |
| 	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
 | |
|  */
 | |
| void GregorianDay(struct rtc_time * tm)
 | |
| {
 | |
| 	int leapsToDate;
 | |
| 	int lastYear;
 | |
| 	int day;
 | |
| 	int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
 | |
| 
 | |
| 	lastYear = tm->tm_year - 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Number of leap corrections to apply up to end of last year
 | |
| 	 */
 | |
| 	leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
 | |
| 
 | |
| 	/*
 | |
| 	 * This year is a leap year if it is divisible by 4 except when it is
 | |
| 	 * divisible by 100 unless it is divisible by 400
 | |
| 	 *
 | |
| 	 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
 | |
| 	 */
 | |
| 	day = tm->tm_mon > 2 && leapyear(tm->tm_year);
 | |
| 
 | |
| 	day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
 | |
| 		   tm->tm_mday;
 | |
| 
 | |
| 	tm->tm_wday = day % 7;
 | |
| }
 | |
| 
 | |
| void to_tm(int tim, struct rtc_time * tm)
 | |
| {
 | |
| 	register int    i;
 | |
| 	register long   hms, day;
 | |
| 
 | |
| 	day = tim / SECDAY;
 | |
| 	hms = tim % SECDAY;
 | |
| 
 | |
| 	/* Hours, minutes, seconds are easy */
 | |
| 	tm->tm_hour = hms / 3600;
 | |
| 	tm->tm_min = (hms % 3600) / 60;
 | |
| 	tm->tm_sec = (hms % 3600) % 60;
 | |
| 
 | |
| 	/* Number of years in days */
 | |
| 	for (i = STARTOFTIME; day >= days_in_year(i); i++)
 | |
| 		day -= days_in_year(i);
 | |
| 	tm->tm_year = i;
 | |
| 
 | |
| 	/* Number of months in days left */
 | |
| 	if (leapyear(tm->tm_year))
 | |
| 		days_in_month(FEBRUARY) = 29;
 | |
| 	for (i = 1; day >= days_in_month(i); i++)
 | |
| 		day -= days_in_month(i);
 | |
| 	days_in_month(FEBRUARY) = 28;
 | |
| 	tm->tm_mon = i;
 | |
| 
 | |
| 	/* Days are what is left over (+1) from all that. */
 | |
| 	tm->tm_mday = day + 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Determine the day of week
 | |
| 	 */
 | |
| 	GregorianDay(tm);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
 | |
|  * result.
 | |
|  */
 | |
| void div128_by_32(u64 dividend_high, u64 dividend_low,
 | |
| 		  unsigned divisor, struct div_result *dr)
 | |
| {
 | |
| 	unsigned long a, b, c, d;
 | |
| 	unsigned long w, x, y, z;
 | |
| 	u64 ra, rb, rc;
 | |
| 
 | |
| 	a = dividend_high >> 32;
 | |
| 	b = dividend_high & 0xffffffff;
 | |
| 	c = dividend_low >> 32;
 | |
| 	d = dividend_low & 0xffffffff;
 | |
| 
 | |
| 	w = a / divisor;
 | |
| 	ra = ((u64)(a - (w * divisor)) << 32) + b;
 | |
| 
 | |
| 	rb = ((u64) do_div(ra, divisor) << 32) + c;
 | |
| 	x = ra;
 | |
| 
 | |
| 	rc = ((u64) do_div(rb, divisor) << 32) + d;
 | |
| 	y = rb;
 | |
| 
 | |
| 	do_div(rc, divisor);
 | |
| 	z = rc;
 | |
| 
 | |
| 	dr->result_high = ((u64)w << 32) + x;
 | |
| 	dr->result_low  = ((u64)y << 32) + z;
 | |
| 
 | |
| }
 | |
| 
 | |
| /* We don't need to calibrate delay, we use the CPU timebase for that */
 | |
| void calibrate_delay(void)
 | |
| {
 | |
| 	/* Some generic code (such as spinlock debug) use loops_per_jiffy
 | |
| 	 * as the number of __delay(1) in a jiffy, so make it so
 | |
| 	 */
 | |
| 	loops_per_jiffy = tb_ticks_per_jiffy;
 | |
| }
 | |
| 
 | |
| static int __init rtc_init(void)
 | |
| {
 | |
| 	struct platform_device *pdev;
 | |
| 
 | |
| 	if (!ppc_md.get_rtc_time)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
 | |
| 	if (IS_ERR(pdev))
 | |
| 		return PTR_ERR(pdev);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| module_init(rtc_init);
 |