 e04fa61214
			
		
	
	
	e04fa61214
	
	
	
		
			
			There are instances in which we do not want topology updates to occur. In order to allow this a /proc interface (/proc/powerpc/topology_updates) is introduced so that topology updates can be enabled and disabled. This patch also adds a prrn_is_enabled() call so that PRRN events are handled in the kernel only if topology updating is enabled. Signed-off-by: Nathan Fontenot <nfont@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
		
			
				
	
	
		
			602 lines
		
	
	
	
		
			14 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			602 lines
		
	
	
	
		
			14 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License
 | |
|  * as published by the Free Software Foundation; either version
 | |
|  * 2 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * Communication to userspace based on kernel/printk.c
 | |
|  */
 | |
| 
 | |
| #include <linux/types.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/poll.h>
 | |
| #include <linux/proc_fs.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/workqueue.h>
 | |
| #include <linux/slab.h>
 | |
| 
 | |
| #include <asm/uaccess.h>
 | |
| #include <asm/io.h>
 | |
| #include <asm/rtas.h>
 | |
| #include <asm/prom.h>
 | |
| #include <asm/nvram.h>
 | |
| #include <linux/atomic.h>
 | |
| #include <asm/machdep.h>
 | |
| #include <asm/topology.h>
 | |
| 
 | |
| 
 | |
| static DEFINE_SPINLOCK(rtasd_log_lock);
 | |
| 
 | |
| static DECLARE_WAIT_QUEUE_HEAD(rtas_log_wait);
 | |
| 
 | |
| static char *rtas_log_buf;
 | |
| static unsigned long rtas_log_start;
 | |
| static unsigned long rtas_log_size;
 | |
| 
 | |
| static int surveillance_timeout = -1;
 | |
| 
 | |
| static unsigned int rtas_error_log_max;
 | |
| static unsigned int rtas_error_log_buffer_max;
 | |
| 
 | |
| /* RTAS service tokens */
 | |
| static unsigned int event_scan;
 | |
| static unsigned int rtas_event_scan_rate;
 | |
| 
 | |
| static int full_rtas_msgs = 0;
 | |
| 
 | |
| /* Stop logging to nvram after first fatal error */
 | |
| static int logging_enabled; /* Until we initialize everything,
 | |
|                              * make sure we don't try logging
 | |
|                              * anything */
 | |
| static int error_log_cnt;
 | |
| 
 | |
| /*
 | |
|  * Since we use 32 bit RTAS, the physical address of this must be below
 | |
|  * 4G or else bad things happen. Allocate this in the kernel data and
 | |
|  * make it big enough.
 | |
|  */
 | |
| static unsigned char logdata[RTAS_ERROR_LOG_MAX];
 | |
| 
 | |
| static char *rtas_type[] = {
 | |
| 	"Unknown", "Retry", "TCE Error", "Internal Device Failure",
 | |
| 	"Timeout", "Data Parity", "Address Parity", "Cache Parity",
 | |
| 	"Address Invalid", "ECC Uncorrected", "ECC Corrupted",
 | |
| };
 | |
| 
 | |
| static char *rtas_event_type(int type)
 | |
| {
 | |
| 	if ((type > 0) && (type < 11))
 | |
| 		return rtas_type[type];
 | |
| 
 | |
| 	switch (type) {
 | |
| 		case RTAS_TYPE_EPOW:
 | |
| 			return "EPOW";
 | |
| 		case RTAS_TYPE_PLATFORM:
 | |
| 			return "Platform Error";
 | |
| 		case RTAS_TYPE_IO:
 | |
| 			return "I/O Event";
 | |
| 		case RTAS_TYPE_INFO:
 | |
| 			return "Platform Information Event";
 | |
| 		case RTAS_TYPE_DEALLOC:
 | |
| 			return "Resource Deallocation Event";
 | |
| 		case RTAS_TYPE_DUMP:
 | |
| 			return "Dump Notification Event";
 | |
| 		case RTAS_TYPE_PRRN:
 | |
| 			return "Platform Resource Reassignment Event";
 | |
| 	}
 | |
| 
 | |
| 	return rtas_type[0];
 | |
| }
 | |
| 
 | |
| /* To see this info, grep RTAS /var/log/messages and each entry
 | |
|  * will be collected together with obvious begin/end.
 | |
|  * There will be a unique identifier on the begin and end lines.
 | |
|  * This will persist across reboots.
 | |
|  *
 | |
|  * format of error logs returned from RTAS:
 | |
|  * bytes	(size)	: contents
 | |
|  * --------------------------------------------------------
 | |
|  * 0-7		(8)	: rtas_error_log
 | |
|  * 8-47		(40)	: extended info
 | |
|  * 48-51	(4)	: vendor id
 | |
|  * 52-1023 (vendor specific) : location code and debug data
 | |
|  */
 | |
| static void printk_log_rtas(char *buf, int len)
 | |
| {
 | |
| 
 | |
| 	int i,j,n = 0;
 | |
| 	int perline = 16;
 | |
| 	char buffer[64];
 | |
| 	char * str = "RTAS event";
 | |
| 
 | |
| 	if (full_rtas_msgs) {
 | |
| 		printk(RTAS_DEBUG "%d -------- %s begin --------\n",
 | |
| 		       error_log_cnt, str);
 | |
| 
 | |
| 		/*
 | |
| 		 * Print perline bytes on each line, each line will start
 | |
| 		 * with RTAS and a changing number, so syslogd will
 | |
| 		 * print lines that are otherwise the same.  Separate every
 | |
| 		 * 4 bytes with a space.
 | |
| 		 */
 | |
| 		for (i = 0; i < len; i++) {
 | |
| 			j = i % perline;
 | |
| 			if (j == 0) {
 | |
| 				memset(buffer, 0, sizeof(buffer));
 | |
| 				n = sprintf(buffer, "RTAS %d:", i/perline);
 | |
| 			}
 | |
| 
 | |
| 			if ((i % 4) == 0)
 | |
| 				n += sprintf(buffer+n, " ");
 | |
| 
 | |
| 			n += sprintf(buffer+n, "%02x", (unsigned char)buf[i]);
 | |
| 
 | |
| 			if (j == (perline-1))
 | |
| 				printk(KERN_DEBUG "%s\n", buffer);
 | |
| 		}
 | |
| 		if ((i % perline) != 0)
 | |
| 			printk(KERN_DEBUG "%s\n", buffer);
 | |
| 
 | |
| 		printk(RTAS_DEBUG "%d -------- %s end ----------\n",
 | |
| 		       error_log_cnt, str);
 | |
| 	} else {
 | |
| 		struct rtas_error_log *errlog = (struct rtas_error_log *)buf;
 | |
| 
 | |
| 		printk(RTAS_DEBUG "event: %d, Type: %s, Severity: %d\n",
 | |
| 		       error_log_cnt, rtas_event_type(errlog->type),
 | |
| 		       errlog->severity);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int log_rtas_len(char * buf)
 | |
| {
 | |
| 	int len;
 | |
| 	struct rtas_error_log *err;
 | |
| 
 | |
| 	/* rtas fixed header */
 | |
| 	len = 8;
 | |
| 	err = (struct rtas_error_log *)buf;
 | |
| 	if (err->extended && err->extended_log_length) {
 | |
| 
 | |
| 		/* extended header */
 | |
| 		len += err->extended_log_length;
 | |
| 	}
 | |
| 
 | |
| 	if (rtas_error_log_max == 0)
 | |
| 		rtas_error_log_max = rtas_get_error_log_max();
 | |
| 
 | |
| 	if (len > rtas_error_log_max)
 | |
| 		len = rtas_error_log_max;
 | |
| 
 | |
| 	return len;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * First write to nvram, if fatal error, that is the only
 | |
|  * place we log the info.  The error will be picked up
 | |
|  * on the next reboot by rtasd.  If not fatal, run the
 | |
|  * method for the type of error.  Currently, only RTAS
 | |
|  * errors have methods implemented, but in the future
 | |
|  * there might be a need to store data in nvram before a
 | |
|  * call to panic().
 | |
|  *
 | |
|  * XXX We write to nvram periodically, to indicate error has
 | |
|  * been written and sync'd, but there is a possibility
 | |
|  * that if we don't shutdown correctly, a duplicate error
 | |
|  * record will be created on next reboot.
 | |
|  */
 | |
| void pSeries_log_error(char *buf, unsigned int err_type, int fatal)
 | |
| {
 | |
| 	unsigned long offset;
 | |
| 	unsigned long s;
 | |
| 	int len = 0;
 | |
| 
 | |
| 	pr_debug("rtasd: logging event\n");
 | |
| 	if (buf == NULL)
 | |
| 		return;
 | |
| 
 | |
| 	spin_lock_irqsave(&rtasd_log_lock, s);
 | |
| 
 | |
| 	/* get length and increase count */
 | |
| 	switch (err_type & ERR_TYPE_MASK) {
 | |
| 	case ERR_TYPE_RTAS_LOG:
 | |
| 		len = log_rtas_len(buf);
 | |
| 		if (!(err_type & ERR_FLAG_BOOT))
 | |
| 			error_log_cnt++;
 | |
| 		break;
 | |
| 	case ERR_TYPE_KERNEL_PANIC:
 | |
| 	default:
 | |
| 		WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */
 | |
| 		spin_unlock_irqrestore(&rtasd_log_lock, s);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_PPC64
 | |
| 	/* Write error to NVRAM */
 | |
| 	if (logging_enabled && !(err_type & ERR_FLAG_BOOT))
 | |
| 		nvram_write_error_log(buf, len, err_type, error_log_cnt);
 | |
| #endif /* CONFIG_PPC64 */
 | |
| 
 | |
| 	/*
 | |
| 	 * rtas errors can occur during boot, and we do want to capture
 | |
| 	 * those somewhere, even if nvram isn't ready (why not?), and even
 | |
| 	 * if rtasd isn't ready. Put them into the boot log, at least.
 | |
| 	 */
 | |
| 	if ((err_type & ERR_TYPE_MASK) == ERR_TYPE_RTAS_LOG)
 | |
| 		printk_log_rtas(buf, len);
 | |
| 
 | |
| 	/* Check to see if we need to or have stopped logging */
 | |
| 	if (fatal || !logging_enabled) {
 | |
| 		logging_enabled = 0;
 | |
| 		WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */
 | |
| 		spin_unlock_irqrestore(&rtasd_log_lock, s);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* call type specific method for error */
 | |
| 	switch (err_type & ERR_TYPE_MASK) {
 | |
| 	case ERR_TYPE_RTAS_LOG:
 | |
| 		offset = rtas_error_log_buffer_max *
 | |
| 			((rtas_log_start+rtas_log_size) & LOG_NUMBER_MASK);
 | |
| 
 | |
| 		/* First copy over sequence number */
 | |
| 		memcpy(&rtas_log_buf[offset], (void *) &error_log_cnt, sizeof(int));
 | |
| 
 | |
| 		/* Second copy over error log data */
 | |
| 		offset += sizeof(int);
 | |
| 		memcpy(&rtas_log_buf[offset], buf, len);
 | |
| 
 | |
| 		if (rtas_log_size < LOG_NUMBER)
 | |
| 			rtas_log_size += 1;
 | |
| 		else
 | |
| 			rtas_log_start += 1;
 | |
| 
 | |
| 		WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */
 | |
| 		spin_unlock_irqrestore(&rtasd_log_lock, s);
 | |
| 		wake_up_interruptible(&rtas_log_wait);
 | |
| 		break;
 | |
| 	case ERR_TYPE_KERNEL_PANIC:
 | |
| 	default:
 | |
| 		WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */
 | |
| 		spin_unlock_irqrestore(&rtasd_log_lock, s);
 | |
| 		return;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PPC_PSERIES
 | |
| static s32 prrn_update_scope;
 | |
| 
 | |
| static void prrn_work_fn(struct work_struct *work)
 | |
| {
 | |
| 	/*
 | |
| 	 * For PRRN, we must pass the negative of the scope value in
 | |
| 	 * the RTAS event.
 | |
| 	 */
 | |
| 	pseries_devicetree_update(-prrn_update_scope);
 | |
| }
 | |
| 
 | |
| static DECLARE_WORK(prrn_work, prrn_work_fn);
 | |
| 
 | |
| void prrn_schedule_update(u32 scope)
 | |
| {
 | |
| 	flush_work(&prrn_work);
 | |
| 	prrn_update_scope = scope;
 | |
| 	schedule_work(&prrn_work);
 | |
| }
 | |
| 
 | |
| static void handle_rtas_event(const struct rtas_error_log *log)
 | |
| {
 | |
| 	if (log->type == RTAS_TYPE_PRRN) {
 | |
| 		/* For PRRN Events the extended log length is used to denote
 | |
| 		 * the scope for calling rtas update-nodes.
 | |
| 		 */
 | |
| 		if (prrn_is_enabled())
 | |
| 			prrn_schedule_update(log->extended_log_length);
 | |
| 	}
 | |
| 
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| static void handle_rtas_event(const struct rtas_error_log *log)
 | |
| {
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| static int rtas_log_open(struct inode * inode, struct file * file)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int rtas_log_release(struct inode * inode, struct file * file)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* This will check if all events are logged, if they are then, we
 | |
|  * know that we can safely clear the events in NVRAM.
 | |
|  * Next we'll sit and wait for something else to log.
 | |
|  */
 | |
| static ssize_t rtas_log_read(struct file * file, char __user * buf,
 | |
| 			 size_t count, loff_t *ppos)
 | |
| {
 | |
| 	int error;
 | |
| 	char *tmp;
 | |
| 	unsigned long s;
 | |
| 	unsigned long offset;
 | |
| 
 | |
| 	if (!buf || count < rtas_error_log_buffer_max)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	count = rtas_error_log_buffer_max;
 | |
| 
 | |
| 	if (!access_ok(VERIFY_WRITE, buf, count))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	tmp = kmalloc(count, GFP_KERNEL);
 | |
| 	if (!tmp)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	spin_lock_irqsave(&rtasd_log_lock, s);
 | |
| 
 | |
| 	/* if it's 0, then we know we got the last one (the one in NVRAM) */
 | |
| 	while (rtas_log_size == 0) {
 | |
| 		if (file->f_flags & O_NONBLOCK) {
 | |
| 			spin_unlock_irqrestore(&rtasd_log_lock, s);
 | |
| 			error = -EAGAIN;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		if (!logging_enabled) {
 | |
| 			spin_unlock_irqrestore(&rtasd_log_lock, s);
 | |
| 			error = -ENODATA;
 | |
| 			goto out;
 | |
| 		}
 | |
| #ifdef CONFIG_PPC64
 | |
| 		nvram_clear_error_log();
 | |
| #endif /* CONFIG_PPC64 */
 | |
| 
 | |
| 		spin_unlock_irqrestore(&rtasd_log_lock, s);
 | |
| 		error = wait_event_interruptible(rtas_log_wait, rtas_log_size);
 | |
| 		if (error)
 | |
| 			goto out;
 | |
| 		spin_lock_irqsave(&rtasd_log_lock, s);
 | |
| 	}
 | |
| 
 | |
| 	offset = rtas_error_log_buffer_max * (rtas_log_start & LOG_NUMBER_MASK);
 | |
| 	memcpy(tmp, &rtas_log_buf[offset], count);
 | |
| 
 | |
| 	rtas_log_start += 1;
 | |
| 	rtas_log_size -= 1;
 | |
| 	spin_unlock_irqrestore(&rtasd_log_lock, s);
 | |
| 
 | |
| 	error = copy_to_user(buf, tmp, count) ? -EFAULT : count;
 | |
| out:
 | |
| 	kfree(tmp);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| static unsigned int rtas_log_poll(struct file *file, poll_table * wait)
 | |
| {
 | |
| 	poll_wait(file, &rtas_log_wait, wait);
 | |
| 	if (rtas_log_size)
 | |
| 		return POLLIN | POLLRDNORM;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct file_operations proc_rtas_log_operations = {
 | |
| 	.read =		rtas_log_read,
 | |
| 	.poll =		rtas_log_poll,
 | |
| 	.open =		rtas_log_open,
 | |
| 	.release =	rtas_log_release,
 | |
| 	.llseek =	noop_llseek,
 | |
| };
 | |
| 
 | |
| static int enable_surveillance(int timeout)
 | |
| {
 | |
| 	int error;
 | |
| 
 | |
| 	error = rtas_set_indicator(SURVEILLANCE_TOKEN, 0, timeout);
 | |
| 
 | |
| 	if (error == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (error == -EINVAL) {
 | |
| 		printk(KERN_DEBUG "rtasd: surveillance not supported\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	printk(KERN_ERR "rtasd: could not update surveillance\n");
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| static void do_event_scan(void)
 | |
| {
 | |
| 	int error;
 | |
| 	do {
 | |
| 		memset(logdata, 0, rtas_error_log_max);
 | |
| 		error = rtas_call(event_scan, 4, 1, NULL,
 | |
| 				  RTAS_EVENT_SCAN_ALL_EVENTS, 0,
 | |
| 				  __pa(logdata), rtas_error_log_max);
 | |
| 		if (error == -1) {
 | |
| 			printk(KERN_ERR "event-scan failed\n");
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (error == 0) {
 | |
| 			pSeries_log_error(logdata, ERR_TYPE_RTAS_LOG, 0);
 | |
| 			handle_rtas_event((struct rtas_error_log *)logdata);
 | |
| 		}
 | |
| 
 | |
| 	} while(error == 0);
 | |
| }
 | |
| 
 | |
| static void rtas_event_scan(struct work_struct *w);
 | |
| DECLARE_DELAYED_WORK(event_scan_work, rtas_event_scan);
 | |
| 
 | |
| /*
 | |
|  * Delay should be at least one second since some machines have problems if
 | |
|  * we call event-scan too quickly.
 | |
|  */
 | |
| static unsigned long event_scan_delay = 1*HZ;
 | |
| static int first_pass = 1;
 | |
| 
 | |
| static void rtas_event_scan(struct work_struct *w)
 | |
| {
 | |
| 	unsigned int cpu;
 | |
| 
 | |
| 	do_event_scan();
 | |
| 
 | |
| 	get_online_cpus();
 | |
| 
 | |
| 	/* raw_ OK because just using CPU as starting point. */
 | |
| 	cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
 | |
|         if (cpu >= nr_cpu_ids) {
 | |
| 		cpu = cpumask_first(cpu_online_mask);
 | |
| 
 | |
| 		if (first_pass) {
 | |
| 			first_pass = 0;
 | |
| 			event_scan_delay = 30*HZ/rtas_event_scan_rate;
 | |
| 
 | |
| 			if (surveillance_timeout != -1) {
 | |
| 				pr_debug("rtasd: enabling surveillance\n");
 | |
| 				enable_surveillance(surveillance_timeout);
 | |
| 				pr_debug("rtasd: surveillance enabled\n");
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	schedule_delayed_work_on(cpu, &event_scan_work,
 | |
| 		__round_jiffies_relative(event_scan_delay, cpu));
 | |
| 
 | |
| 	put_online_cpus();
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PPC64
 | |
| static void retreive_nvram_error_log(void)
 | |
| {
 | |
| 	unsigned int err_type ;
 | |
| 	int rc ;
 | |
| 
 | |
| 	/* See if we have any error stored in NVRAM */
 | |
| 	memset(logdata, 0, rtas_error_log_max);
 | |
| 	rc = nvram_read_error_log(logdata, rtas_error_log_max,
 | |
| 	                          &err_type, &error_log_cnt);
 | |
| 	/* We can use rtas_log_buf now */
 | |
| 	logging_enabled = 1;
 | |
| 	if (!rc) {
 | |
| 		if (err_type != ERR_FLAG_ALREADY_LOGGED) {
 | |
| 			pSeries_log_error(logdata, err_type | ERR_FLAG_BOOT, 0);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| #else /* CONFIG_PPC64 */
 | |
| static void retreive_nvram_error_log(void)
 | |
| {
 | |
| }
 | |
| #endif /* CONFIG_PPC64 */
 | |
| 
 | |
| static void start_event_scan(void)
 | |
| {
 | |
| 	printk(KERN_DEBUG "RTAS daemon started\n");
 | |
| 	pr_debug("rtasd: will sleep for %d milliseconds\n",
 | |
| 		 (30000 / rtas_event_scan_rate));
 | |
| 
 | |
| 	/* Retrieve errors from nvram if any */
 | |
| 	retreive_nvram_error_log();
 | |
| 
 | |
| 	schedule_delayed_work_on(cpumask_first(cpu_online_mask),
 | |
| 				 &event_scan_work, event_scan_delay);
 | |
| }
 | |
| 
 | |
| /* Cancel the rtas event scan work */
 | |
| void rtas_cancel_event_scan(void)
 | |
| {
 | |
| 	cancel_delayed_work_sync(&event_scan_work);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rtas_cancel_event_scan);
 | |
| 
 | |
| static int __init rtas_init(void)
 | |
| {
 | |
| 	struct proc_dir_entry *entry;
 | |
| 
 | |
| 	if (!machine_is(pseries) && !machine_is(chrp))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* No RTAS */
 | |
| 	event_scan = rtas_token("event-scan");
 | |
| 	if (event_scan == RTAS_UNKNOWN_SERVICE) {
 | |
| 		printk(KERN_INFO "rtasd: No event-scan on system\n");
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	rtas_event_scan_rate = rtas_token("rtas-event-scan-rate");
 | |
| 	if (rtas_event_scan_rate == RTAS_UNKNOWN_SERVICE) {
 | |
| 		printk(KERN_ERR "rtasd: no rtas-event-scan-rate on system\n");
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	if (!rtas_event_scan_rate) {
 | |
| 		/* Broken firmware: take a rate of zero to mean don't scan */
 | |
| 		printk(KERN_DEBUG "rtasd: scan rate is 0, not scanning\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Make room for the sequence number */
 | |
| 	rtas_error_log_max = rtas_get_error_log_max();
 | |
| 	rtas_error_log_buffer_max = rtas_error_log_max + sizeof(int);
 | |
| 
 | |
| 	rtas_log_buf = vmalloc(rtas_error_log_buffer_max*LOG_NUMBER);
 | |
| 	if (!rtas_log_buf) {
 | |
| 		printk(KERN_ERR "rtasd: no memory\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	entry = proc_create("powerpc/rtas/error_log", S_IRUSR, NULL,
 | |
| 			    &proc_rtas_log_operations);
 | |
| 	if (!entry)
 | |
| 		printk(KERN_ERR "Failed to create error_log proc entry\n");
 | |
| 
 | |
| 	start_event_scan();
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| __initcall(rtas_init);
 | |
| 
 | |
| static int __init surveillance_setup(char *str)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	/* We only do surveillance on pseries */
 | |
| 	if (!machine_is(pseries))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (get_option(&str,&i)) {
 | |
| 		if (i >= 0 && i <= 255)
 | |
| 			surveillance_timeout = i;
 | |
| 	}
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| __setup("surveillance=", surveillance_setup);
 | |
| 
 | |
| static int __init rtasmsgs_setup(char *str)
 | |
| {
 | |
| 	if (strcmp(str, "on") == 0)
 | |
| 		full_rtas_msgs = 1;
 | |
| 	else if (strcmp(str, "off") == 0)
 | |
| 		full_rtas_msgs = 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| __setup("rtasmsgs=", rtasmsgs_setup);
 |