 af39008435
			
		
	
	
	af39008435
	
	
	
		
			
			* 'timers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: Documentation: Add timers/timers-howto.txt timer: Added usleep_range timer Revert "timer: Added usleep[_range] timer" clockevents: Remove the per cpu tick skew posix_timer: Move copy_to_user(created_timer_id) down in timer_create() timer: Added usleep[_range] timer timers: Document meaning of deferrable timer
		
			
				
	
	
		
			865 lines
		
	
	
	
		
			22 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			865 lines
		
	
	
	
		
			22 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  linux/kernel/time/tick-sched.c
 | |
|  *
 | |
|  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
 | |
|  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
 | |
|  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
 | |
|  *
 | |
|  *  No idle tick implementation for low and high resolution timers
 | |
|  *
 | |
|  *  Started by: Thomas Gleixner and Ingo Molnar
 | |
|  *
 | |
|  *  Distribute under GPLv2.
 | |
|  */
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/err.h>
 | |
| #include <linux/hrtimer.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/kernel_stat.h>
 | |
| #include <linux/percpu.h>
 | |
| #include <linux/profile.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/tick.h>
 | |
| #include <linux/module.h>
 | |
| 
 | |
| #include <asm/irq_regs.h>
 | |
| 
 | |
| #include "tick-internal.h"
 | |
| 
 | |
| /*
 | |
|  * Per cpu nohz control structure
 | |
|  */
 | |
| static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
 | |
| 
 | |
| /*
 | |
|  * The time, when the last jiffy update happened. Protected by xtime_lock.
 | |
|  */
 | |
| static ktime_t last_jiffies_update;
 | |
| 
 | |
| struct tick_sched *tick_get_tick_sched(int cpu)
 | |
| {
 | |
| 	return &per_cpu(tick_cpu_sched, cpu);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Must be called with interrupts disabled !
 | |
|  */
 | |
| static void tick_do_update_jiffies64(ktime_t now)
 | |
| {
 | |
| 	unsigned long ticks = 0;
 | |
| 	ktime_t delta;
 | |
| 
 | |
| 	/*
 | |
| 	 * Do a quick check without holding xtime_lock:
 | |
| 	 */
 | |
| 	delta = ktime_sub(now, last_jiffies_update);
 | |
| 	if (delta.tv64 < tick_period.tv64)
 | |
| 		return;
 | |
| 
 | |
| 	/* Reevalute with xtime_lock held */
 | |
| 	write_seqlock(&xtime_lock);
 | |
| 
 | |
| 	delta = ktime_sub(now, last_jiffies_update);
 | |
| 	if (delta.tv64 >= tick_period.tv64) {
 | |
| 
 | |
| 		delta = ktime_sub(delta, tick_period);
 | |
| 		last_jiffies_update = ktime_add(last_jiffies_update,
 | |
| 						tick_period);
 | |
| 
 | |
| 		/* Slow path for long timeouts */
 | |
| 		if (unlikely(delta.tv64 >= tick_period.tv64)) {
 | |
| 			s64 incr = ktime_to_ns(tick_period);
 | |
| 
 | |
| 			ticks = ktime_divns(delta, incr);
 | |
| 
 | |
| 			last_jiffies_update = ktime_add_ns(last_jiffies_update,
 | |
| 							   incr * ticks);
 | |
| 		}
 | |
| 		do_timer(++ticks);
 | |
| 
 | |
| 		/* Keep the tick_next_period variable up to date */
 | |
| 		tick_next_period = ktime_add(last_jiffies_update, tick_period);
 | |
| 	}
 | |
| 	write_sequnlock(&xtime_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize and return retrieve the jiffies update.
 | |
|  */
 | |
| static ktime_t tick_init_jiffy_update(void)
 | |
| {
 | |
| 	ktime_t period;
 | |
| 
 | |
| 	write_seqlock(&xtime_lock);
 | |
| 	/* Did we start the jiffies update yet ? */
 | |
| 	if (last_jiffies_update.tv64 == 0)
 | |
| 		last_jiffies_update = tick_next_period;
 | |
| 	period = last_jiffies_update;
 | |
| 	write_sequnlock(&xtime_lock);
 | |
| 	return period;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * NOHZ - aka dynamic tick functionality
 | |
|  */
 | |
| #ifdef CONFIG_NO_HZ
 | |
| /*
 | |
|  * NO HZ enabled ?
 | |
|  */
 | |
| static int tick_nohz_enabled __read_mostly  = 1;
 | |
| 
 | |
| /*
 | |
|  * Enable / Disable tickless mode
 | |
|  */
 | |
| static int __init setup_tick_nohz(char *str)
 | |
| {
 | |
| 	if (!strcmp(str, "off"))
 | |
| 		tick_nohz_enabled = 0;
 | |
| 	else if (!strcmp(str, "on"))
 | |
| 		tick_nohz_enabled = 1;
 | |
| 	else
 | |
| 		return 0;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| __setup("nohz=", setup_tick_nohz);
 | |
| 
 | |
| /**
 | |
|  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
 | |
|  *
 | |
|  * Called from interrupt entry when the CPU was idle
 | |
|  *
 | |
|  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
 | |
|  * must be updated. Otherwise an interrupt handler could use a stale jiffy
 | |
|  * value. We do this unconditionally on any cpu, as we don't know whether the
 | |
|  * cpu, which has the update task assigned is in a long sleep.
 | |
|  */
 | |
| static void tick_nohz_update_jiffies(ktime_t now)
 | |
| {
 | |
| 	int cpu = smp_processor_id();
 | |
| 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	cpumask_clear_cpu(cpu, nohz_cpu_mask);
 | |
| 	ts->idle_waketime = now;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	tick_do_update_jiffies64(now);
 | |
| 	local_irq_restore(flags);
 | |
| 
 | |
| 	touch_softlockup_watchdog();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Updates the per cpu time idle statistics counters
 | |
|  */
 | |
| static void
 | |
| update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
 | |
| {
 | |
| 	ktime_t delta;
 | |
| 
 | |
| 	if (ts->idle_active) {
 | |
| 		delta = ktime_sub(now, ts->idle_entrytime);
 | |
| 		ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
 | |
| 		if (nr_iowait_cpu(cpu) > 0)
 | |
| 			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
 | |
| 		ts->idle_entrytime = now;
 | |
| 	}
 | |
| 
 | |
| 	if (last_update_time)
 | |
| 		*last_update_time = ktime_to_us(now);
 | |
| 
 | |
| }
 | |
| 
 | |
| static void tick_nohz_stop_idle(int cpu, ktime_t now)
 | |
| {
 | |
| 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 | |
| 
 | |
| 	update_ts_time_stats(cpu, ts, now, NULL);
 | |
| 	ts->idle_active = 0;
 | |
| 
 | |
| 	sched_clock_idle_wakeup_event(0);
 | |
| }
 | |
| 
 | |
| static ktime_t tick_nohz_start_idle(int cpu, struct tick_sched *ts)
 | |
| {
 | |
| 	ktime_t now;
 | |
| 
 | |
| 	now = ktime_get();
 | |
| 
 | |
| 	update_ts_time_stats(cpu, ts, now, NULL);
 | |
| 
 | |
| 	ts->idle_entrytime = now;
 | |
| 	ts->idle_active = 1;
 | |
| 	sched_clock_idle_sleep_event();
 | |
| 	return now;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * get_cpu_idle_time_us - get the total idle time of a cpu
 | |
|  * @cpu: CPU number to query
 | |
|  * @last_update_time: variable to store update time in
 | |
|  *
 | |
|  * Return the cummulative idle time (since boot) for a given
 | |
|  * CPU, in microseconds. The idle time returned includes
 | |
|  * the iowait time (unlike what "top" and co report).
 | |
|  *
 | |
|  * This time is measured via accounting rather than sampling,
 | |
|  * and is as accurate as ktime_get() is.
 | |
|  *
 | |
|  * This function returns -1 if NOHZ is not enabled.
 | |
|  */
 | |
| u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
 | |
| {
 | |
| 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 | |
| 
 | |
| 	if (!tick_nohz_enabled)
 | |
| 		return -1;
 | |
| 
 | |
| 	update_ts_time_stats(cpu, ts, ktime_get(), last_update_time);
 | |
| 
 | |
| 	return ktime_to_us(ts->idle_sleeptime);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
 | |
| 
 | |
| /*
 | |
|  * get_cpu_iowait_time_us - get the total iowait time of a cpu
 | |
|  * @cpu: CPU number to query
 | |
|  * @last_update_time: variable to store update time in
 | |
|  *
 | |
|  * Return the cummulative iowait time (since boot) for a given
 | |
|  * CPU, in microseconds.
 | |
|  *
 | |
|  * This time is measured via accounting rather than sampling,
 | |
|  * and is as accurate as ktime_get() is.
 | |
|  *
 | |
|  * This function returns -1 if NOHZ is not enabled.
 | |
|  */
 | |
| u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
 | |
| {
 | |
| 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 | |
| 
 | |
| 	if (!tick_nohz_enabled)
 | |
| 		return -1;
 | |
| 
 | |
| 	update_ts_time_stats(cpu, ts, ktime_get(), last_update_time);
 | |
| 
 | |
| 	return ktime_to_us(ts->iowait_sleeptime);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
 | |
| 
 | |
| /**
 | |
|  * tick_nohz_stop_sched_tick - stop the idle tick from the idle task
 | |
|  *
 | |
|  * When the next event is more than a tick into the future, stop the idle tick
 | |
|  * Called either from the idle loop or from irq_exit() when an idle period was
 | |
|  * just interrupted by an interrupt which did not cause a reschedule.
 | |
|  */
 | |
| void tick_nohz_stop_sched_tick(int inidle)
 | |
| {
 | |
| 	unsigned long seq, last_jiffies, next_jiffies, delta_jiffies, flags;
 | |
| 	struct tick_sched *ts;
 | |
| 	ktime_t last_update, expires, now;
 | |
| 	struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
 | |
| 	u64 time_delta;
 | |
| 	int cpu;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 
 | |
| 	cpu = smp_processor_id();
 | |
| 	ts = &per_cpu(tick_cpu_sched, cpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * Call to tick_nohz_start_idle stops the last_update_time from being
 | |
| 	 * updated. Thus, it must not be called in the event we are called from
 | |
| 	 * irq_exit() with the prior state different than idle.
 | |
| 	 */
 | |
| 	if (!inidle && !ts->inidle)
 | |
| 		goto end;
 | |
| 
 | |
| 	/*
 | |
| 	 * Set ts->inidle unconditionally. Even if the system did not
 | |
| 	 * switch to NOHZ mode the cpu frequency governers rely on the
 | |
| 	 * update of the idle time accounting in tick_nohz_start_idle().
 | |
| 	 */
 | |
| 	ts->inidle = 1;
 | |
| 
 | |
| 	now = tick_nohz_start_idle(cpu, ts);
 | |
| 
 | |
| 	/*
 | |
| 	 * If this cpu is offline and it is the one which updates
 | |
| 	 * jiffies, then give up the assignment and let it be taken by
 | |
| 	 * the cpu which runs the tick timer next. If we don't drop
 | |
| 	 * this here the jiffies might be stale and do_timer() never
 | |
| 	 * invoked.
 | |
| 	 */
 | |
| 	if (unlikely(!cpu_online(cpu))) {
 | |
| 		if (cpu == tick_do_timer_cpu)
 | |
| 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
 | |
| 		goto end;
 | |
| 
 | |
| 	if (need_resched())
 | |
| 		goto end;
 | |
| 
 | |
| 	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
 | |
| 		static int ratelimit;
 | |
| 
 | |
| 		if (ratelimit < 10) {
 | |
| 			printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
 | |
| 			       (unsigned int) local_softirq_pending());
 | |
| 			ratelimit++;
 | |
| 		}
 | |
| 		goto end;
 | |
| 	}
 | |
| 
 | |
| 	ts->idle_calls++;
 | |
| 	/* Read jiffies and the time when jiffies were updated last */
 | |
| 	do {
 | |
| 		seq = read_seqbegin(&xtime_lock);
 | |
| 		last_update = last_jiffies_update;
 | |
| 		last_jiffies = jiffies;
 | |
| 		time_delta = timekeeping_max_deferment();
 | |
| 	} while (read_seqretry(&xtime_lock, seq));
 | |
| 
 | |
| 	if (rcu_needs_cpu(cpu) || printk_needs_cpu(cpu) ||
 | |
| 	    arch_needs_cpu(cpu)) {
 | |
| 		next_jiffies = last_jiffies + 1;
 | |
| 		delta_jiffies = 1;
 | |
| 	} else {
 | |
| 		/* Get the next timer wheel timer */
 | |
| 		next_jiffies = get_next_timer_interrupt(last_jiffies);
 | |
| 		delta_jiffies = next_jiffies - last_jiffies;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Do not stop the tick, if we are only one off
 | |
| 	 * or if the cpu is required for rcu
 | |
| 	 */
 | |
| 	if (!ts->tick_stopped && delta_jiffies == 1)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* Schedule the tick, if we are at least one jiffie off */
 | |
| 	if ((long)delta_jiffies >= 1) {
 | |
| 
 | |
| 		/*
 | |
| 		 * If this cpu is the one which updates jiffies, then
 | |
| 		 * give up the assignment and let it be taken by the
 | |
| 		 * cpu which runs the tick timer next, which might be
 | |
| 		 * this cpu as well. If we don't drop this here the
 | |
| 		 * jiffies might be stale and do_timer() never
 | |
| 		 * invoked. Keep track of the fact that it was the one
 | |
| 		 * which had the do_timer() duty last. If this cpu is
 | |
| 		 * the one which had the do_timer() duty last, we
 | |
| 		 * limit the sleep time to the timekeeping
 | |
| 		 * max_deferement value which we retrieved
 | |
| 		 * above. Otherwise we can sleep as long as we want.
 | |
| 		 */
 | |
| 		if (cpu == tick_do_timer_cpu) {
 | |
| 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
 | |
| 			ts->do_timer_last = 1;
 | |
| 		} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
 | |
| 			time_delta = KTIME_MAX;
 | |
| 			ts->do_timer_last = 0;
 | |
| 		} else if (!ts->do_timer_last) {
 | |
| 			time_delta = KTIME_MAX;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * calculate the expiry time for the next timer wheel
 | |
| 		 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
 | |
| 		 * that there is no timer pending or at least extremely
 | |
| 		 * far into the future (12 days for HZ=1000). In this
 | |
| 		 * case we set the expiry to the end of time.
 | |
| 		 */
 | |
| 		if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
 | |
| 			/*
 | |
| 			 * Calculate the time delta for the next timer event.
 | |
| 			 * If the time delta exceeds the maximum time delta
 | |
| 			 * permitted by the current clocksource then adjust
 | |
| 			 * the time delta accordingly to ensure the
 | |
| 			 * clocksource does not wrap.
 | |
| 			 */
 | |
| 			time_delta = min_t(u64, time_delta,
 | |
| 					   tick_period.tv64 * delta_jiffies);
 | |
| 		}
 | |
| 
 | |
| 		if (time_delta < KTIME_MAX)
 | |
| 			expires = ktime_add_ns(last_update, time_delta);
 | |
| 		else
 | |
| 			expires.tv64 = KTIME_MAX;
 | |
| 
 | |
| 		if (delta_jiffies > 1)
 | |
| 			cpumask_set_cpu(cpu, nohz_cpu_mask);
 | |
| 
 | |
| 		/* Skip reprogram of event if its not changed */
 | |
| 		if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
 | |
| 			goto out;
 | |
| 
 | |
| 		/*
 | |
| 		 * nohz_stop_sched_tick can be called several times before
 | |
| 		 * the nohz_restart_sched_tick is called. This happens when
 | |
| 		 * interrupts arrive which do not cause a reschedule. In the
 | |
| 		 * first call we save the current tick time, so we can restart
 | |
| 		 * the scheduler tick in nohz_restart_sched_tick.
 | |
| 		 */
 | |
| 		if (!ts->tick_stopped) {
 | |
| 			select_nohz_load_balancer(1);
 | |
| 
 | |
| 			ts->idle_tick = hrtimer_get_expires(&ts->sched_timer);
 | |
| 			ts->tick_stopped = 1;
 | |
| 			ts->idle_jiffies = last_jiffies;
 | |
| 			rcu_enter_nohz();
 | |
| 		}
 | |
| 
 | |
| 		ts->idle_sleeps++;
 | |
| 
 | |
| 		/* Mark expires */
 | |
| 		ts->idle_expires = expires;
 | |
| 
 | |
| 		/*
 | |
| 		 * If the expiration time == KTIME_MAX, then
 | |
| 		 * in this case we simply stop the tick timer.
 | |
| 		 */
 | |
| 		 if (unlikely(expires.tv64 == KTIME_MAX)) {
 | |
| 			if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
 | |
| 				hrtimer_cancel(&ts->sched_timer);
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
 | |
| 			hrtimer_start(&ts->sched_timer, expires,
 | |
| 				      HRTIMER_MODE_ABS_PINNED);
 | |
| 			/* Check, if the timer was already in the past */
 | |
| 			if (hrtimer_active(&ts->sched_timer))
 | |
| 				goto out;
 | |
| 		} else if (!tick_program_event(expires, 0))
 | |
| 				goto out;
 | |
| 		/*
 | |
| 		 * We are past the event already. So we crossed a
 | |
| 		 * jiffie boundary. Update jiffies and raise the
 | |
| 		 * softirq.
 | |
| 		 */
 | |
| 		tick_do_update_jiffies64(ktime_get());
 | |
| 		cpumask_clear_cpu(cpu, nohz_cpu_mask);
 | |
| 	}
 | |
| 	raise_softirq_irqoff(TIMER_SOFTIRQ);
 | |
| out:
 | |
| 	ts->next_jiffies = next_jiffies;
 | |
| 	ts->last_jiffies = last_jiffies;
 | |
| 	ts->sleep_length = ktime_sub(dev->next_event, now);
 | |
| end:
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * tick_nohz_get_sleep_length - return the length of the current sleep
 | |
|  *
 | |
|  * Called from power state control code with interrupts disabled
 | |
|  */
 | |
| ktime_t tick_nohz_get_sleep_length(void)
 | |
| {
 | |
| 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
 | |
| 
 | |
| 	return ts->sleep_length;
 | |
| }
 | |
| 
 | |
| static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
 | |
| {
 | |
| 	hrtimer_cancel(&ts->sched_timer);
 | |
| 	hrtimer_set_expires(&ts->sched_timer, ts->idle_tick);
 | |
| 
 | |
| 	while (1) {
 | |
| 		/* Forward the time to expire in the future */
 | |
| 		hrtimer_forward(&ts->sched_timer, now, tick_period);
 | |
| 
 | |
| 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
 | |
| 			hrtimer_start_expires(&ts->sched_timer,
 | |
| 					      HRTIMER_MODE_ABS_PINNED);
 | |
| 			/* Check, if the timer was already in the past */
 | |
| 			if (hrtimer_active(&ts->sched_timer))
 | |
| 				break;
 | |
| 		} else {
 | |
| 			if (!tick_program_event(
 | |
| 				hrtimer_get_expires(&ts->sched_timer), 0))
 | |
| 				break;
 | |
| 		}
 | |
| 		/* Update jiffies and reread time */
 | |
| 		tick_do_update_jiffies64(now);
 | |
| 		now = ktime_get();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * tick_nohz_restart_sched_tick - restart the idle tick from the idle task
 | |
|  *
 | |
|  * Restart the idle tick when the CPU is woken up from idle
 | |
|  */
 | |
| void tick_nohz_restart_sched_tick(void)
 | |
| {
 | |
| 	int cpu = smp_processor_id();
 | |
| 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 | |
| #ifndef CONFIG_VIRT_CPU_ACCOUNTING
 | |
| 	unsigned long ticks;
 | |
| #endif
 | |
| 	ktime_t now;
 | |
| 
 | |
| 	local_irq_disable();
 | |
| 	if (ts->idle_active || (ts->inidle && ts->tick_stopped))
 | |
| 		now = ktime_get();
 | |
| 
 | |
| 	if (ts->idle_active)
 | |
| 		tick_nohz_stop_idle(cpu, now);
 | |
| 
 | |
| 	if (!ts->inidle || !ts->tick_stopped) {
 | |
| 		ts->inidle = 0;
 | |
| 		local_irq_enable();
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	ts->inidle = 0;
 | |
| 
 | |
| 	rcu_exit_nohz();
 | |
| 
 | |
| 	/* Update jiffies first */
 | |
| 	select_nohz_load_balancer(0);
 | |
| 	tick_do_update_jiffies64(now);
 | |
| 	cpumask_clear_cpu(cpu, nohz_cpu_mask);
 | |
| 
 | |
| #ifndef CONFIG_VIRT_CPU_ACCOUNTING
 | |
| 	/*
 | |
| 	 * We stopped the tick in idle. Update process times would miss the
 | |
| 	 * time we slept as update_process_times does only a 1 tick
 | |
| 	 * accounting. Enforce that this is accounted to idle !
 | |
| 	 */
 | |
| 	ticks = jiffies - ts->idle_jiffies;
 | |
| 	/*
 | |
| 	 * We might be one off. Do not randomly account a huge number of ticks!
 | |
| 	 */
 | |
| 	if (ticks && ticks < LONG_MAX)
 | |
| 		account_idle_ticks(ticks);
 | |
| #endif
 | |
| 
 | |
| 	touch_softlockup_watchdog();
 | |
| 	/*
 | |
| 	 * Cancel the scheduled timer and restore the tick
 | |
| 	 */
 | |
| 	ts->tick_stopped  = 0;
 | |
| 	ts->idle_exittime = now;
 | |
| 
 | |
| 	tick_nohz_restart(ts, now);
 | |
| 
 | |
| 	local_irq_enable();
 | |
| }
 | |
| 
 | |
| static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
 | |
| {
 | |
| 	hrtimer_forward(&ts->sched_timer, now, tick_period);
 | |
| 	return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The nohz low res interrupt handler
 | |
|  */
 | |
| static void tick_nohz_handler(struct clock_event_device *dev)
 | |
| {
 | |
| 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
 | |
| 	struct pt_regs *regs = get_irq_regs();
 | |
| 	int cpu = smp_processor_id();
 | |
| 	ktime_t now = ktime_get();
 | |
| 
 | |
| 	dev->next_event.tv64 = KTIME_MAX;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check if the do_timer duty was dropped. We don't care about
 | |
| 	 * concurrency: This happens only when the cpu in charge went
 | |
| 	 * into a long sleep. If two cpus happen to assign themself to
 | |
| 	 * this duty, then the jiffies update is still serialized by
 | |
| 	 * xtime_lock.
 | |
| 	 */
 | |
| 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
 | |
| 		tick_do_timer_cpu = cpu;
 | |
| 
 | |
| 	/* Check, if the jiffies need an update */
 | |
| 	if (tick_do_timer_cpu == cpu)
 | |
| 		tick_do_update_jiffies64(now);
 | |
| 
 | |
| 	/*
 | |
| 	 * When we are idle and the tick is stopped, we have to touch
 | |
| 	 * the watchdog as we might not schedule for a really long
 | |
| 	 * time. This happens on complete idle SMP systems while
 | |
| 	 * waiting on the login prompt. We also increment the "start
 | |
| 	 * of idle" jiffy stamp so the idle accounting adjustment we
 | |
| 	 * do when we go busy again does not account too much ticks.
 | |
| 	 */
 | |
| 	if (ts->tick_stopped) {
 | |
| 		touch_softlockup_watchdog();
 | |
| 		ts->idle_jiffies++;
 | |
| 	}
 | |
| 
 | |
| 	update_process_times(user_mode(regs));
 | |
| 	profile_tick(CPU_PROFILING);
 | |
| 
 | |
| 	while (tick_nohz_reprogram(ts, now)) {
 | |
| 		now = ktime_get();
 | |
| 		tick_do_update_jiffies64(now);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * tick_nohz_switch_to_nohz - switch to nohz mode
 | |
|  */
 | |
| static void tick_nohz_switch_to_nohz(void)
 | |
| {
 | |
| 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
 | |
| 	ktime_t next;
 | |
| 
 | |
| 	if (!tick_nohz_enabled)
 | |
| 		return;
 | |
| 
 | |
| 	local_irq_disable();
 | |
| 	if (tick_switch_to_oneshot(tick_nohz_handler)) {
 | |
| 		local_irq_enable();
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	ts->nohz_mode = NOHZ_MODE_LOWRES;
 | |
| 
 | |
| 	/*
 | |
| 	 * Recycle the hrtimer in ts, so we can share the
 | |
| 	 * hrtimer_forward with the highres code.
 | |
| 	 */
 | |
| 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
 | |
| 	/* Get the next period */
 | |
| 	next = tick_init_jiffy_update();
 | |
| 
 | |
| 	for (;;) {
 | |
| 		hrtimer_set_expires(&ts->sched_timer, next);
 | |
| 		if (!tick_program_event(next, 0))
 | |
| 			break;
 | |
| 		next = ktime_add(next, tick_period);
 | |
| 	}
 | |
| 	local_irq_enable();
 | |
| 
 | |
| 	printk(KERN_INFO "Switched to NOHz mode on CPU #%d\n",
 | |
| 	       smp_processor_id());
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * When NOHZ is enabled and the tick is stopped, we need to kick the
 | |
|  * tick timer from irq_enter() so that the jiffies update is kept
 | |
|  * alive during long running softirqs. That's ugly as hell, but
 | |
|  * correctness is key even if we need to fix the offending softirq in
 | |
|  * the first place.
 | |
|  *
 | |
|  * Note, this is different to tick_nohz_restart. We just kick the
 | |
|  * timer and do not touch the other magic bits which need to be done
 | |
|  * when idle is left.
 | |
|  */
 | |
| static void tick_nohz_kick_tick(int cpu, ktime_t now)
 | |
| {
 | |
| #if 0
 | |
| 	/* Switch back to 2.6.27 behaviour */
 | |
| 
 | |
| 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 | |
| 	ktime_t delta;
 | |
| 
 | |
| 	/*
 | |
| 	 * Do not touch the tick device, when the next expiry is either
 | |
| 	 * already reached or less/equal than the tick period.
 | |
| 	 */
 | |
| 	delta =	ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
 | |
| 	if (delta.tv64 <= tick_period.tv64)
 | |
| 		return;
 | |
| 
 | |
| 	tick_nohz_restart(ts, now);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static inline void tick_check_nohz(int cpu)
 | |
| {
 | |
| 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 | |
| 	ktime_t now;
 | |
| 
 | |
| 	if (!ts->idle_active && !ts->tick_stopped)
 | |
| 		return;
 | |
| 	now = ktime_get();
 | |
| 	if (ts->idle_active)
 | |
| 		tick_nohz_stop_idle(cpu, now);
 | |
| 	if (ts->tick_stopped) {
 | |
| 		tick_nohz_update_jiffies(now);
 | |
| 		tick_nohz_kick_tick(cpu, now);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| static inline void tick_nohz_switch_to_nohz(void) { }
 | |
| static inline void tick_check_nohz(int cpu) { }
 | |
| 
 | |
| #endif /* NO_HZ */
 | |
| 
 | |
| /*
 | |
|  * Called from irq_enter to notify about the possible interruption of idle()
 | |
|  */
 | |
| void tick_check_idle(int cpu)
 | |
| {
 | |
| 	tick_check_oneshot_broadcast(cpu);
 | |
| 	tick_check_nohz(cpu);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * High resolution timer specific code
 | |
|  */
 | |
| #ifdef CONFIG_HIGH_RES_TIMERS
 | |
| /*
 | |
|  * We rearm the timer until we get disabled by the idle code.
 | |
|  * Called with interrupts disabled and timer->base->cpu_base->lock held.
 | |
|  */
 | |
| static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
 | |
| {
 | |
| 	struct tick_sched *ts =
 | |
| 		container_of(timer, struct tick_sched, sched_timer);
 | |
| 	struct pt_regs *regs = get_irq_regs();
 | |
| 	ktime_t now = ktime_get();
 | |
| 	int cpu = smp_processor_id();
 | |
| 
 | |
| #ifdef CONFIG_NO_HZ
 | |
| 	/*
 | |
| 	 * Check if the do_timer duty was dropped. We don't care about
 | |
| 	 * concurrency: This happens only when the cpu in charge went
 | |
| 	 * into a long sleep. If two cpus happen to assign themself to
 | |
| 	 * this duty, then the jiffies update is still serialized by
 | |
| 	 * xtime_lock.
 | |
| 	 */
 | |
| 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
 | |
| 		tick_do_timer_cpu = cpu;
 | |
| #endif
 | |
| 
 | |
| 	/* Check, if the jiffies need an update */
 | |
| 	if (tick_do_timer_cpu == cpu)
 | |
| 		tick_do_update_jiffies64(now);
 | |
| 
 | |
| 	/*
 | |
| 	 * Do not call, when we are not in irq context and have
 | |
| 	 * no valid regs pointer
 | |
| 	 */
 | |
| 	if (regs) {
 | |
| 		/*
 | |
| 		 * When we are idle and the tick is stopped, we have to touch
 | |
| 		 * the watchdog as we might not schedule for a really long
 | |
| 		 * time. This happens on complete idle SMP systems while
 | |
| 		 * waiting on the login prompt. We also increment the "start of
 | |
| 		 * idle" jiffy stamp so the idle accounting adjustment we do
 | |
| 		 * when we go busy again does not account too much ticks.
 | |
| 		 */
 | |
| 		if (ts->tick_stopped) {
 | |
| 			touch_softlockup_watchdog();
 | |
| 			ts->idle_jiffies++;
 | |
| 		}
 | |
| 		update_process_times(user_mode(regs));
 | |
| 		profile_tick(CPU_PROFILING);
 | |
| 	}
 | |
| 
 | |
| 	hrtimer_forward(timer, now, tick_period);
 | |
| 
 | |
| 	return HRTIMER_RESTART;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * tick_setup_sched_timer - setup the tick emulation timer
 | |
|  */
 | |
| void tick_setup_sched_timer(void)
 | |
| {
 | |
| 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
 | |
| 	ktime_t now = ktime_get();
 | |
| 
 | |
| 	/*
 | |
| 	 * Emulate tick processing via per-CPU hrtimers:
 | |
| 	 */
 | |
| 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
 | |
| 	ts->sched_timer.function = tick_sched_timer;
 | |
| 
 | |
| 	/* Get the next period (per cpu) */
 | |
| 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
 | |
| 
 | |
| 	for (;;) {
 | |
| 		hrtimer_forward(&ts->sched_timer, now, tick_period);
 | |
| 		hrtimer_start_expires(&ts->sched_timer,
 | |
| 				      HRTIMER_MODE_ABS_PINNED);
 | |
| 		/* Check, if the timer was already in the past */
 | |
| 		if (hrtimer_active(&ts->sched_timer))
 | |
| 			break;
 | |
| 		now = ktime_get();
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_NO_HZ
 | |
| 	if (tick_nohz_enabled)
 | |
| 		ts->nohz_mode = NOHZ_MODE_HIGHRES;
 | |
| #endif
 | |
| }
 | |
| #endif /* HIGH_RES_TIMERS */
 | |
| 
 | |
| #if defined CONFIG_NO_HZ || defined CONFIG_HIGH_RES_TIMERS
 | |
| void tick_cancel_sched_timer(int cpu)
 | |
| {
 | |
| 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 | |
| 
 | |
| # ifdef CONFIG_HIGH_RES_TIMERS
 | |
| 	if (ts->sched_timer.base)
 | |
| 		hrtimer_cancel(&ts->sched_timer);
 | |
| # endif
 | |
| 
 | |
| 	ts->nohz_mode = NOHZ_MODE_INACTIVE;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * Async notification about clocksource changes
 | |
|  */
 | |
| void tick_clock_notify(void)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	for_each_possible_cpu(cpu)
 | |
| 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Async notification about clock event changes
 | |
|  */
 | |
| void tick_oneshot_notify(void)
 | |
| {
 | |
| 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
 | |
| 
 | |
| 	set_bit(0, &ts->check_clocks);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Check, if a change happened, which makes oneshot possible.
 | |
|  *
 | |
|  * Called cyclic from the hrtimer softirq (driven by the timer
 | |
|  * softirq) allow_nohz signals, that we can switch into low-res nohz
 | |
|  * mode, because high resolution timers are disabled (either compile
 | |
|  * or runtime).
 | |
|  */
 | |
| int tick_check_oneshot_change(int allow_nohz)
 | |
| {
 | |
| 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
 | |
| 
 | |
| 	if (!test_and_clear_bit(0, &ts->check_clocks))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!allow_nohz)
 | |
| 		return 1;
 | |
| 
 | |
| 	tick_nohz_switch_to_nohz();
 | |
| 	return 0;
 | |
| }
 |