 ec93103519
			
		
	
	
	ec93103519
	
	
	
		
			
			Just switch to the consolidated code. Signed-off-by: Pavel Emelyanov <xemul@openvz.org> Signed-off-by: David S. Miller <davem@davemloft.net>
		
			
				
	
	
		
			1288 lines
		
	
	
	
		
			30 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1288 lines
		
	
	
	
		
			30 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * net/sunrpc/cache.c
 | |
|  *
 | |
|  * Generic code for various authentication-related caches
 | |
|  * used by sunrpc clients and servers.
 | |
|  *
 | |
|  * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
 | |
|  *
 | |
|  * Released under terms in GPL version 2.  See COPYING.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include <linux/types.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/file.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/signal.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/kmod.h>
 | |
| #include <linux/list.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/ctype.h>
 | |
| #include <asm/uaccess.h>
 | |
| #include <linux/poll.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/proc_fs.h>
 | |
| #include <linux/net.h>
 | |
| #include <linux/workqueue.h>
 | |
| #include <linux/mutex.h>
 | |
| #include <asm/ioctls.h>
 | |
| #include <linux/sunrpc/types.h>
 | |
| #include <linux/sunrpc/cache.h>
 | |
| #include <linux/sunrpc/stats.h>
 | |
| 
 | |
| #define	 RPCDBG_FACILITY RPCDBG_CACHE
 | |
| 
 | |
| static int cache_defer_req(struct cache_req *req, struct cache_head *item);
 | |
| static void cache_revisit_request(struct cache_head *item);
 | |
| 
 | |
| static void cache_init(struct cache_head *h)
 | |
| {
 | |
| 	time_t now = get_seconds();
 | |
| 	h->next = NULL;
 | |
| 	h->flags = 0;
 | |
| 	kref_init(&h->ref);
 | |
| 	h->expiry_time = now + CACHE_NEW_EXPIRY;
 | |
| 	h->last_refresh = now;
 | |
| }
 | |
| 
 | |
| struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail,
 | |
| 				       struct cache_head *key, int hash)
 | |
| {
 | |
| 	struct cache_head **head,  **hp;
 | |
| 	struct cache_head *new = NULL;
 | |
| 
 | |
| 	head = &detail->hash_table[hash];
 | |
| 
 | |
| 	read_lock(&detail->hash_lock);
 | |
| 
 | |
| 	for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
 | |
| 		struct cache_head *tmp = *hp;
 | |
| 		if (detail->match(tmp, key)) {
 | |
| 			cache_get(tmp);
 | |
| 			read_unlock(&detail->hash_lock);
 | |
| 			return tmp;
 | |
| 		}
 | |
| 	}
 | |
| 	read_unlock(&detail->hash_lock);
 | |
| 	/* Didn't find anything, insert an empty entry */
 | |
| 
 | |
| 	new = detail->alloc();
 | |
| 	if (!new)
 | |
| 		return NULL;
 | |
| 	/* must fully initialise 'new', else
 | |
| 	 * we might get lose if we need to
 | |
| 	 * cache_put it soon.
 | |
| 	 */
 | |
| 	cache_init(new);
 | |
| 	detail->init(new, key);
 | |
| 
 | |
| 	write_lock(&detail->hash_lock);
 | |
| 
 | |
| 	/* check if entry appeared while we slept */
 | |
| 	for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
 | |
| 		struct cache_head *tmp = *hp;
 | |
| 		if (detail->match(tmp, key)) {
 | |
| 			cache_get(tmp);
 | |
| 			write_unlock(&detail->hash_lock);
 | |
| 			cache_put(new, detail);
 | |
| 			return tmp;
 | |
| 		}
 | |
| 	}
 | |
| 	new->next = *head;
 | |
| 	*head = new;
 | |
| 	detail->entries++;
 | |
| 	cache_get(new);
 | |
| 	write_unlock(&detail->hash_lock);
 | |
| 
 | |
| 	return new;
 | |
| }
 | |
| EXPORT_SYMBOL(sunrpc_cache_lookup);
 | |
| 
 | |
| 
 | |
| static void queue_loose(struct cache_detail *detail, struct cache_head *ch);
 | |
| 
 | |
| static int cache_fresh_locked(struct cache_head *head, time_t expiry)
 | |
| {
 | |
| 	head->expiry_time = expiry;
 | |
| 	head->last_refresh = get_seconds();
 | |
| 	return !test_and_set_bit(CACHE_VALID, &head->flags);
 | |
| }
 | |
| 
 | |
| static void cache_fresh_unlocked(struct cache_head *head,
 | |
| 			struct cache_detail *detail, int new)
 | |
| {
 | |
| 	if (new)
 | |
| 		cache_revisit_request(head);
 | |
| 	if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
 | |
| 		cache_revisit_request(head);
 | |
| 		queue_loose(detail, head);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
 | |
| 				       struct cache_head *new, struct cache_head *old, int hash)
 | |
| {
 | |
| 	/* The 'old' entry is to be replaced by 'new'.
 | |
| 	 * If 'old' is not VALID, we update it directly,
 | |
| 	 * otherwise we need to replace it
 | |
| 	 */
 | |
| 	struct cache_head **head;
 | |
| 	struct cache_head *tmp;
 | |
| 	int is_new;
 | |
| 
 | |
| 	if (!test_bit(CACHE_VALID, &old->flags)) {
 | |
| 		write_lock(&detail->hash_lock);
 | |
| 		if (!test_bit(CACHE_VALID, &old->flags)) {
 | |
| 			if (test_bit(CACHE_NEGATIVE, &new->flags))
 | |
| 				set_bit(CACHE_NEGATIVE, &old->flags);
 | |
| 			else
 | |
| 				detail->update(old, new);
 | |
| 			is_new = cache_fresh_locked(old, new->expiry_time);
 | |
| 			write_unlock(&detail->hash_lock);
 | |
| 			cache_fresh_unlocked(old, detail, is_new);
 | |
| 			return old;
 | |
| 		}
 | |
| 		write_unlock(&detail->hash_lock);
 | |
| 	}
 | |
| 	/* We need to insert a new entry */
 | |
| 	tmp = detail->alloc();
 | |
| 	if (!tmp) {
 | |
| 		cache_put(old, detail);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	cache_init(tmp);
 | |
| 	detail->init(tmp, old);
 | |
| 	head = &detail->hash_table[hash];
 | |
| 
 | |
| 	write_lock(&detail->hash_lock);
 | |
| 	if (test_bit(CACHE_NEGATIVE, &new->flags))
 | |
| 		set_bit(CACHE_NEGATIVE, &tmp->flags);
 | |
| 	else
 | |
| 		detail->update(tmp, new);
 | |
| 	tmp->next = *head;
 | |
| 	*head = tmp;
 | |
| 	detail->entries++;
 | |
| 	cache_get(tmp);
 | |
| 	is_new = cache_fresh_locked(tmp, new->expiry_time);
 | |
| 	cache_fresh_locked(old, 0);
 | |
| 	write_unlock(&detail->hash_lock);
 | |
| 	cache_fresh_unlocked(tmp, detail, is_new);
 | |
| 	cache_fresh_unlocked(old, detail, 0);
 | |
| 	cache_put(old, detail);
 | |
| 	return tmp;
 | |
| }
 | |
| EXPORT_SYMBOL(sunrpc_cache_update);
 | |
| 
 | |
| static int cache_make_upcall(struct cache_detail *detail, struct cache_head *h);
 | |
| /*
 | |
|  * This is the generic cache management routine for all
 | |
|  * the authentication caches.
 | |
|  * It checks the currency of a cache item and will (later)
 | |
|  * initiate an upcall to fill it if needed.
 | |
|  *
 | |
|  *
 | |
|  * Returns 0 if the cache_head can be used, or cache_puts it and returns
 | |
|  * -EAGAIN if upcall is pending,
 | |
|  * -ETIMEDOUT if upcall failed and should be retried,
 | |
|  * -ENOENT if cache entry was negative
 | |
|  */
 | |
| int cache_check(struct cache_detail *detail,
 | |
| 		    struct cache_head *h, struct cache_req *rqstp)
 | |
| {
 | |
| 	int rv;
 | |
| 	long refresh_age, age;
 | |
| 
 | |
| 	/* First decide return status as best we can */
 | |
| 	if (!test_bit(CACHE_VALID, &h->flags) ||
 | |
| 	    h->expiry_time < get_seconds())
 | |
| 		rv = -EAGAIN;
 | |
| 	else if (detail->flush_time > h->last_refresh)
 | |
| 		rv = -EAGAIN;
 | |
| 	else {
 | |
| 		/* entry is valid */
 | |
| 		if (test_bit(CACHE_NEGATIVE, &h->flags))
 | |
| 			rv = -ENOENT;
 | |
| 		else rv = 0;
 | |
| 	}
 | |
| 
 | |
| 	/* now see if we want to start an upcall */
 | |
| 	refresh_age = (h->expiry_time - h->last_refresh);
 | |
| 	age = get_seconds() - h->last_refresh;
 | |
| 
 | |
| 	if (rqstp == NULL) {
 | |
| 		if (rv == -EAGAIN)
 | |
| 			rv = -ENOENT;
 | |
| 	} else if (rv == -EAGAIN || age > refresh_age/2) {
 | |
| 		dprintk("RPC:       Want update, refage=%ld, age=%ld\n",
 | |
| 				refresh_age, age);
 | |
| 		if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
 | |
| 			switch (cache_make_upcall(detail, h)) {
 | |
| 			case -EINVAL:
 | |
| 				clear_bit(CACHE_PENDING, &h->flags);
 | |
| 				if (rv == -EAGAIN) {
 | |
| 					set_bit(CACHE_NEGATIVE, &h->flags);
 | |
| 					cache_fresh_unlocked(h, detail,
 | |
| 					     cache_fresh_locked(h, get_seconds()+CACHE_NEW_EXPIRY));
 | |
| 					rv = -ENOENT;
 | |
| 				}
 | |
| 				break;
 | |
| 
 | |
| 			case -EAGAIN:
 | |
| 				clear_bit(CACHE_PENDING, &h->flags);
 | |
| 				cache_revisit_request(h);
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (rv == -EAGAIN)
 | |
| 		if (cache_defer_req(rqstp, h) != 0)
 | |
| 			rv = -ETIMEDOUT;
 | |
| 
 | |
| 	if (rv)
 | |
| 		cache_put(h, detail);
 | |
| 	return rv;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * caches need to be periodically cleaned.
 | |
|  * For this we maintain a list of cache_detail and
 | |
|  * a current pointer into that list and into the table
 | |
|  * for that entry.
 | |
|  *
 | |
|  * Each time clean_cache is called it finds the next non-empty entry
 | |
|  * in the current table and walks the list in that entry
 | |
|  * looking for entries that can be removed.
 | |
|  *
 | |
|  * An entry gets removed if:
 | |
|  * - The expiry is before current time
 | |
|  * - The last_refresh time is before the flush_time for that cache
 | |
|  *
 | |
|  * later we might drop old entries with non-NEVER expiry if that table
 | |
|  * is getting 'full' for some definition of 'full'
 | |
|  *
 | |
|  * The question of "how often to scan a table" is an interesting one
 | |
|  * and is answered in part by the use of the "nextcheck" field in the
 | |
|  * cache_detail.
 | |
|  * When a scan of a table begins, the nextcheck field is set to a time
 | |
|  * that is well into the future.
 | |
|  * While scanning, if an expiry time is found that is earlier than the
 | |
|  * current nextcheck time, nextcheck is set to that expiry time.
 | |
|  * If the flush_time is ever set to a time earlier than the nextcheck
 | |
|  * time, the nextcheck time is then set to that flush_time.
 | |
|  *
 | |
|  * A table is then only scanned if the current time is at least
 | |
|  * the nextcheck time.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static LIST_HEAD(cache_list);
 | |
| static DEFINE_SPINLOCK(cache_list_lock);
 | |
| static struct cache_detail *current_detail;
 | |
| static int current_index;
 | |
| 
 | |
| static const struct file_operations cache_file_operations;
 | |
| static const struct file_operations content_file_operations;
 | |
| static const struct file_operations cache_flush_operations;
 | |
| 
 | |
| static void do_cache_clean(struct work_struct *work);
 | |
| static DECLARE_DELAYED_WORK(cache_cleaner, do_cache_clean);
 | |
| 
 | |
| void cache_register(struct cache_detail *cd)
 | |
| {
 | |
| 	cd->proc_ent = proc_mkdir(cd->name, proc_net_rpc);
 | |
| 	if (cd->proc_ent) {
 | |
| 		struct proc_dir_entry *p;
 | |
| 		cd->proc_ent->owner = cd->owner;
 | |
| 		cd->channel_ent = cd->content_ent = NULL;
 | |
| 
 | |
| 		p = create_proc_entry("flush", S_IFREG|S_IRUSR|S_IWUSR,
 | |
| 				      cd->proc_ent);
 | |
| 		cd->flush_ent =  p;
 | |
| 		if (p) {
 | |
| 			p->proc_fops = &cache_flush_operations;
 | |
| 			p->owner = cd->owner;
 | |
| 			p->data = cd;
 | |
| 		}
 | |
| 
 | |
| 		if (cd->cache_request || cd->cache_parse) {
 | |
| 			p = create_proc_entry("channel", S_IFREG|S_IRUSR|S_IWUSR,
 | |
| 					      cd->proc_ent);
 | |
| 			cd->channel_ent = p;
 | |
| 			if (p) {
 | |
| 				p->proc_fops = &cache_file_operations;
 | |
| 				p->owner = cd->owner;
 | |
| 				p->data = cd;
 | |
| 			}
 | |
| 		}
 | |
| 		if (cd->cache_show) {
 | |
| 			p = create_proc_entry("content", S_IFREG|S_IRUSR|S_IWUSR,
 | |
| 					      cd->proc_ent);
 | |
| 			cd->content_ent = p;
 | |
| 			if (p) {
 | |
| 				p->proc_fops = &content_file_operations;
 | |
| 				p->owner = cd->owner;
 | |
| 				p->data = cd;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	rwlock_init(&cd->hash_lock);
 | |
| 	INIT_LIST_HEAD(&cd->queue);
 | |
| 	spin_lock(&cache_list_lock);
 | |
| 	cd->nextcheck = 0;
 | |
| 	cd->entries = 0;
 | |
| 	atomic_set(&cd->readers, 0);
 | |
| 	cd->last_close = 0;
 | |
| 	cd->last_warn = -1;
 | |
| 	list_add(&cd->others, &cache_list);
 | |
| 	spin_unlock(&cache_list_lock);
 | |
| 
 | |
| 	/* start the cleaning process */
 | |
| 	schedule_delayed_work(&cache_cleaner, 0);
 | |
| }
 | |
| 
 | |
| int cache_unregister(struct cache_detail *cd)
 | |
| {
 | |
| 	cache_purge(cd);
 | |
| 	spin_lock(&cache_list_lock);
 | |
| 	write_lock(&cd->hash_lock);
 | |
| 	if (cd->entries || atomic_read(&cd->inuse)) {
 | |
| 		write_unlock(&cd->hash_lock);
 | |
| 		spin_unlock(&cache_list_lock);
 | |
| 		return -EBUSY;
 | |
| 	}
 | |
| 	if (current_detail == cd)
 | |
| 		current_detail = NULL;
 | |
| 	list_del_init(&cd->others);
 | |
| 	write_unlock(&cd->hash_lock);
 | |
| 	spin_unlock(&cache_list_lock);
 | |
| 	if (cd->proc_ent) {
 | |
| 		if (cd->flush_ent)
 | |
| 			remove_proc_entry("flush", cd->proc_ent);
 | |
| 		if (cd->channel_ent)
 | |
| 			remove_proc_entry("channel", cd->proc_ent);
 | |
| 		if (cd->content_ent)
 | |
| 			remove_proc_entry("content", cd->proc_ent);
 | |
| 
 | |
| 		cd->proc_ent = NULL;
 | |
| 		remove_proc_entry(cd->name, proc_net_rpc);
 | |
| 	}
 | |
| 	if (list_empty(&cache_list)) {
 | |
| 		/* module must be being unloaded so its safe to kill the worker */
 | |
| 		cancel_delayed_work_sync(&cache_cleaner);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* clean cache tries to find something to clean
 | |
|  * and cleans it.
 | |
|  * It returns 1 if it cleaned something,
 | |
|  *            0 if it didn't find anything this time
 | |
|  *           -1 if it fell off the end of the list.
 | |
|  */
 | |
| static int cache_clean(void)
 | |
| {
 | |
| 	int rv = 0;
 | |
| 	struct list_head *next;
 | |
| 
 | |
| 	spin_lock(&cache_list_lock);
 | |
| 
 | |
| 	/* find a suitable table if we don't already have one */
 | |
| 	while (current_detail == NULL ||
 | |
| 	    current_index >= current_detail->hash_size) {
 | |
| 		if (current_detail)
 | |
| 			next = current_detail->others.next;
 | |
| 		else
 | |
| 			next = cache_list.next;
 | |
| 		if (next == &cache_list) {
 | |
| 			current_detail = NULL;
 | |
| 			spin_unlock(&cache_list_lock);
 | |
| 			return -1;
 | |
| 		}
 | |
| 		current_detail = list_entry(next, struct cache_detail, others);
 | |
| 		if (current_detail->nextcheck > get_seconds())
 | |
| 			current_index = current_detail->hash_size;
 | |
| 		else {
 | |
| 			current_index = 0;
 | |
| 			current_detail->nextcheck = get_seconds()+30*60;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* find a non-empty bucket in the table */
 | |
| 	while (current_detail &&
 | |
| 	       current_index < current_detail->hash_size &&
 | |
| 	       current_detail->hash_table[current_index] == NULL)
 | |
| 		current_index++;
 | |
| 
 | |
| 	/* find a cleanable entry in the bucket and clean it, or set to next bucket */
 | |
| 
 | |
| 	if (current_detail && current_index < current_detail->hash_size) {
 | |
| 		struct cache_head *ch, **cp;
 | |
| 		struct cache_detail *d;
 | |
| 
 | |
| 		write_lock(¤t_detail->hash_lock);
 | |
| 
 | |
| 		/* Ok, now to clean this strand */
 | |
| 
 | |
| 		cp = & current_detail->hash_table[current_index];
 | |
| 		ch = *cp;
 | |
| 		for (; ch; cp= & ch->next, ch= *cp) {
 | |
| 			if (current_detail->nextcheck > ch->expiry_time)
 | |
| 				current_detail->nextcheck = ch->expiry_time+1;
 | |
| 			if (ch->expiry_time >= get_seconds()
 | |
| 			    && ch->last_refresh >= current_detail->flush_time
 | |
| 				)
 | |
| 				continue;
 | |
| 			if (test_and_clear_bit(CACHE_PENDING, &ch->flags))
 | |
| 				queue_loose(current_detail, ch);
 | |
| 
 | |
| 			if (atomic_read(&ch->ref.refcount) == 1)
 | |
| 				break;
 | |
| 		}
 | |
| 		if (ch) {
 | |
| 			*cp = ch->next;
 | |
| 			ch->next = NULL;
 | |
| 			current_detail->entries--;
 | |
| 			rv = 1;
 | |
| 		}
 | |
| 		write_unlock(¤t_detail->hash_lock);
 | |
| 		d = current_detail;
 | |
| 		if (!ch)
 | |
| 			current_index ++;
 | |
| 		spin_unlock(&cache_list_lock);
 | |
| 		if (ch)
 | |
| 			cache_put(ch, d);
 | |
| 	} else
 | |
| 		spin_unlock(&cache_list_lock);
 | |
| 
 | |
| 	return rv;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We want to regularly clean the cache, so we need to schedule some work ...
 | |
|  */
 | |
| static void do_cache_clean(struct work_struct *work)
 | |
| {
 | |
| 	int delay = 5;
 | |
| 	if (cache_clean() == -1)
 | |
| 		delay = 30*HZ;
 | |
| 
 | |
| 	if (list_empty(&cache_list))
 | |
| 		delay = 0;
 | |
| 
 | |
| 	if (delay)
 | |
| 		schedule_delayed_work(&cache_cleaner, delay);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Clean all caches promptly.  This just calls cache_clean
 | |
|  * repeatedly until we are sure that every cache has had a chance to
 | |
|  * be fully cleaned
 | |
|  */
 | |
| void cache_flush(void)
 | |
| {
 | |
| 	while (cache_clean() != -1)
 | |
| 		cond_resched();
 | |
| 	while (cache_clean() != -1)
 | |
| 		cond_resched();
 | |
| }
 | |
| 
 | |
| void cache_purge(struct cache_detail *detail)
 | |
| {
 | |
| 	detail->flush_time = LONG_MAX;
 | |
| 	detail->nextcheck = get_seconds();
 | |
| 	cache_flush();
 | |
| 	detail->flush_time = 1;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Deferral and Revisiting of Requests.
 | |
|  *
 | |
|  * If a cache lookup finds a pending entry, we
 | |
|  * need to defer the request and revisit it later.
 | |
|  * All deferred requests are stored in a hash table,
 | |
|  * indexed by "struct cache_head *".
 | |
|  * As it may be wasteful to store a whole request
 | |
|  * structure, we allow the request to provide a
 | |
|  * deferred form, which must contain a
 | |
|  * 'struct cache_deferred_req'
 | |
|  * This cache_deferred_req contains a method to allow
 | |
|  * it to be revisited when cache info is available
 | |
|  */
 | |
| 
 | |
| #define	DFR_HASHSIZE	(PAGE_SIZE/sizeof(struct list_head))
 | |
| #define	DFR_HASH(item)	((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
 | |
| 
 | |
| #define	DFR_MAX	300	/* ??? */
 | |
| 
 | |
| static DEFINE_SPINLOCK(cache_defer_lock);
 | |
| static LIST_HEAD(cache_defer_list);
 | |
| static struct list_head cache_defer_hash[DFR_HASHSIZE];
 | |
| static int cache_defer_cnt;
 | |
| 
 | |
| static int cache_defer_req(struct cache_req *req, struct cache_head *item)
 | |
| {
 | |
| 	struct cache_deferred_req *dreq;
 | |
| 	int hash = DFR_HASH(item);
 | |
| 
 | |
| 	if (cache_defer_cnt >= DFR_MAX) {
 | |
| 		/* too much in the cache, randomly drop this one,
 | |
| 		 * or continue and drop the oldest below
 | |
| 		 */
 | |
| 		if (net_random()&1)
 | |
| 			return -ETIMEDOUT;
 | |
| 	}
 | |
| 	dreq = req->defer(req);
 | |
| 	if (dreq == NULL)
 | |
| 		return -ETIMEDOUT;
 | |
| 
 | |
| 	dreq->item = item;
 | |
| 	dreq->recv_time = get_seconds();
 | |
| 
 | |
| 	spin_lock(&cache_defer_lock);
 | |
| 
 | |
| 	list_add(&dreq->recent, &cache_defer_list);
 | |
| 
 | |
| 	if (cache_defer_hash[hash].next == NULL)
 | |
| 		INIT_LIST_HEAD(&cache_defer_hash[hash]);
 | |
| 	list_add(&dreq->hash, &cache_defer_hash[hash]);
 | |
| 
 | |
| 	/* it is in, now maybe clean up */
 | |
| 	dreq = NULL;
 | |
| 	if (++cache_defer_cnt > DFR_MAX) {
 | |
| 		dreq = list_entry(cache_defer_list.prev,
 | |
| 				  struct cache_deferred_req, recent);
 | |
| 		list_del(&dreq->recent);
 | |
| 		list_del(&dreq->hash);
 | |
| 		cache_defer_cnt--;
 | |
| 	}
 | |
| 	spin_unlock(&cache_defer_lock);
 | |
| 
 | |
| 	if (dreq) {
 | |
| 		/* there was one too many */
 | |
| 		dreq->revisit(dreq, 1);
 | |
| 	}
 | |
| 	if (!test_bit(CACHE_PENDING, &item->flags)) {
 | |
| 		/* must have just been validated... */
 | |
| 		cache_revisit_request(item);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void cache_revisit_request(struct cache_head *item)
 | |
| {
 | |
| 	struct cache_deferred_req *dreq;
 | |
| 	struct list_head pending;
 | |
| 
 | |
| 	struct list_head *lp;
 | |
| 	int hash = DFR_HASH(item);
 | |
| 
 | |
| 	INIT_LIST_HEAD(&pending);
 | |
| 	spin_lock(&cache_defer_lock);
 | |
| 
 | |
| 	lp = cache_defer_hash[hash].next;
 | |
| 	if (lp) {
 | |
| 		while (lp != &cache_defer_hash[hash]) {
 | |
| 			dreq = list_entry(lp, struct cache_deferred_req, hash);
 | |
| 			lp = lp->next;
 | |
| 			if (dreq->item == item) {
 | |
| 				list_del(&dreq->hash);
 | |
| 				list_move(&dreq->recent, &pending);
 | |
| 				cache_defer_cnt--;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock(&cache_defer_lock);
 | |
| 
 | |
| 	while (!list_empty(&pending)) {
 | |
| 		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
 | |
| 		list_del_init(&dreq->recent);
 | |
| 		dreq->revisit(dreq, 0);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void cache_clean_deferred(void *owner)
 | |
| {
 | |
| 	struct cache_deferred_req *dreq, *tmp;
 | |
| 	struct list_head pending;
 | |
| 
 | |
| 
 | |
| 	INIT_LIST_HEAD(&pending);
 | |
| 	spin_lock(&cache_defer_lock);
 | |
| 
 | |
| 	list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
 | |
| 		if (dreq->owner == owner) {
 | |
| 			list_del(&dreq->hash);
 | |
| 			list_move(&dreq->recent, &pending);
 | |
| 			cache_defer_cnt--;
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock(&cache_defer_lock);
 | |
| 
 | |
| 	while (!list_empty(&pending)) {
 | |
| 		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
 | |
| 		list_del_init(&dreq->recent);
 | |
| 		dreq->revisit(dreq, 1);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * communicate with user-space
 | |
|  *
 | |
|  * We have a magic /proc file - /proc/sunrpc/cache
 | |
|  * On read, you get a full request, or block
 | |
|  * On write, an update request is processed
 | |
|  * Poll works if anything to read, and always allows write
 | |
|  *
 | |
|  * Implemented by linked list of requests.  Each open file has
 | |
|  * a ->private that also exists in this list.  New request are added
 | |
|  * to the end and may wakeup and preceding readers.
 | |
|  * New readers are added to the head.  If, on read, an item is found with
 | |
|  * CACHE_UPCALLING clear, we free it from the list.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static DEFINE_SPINLOCK(queue_lock);
 | |
| static DEFINE_MUTEX(queue_io_mutex);
 | |
| 
 | |
| struct cache_queue {
 | |
| 	struct list_head	list;
 | |
| 	int			reader;	/* if 0, then request */
 | |
| };
 | |
| struct cache_request {
 | |
| 	struct cache_queue	q;
 | |
| 	struct cache_head	*item;
 | |
| 	char			* buf;
 | |
| 	int			len;
 | |
| 	int			readers;
 | |
| };
 | |
| struct cache_reader {
 | |
| 	struct cache_queue	q;
 | |
| 	int			offset;	/* if non-0, we have a refcnt on next request */
 | |
| };
 | |
| 
 | |
| static ssize_t
 | |
| cache_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
 | |
| {
 | |
| 	struct cache_reader *rp = filp->private_data;
 | |
| 	struct cache_request *rq;
 | |
| 	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
 | |
| 	int err;
 | |
| 
 | |
| 	if (count == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	mutex_lock(&queue_io_mutex); /* protect against multiple concurrent
 | |
| 			      * readers on this file */
 | |
|  again:
 | |
| 	spin_lock(&queue_lock);
 | |
| 	/* need to find next request */
 | |
| 	while (rp->q.list.next != &cd->queue &&
 | |
| 	       list_entry(rp->q.list.next, struct cache_queue, list)
 | |
| 	       ->reader) {
 | |
| 		struct list_head *next = rp->q.list.next;
 | |
| 		list_move(&rp->q.list, next);
 | |
| 	}
 | |
| 	if (rp->q.list.next == &cd->queue) {
 | |
| 		spin_unlock(&queue_lock);
 | |
| 		mutex_unlock(&queue_io_mutex);
 | |
| 		BUG_ON(rp->offset);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	rq = container_of(rp->q.list.next, struct cache_request, q.list);
 | |
| 	BUG_ON(rq->q.reader);
 | |
| 	if (rp->offset == 0)
 | |
| 		rq->readers++;
 | |
| 	spin_unlock(&queue_lock);
 | |
| 
 | |
| 	if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
 | |
| 		err = -EAGAIN;
 | |
| 		spin_lock(&queue_lock);
 | |
| 		list_move(&rp->q.list, &rq->q.list);
 | |
| 		spin_unlock(&queue_lock);
 | |
| 	} else {
 | |
| 		if (rp->offset + count > rq->len)
 | |
| 			count = rq->len - rp->offset;
 | |
| 		err = -EFAULT;
 | |
| 		if (copy_to_user(buf, rq->buf + rp->offset, count))
 | |
| 			goto out;
 | |
| 		rp->offset += count;
 | |
| 		if (rp->offset >= rq->len) {
 | |
| 			rp->offset = 0;
 | |
| 			spin_lock(&queue_lock);
 | |
| 			list_move(&rp->q.list, &rq->q.list);
 | |
| 			spin_unlock(&queue_lock);
 | |
| 		}
 | |
| 		err = 0;
 | |
| 	}
 | |
|  out:
 | |
| 	if (rp->offset == 0) {
 | |
| 		/* need to release rq */
 | |
| 		spin_lock(&queue_lock);
 | |
| 		rq->readers--;
 | |
| 		if (rq->readers == 0 &&
 | |
| 		    !test_bit(CACHE_PENDING, &rq->item->flags)) {
 | |
| 			list_del(&rq->q.list);
 | |
| 			spin_unlock(&queue_lock);
 | |
| 			cache_put(rq->item, cd);
 | |
| 			kfree(rq->buf);
 | |
| 			kfree(rq);
 | |
| 		} else
 | |
| 			spin_unlock(&queue_lock);
 | |
| 	}
 | |
| 	if (err == -EAGAIN)
 | |
| 		goto again;
 | |
| 	mutex_unlock(&queue_io_mutex);
 | |
| 	return err ? err :  count;
 | |
| }
 | |
| 
 | |
| static char write_buf[8192]; /* protected by queue_io_mutex */
 | |
| 
 | |
| static ssize_t
 | |
| cache_write(struct file *filp, const char __user *buf, size_t count,
 | |
| 	    loff_t *ppos)
 | |
| {
 | |
| 	int err;
 | |
| 	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
 | |
| 
 | |
| 	if (count == 0)
 | |
| 		return 0;
 | |
| 	if (count >= sizeof(write_buf))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	mutex_lock(&queue_io_mutex);
 | |
| 
 | |
| 	if (copy_from_user(write_buf, buf, count)) {
 | |
| 		mutex_unlock(&queue_io_mutex);
 | |
| 		return -EFAULT;
 | |
| 	}
 | |
| 	write_buf[count] = '\0';
 | |
| 	if (cd->cache_parse)
 | |
| 		err = cd->cache_parse(cd, write_buf, count);
 | |
| 	else
 | |
| 		err = -EINVAL;
 | |
| 
 | |
| 	mutex_unlock(&queue_io_mutex);
 | |
| 	return err ? err : count;
 | |
| }
 | |
| 
 | |
| static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
 | |
| 
 | |
| static unsigned int
 | |
| cache_poll(struct file *filp, poll_table *wait)
 | |
| {
 | |
| 	unsigned int mask;
 | |
| 	struct cache_reader *rp = filp->private_data;
 | |
| 	struct cache_queue *cq;
 | |
| 	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
 | |
| 
 | |
| 	poll_wait(filp, &queue_wait, wait);
 | |
| 
 | |
| 	/* alway allow write */
 | |
| 	mask = POLL_OUT | POLLWRNORM;
 | |
| 
 | |
| 	if (!rp)
 | |
| 		return mask;
 | |
| 
 | |
| 	spin_lock(&queue_lock);
 | |
| 
 | |
| 	for (cq= &rp->q; &cq->list != &cd->queue;
 | |
| 	     cq = list_entry(cq->list.next, struct cache_queue, list))
 | |
| 		if (!cq->reader) {
 | |
| 			mask |= POLLIN | POLLRDNORM;
 | |
| 			break;
 | |
| 		}
 | |
| 	spin_unlock(&queue_lock);
 | |
| 	return mask;
 | |
| }
 | |
| 
 | |
| static int
 | |
| cache_ioctl(struct inode *ino, struct file *filp,
 | |
| 	    unsigned int cmd, unsigned long arg)
 | |
| {
 | |
| 	int len = 0;
 | |
| 	struct cache_reader *rp = filp->private_data;
 | |
| 	struct cache_queue *cq;
 | |
| 	struct cache_detail *cd = PDE(ino)->data;
 | |
| 
 | |
| 	if (cmd != FIONREAD || !rp)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	spin_lock(&queue_lock);
 | |
| 
 | |
| 	/* only find the length remaining in current request,
 | |
| 	 * or the length of the next request
 | |
| 	 */
 | |
| 	for (cq= &rp->q; &cq->list != &cd->queue;
 | |
| 	     cq = list_entry(cq->list.next, struct cache_queue, list))
 | |
| 		if (!cq->reader) {
 | |
| 			struct cache_request *cr =
 | |
| 				container_of(cq, struct cache_request, q);
 | |
| 			len = cr->len - rp->offset;
 | |
| 			break;
 | |
| 		}
 | |
| 	spin_unlock(&queue_lock);
 | |
| 
 | |
| 	return put_user(len, (int __user *)arg);
 | |
| }
 | |
| 
 | |
| static int
 | |
| cache_open(struct inode *inode, struct file *filp)
 | |
| {
 | |
| 	struct cache_reader *rp = NULL;
 | |
| 
 | |
| 	nonseekable_open(inode, filp);
 | |
| 	if (filp->f_mode & FMODE_READ) {
 | |
| 		struct cache_detail *cd = PDE(inode)->data;
 | |
| 
 | |
| 		rp = kmalloc(sizeof(*rp), GFP_KERNEL);
 | |
| 		if (!rp)
 | |
| 			return -ENOMEM;
 | |
| 		rp->offset = 0;
 | |
| 		rp->q.reader = 1;
 | |
| 		atomic_inc(&cd->readers);
 | |
| 		spin_lock(&queue_lock);
 | |
| 		list_add(&rp->q.list, &cd->queue);
 | |
| 		spin_unlock(&queue_lock);
 | |
| 	}
 | |
| 	filp->private_data = rp;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| cache_release(struct inode *inode, struct file *filp)
 | |
| {
 | |
| 	struct cache_reader *rp = filp->private_data;
 | |
| 	struct cache_detail *cd = PDE(inode)->data;
 | |
| 
 | |
| 	if (rp) {
 | |
| 		spin_lock(&queue_lock);
 | |
| 		if (rp->offset) {
 | |
| 			struct cache_queue *cq;
 | |
| 			for (cq= &rp->q; &cq->list != &cd->queue;
 | |
| 			     cq = list_entry(cq->list.next, struct cache_queue, list))
 | |
| 				if (!cq->reader) {
 | |
| 					container_of(cq, struct cache_request, q)
 | |
| 						->readers--;
 | |
| 					break;
 | |
| 				}
 | |
| 			rp->offset = 0;
 | |
| 		}
 | |
| 		list_del(&rp->q.list);
 | |
| 		spin_unlock(&queue_lock);
 | |
| 
 | |
| 		filp->private_data = NULL;
 | |
| 		kfree(rp);
 | |
| 
 | |
| 		cd->last_close = get_seconds();
 | |
| 		atomic_dec(&cd->readers);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| static const struct file_operations cache_file_operations = {
 | |
| 	.owner		= THIS_MODULE,
 | |
| 	.llseek		= no_llseek,
 | |
| 	.read		= cache_read,
 | |
| 	.write		= cache_write,
 | |
| 	.poll		= cache_poll,
 | |
| 	.ioctl		= cache_ioctl, /* for FIONREAD */
 | |
| 	.open		= cache_open,
 | |
| 	.release	= cache_release,
 | |
| };
 | |
| 
 | |
| 
 | |
| static void queue_loose(struct cache_detail *detail, struct cache_head *ch)
 | |
| {
 | |
| 	struct cache_queue *cq;
 | |
| 	spin_lock(&queue_lock);
 | |
| 	list_for_each_entry(cq, &detail->queue, list)
 | |
| 		if (!cq->reader) {
 | |
| 			struct cache_request *cr = container_of(cq, struct cache_request, q);
 | |
| 			if (cr->item != ch)
 | |
| 				continue;
 | |
| 			if (cr->readers != 0)
 | |
| 				continue;
 | |
| 			list_del(&cr->q.list);
 | |
| 			spin_unlock(&queue_lock);
 | |
| 			cache_put(cr->item, detail);
 | |
| 			kfree(cr->buf);
 | |
| 			kfree(cr);
 | |
| 			return;
 | |
| 		}
 | |
| 	spin_unlock(&queue_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Support routines for text-based upcalls.
 | |
|  * Fields are separated by spaces.
 | |
|  * Fields are either mangled to quote space tab newline slosh with slosh
 | |
|  * or a hexified with a leading \x
 | |
|  * Record is terminated with newline.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| void qword_add(char **bpp, int *lp, char *str)
 | |
| {
 | |
| 	char *bp = *bpp;
 | |
| 	int len = *lp;
 | |
| 	char c;
 | |
| 
 | |
| 	if (len < 0) return;
 | |
| 
 | |
| 	while ((c=*str++) && len)
 | |
| 		switch(c) {
 | |
| 		case ' ':
 | |
| 		case '\t':
 | |
| 		case '\n':
 | |
| 		case '\\':
 | |
| 			if (len >= 4) {
 | |
| 				*bp++ = '\\';
 | |
| 				*bp++ = '0' + ((c & 0300)>>6);
 | |
| 				*bp++ = '0' + ((c & 0070)>>3);
 | |
| 				*bp++ = '0' + ((c & 0007)>>0);
 | |
| 			}
 | |
| 			len -= 4;
 | |
| 			break;
 | |
| 		default:
 | |
| 			*bp++ = c;
 | |
| 			len--;
 | |
| 		}
 | |
| 	if (c || len <1) len = -1;
 | |
| 	else {
 | |
| 		*bp++ = ' ';
 | |
| 		len--;
 | |
| 	}
 | |
| 	*bpp = bp;
 | |
| 	*lp = len;
 | |
| }
 | |
| 
 | |
| void qword_addhex(char **bpp, int *lp, char *buf, int blen)
 | |
| {
 | |
| 	char *bp = *bpp;
 | |
| 	int len = *lp;
 | |
| 
 | |
| 	if (len < 0) return;
 | |
| 
 | |
| 	if (len > 2) {
 | |
| 		*bp++ = '\\';
 | |
| 		*bp++ = 'x';
 | |
| 		len -= 2;
 | |
| 		while (blen && len >= 2) {
 | |
| 			unsigned char c = *buf++;
 | |
| 			*bp++ = '0' + ((c&0xf0)>>4) + (c>=0xa0)*('a'-'9'-1);
 | |
| 			*bp++ = '0' + (c&0x0f) + ((c&0x0f)>=0x0a)*('a'-'9'-1);
 | |
| 			len -= 2;
 | |
| 			blen--;
 | |
| 		}
 | |
| 	}
 | |
| 	if (blen || len<1) len = -1;
 | |
| 	else {
 | |
| 		*bp++ = ' ';
 | |
| 		len--;
 | |
| 	}
 | |
| 	*bpp = bp;
 | |
| 	*lp = len;
 | |
| }
 | |
| 
 | |
| static void warn_no_listener(struct cache_detail *detail)
 | |
| {
 | |
| 	if (detail->last_warn != detail->last_close) {
 | |
| 		detail->last_warn = detail->last_close;
 | |
| 		if (detail->warn_no_listener)
 | |
| 			detail->warn_no_listener(detail);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * register an upcall request to user-space.
 | |
|  * Each request is at most one page long.
 | |
|  */
 | |
| static int cache_make_upcall(struct cache_detail *detail, struct cache_head *h)
 | |
| {
 | |
| 
 | |
| 	char *buf;
 | |
| 	struct cache_request *crq;
 | |
| 	char *bp;
 | |
| 	int len;
 | |
| 
 | |
| 	if (detail->cache_request == NULL)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (atomic_read(&detail->readers) == 0 &&
 | |
| 	    detail->last_close < get_seconds() - 30) {
 | |
| 			warn_no_listener(detail);
 | |
| 			return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
 | |
| 	if (!buf)
 | |
| 		return -EAGAIN;
 | |
| 
 | |
| 	crq = kmalloc(sizeof (*crq), GFP_KERNEL);
 | |
| 	if (!crq) {
 | |
| 		kfree(buf);
 | |
| 		return -EAGAIN;
 | |
| 	}
 | |
| 
 | |
| 	bp = buf; len = PAGE_SIZE;
 | |
| 
 | |
| 	detail->cache_request(detail, h, &bp, &len);
 | |
| 
 | |
| 	if (len < 0) {
 | |
| 		kfree(buf);
 | |
| 		kfree(crq);
 | |
| 		return -EAGAIN;
 | |
| 	}
 | |
| 	crq->q.reader = 0;
 | |
| 	crq->item = cache_get(h);
 | |
| 	crq->buf = buf;
 | |
| 	crq->len = PAGE_SIZE - len;
 | |
| 	crq->readers = 0;
 | |
| 	spin_lock(&queue_lock);
 | |
| 	list_add_tail(&crq->q.list, &detail->queue);
 | |
| 	spin_unlock(&queue_lock);
 | |
| 	wake_up(&queue_wait);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * parse a message from user-space and pass it
 | |
|  * to an appropriate cache
 | |
|  * Messages are, like requests, separated into fields by
 | |
|  * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
 | |
|  *
 | |
|  * Message is
 | |
|  *   reply cachename expiry key ... content....
 | |
|  *
 | |
|  * key and content are both parsed by cache
 | |
|  */
 | |
| 
 | |
| #define isodigit(c) (isdigit(c) && c <= '7')
 | |
| int qword_get(char **bpp, char *dest, int bufsize)
 | |
| {
 | |
| 	/* return bytes copied, or -1 on error */
 | |
| 	char *bp = *bpp;
 | |
| 	int len = 0;
 | |
| 
 | |
| 	while (*bp == ' ') bp++;
 | |
| 
 | |
| 	if (bp[0] == '\\' && bp[1] == 'x') {
 | |
| 		/* HEX STRING */
 | |
| 		bp += 2;
 | |
| 		while (isxdigit(bp[0]) && isxdigit(bp[1]) && len < bufsize) {
 | |
| 			int byte = isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10;
 | |
| 			bp++;
 | |
| 			byte <<= 4;
 | |
| 			byte |= isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10;
 | |
| 			*dest++ = byte;
 | |
| 			bp++;
 | |
| 			len++;
 | |
| 		}
 | |
| 	} else {
 | |
| 		/* text with \nnn octal quoting */
 | |
| 		while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
 | |
| 			if (*bp == '\\' &&
 | |
| 			    isodigit(bp[1]) && (bp[1] <= '3') &&
 | |
| 			    isodigit(bp[2]) &&
 | |
| 			    isodigit(bp[3])) {
 | |
| 				int byte = (*++bp -'0');
 | |
| 				bp++;
 | |
| 				byte = (byte << 3) | (*bp++ - '0');
 | |
| 				byte = (byte << 3) | (*bp++ - '0');
 | |
| 				*dest++ = byte;
 | |
| 				len++;
 | |
| 			} else {
 | |
| 				*dest++ = *bp++;
 | |
| 				len++;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (*bp != ' ' && *bp != '\n' && *bp != '\0')
 | |
| 		return -1;
 | |
| 	while (*bp == ' ') bp++;
 | |
| 	*bpp = bp;
 | |
| 	*dest = '\0';
 | |
| 	return len;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * support /proc/sunrpc/cache/$CACHENAME/content
 | |
|  * as a seqfile.
 | |
|  * We call ->cache_show passing NULL for the item to
 | |
|  * get a header, then pass each real item in the cache
 | |
|  */
 | |
| 
 | |
| struct handle {
 | |
| 	struct cache_detail *cd;
 | |
| };
 | |
| 
 | |
| static void *c_start(struct seq_file *m, loff_t *pos)
 | |
| {
 | |
| 	loff_t n = *pos;
 | |
| 	unsigned hash, entry;
 | |
| 	struct cache_head *ch;
 | |
| 	struct cache_detail *cd = ((struct handle*)m->private)->cd;
 | |
| 
 | |
| 
 | |
| 	read_lock(&cd->hash_lock);
 | |
| 	if (!n--)
 | |
| 		return SEQ_START_TOKEN;
 | |
| 	hash = n >> 32;
 | |
| 	entry = n & ((1LL<<32) - 1);
 | |
| 
 | |
| 	for (ch=cd->hash_table[hash]; ch; ch=ch->next)
 | |
| 		if (!entry--)
 | |
| 			return ch;
 | |
| 	n &= ~((1LL<<32) - 1);
 | |
| 	do {
 | |
| 		hash++;
 | |
| 		n += 1LL<<32;
 | |
| 	} while(hash < cd->hash_size &&
 | |
| 		cd->hash_table[hash]==NULL);
 | |
| 	if (hash >= cd->hash_size)
 | |
| 		return NULL;
 | |
| 	*pos = n+1;
 | |
| 	return cd->hash_table[hash];
 | |
| }
 | |
| 
 | |
| static void *c_next(struct seq_file *m, void *p, loff_t *pos)
 | |
| {
 | |
| 	struct cache_head *ch = p;
 | |
| 	int hash = (*pos >> 32);
 | |
| 	struct cache_detail *cd = ((struct handle*)m->private)->cd;
 | |
| 
 | |
| 	if (p == SEQ_START_TOKEN)
 | |
| 		hash = 0;
 | |
| 	else if (ch->next == NULL) {
 | |
| 		hash++;
 | |
| 		*pos += 1LL<<32;
 | |
| 	} else {
 | |
| 		++*pos;
 | |
| 		return ch->next;
 | |
| 	}
 | |
| 	*pos &= ~((1LL<<32) - 1);
 | |
| 	while (hash < cd->hash_size &&
 | |
| 	       cd->hash_table[hash] == NULL) {
 | |
| 		hash++;
 | |
| 		*pos += 1LL<<32;
 | |
| 	}
 | |
| 	if (hash >= cd->hash_size)
 | |
| 		return NULL;
 | |
| 	++*pos;
 | |
| 	return cd->hash_table[hash];
 | |
| }
 | |
| 
 | |
| static void c_stop(struct seq_file *m, void *p)
 | |
| {
 | |
| 	struct cache_detail *cd = ((struct handle*)m->private)->cd;
 | |
| 	read_unlock(&cd->hash_lock);
 | |
| }
 | |
| 
 | |
| static int c_show(struct seq_file *m, void *p)
 | |
| {
 | |
| 	struct cache_head *cp = p;
 | |
| 	struct cache_detail *cd = ((struct handle*)m->private)->cd;
 | |
| 
 | |
| 	if (p == SEQ_START_TOKEN)
 | |
| 		return cd->cache_show(m, cd, NULL);
 | |
| 
 | |
| 	ifdebug(CACHE)
 | |
| 		seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
 | |
| 			   cp->expiry_time, atomic_read(&cp->ref.refcount), cp->flags);
 | |
| 	cache_get(cp);
 | |
| 	if (cache_check(cd, cp, NULL))
 | |
| 		/* cache_check does a cache_put on failure */
 | |
| 		seq_printf(m, "# ");
 | |
| 	else
 | |
| 		cache_put(cp, cd);
 | |
| 
 | |
| 	return cd->cache_show(m, cd, cp);
 | |
| }
 | |
| 
 | |
| static const struct seq_operations cache_content_op = {
 | |
| 	.start	= c_start,
 | |
| 	.next	= c_next,
 | |
| 	.stop	= c_stop,
 | |
| 	.show	= c_show,
 | |
| };
 | |
| 
 | |
| static int content_open(struct inode *inode, struct file *file)
 | |
| {
 | |
| 	struct handle *han;
 | |
| 	struct cache_detail *cd = PDE(inode)->data;
 | |
| 
 | |
| 	han = __seq_open_private(file, &cache_content_op, sizeof(*han));
 | |
| 	if (han == NULL)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	han->cd = cd;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct file_operations content_file_operations = {
 | |
| 	.open		= content_open,
 | |
| 	.read		= seq_read,
 | |
| 	.llseek		= seq_lseek,
 | |
| 	.release	= seq_release_private,
 | |
| };
 | |
| 
 | |
| static ssize_t read_flush(struct file *file, char __user *buf,
 | |
| 			    size_t count, loff_t *ppos)
 | |
| {
 | |
| 	struct cache_detail *cd = PDE(file->f_path.dentry->d_inode)->data;
 | |
| 	char tbuf[20];
 | |
| 	unsigned long p = *ppos;
 | |
| 	int len;
 | |
| 
 | |
| 	sprintf(tbuf, "%lu\n", cd->flush_time);
 | |
| 	len = strlen(tbuf);
 | |
| 	if (p >= len)
 | |
| 		return 0;
 | |
| 	len -= p;
 | |
| 	if (len > count) len = count;
 | |
| 	if (copy_to_user(buf, (void*)(tbuf+p), len))
 | |
| 		len = -EFAULT;
 | |
| 	else
 | |
| 		*ppos += len;
 | |
| 	return len;
 | |
| }
 | |
| 
 | |
| static ssize_t write_flush(struct file * file, const char __user * buf,
 | |
| 			     size_t count, loff_t *ppos)
 | |
| {
 | |
| 	struct cache_detail *cd = PDE(file->f_path.dentry->d_inode)->data;
 | |
| 	char tbuf[20];
 | |
| 	char *ep;
 | |
| 	long flushtime;
 | |
| 	if (*ppos || count > sizeof(tbuf)-1)
 | |
| 		return -EINVAL;
 | |
| 	if (copy_from_user(tbuf, buf, count))
 | |
| 		return -EFAULT;
 | |
| 	tbuf[count] = 0;
 | |
| 	flushtime = simple_strtoul(tbuf, &ep, 0);
 | |
| 	if (*ep && *ep != '\n')
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	cd->flush_time = flushtime;
 | |
| 	cd->nextcheck = get_seconds();
 | |
| 	cache_flush();
 | |
| 
 | |
| 	*ppos += count;
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static const struct file_operations cache_flush_operations = {
 | |
| 	.open		= nonseekable_open,
 | |
| 	.read		= read_flush,
 | |
| 	.write		= write_flush,
 | |
| };
 |