 b0d436c739
			
		
	
	
	b0d436c739
	
	
	
		
			
			Address some of the trivial sparse warnings in arch/powerpc. Signed-off-by: Anton Blanchard <anton@samba.org> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
		
			
				
	
	
		
			1436 lines
		
	
	
	
		
			38 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1436 lines
		
	
	
	
		
			38 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * PowerPC64 port by Mike Corrigan and Dave Engebretsen
 | |
|  *   {mikejc|engebret}@us.ibm.com
 | |
|  *
 | |
|  *    Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
 | |
|  *
 | |
|  * SMP scalability work:
 | |
|  *    Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
 | |
|  * 
 | |
|  *    Module name: htab.c
 | |
|  *
 | |
|  *    Description:
 | |
|  *      PowerPC Hashed Page Table functions
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License
 | |
|  * as published by the Free Software Foundation; either version
 | |
|  * 2 of the License, or (at your option) any later version.
 | |
|  */
 | |
| 
 | |
| #undef DEBUG
 | |
| #undef DEBUG_LOW
 | |
| 
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/proc_fs.h>
 | |
| #include <linux/stat.h>
 | |
| #include <linux/sysctl.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/ctype.h>
 | |
| #include <linux/cache.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/signal.h>
 | |
| #include <linux/memblock.h>
 | |
| #include <linux/context_tracking.h>
 | |
| 
 | |
| #include <asm/processor.h>
 | |
| #include <asm/pgtable.h>
 | |
| #include <asm/mmu.h>
 | |
| #include <asm/mmu_context.h>
 | |
| #include <asm/page.h>
 | |
| #include <asm/types.h>
 | |
| #include <asm/uaccess.h>
 | |
| #include <asm/machdep.h>
 | |
| #include <asm/prom.h>
 | |
| #include <asm/tlbflush.h>
 | |
| #include <asm/io.h>
 | |
| #include <asm/eeh.h>
 | |
| #include <asm/tlb.h>
 | |
| #include <asm/cacheflush.h>
 | |
| #include <asm/cputable.h>
 | |
| #include <asm/sections.h>
 | |
| #include <asm/spu.h>
 | |
| #include <asm/udbg.h>
 | |
| #include <asm/code-patching.h>
 | |
| #include <asm/fadump.h>
 | |
| #include <asm/firmware.h>
 | |
| #include <asm/tm.h>
 | |
| 
 | |
| #ifdef DEBUG
 | |
| #define DBG(fmt...) udbg_printf(fmt)
 | |
| #else
 | |
| #define DBG(fmt...)
 | |
| #endif
 | |
| 
 | |
| #ifdef DEBUG_LOW
 | |
| #define DBG_LOW(fmt...) udbg_printf(fmt)
 | |
| #else
 | |
| #define DBG_LOW(fmt...)
 | |
| #endif
 | |
| 
 | |
| #define KB (1024)
 | |
| #define MB (1024*KB)
 | |
| #define GB (1024L*MB)
 | |
| 
 | |
| /*
 | |
|  * Note:  pte   --> Linux PTE
 | |
|  *        HPTE  --> PowerPC Hashed Page Table Entry
 | |
|  *
 | |
|  * Execution context:
 | |
|  *   htab_initialize is called with the MMU off (of course), but
 | |
|  *   the kernel has been copied down to zero so it can directly
 | |
|  *   reference global data.  At this point it is very difficult
 | |
|  *   to print debug info.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #ifdef CONFIG_U3_DART
 | |
| extern unsigned long dart_tablebase;
 | |
| #endif /* CONFIG_U3_DART */
 | |
| 
 | |
| static unsigned long _SDR1;
 | |
| struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
 | |
| 
 | |
| struct hash_pte *htab_address;
 | |
| unsigned long htab_size_bytes;
 | |
| unsigned long htab_hash_mask;
 | |
| EXPORT_SYMBOL_GPL(htab_hash_mask);
 | |
| int mmu_linear_psize = MMU_PAGE_4K;
 | |
| int mmu_virtual_psize = MMU_PAGE_4K;
 | |
| int mmu_vmalloc_psize = MMU_PAGE_4K;
 | |
| #ifdef CONFIG_SPARSEMEM_VMEMMAP
 | |
| int mmu_vmemmap_psize = MMU_PAGE_4K;
 | |
| #endif
 | |
| int mmu_io_psize = MMU_PAGE_4K;
 | |
| int mmu_kernel_ssize = MMU_SEGSIZE_256M;
 | |
| int mmu_highuser_ssize = MMU_SEGSIZE_256M;
 | |
| u16 mmu_slb_size = 64;
 | |
| EXPORT_SYMBOL_GPL(mmu_slb_size);
 | |
| #ifdef CONFIG_PPC_64K_PAGES
 | |
| int mmu_ci_restrictions;
 | |
| #endif
 | |
| #ifdef CONFIG_DEBUG_PAGEALLOC
 | |
| static u8 *linear_map_hash_slots;
 | |
| static unsigned long linear_map_hash_count;
 | |
| static DEFINE_SPINLOCK(linear_map_hash_lock);
 | |
| #endif /* CONFIG_DEBUG_PAGEALLOC */
 | |
| 
 | |
| /* There are definitions of page sizes arrays to be used when none
 | |
|  * is provided by the firmware.
 | |
|  */
 | |
| 
 | |
| /* Pre-POWER4 CPUs (4k pages only)
 | |
|  */
 | |
| static struct mmu_psize_def mmu_psize_defaults_old[] = {
 | |
| 	[MMU_PAGE_4K] = {
 | |
| 		.shift	= 12,
 | |
| 		.sllp	= 0,
 | |
| 		.penc   = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
 | |
| 		.avpnm	= 0,
 | |
| 		.tlbiel = 0,
 | |
| 	},
 | |
| };
 | |
| 
 | |
| /* POWER4, GPUL, POWER5
 | |
|  *
 | |
|  * Support for 16Mb large pages
 | |
|  */
 | |
| static struct mmu_psize_def mmu_psize_defaults_gp[] = {
 | |
| 	[MMU_PAGE_4K] = {
 | |
| 		.shift	= 12,
 | |
| 		.sllp	= 0,
 | |
| 		.penc   = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
 | |
| 		.avpnm	= 0,
 | |
| 		.tlbiel = 1,
 | |
| 	},
 | |
| 	[MMU_PAGE_16M] = {
 | |
| 		.shift	= 24,
 | |
| 		.sllp	= SLB_VSID_L,
 | |
| 		.penc   = {[0 ... MMU_PAGE_16M - 1] = -1, [MMU_PAGE_16M] = 0,
 | |
| 			    [MMU_PAGE_16M + 1 ... MMU_PAGE_COUNT - 1] = -1 },
 | |
| 		.avpnm	= 0x1UL,
 | |
| 		.tlbiel = 0,
 | |
| 	},
 | |
| };
 | |
| 
 | |
| static unsigned long htab_convert_pte_flags(unsigned long pteflags)
 | |
| {
 | |
| 	unsigned long rflags = pteflags & 0x1fa;
 | |
| 
 | |
| 	/* _PAGE_EXEC -> NOEXEC */
 | |
| 	if ((pteflags & _PAGE_EXEC) == 0)
 | |
| 		rflags |= HPTE_R_N;
 | |
| 
 | |
| 	/* PP bits. PAGE_USER is already PP bit 0x2, so we only
 | |
| 	 * need to add in 0x1 if it's a read-only user page
 | |
| 	 */
 | |
| 	if ((pteflags & _PAGE_USER) && !((pteflags & _PAGE_RW) &&
 | |
| 					 (pteflags & _PAGE_DIRTY)))
 | |
| 		rflags |= 1;
 | |
| 
 | |
| 	/* Always add C */
 | |
| 	return rflags | HPTE_R_C;
 | |
| }
 | |
| 
 | |
| int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
 | |
| 		      unsigned long pstart, unsigned long prot,
 | |
| 		      int psize, int ssize)
 | |
| {
 | |
| 	unsigned long vaddr, paddr;
 | |
| 	unsigned int step, shift;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	shift = mmu_psize_defs[psize].shift;
 | |
| 	step = 1 << shift;
 | |
| 
 | |
| 	prot = htab_convert_pte_flags(prot);
 | |
| 
 | |
| 	DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n",
 | |
| 	    vstart, vend, pstart, prot, psize, ssize);
 | |
| 
 | |
| 	for (vaddr = vstart, paddr = pstart; vaddr < vend;
 | |
| 	     vaddr += step, paddr += step) {
 | |
| 		unsigned long hash, hpteg;
 | |
| 		unsigned long vsid = get_kernel_vsid(vaddr, ssize);
 | |
| 		unsigned long vpn  = hpt_vpn(vaddr, vsid, ssize);
 | |
| 		unsigned long tprot = prot;
 | |
| 
 | |
| 		/*
 | |
| 		 * If we hit a bad address return error.
 | |
| 		 */
 | |
| 		if (!vsid)
 | |
| 			return -1;
 | |
| 		/* Make kernel text executable */
 | |
| 		if (overlaps_kernel_text(vaddr, vaddr + step))
 | |
| 			tprot &= ~HPTE_R_N;
 | |
| 
 | |
| 		hash = hpt_hash(vpn, shift, ssize);
 | |
| 		hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
 | |
| 
 | |
| 		BUG_ON(!ppc_md.hpte_insert);
 | |
| 		ret = ppc_md.hpte_insert(hpteg, vpn, paddr, tprot,
 | |
| 					 HPTE_V_BOLTED, psize, psize, ssize);
 | |
| 
 | |
| 		if (ret < 0)
 | |
| 			break;
 | |
| #ifdef CONFIG_DEBUG_PAGEALLOC
 | |
| 		if ((paddr >> PAGE_SHIFT) < linear_map_hash_count)
 | |
| 			linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80;
 | |
| #endif /* CONFIG_DEBUG_PAGEALLOC */
 | |
| 	}
 | |
| 	return ret < 0 ? ret : 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MEMORY_HOTPLUG
 | |
| static int htab_remove_mapping(unsigned long vstart, unsigned long vend,
 | |
| 		      int psize, int ssize)
 | |
| {
 | |
| 	unsigned long vaddr;
 | |
| 	unsigned int step, shift;
 | |
| 
 | |
| 	shift = mmu_psize_defs[psize].shift;
 | |
| 	step = 1 << shift;
 | |
| 
 | |
| 	if (!ppc_md.hpte_removebolted) {
 | |
| 		printk(KERN_WARNING "Platform doesn't implement "
 | |
| 				"hpte_removebolted\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	for (vaddr = vstart; vaddr < vend; vaddr += step)
 | |
| 		ppc_md.hpte_removebolted(vaddr, psize, ssize);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| #endif /* CONFIG_MEMORY_HOTPLUG */
 | |
| 
 | |
| static int __init htab_dt_scan_seg_sizes(unsigned long node,
 | |
| 					 const char *uname, int depth,
 | |
| 					 void *data)
 | |
| {
 | |
| 	char *type = of_get_flat_dt_prop(node, "device_type", NULL);
 | |
| 	u32 *prop;
 | |
| 	unsigned long size = 0;
 | |
| 
 | |
| 	/* We are scanning "cpu" nodes only */
 | |
| 	if (type == NULL || strcmp(type, "cpu") != 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	prop = (u32 *)of_get_flat_dt_prop(node, "ibm,processor-segment-sizes",
 | |
| 					  &size);
 | |
| 	if (prop == NULL)
 | |
| 		return 0;
 | |
| 	for (; size >= 4; size -= 4, ++prop) {
 | |
| 		if (prop[0] == 40) {
 | |
| 			DBG("1T segment support detected\n");
 | |
| 			cur_cpu_spec->mmu_features |= MMU_FTR_1T_SEGMENT;
 | |
| 			return 1;
 | |
| 		}
 | |
| 	}
 | |
| 	cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void __init htab_init_seg_sizes(void)
 | |
| {
 | |
| 	of_scan_flat_dt(htab_dt_scan_seg_sizes, NULL);
 | |
| }
 | |
| 
 | |
| static int __init get_idx_from_shift(unsigned int shift)
 | |
| {
 | |
| 	int idx = -1;
 | |
| 
 | |
| 	switch (shift) {
 | |
| 	case 0xc:
 | |
| 		idx = MMU_PAGE_4K;
 | |
| 		break;
 | |
| 	case 0x10:
 | |
| 		idx = MMU_PAGE_64K;
 | |
| 		break;
 | |
| 	case 0x14:
 | |
| 		idx = MMU_PAGE_1M;
 | |
| 		break;
 | |
| 	case 0x18:
 | |
| 		idx = MMU_PAGE_16M;
 | |
| 		break;
 | |
| 	case 0x22:
 | |
| 		idx = MMU_PAGE_16G;
 | |
| 		break;
 | |
| 	}
 | |
| 	return idx;
 | |
| }
 | |
| 
 | |
| static int __init htab_dt_scan_page_sizes(unsigned long node,
 | |
| 					  const char *uname, int depth,
 | |
| 					  void *data)
 | |
| {
 | |
| 	char *type = of_get_flat_dt_prop(node, "device_type", NULL);
 | |
| 	u32 *prop;
 | |
| 	unsigned long size = 0;
 | |
| 
 | |
| 	/* We are scanning "cpu" nodes only */
 | |
| 	if (type == NULL || strcmp(type, "cpu") != 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	prop = (u32 *)of_get_flat_dt_prop(node,
 | |
| 					  "ibm,segment-page-sizes", &size);
 | |
| 	if (prop != NULL) {
 | |
| 		pr_info("Page sizes from device-tree:\n");
 | |
| 		size /= 4;
 | |
| 		cur_cpu_spec->mmu_features &= ~(MMU_FTR_16M_PAGE);
 | |
| 		while(size > 0) {
 | |
| 			unsigned int base_shift = prop[0];
 | |
| 			unsigned int slbenc = prop[1];
 | |
| 			unsigned int lpnum = prop[2];
 | |
| 			struct mmu_psize_def *def;
 | |
| 			int idx, base_idx;
 | |
| 
 | |
| 			size -= 3; prop += 3;
 | |
| 			base_idx = get_idx_from_shift(base_shift);
 | |
| 			if (base_idx < 0) {
 | |
| 				/*
 | |
| 				 * skip the pte encoding also
 | |
| 				 */
 | |
| 				prop += lpnum * 2; size -= lpnum * 2;
 | |
| 				continue;
 | |
| 			}
 | |
| 			def = &mmu_psize_defs[base_idx];
 | |
| 			if (base_idx == MMU_PAGE_16M)
 | |
| 				cur_cpu_spec->mmu_features |= MMU_FTR_16M_PAGE;
 | |
| 
 | |
| 			def->shift = base_shift;
 | |
| 			if (base_shift <= 23)
 | |
| 				def->avpnm = 0;
 | |
| 			else
 | |
| 				def->avpnm = (1 << (base_shift - 23)) - 1;
 | |
| 			def->sllp = slbenc;
 | |
| 			/*
 | |
| 			 * We don't know for sure what's up with tlbiel, so
 | |
| 			 * for now we only set it for 4K and 64K pages
 | |
| 			 */
 | |
| 			if (base_idx == MMU_PAGE_4K || base_idx == MMU_PAGE_64K)
 | |
| 				def->tlbiel = 1;
 | |
| 			else
 | |
| 				def->tlbiel = 0;
 | |
| 
 | |
| 			while (size > 0 && lpnum) {
 | |
| 				unsigned int shift = prop[0];
 | |
| 				int penc  = prop[1];
 | |
| 
 | |
| 				prop += 2; size -= 2;
 | |
| 				lpnum--;
 | |
| 
 | |
| 				idx = get_idx_from_shift(shift);
 | |
| 				if (idx < 0)
 | |
| 					continue;
 | |
| 
 | |
| 				if (penc == -1)
 | |
| 					pr_err("Invalid penc for base_shift=%d "
 | |
| 					       "shift=%d\n", base_shift, shift);
 | |
| 
 | |
| 				def->penc[idx] = penc;
 | |
| 				pr_info("base_shift=%d: shift=%d, sllp=0x%04lx,"
 | |
| 					" avpnm=0x%08lx, tlbiel=%d, penc=%d\n",
 | |
| 					base_shift, shift, def->sllp,
 | |
| 					def->avpnm, def->tlbiel, def->penc[idx]);
 | |
| 			}
 | |
| 		}
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HUGETLB_PAGE
 | |
| /* Scan for 16G memory blocks that have been set aside for huge pages
 | |
|  * and reserve those blocks for 16G huge pages.
 | |
|  */
 | |
| static int __init htab_dt_scan_hugepage_blocks(unsigned long node,
 | |
| 					const char *uname, int depth,
 | |
| 					void *data) {
 | |
| 	char *type = of_get_flat_dt_prop(node, "device_type", NULL);
 | |
| 	unsigned long *addr_prop;
 | |
| 	u32 *page_count_prop;
 | |
| 	unsigned int expected_pages;
 | |
| 	long unsigned int phys_addr;
 | |
| 	long unsigned int block_size;
 | |
| 
 | |
| 	/* We are scanning "memory" nodes only */
 | |
| 	if (type == NULL || strcmp(type, "memory") != 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* This property is the log base 2 of the number of virtual pages that
 | |
| 	 * will represent this memory block. */
 | |
| 	page_count_prop = of_get_flat_dt_prop(node, "ibm,expected#pages", NULL);
 | |
| 	if (page_count_prop == NULL)
 | |
| 		return 0;
 | |
| 	expected_pages = (1 << page_count_prop[0]);
 | |
| 	addr_prop = of_get_flat_dt_prop(node, "reg", NULL);
 | |
| 	if (addr_prop == NULL)
 | |
| 		return 0;
 | |
| 	phys_addr = addr_prop[0];
 | |
| 	block_size = addr_prop[1];
 | |
| 	if (block_size != (16 * GB))
 | |
| 		return 0;
 | |
| 	printk(KERN_INFO "Huge page(16GB) memory: "
 | |
| 			"addr = 0x%lX size = 0x%lX pages = %d\n",
 | |
| 			phys_addr, block_size, expected_pages);
 | |
| 	if (phys_addr + (16 * GB) <= memblock_end_of_DRAM()) {
 | |
| 		memblock_reserve(phys_addr, block_size * expected_pages);
 | |
| 		add_gpage(phys_addr, block_size, expected_pages);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| #endif /* CONFIG_HUGETLB_PAGE */
 | |
| 
 | |
| static void mmu_psize_set_default_penc(void)
 | |
| {
 | |
| 	int bpsize, apsize;
 | |
| 	for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++)
 | |
| 		for (apsize = 0; apsize < MMU_PAGE_COUNT; apsize++)
 | |
| 			mmu_psize_defs[bpsize].penc[apsize] = -1;
 | |
| }
 | |
| 
 | |
| static void __init htab_init_page_sizes(void)
 | |
| {
 | |
| 	int rc;
 | |
| 
 | |
| 	/* se the invalid penc to -1 */
 | |
| 	mmu_psize_set_default_penc();
 | |
| 
 | |
| 	/* Default to 4K pages only */
 | |
| 	memcpy(mmu_psize_defs, mmu_psize_defaults_old,
 | |
| 	       sizeof(mmu_psize_defaults_old));
 | |
| 
 | |
| 	/*
 | |
| 	 * Try to find the available page sizes in the device-tree
 | |
| 	 */
 | |
| 	rc = of_scan_flat_dt(htab_dt_scan_page_sizes, NULL);
 | |
| 	if (rc != 0)  /* Found */
 | |
| 		goto found;
 | |
| 
 | |
| 	/*
 | |
| 	 * Not in the device-tree, let's fallback on known size
 | |
| 	 * list for 16M capable GP & GR
 | |
| 	 */
 | |
| 	if (mmu_has_feature(MMU_FTR_16M_PAGE))
 | |
| 		memcpy(mmu_psize_defs, mmu_psize_defaults_gp,
 | |
| 		       sizeof(mmu_psize_defaults_gp));
 | |
|  found:
 | |
| #ifndef CONFIG_DEBUG_PAGEALLOC
 | |
| 	/*
 | |
| 	 * Pick a size for the linear mapping. Currently, we only support
 | |
| 	 * 16M, 1M and 4K which is the default
 | |
| 	 */
 | |
| 	if (mmu_psize_defs[MMU_PAGE_16M].shift)
 | |
| 		mmu_linear_psize = MMU_PAGE_16M;
 | |
| 	else if (mmu_psize_defs[MMU_PAGE_1M].shift)
 | |
| 		mmu_linear_psize = MMU_PAGE_1M;
 | |
| #endif /* CONFIG_DEBUG_PAGEALLOC */
 | |
| 
 | |
| #ifdef CONFIG_PPC_64K_PAGES
 | |
| 	/*
 | |
| 	 * Pick a size for the ordinary pages. Default is 4K, we support
 | |
| 	 * 64K for user mappings and vmalloc if supported by the processor.
 | |
| 	 * We only use 64k for ioremap if the processor
 | |
| 	 * (and firmware) support cache-inhibited large pages.
 | |
| 	 * If not, we use 4k and set mmu_ci_restrictions so that
 | |
| 	 * hash_page knows to switch processes that use cache-inhibited
 | |
| 	 * mappings to 4k pages.
 | |
| 	 */
 | |
| 	if (mmu_psize_defs[MMU_PAGE_64K].shift) {
 | |
| 		mmu_virtual_psize = MMU_PAGE_64K;
 | |
| 		mmu_vmalloc_psize = MMU_PAGE_64K;
 | |
| 		if (mmu_linear_psize == MMU_PAGE_4K)
 | |
| 			mmu_linear_psize = MMU_PAGE_64K;
 | |
| 		if (mmu_has_feature(MMU_FTR_CI_LARGE_PAGE)) {
 | |
| 			/*
 | |
| 			 * Don't use 64k pages for ioremap on pSeries, since
 | |
| 			 * that would stop us accessing the HEA ethernet.
 | |
| 			 */
 | |
| 			if (!machine_is(pseries))
 | |
| 				mmu_io_psize = MMU_PAGE_64K;
 | |
| 		} else
 | |
| 			mmu_ci_restrictions = 1;
 | |
| 	}
 | |
| #endif /* CONFIG_PPC_64K_PAGES */
 | |
| 
 | |
| #ifdef CONFIG_SPARSEMEM_VMEMMAP
 | |
| 	/* We try to use 16M pages for vmemmap if that is supported
 | |
| 	 * and we have at least 1G of RAM at boot
 | |
| 	 */
 | |
| 	if (mmu_psize_defs[MMU_PAGE_16M].shift &&
 | |
| 	    memblock_phys_mem_size() >= 0x40000000)
 | |
| 		mmu_vmemmap_psize = MMU_PAGE_16M;
 | |
| 	else if (mmu_psize_defs[MMU_PAGE_64K].shift)
 | |
| 		mmu_vmemmap_psize = MMU_PAGE_64K;
 | |
| 	else
 | |
| 		mmu_vmemmap_psize = MMU_PAGE_4K;
 | |
| #endif /* CONFIG_SPARSEMEM_VMEMMAP */
 | |
| 
 | |
| 	printk(KERN_DEBUG "Page orders: linear mapping = %d, "
 | |
| 	       "virtual = %d, io = %d"
 | |
| #ifdef CONFIG_SPARSEMEM_VMEMMAP
 | |
| 	       ", vmemmap = %d"
 | |
| #endif
 | |
| 	       "\n",
 | |
| 	       mmu_psize_defs[mmu_linear_psize].shift,
 | |
| 	       mmu_psize_defs[mmu_virtual_psize].shift,
 | |
| 	       mmu_psize_defs[mmu_io_psize].shift
 | |
| #ifdef CONFIG_SPARSEMEM_VMEMMAP
 | |
| 	       ,mmu_psize_defs[mmu_vmemmap_psize].shift
 | |
| #endif
 | |
| 	       );
 | |
| 
 | |
| #ifdef CONFIG_HUGETLB_PAGE
 | |
| 	/* Reserve 16G huge page memory sections for huge pages */
 | |
| 	of_scan_flat_dt(htab_dt_scan_hugepage_blocks, NULL);
 | |
| #endif /* CONFIG_HUGETLB_PAGE */
 | |
| }
 | |
| 
 | |
| static int __init htab_dt_scan_pftsize(unsigned long node,
 | |
| 				       const char *uname, int depth,
 | |
| 				       void *data)
 | |
| {
 | |
| 	char *type = of_get_flat_dt_prop(node, "device_type", NULL);
 | |
| 	u32 *prop;
 | |
| 
 | |
| 	/* We are scanning "cpu" nodes only */
 | |
| 	if (type == NULL || strcmp(type, "cpu") != 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	prop = (u32 *)of_get_flat_dt_prop(node, "ibm,pft-size", NULL);
 | |
| 	if (prop != NULL) {
 | |
| 		/* pft_size[0] is the NUMA CEC cookie */
 | |
| 		ppc64_pft_size = prop[1];
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static unsigned long __init htab_get_table_size(void)
 | |
| {
 | |
| 	unsigned long mem_size, rnd_mem_size, pteg_count, psize;
 | |
| 
 | |
| 	/* If hash size isn't already provided by the platform, we try to
 | |
| 	 * retrieve it from the device-tree. If it's not there neither, we
 | |
| 	 * calculate it now based on the total RAM size
 | |
| 	 */
 | |
| 	if (ppc64_pft_size == 0)
 | |
| 		of_scan_flat_dt(htab_dt_scan_pftsize, NULL);
 | |
| 	if (ppc64_pft_size)
 | |
| 		return 1UL << ppc64_pft_size;
 | |
| 
 | |
| 	/* round mem_size up to next power of 2 */
 | |
| 	mem_size = memblock_phys_mem_size();
 | |
| 	rnd_mem_size = 1UL << __ilog2(mem_size);
 | |
| 	if (rnd_mem_size < mem_size)
 | |
| 		rnd_mem_size <<= 1;
 | |
| 
 | |
| 	/* # pages / 2 */
 | |
| 	psize = mmu_psize_defs[mmu_virtual_psize].shift;
 | |
| 	pteg_count = max(rnd_mem_size >> (psize + 1), 1UL << 11);
 | |
| 
 | |
| 	return pteg_count << 7;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MEMORY_HOTPLUG
 | |
| int create_section_mapping(unsigned long start, unsigned long end)
 | |
| {
 | |
| 	return htab_bolt_mapping(start, end, __pa(start),
 | |
| 				 pgprot_val(PAGE_KERNEL), mmu_linear_psize,
 | |
| 				 mmu_kernel_ssize);
 | |
| }
 | |
| 
 | |
| int remove_section_mapping(unsigned long start, unsigned long end)
 | |
| {
 | |
| 	return htab_remove_mapping(start, end, mmu_linear_psize,
 | |
| 			mmu_kernel_ssize);
 | |
| }
 | |
| #endif /* CONFIG_MEMORY_HOTPLUG */
 | |
| 
 | |
| #define FUNCTION_TEXT(A)	((*(unsigned long *)(A)))
 | |
| 
 | |
| static void __init htab_finish_init(void)
 | |
| {
 | |
| 	extern unsigned int *htab_call_hpte_insert1;
 | |
| 	extern unsigned int *htab_call_hpte_insert2;
 | |
| 	extern unsigned int *htab_call_hpte_remove;
 | |
| 	extern unsigned int *htab_call_hpte_updatepp;
 | |
| 
 | |
| #ifdef CONFIG_PPC_HAS_HASH_64K
 | |
| 	extern unsigned int *ht64_call_hpte_insert1;
 | |
| 	extern unsigned int *ht64_call_hpte_insert2;
 | |
| 	extern unsigned int *ht64_call_hpte_remove;
 | |
| 	extern unsigned int *ht64_call_hpte_updatepp;
 | |
| 
 | |
| 	patch_branch(ht64_call_hpte_insert1,
 | |
| 		FUNCTION_TEXT(ppc_md.hpte_insert),
 | |
| 		BRANCH_SET_LINK);
 | |
| 	patch_branch(ht64_call_hpte_insert2,
 | |
| 		FUNCTION_TEXT(ppc_md.hpte_insert),
 | |
| 		BRANCH_SET_LINK);
 | |
| 	patch_branch(ht64_call_hpte_remove,
 | |
| 		FUNCTION_TEXT(ppc_md.hpte_remove),
 | |
| 		BRANCH_SET_LINK);
 | |
| 	patch_branch(ht64_call_hpte_updatepp,
 | |
| 		FUNCTION_TEXT(ppc_md.hpte_updatepp),
 | |
| 		BRANCH_SET_LINK);
 | |
| 
 | |
| #endif /* CONFIG_PPC_HAS_HASH_64K */
 | |
| 
 | |
| 	patch_branch(htab_call_hpte_insert1,
 | |
| 		FUNCTION_TEXT(ppc_md.hpte_insert),
 | |
| 		BRANCH_SET_LINK);
 | |
| 	patch_branch(htab_call_hpte_insert2,
 | |
| 		FUNCTION_TEXT(ppc_md.hpte_insert),
 | |
| 		BRANCH_SET_LINK);
 | |
| 	patch_branch(htab_call_hpte_remove,
 | |
| 		FUNCTION_TEXT(ppc_md.hpte_remove),
 | |
| 		BRANCH_SET_LINK);
 | |
| 	patch_branch(htab_call_hpte_updatepp,
 | |
| 		FUNCTION_TEXT(ppc_md.hpte_updatepp),
 | |
| 		BRANCH_SET_LINK);
 | |
| }
 | |
| 
 | |
| static void __init htab_initialize(void)
 | |
| {
 | |
| 	unsigned long table;
 | |
| 	unsigned long pteg_count;
 | |
| 	unsigned long prot;
 | |
| 	unsigned long base = 0, size = 0, limit;
 | |
| 	struct memblock_region *reg;
 | |
| 
 | |
| 	DBG(" -> htab_initialize()\n");
 | |
| 
 | |
| 	/* Initialize segment sizes */
 | |
| 	htab_init_seg_sizes();
 | |
| 
 | |
| 	/* Initialize page sizes */
 | |
| 	htab_init_page_sizes();
 | |
| 
 | |
| 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) {
 | |
| 		mmu_kernel_ssize = MMU_SEGSIZE_1T;
 | |
| 		mmu_highuser_ssize = MMU_SEGSIZE_1T;
 | |
| 		printk(KERN_INFO "Using 1TB segments\n");
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Calculate the required size of the htab.  We want the number of
 | |
| 	 * PTEGs to equal one half the number of real pages.
 | |
| 	 */ 
 | |
| 	htab_size_bytes = htab_get_table_size();
 | |
| 	pteg_count = htab_size_bytes >> 7;
 | |
| 
 | |
| 	htab_hash_mask = pteg_count - 1;
 | |
| 
 | |
| 	if (firmware_has_feature(FW_FEATURE_LPAR)) {
 | |
| 		/* Using a hypervisor which owns the htab */
 | |
| 		htab_address = NULL;
 | |
| 		_SDR1 = 0; 
 | |
| #ifdef CONFIG_FA_DUMP
 | |
| 		/*
 | |
| 		 * If firmware assisted dump is active firmware preserves
 | |
| 		 * the contents of htab along with entire partition memory.
 | |
| 		 * Clear the htab if firmware assisted dump is active so
 | |
| 		 * that we dont end up using old mappings.
 | |
| 		 */
 | |
| 		if (is_fadump_active() && ppc_md.hpte_clear_all)
 | |
| 			ppc_md.hpte_clear_all();
 | |
| #endif
 | |
| 	} else {
 | |
| 		/* Find storage for the HPT.  Must be contiguous in
 | |
| 		 * the absolute address space. On cell we want it to be
 | |
| 		 * in the first 2 Gig so we can use it for IOMMU hacks.
 | |
| 		 */
 | |
| 		if (machine_is(cell))
 | |
| 			limit = 0x80000000;
 | |
| 		else
 | |
| 			limit = MEMBLOCK_ALLOC_ANYWHERE;
 | |
| 
 | |
| 		table = memblock_alloc_base(htab_size_bytes, htab_size_bytes, limit);
 | |
| 
 | |
| 		DBG("Hash table allocated at %lx, size: %lx\n", table,
 | |
| 		    htab_size_bytes);
 | |
| 
 | |
| 		htab_address = __va(table);
 | |
| 
 | |
| 		/* htab absolute addr + encoded htabsize */
 | |
| 		_SDR1 = table + __ilog2(pteg_count) - 11;
 | |
| 
 | |
| 		/* Initialize the HPT with no entries */
 | |
| 		memset((void *)table, 0, htab_size_bytes);
 | |
| 
 | |
| 		/* Set SDR1 */
 | |
| 		mtspr(SPRN_SDR1, _SDR1);
 | |
| 	}
 | |
| 
 | |
| 	prot = pgprot_val(PAGE_KERNEL);
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_PAGEALLOC
 | |
| 	linear_map_hash_count = memblock_end_of_DRAM() >> PAGE_SHIFT;
 | |
| 	linear_map_hash_slots = __va(memblock_alloc_base(linear_map_hash_count,
 | |
| 						    1, ppc64_rma_size));
 | |
| 	memset(linear_map_hash_slots, 0, linear_map_hash_count);
 | |
| #endif /* CONFIG_DEBUG_PAGEALLOC */
 | |
| 
 | |
| 	/* On U3 based machines, we need to reserve the DART area and
 | |
| 	 * _NOT_ map it to avoid cache paradoxes as it's remapped non
 | |
| 	 * cacheable later on
 | |
| 	 */
 | |
| 
 | |
| 	/* create bolted the linear mapping in the hash table */
 | |
| 	for_each_memblock(memory, reg) {
 | |
| 		base = (unsigned long)__va(reg->base);
 | |
| 		size = reg->size;
 | |
| 
 | |
| 		DBG("creating mapping for region: %lx..%lx (prot: %lx)\n",
 | |
| 		    base, size, prot);
 | |
| 
 | |
| #ifdef CONFIG_U3_DART
 | |
| 		/* Do not map the DART space. Fortunately, it will be aligned
 | |
| 		 * in such a way that it will not cross two memblock regions and
 | |
| 		 * will fit within a single 16Mb page.
 | |
| 		 * The DART space is assumed to be a full 16Mb region even if
 | |
| 		 * we only use 2Mb of that space. We will use more of it later
 | |
| 		 * for AGP GART. We have to use a full 16Mb large page.
 | |
| 		 */
 | |
| 		DBG("DART base: %lx\n", dart_tablebase);
 | |
| 
 | |
| 		if (dart_tablebase != 0 && dart_tablebase >= base
 | |
| 		    && dart_tablebase < (base + size)) {
 | |
| 			unsigned long dart_table_end = dart_tablebase + 16 * MB;
 | |
| 			if (base != dart_tablebase)
 | |
| 				BUG_ON(htab_bolt_mapping(base, dart_tablebase,
 | |
| 							__pa(base), prot,
 | |
| 							mmu_linear_psize,
 | |
| 							mmu_kernel_ssize));
 | |
| 			if ((base + size) > dart_table_end)
 | |
| 				BUG_ON(htab_bolt_mapping(dart_tablebase+16*MB,
 | |
| 							base + size,
 | |
| 							__pa(dart_table_end),
 | |
| 							 prot,
 | |
| 							 mmu_linear_psize,
 | |
| 							 mmu_kernel_ssize));
 | |
| 			continue;
 | |
| 		}
 | |
| #endif /* CONFIG_U3_DART */
 | |
| 		BUG_ON(htab_bolt_mapping(base, base + size, __pa(base),
 | |
| 				prot, mmu_linear_psize, mmu_kernel_ssize));
 | |
| 	}
 | |
| 	memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we have a memory_limit and we've allocated TCEs then we need to
 | |
| 	 * explicitly map the TCE area at the top of RAM. We also cope with the
 | |
| 	 * case that the TCEs start below memory_limit.
 | |
| 	 * tce_alloc_start/end are 16MB aligned so the mapping should work
 | |
| 	 * for either 4K or 16MB pages.
 | |
| 	 */
 | |
| 	if (tce_alloc_start) {
 | |
| 		tce_alloc_start = (unsigned long)__va(tce_alloc_start);
 | |
| 		tce_alloc_end = (unsigned long)__va(tce_alloc_end);
 | |
| 
 | |
| 		if (base + size >= tce_alloc_start)
 | |
| 			tce_alloc_start = base + size + 1;
 | |
| 
 | |
| 		BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end,
 | |
| 					 __pa(tce_alloc_start), prot,
 | |
| 					 mmu_linear_psize, mmu_kernel_ssize));
 | |
| 	}
 | |
| 
 | |
| 	htab_finish_init();
 | |
| 
 | |
| 	DBG(" <- htab_initialize()\n");
 | |
| }
 | |
| #undef KB
 | |
| #undef MB
 | |
| 
 | |
| void __init early_init_mmu(void)
 | |
| {
 | |
| 	/* Setup initial STAB address in the PACA */
 | |
| 	get_paca()->stab_real = __pa((u64)&initial_stab);
 | |
| 	get_paca()->stab_addr = (u64)&initial_stab;
 | |
| 
 | |
| 	/* Initialize the MMU Hash table and create the linear mapping
 | |
| 	 * of memory. Has to be done before stab/slb initialization as
 | |
| 	 * this is currently where the page size encoding is obtained
 | |
| 	 */
 | |
| 	htab_initialize();
 | |
| 
 | |
| 	/* Initialize stab / SLB management */
 | |
| 	if (mmu_has_feature(MMU_FTR_SLB))
 | |
| 		slb_initialize();
 | |
| 	else
 | |
| 		stab_initialize(get_paca()->stab_real);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| void early_init_mmu_secondary(void)
 | |
| {
 | |
| 	/* Initialize hash table for that CPU */
 | |
| 	if (!firmware_has_feature(FW_FEATURE_LPAR))
 | |
| 		mtspr(SPRN_SDR1, _SDR1);
 | |
| 
 | |
| 	/* Initialize STAB/SLB. We use a virtual address as it works
 | |
| 	 * in real mode on pSeries.
 | |
| 	 */
 | |
| 	if (mmu_has_feature(MMU_FTR_SLB))
 | |
| 		slb_initialize();
 | |
| 	else
 | |
| 		stab_initialize(get_paca()->stab_addr);
 | |
| }
 | |
| #endif /* CONFIG_SMP */
 | |
| 
 | |
| /*
 | |
|  * Called by asm hashtable.S for doing lazy icache flush
 | |
|  */
 | |
| unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap)
 | |
| {
 | |
| 	struct page *page;
 | |
| 
 | |
| 	if (!pfn_valid(pte_pfn(pte)))
 | |
| 		return pp;
 | |
| 
 | |
| 	page = pte_page(pte);
 | |
| 
 | |
| 	/* page is dirty */
 | |
| 	if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) {
 | |
| 		if (trap == 0x400) {
 | |
| 			flush_dcache_icache_page(page);
 | |
| 			set_bit(PG_arch_1, &page->flags);
 | |
| 		} else
 | |
| 			pp |= HPTE_R_N;
 | |
| 	}
 | |
| 	return pp;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PPC_MM_SLICES
 | |
| unsigned int get_paca_psize(unsigned long addr)
 | |
| {
 | |
| 	u64 lpsizes;
 | |
| 	unsigned char *hpsizes;
 | |
| 	unsigned long index, mask_index;
 | |
| 
 | |
| 	if (addr < SLICE_LOW_TOP) {
 | |
| 		lpsizes = get_paca()->context.low_slices_psize;
 | |
| 		index = GET_LOW_SLICE_INDEX(addr);
 | |
| 		return (lpsizes >> (index * 4)) & 0xF;
 | |
| 	}
 | |
| 	hpsizes = get_paca()->context.high_slices_psize;
 | |
| 	index = GET_HIGH_SLICE_INDEX(addr);
 | |
| 	mask_index = index & 0x1;
 | |
| 	return (hpsizes[index >> 1] >> (mask_index * 4)) & 0xF;
 | |
| }
 | |
| 
 | |
| #else
 | |
| unsigned int get_paca_psize(unsigned long addr)
 | |
| {
 | |
| 	return get_paca()->context.user_psize;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Demote a segment to using 4k pages.
 | |
|  * For now this makes the whole process use 4k pages.
 | |
|  */
 | |
| #ifdef CONFIG_PPC_64K_PAGES
 | |
| void demote_segment_4k(struct mm_struct *mm, unsigned long addr)
 | |
| {
 | |
| 	if (get_slice_psize(mm, addr) == MMU_PAGE_4K)
 | |
| 		return;
 | |
| 	slice_set_range_psize(mm, addr, 1, MMU_PAGE_4K);
 | |
| #ifdef CONFIG_SPU_BASE
 | |
| 	spu_flush_all_slbs(mm);
 | |
| #endif
 | |
| 	if (get_paca_psize(addr) != MMU_PAGE_4K) {
 | |
| 		get_paca()->context = mm->context;
 | |
| 		slb_flush_and_rebolt();
 | |
| 	}
 | |
| }
 | |
| #endif /* CONFIG_PPC_64K_PAGES */
 | |
| 
 | |
| #ifdef CONFIG_PPC_SUBPAGE_PROT
 | |
| /*
 | |
|  * This looks up a 2-bit protection code for a 4k subpage of a 64k page.
 | |
|  * Userspace sets the subpage permissions using the subpage_prot system call.
 | |
|  *
 | |
|  * Result is 0: full permissions, _PAGE_RW: read-only,
 | |
|  * _PAGE_USER or _PAGE_USER|_PAGE_RW: no access.
 | |
|  */
 | |
| static int subpage_protection(struct mm_struct *mm, unsigned long ea)
 | |
| {
 | |
| 	struct subpage_prot_table *spt = &mm->context.spt;
 | |
| 	u32 spp = 0;
 | |
| 	u32 **sbpm, *sbpp;
 | |
| 
 | |
| 	if (ea >= spt->maxaddr)
 | |
| 		return 0;
 | |
| 	if (ea < 0x100000000UL) {
 | |
| 		/* addresses below 4GB use spt->low_prot */
 | |
| 		sbpm = spt->low_prot;
 | |
| 	} else {
 | |
| 		sbpm = spt->protptrs[ea >> SBP_L3_SHIFT];
 | |
| 		if (!sbpm)
 | |
| 			return 0;
 | |
| 	}
 | |
| 	sbpp = sbpm[(ea >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1)];
 | |
| 	if (!sbpp)
 | |
| 		return 0;
 | |
| 	spp = sbpp[(ea >> PAGE_SHIFT) & (SBP_L1_COUNT - 1)];
 | |
| 
 | |
| 	/* extract 2-bit bitfield for this 4k subpage */
 | |
| 	spp >>= 30 - 2 * ((ea >> 12) & 0xf);
 | |
| 
 | |
| 	/* turn 0,1,2,3 into combination of _PAGE_USER and _PAGE_RW */
 | |
| 	spp = ((spp & 2) ? _PAGE_USER : 0) | ((spp & 1) ? _PAGE_RW : 0);
 | |
| 	return spp;
 | |
| }
 | |
| 
 | |
| #else /* CONFIG_PPC_SUBPAGE_PROT */
 | |
| static inline int subpage_protection(struct mm_struct *mm, unsigned long ea)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void hash_failure_debug(unsigned long ea, unsigned long access,
 | |
| 			unsigned long vsid, unsigned long trap,
 | |
| 			int ssize, int psize, int lpsize, unsigned long pte)
 | |
| {
 | |
| 	if (!printk_ratelimit())
 | |
| 		return;
 | |
| 	pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n",
 | |
| 		ea, access, current->comm);
 | |
| 	pr_info("    trap=0x%lx vsid=0x%lx ssize=%d base psize=%d psize %d pte=0x%lx\n",
 | |
| 		trap, vsid, ssize, psize, lpsize, pte);
 | |
| }
 | |
| 
 | |
| /* Result code is:
 | |
|  *  0 - handled
 | |
|  *  1 - normal page fault
 | |
|  * -1 - critical hash insertion error
 | |
|  * -2 - access not permitted by subpage protection mechanism
 | |
|  */
 | |
| int hash_page(unsigned long ea, unsigned long access, unsigned long trap)
 | |
| {
 | |
| 	enum ctx_state prev_state = exception_enter();
 | |
| 	pgd_t *pgdir;
 | |
| 	unsigned long vsid;
 | |
| 	struct mm_struct *mm;
 | |
| 	pte_t *ptep;
 | |
| 	unsigned hugeshift;
 | |
| 	const struct cpumask *tmp;
 | |
| 	int rc, user_region = 0, local = 0;
 | |
| 	int psize, ssize;
 | |
| 
 | |
| 	DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
 | |
| 		ea, access, trap);
 | |
| 
 | |
| 	/* Get region & vsid */
 | |
|  	switch (REGION_ID(ea)) {
 | |
| 	case USER_REGION_ID:
 | |
| 		user_region = 1;
 | |
| 		mm = current->mm;
 | |
| 		if (! mm) {
 | |
| 			DBG_LOW(" user region with no mm !\n");
 | |
| 			rc = 1;
 | |
| 			goto bail;
 | |
| 		}
 | |
| 		psize = get_slice_psize(mm, ea);
 | |
| 		ssize = user_segment_size(ea);
 | |
| 		vsid = get_vsid(mm->context.id, ea, ssize);
 | |
| 		break;
 | |
| 	case VMALLOC_REGION_ID:
 | |
| 		mm = &init_mm;
 | |
| 		vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
 | |
| 		if (ea < VMALLOC_END)
 | |
| 			psize = mmu_vmalloc_psize;
 | |
| 		else
 | |
| 			psize = mmu_io_psize;
 | |
| 		ssize = mmu_kernel_ssize;
 | |
| 		break;
 | |
| 	default:
 | |
| 		/* Not a valid range
 | |
| 		 * Send the problem up to do_page_fault 
 | |
| 		 */
 | |
| 		rc = 1;
 | |
| 		goto bail;
 | |
| 	}
 | |
| 	DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid);
 | |
| 
 | |
| 	/* Bad address. */
 | |
| 	if (!vsid) {
 | |
| 		DBG_LOW("Bad address!\n");
 | |
| 		rc = 1;
 | |
| 		goto bail;
 | |
| 	}
 | |
| 	/* Get pgdir */
 | |
| 	pgdir = mm->pgd;
 | |
| 	if (pgdir == NULL) {
 | |
| 		rc = 1;
 | |
| 		goto bail;
 | |
| 	}
 | |
| 
 | |
| 	/* Check CPU locality */
 | |
| 	tmp = cpumask_of(smp_processor_id());
 | |
| 	if (user_region && cpumask_equal(mm_cpumask(mm), tmp))
 | |
| 		local = 1;
 | |
| 
 | |
| #ifndef CONFIG_PPC_64K_PAGES
 | |
| 	/* If we use 4K pages and our psize is not 4K, then we might
 | |
| 	 * be hitting a special driver mapping, and need to align the
 | |
| 	 * address before we fetch the PTE.
 | |
| 	 *
 | |
| 	 * It could also be a hugepage mapping, in which case this is
 | |
| 	 * not necessary, but it's not harmful, either.
 | |
| 	 */
 | |
| 	if (psize != MMU_PAGE_4K)
 | |
| 		ea &= ~((1ul << mmu_psize_defs[psize].shift) - 1);
 | |
| #endif /* CONFIG_PPC_64K_PAGES */
 | |
| 
 | |
| 	/* Get PTE and page size from page tables */
 | |
| 	ptep = find_linux_pte_or_hugepte(pgdir, ea, &hugeshift);
 | |
| 	if (ptep == NULL || !pte_present(*ptep)) {
 | |
| 		DBG_LOW(" no PTE !\n");
 | |
| 		rc = 1;
 | |
| 		goto bail;
 | |
| 	}
 | |
| 
 | |
| 	/* Add _PAGE_PRESENT to the required access perm */
 | |
| 	access |= _PAGE_PRESENT;
 | |
| 
 | |
| 	/* Pre-check access permissions (will be re-checked atomically
 | |
| 	 * in __hash_page_XX but this pre-check is a fast path
 | |
| 	 */
 | |
| 	if (access & ~pte_val(*ptep)) {
 | |
| 		DBG_LOW(" no access !\n");
 | |
| 		rc = 1;
 | |
| 		goto bail;
 | |
| 	}
 | |
| 
 | |
| 	if (hugeshift) {
 | |
| 		if (pmd_trans_huge(*(pmd_t *)ptep))
 | |
| 			rc = __hash_page_thp(ea, access, vsid, (pmd_t *)ptep,
 | |
| 					     trap, local, ssize, psize);
 | |
| #ifdef CONFIG_HUGETLB_PAGE
 | |
| 		else
 | |
| 			rc = __hash_page_huge(ea, access, vsid, ptep, trap,
 | |
| 					      local, ssize, hugeshift, psize);
 | |
| #else
 | |
| 		else {
 | |
| 			/*
 | |
| 			 * if we have hugeshift, and is not transhuge with
 | |
| 			 * hugetlb disabled, something is really wrong.
 | |
| 			 */
 | |
| 			rc = 1;
 | |
| 			WARN_ON(1);
 | |
| 		}
 | |
| #endif
 | |
| 		goto bail;
 | |
| 	}
 | |
| 
 | |
| #ifndef CONFIG_PPC_64K_PAGES
 | |
| 	DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep));
 | |
| #else
 | |
| 	DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep),
 | |
| 		pte_val(*(ptep + PTRS_PER_PTE)));
 | |
| #endif
 | |
| 	/* Do actual hashing */
 | |
| #ifdef CONFIG_PPC_64K_PAGES
 | |
| 	/* If _PAGE_4K_PFN is set, make sure this is a 4k segment */
 | |
| 	if ((pte_val(*ptep) & _PAGE_4K_PFN) && psize == MMU_PAGE_64K) {
 | |
| 		demote_segment_4k(mm, ea);
 | |
| 		psize = MMU_PAGE_4K;
 | |
| 	}
 | |
| 
 | |
| 	/* If this PTE is non-cacheable and we have restrictions on
 | |
| 	 * using non cacheable large pages, then we switch to 4k
 | |
| 	 */
 | |
| 	if (mmu_ci_restrictions && psize == MMU_PAGE_64K &&
 | |
| 	    (pte_val(*ptep) & _PAGE_NO_CACHE)) {
 | |
| 		if (user_region) {
 | |
| 			demote_segment_4k(mm, ea);
 | |
| 			psize = MMU_PAGE_4K;
 | |
| 		} else if (ea < VMALLOC_END) {
 | |
| 			/*
 | |
| 			 * some driver did a non-cacheable mapping
 | |
| 			 * in vmalloc space, so switch vmalloc
 | |
| 			 * to 4k pages
 | |
| 			 */
 | |
| 			printk(KERN_ALERT "Reducing vmalloc segment "
 | |
| 			       "to 4kB pages because of "
 | |
| 			       "non-cacheable mapping\n");
 | |
| 			psize = mmu_vmalloc_psize = MMU_PAGE_4K;
 | |
| #ifdef CONFIG_SPU_BASE
 | |
| 			spu_flush_all_slbs(mm);
 | |
| #endif
 | |
| 		}
 | |
| 	}
 | |
| 	if (user_region) {
 | |
| 		if (psize != get_paca_psize(ea)) {
 | |
| 			get_paca()->context = mm->context;
 | |
| 			slb_flush_and_rebolt();
 | |
| 		}
 | |
| 	} else if (get_paca()->vmalloc_sllp !=
 | |
| 		   mmu_psize_defs[mmu_vmalloc_psize].sllp) {
 | |
| 		get_paca()->vmalloc_sllp =
 | |
| 			mmu_psize_defs[mmu_vmalloc_psize].sllp;
 | |
| 		slb_vmalloc_update();
 | |
| 	}
 | |
| #endif /* CONFIG_PPC_64K_PAGES */
 | |
| 
 | |
| #ifdef CONFIG_PPC_HAS_HASH_64K
 | |
| 	if (psize == MMU_PAGE_64K)
 | |
| 		rc = __hash_page_64K(ea, access, vsid, ptep, trap, local, ssize);
 | |
| 	else
 | |
| #endif /* CONFIG_PPC_HAS_HASH_64K */
 | |
| 	{
 | |
| 		int spp = subpage_protection(mm, ea);
 | |
| 		if (access & spp)
 | |
| 			rc = -2;
 | |
| 		else
 | |
| 			rc = __hash_page_4K(ea, access, vsid, ptep, trap,
 | |
| 					    local, ssize, spp);
 | |
| 	}
 | |
| 
 | |
| 	/* Dump some info in case of hash insertion failure, they should
 | |
| 	 * never happen so it is really useful to know if/when they do
 | |
| 	 */
 | |
| 	if (rc == -1)
 | |
| 		hash_failure_debug(ea, access, vsid, trap, ssize, psize,
 | |
| 				   psize, pte_val(*ptep));
 | |
| #ifndef CONFIG_PPC_64K_PAGES
 | |
| 	DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep));
 | |
| #else
 | |
| 	DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep),
 | |
| 		pte_val(*(ptep + PTRS_PER_PTE)));
 | |
| #endif
 | |
| 	DBG_LOW(" -> rc=%d\n", rc);
 | |
| 
 | |
| bail:
 | |
| 	exception_exit(prev_state);
 | |
| 	return rc;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(hash_page);
 | |
| 
 | |
| void hash_preload(struct mm_struct *mm, unsigned long ea,
 | |
| 		  unsigned long access, unsigned long trap)
 | |
| {
 | |
| 	int hugepage_shift;
 | |
| 	unsigned long vsid;
 | |
| 	pgd_t *pgdir;
 | |
| 	pte_t *ptep;
 | |
| 	unsigned long flags;
 | |
| 	int rc, ssize, local = 0;
 | |
| 
 | |
| 	BUG_ON(REGION_ID(ea) != USER_REGION_ID);
 | |
| 
 | |
| #ifdef CONFIG_PPC_MM_SLICES
 | |
| 	/* We only prefault standard pages for now */
 | |
| 	if (unlikely(get_slice_psize(mm, ea) != mm->context.user_psize))
 | |
| 		return;
 | |
| #endif
 | |
| 
 | |
| 	DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
 | |
| 		" trap=%lx\n", mm, mm->pgd, ea, access, trap);
 | |
| 
 | |
| 	/* Get Linux PTE if available */
 | |
| 	pgdir = mm->pgd;
 | |
| 	if (pgdir == NULL)
 | |
| 		return;
 | |
| 
 | |
| 	/* Get VSID */
 | |
| 	ssize = user_segment_size(ea);
 | |
| 	vsid = get_vsid(mm->context.id, ea, ssize);
 | |
| 	if (!vsid)
 | |
| 		return;
 | |
| 	/*
 | |
| 	 * Hash doesn't like irqs. Walking linux page table with irq disabled
 | |
| 	 * saves us from holding multiple locks.
 | |
| 	 */
 | |
| 	local_irq_save(flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * THP pages use update_mmu_cache_pmd. We don't do
 | |
| 	 * hash preload there. Hence can ignore THP here
 | |
| 	 */
 | |
| 	ptep = find_linux_pte_or_hugepte(pgdir, ea, &hugepage_shift);
 | |
| 	if (!ptep)
 | |
| 		goto out_exit;
 | |
| 
 | |
| 	WARN_ON(hugepage_shift);
 | |
| #ifdef CONFIG_PPC_64K_PAGES
 | |
| 	/* If either _PAGE_4K_PFN or _PAGE_NO_CACHE is set (and we are on
 | |
| 	 * a 64K kernel), then we don't preload, hash_page() will take
 | |
| 	 * care of it once we actually try to access the page.
 | |
| 	 * That way we don't have to duplicate all of the logic for segment
 | |
| 	 * page size demotion here
 | |
| 	 */
 | |
| 	if (pte_val(*ptep) & (_PAGE_4K_PFN | _PAGE_NO_CACHE))
 | |
| 		goto out_exit;
 | |
| #endif /* CONFIG_PPC_64K_PAGES */
 | |
| 
 | |
| 	/* Is that local to this CPU ? */
 | |
| 	if (cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id())))
 | |
| 		local = 1;
 | |
| 
 | |
| 	/* Hash it in */
 | |
| #ifdef CONFIG_PPC_HAS_HASH_64K
 | |
| 	if (mm->context.user_psize == MMU_PAGE_64K)
 | |
| 		rc = __hash_page_64K(ea, access, vsid, ptep, trap, local, ssize);
 | |
| 	else
 | |
| #endif /* CONFIG_PPC_HAS_HASH_64K */
 | |
| 		rc = __hash_page_4K(ea, access, vsid, ptep, trap, local, ssize,
 | |
| 				    subpage_protection(mm, ea));
 | |
| 
 | |
| 	/* Dump some info in case of hash insertion failure, they should
 | |
| 	 * never happen so it is really useful to know if/when they do
 | |
| 	 */
 | |
| 	if (rc == -1)
 | |
| 		hash_failure_debug(ea, access, vsid, trap, ssize,
 | |
| 				   mm->context.user_psize,
 | |
| 				   mm->context.user_psize,
 | |
| 				   pte_val(*ptep));
 | |
| out_exit:
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| /* WARNING: This is called from hash_low_64.S, if you change this prototype,
 | |
|  *          do not forget to update the assembly call site !
 | |
|  */
 | |
| void flush_hash_page(unsigned long vpn, real_pte_t pte, int psize, int ssize,
 | |
| 		     int local)
 | |
| {
 | |
| 	unsigned long hash, index, shift, hidx, slot;
 | |
| 
 | |
| 	DBG_LOW("flush_hash_page(vpn=%016lx)\n", vpn);
 | |
| 	pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
 | |
| 		hash = hpt_hash(vpn, shift, ssize);
 | |
| 		hidx = __rpte_to_hidx(pte, index);
 | |
| 		if (hidx & _PTEIDX_SECONDARY)
 | |
| 			hash = ~hash;
 | |
| 		slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
 | |
| 		slot += hidx & _PTEIDX_GROUP_IX;
 | |
| 		DBG_LOW(" sub %ld: hash=%lx, hidx=%lx\n", index, slot, hidx);
 | |
| 		/*
 | |
| 		 * We use same base page size and actual psize, because we don't
 | |
| 		 * use these functions for hugepage
 | |
| 		 */
 | |
| 		ppc_md.hpte_invalidate(slot, vpn, psize, psize, ssize, local);
 | |
| 	} pte_iterate_hashed_end();
 | |
| 
 | |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 | |
| 	/* Transactions are not aborted by tlbiel, only tlbie.
 | |
| 	 * Without, syncing a page back to a block device w/ PIO could pick up
 | |
| 	 * transactional data (bad!) so we force an abort here.  Before the
 | |
| 	 * sync the page will be made read-only, which will flush_hash_page.
 | |
| 	 * BIG ISSUE here: if the kernel uses a page from userspace without
 | |
| 	 * unmapping it first, it may see the speculated version.
 | |
| 	 */
 | |
| 	if (local && cpu_has_feature(CPU_FTR_TM) &&
 | |
| 	    current->thread.regs &&
 | |
| 	    MSR_TM_ACTIVE(current->thread.regs->msr)) {
 | |
| 		tm_enable();
 | |
| 		tm_abort(TM_CAUSE_TLBI);
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void flush_hash_range(unsigned long number, int local)
 | |
| {
 | |
| 	if (ppc_md.flush_hash_range)
 | |
| 		ppc_md.flush_hash_range(number, local);
 | |
| 	else {
 | |
| 		int i;
 | |
| 		struct ppc64_tlb_batch *batch =
 | |
| 			&__get_cpu_var(ppc64_tlb_batch);
 | |
| 
 | |
| 		for (i = 0; i < number; i++)
 | |
| 			flush_hash_page(batch->vpn[i], batch->pte[i],
 | |
| 					batch->psize, batch->ssize, local);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * low_hash_fault is called when we the low level hash code failed
 | |
|  * to instert a PTE due to an hypervisor error
 | |
|  */
 | |
| void low_hash_fault(struct pt_regs *regs, unsigned long address, int rc)
 | |
| {
 | |
| 	enum ctx_state prev_state = exception_enter();
 | |
| 
 | |
| 	if (user_mode(regs)) {
 | |
| #ifdef CONFIG_PPC_SUBPAGE_PROT
 | |
| 		if (rc == -2)
 | |
| 			_exception(SIGSEGV, regs, SEGV_ACCERR, address);
 | |
| 		else
 | |
| #endif
 | |
| 			_exception(SIGBUS, regs, BUS_ADRERR, address);
 | |
| 	} else
 | |
| 		bad_page_fault(regs, address, SIGBUS);
 | |
| 
 | |
| 	exception_exit(prev_state);
 | |
| }
 | |
| 
 | |
| long hpte_insert_repeating(unsigned long hash, unsigned long vpn,
 | |
| 			   unsigned long pa, unsigned long rflags,
 | |
| 			   unsigned long vflags, int psize, int ssize)
 | |
| {
 | |
| 	unsigned long hpte_group;
 | |
| 	long slot;
 | |
| 
 | |
| repeat:
 | |
| 	hpte_group = ((hash & htab_hash_mask) *
 | |
| 		       HPTES_PER_GROUP) & ~0x7UL;
 | |
| 
 | |
| 	/* Insert into the hash table, primary slot */
 | |
| 	slot = ppc_md.hpte_insert(hpte_group, vpn, pa, rflags, vflags,
 | |
| 				  psize, psize, ssize);
 | |
| 
 | |
| 	/* Primary is full, try the secondary */
 | |
| 	if (unlikely(slot == -1)) {
 | |
| 		hpte_group = ((~hash & htab_hash_mask) *
 | |
| 			      HPTES_PER_GROUP) & ~0x7UL;
 | |
| 		slot = ppc_md.hpte_insert(hpte_group, vpn, pa, rflags,
 | |
| 					  vflags | HPTE_V_SECONDARY,
 | |
| 					  psize, psize, ssize);
 | |
| 		if (slot == -1) {
 | |
| 			if (mftb() & 0x1)
 | |
| 				hpte_group = ((hash & htab_hash_mask) *
 | |
| 					      HPTES_PER_GROUP)&~0x7UL;
 | |
| 
 | |
| 			ppc_md.hpte_remove(hpte_group);
 | |
| 			goto repeat;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return slot;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_PAGEALLOC
 | |
| static void kernel_map_linear_page(unsigned long vaddr, unsigned long lmi)
 | |
| {
 | |
| 	unsigned long hash;
 | |
| 	unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
 | |
| 	unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
 | |
| 	unsigned long mode = htab_convert_pte_flags(PAGE_KERNEL);
 | |
| 	long ret;
 | |
| 
 | |
| 	hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
 | |
| 
 | |
| 	/* Don't create HPTE entries for bad address */
 | |
| 	if (!vsid)
 | |
| 		return;
 | |
| 
 | |
| 	ret = hpte_insert_repeating(hash, vpn, __pa(vaddr), mode,
 | |
| 				    HPTE_V_BOLTED,
 | |
| 				    mmu_linear_psize, mmu_kernel_ssize);
 | |
| 
 | |
| 	BUG_ON (ret < 0);
 | |
| 	spin_lock(&linear_map_hash_lock);
 | |
| 	BUG_ON(linear_map_hash_slots[lmi] & 0x80);
 | |
| 	linear_map_hash_slots[lmi] = ret | 0x80;
 | |
| 	spin_unlock(&linear_map_hash_lock);
 | |
| }
 | |
| 
 | |
| static void kernel_unmap_linear_page(unsigned long vaddr, unsigned long lmi)
 | |
| {
 | |
| 	unsigned long hash, hidx, slot;
 | |
| 	unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
 | |
| 	unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
 | |
| 
 | |
| 	hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
 | |
| 	spin_lock(&linear_map_hash_lock);
 | |
| 	BUG_ON(!(linear_map_hash_slots[lmi] & 0x80));
 | |
| 	hidx = linear_map_hash_slots[lmi] & 0x7f;
 | |
| 	linear_map_hash_slots[lmi] = 0;
 | |
| 	spin_unlock(&linear_map_hash_lock);
 | |
| 	if (hidx & _PTEIDX_SECONDARY)
 | |
| 		hash = ~hash;
 | |
| 	slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
 | |
| 	slot += hidx & _PTEIDX_GROUP_IX;
 | |
| 	ppc_md.hpte_invalidate(slot, vpn, mmu_linear_psize, mmu_linear_psize,
 | |
| 			       mmu_kernel_ssize, 0);
 | |
| }
 | |
| 
 | |
| void kernel_map_pages(struct page *page, int numpages, int enable)
 | |
| {
 | |
| 	unsigned long flags, vaddr, lmi;
 | |
| 	int i;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	for (i = 0; i < numpages; i++, page++) {
 | |
| 		vaddr = (unsigned long)page_address(page);
 | |
| 		lmi = __pa(vaddr) >> PAGE_SHIFT;
 | |
| 		if (lmi >= linear_map_hash_count)
 | |
| 			continue;
 | |
| 		if (enable)
 | |
| 			kernel_map_linear_page(vaddr, lmi);
 | |
| 		else
 | |
| 			kernel_unmap_linear_page(vaddr, lmi);
 | |
| 	}
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| #endif /* CONFIG_DEBUG_PAGEALLOC */
 | |
| 
 | |
| void setup_initial_memory_limit(phys_addr_t first_memblock_base,
 | |
| 				phys_addr_t first_memblock_size)
 | |
| {
 | |
| 	/* We don't currently support the first MEMBLOCK not mapping 0
 | |
| 	 * physical on those processors
 | |
| 	 */
 | |
| 	BUG_ON(first_memblock_base != 0);
 | |
| 
 | |
| 	/* On LPAR systems, the first entry is our RMA region,
 | |
| 	 * non-LPAR 64-bit hash MMU systems don't have a limitation
 | |
| 	 * on real mode access, but using the first entry works well
 | |
| 	 * enough. We also clamp it to 1G to avoid some funky things
 | |
| 	 * such as RTAS bugs etc...
 | |
| 	 */
 | |
| 	ppc64_rma_size = min_t(u64, first_memblock_size, 0x40000000);
 | |
| 
 | |
| 	/* Finally limit subsequent allocations */
 | |
| 	memblock_set_current_limit(ppc64_rma_size);
 | |
| }
 |