 ec2212088c
			
		
	
	
	ec2212088c
	
	
	
		
			
			Disintegrate asm/system.h for Alpha. Signed-off-by: David Howells <dhowells@redhat.com> cc: linux-alpha@vger.kernel.org
		
			
				
	
	
		
			623 lines
		
	
	
	
		
			16 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			623 lines
		
	
	
	
		
			16 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | ||
|  *	linux/arch/alpha/kernel/core_t2.c
 | ||
|  *
 | ||
|  * Written by Jay A Estabrook (jestabro@amt.tay1.dec.com).
 | ||
|  * December 1996.
 | ||
|  *
 | ||
|  * based on CIA code by David A Rusling (david.rusling@reo.mts.dec.com)
 | ||
|  *
 | ||
|  * Code common to all T2 core logic chips.
 | ||
|  */
 | ||
| 
 | ||
| #define __EXTERN_INLINE
 | ||
| #include <asm/io.h>
 | ||
| #include <asm/core_t2.h>
 | ||
| #undef __EXTERN_INLINE
 | ||
| 
 | ||
| #include <linux/types.h>
 | ||
| #include <linux/pci.h>
 | ||
| #include <linux/sched.h>
 | ||
| #include <linux/init.h>
 | ||
| 
 | ||
| #include <asm/ptrace.h>
 | ||
| #include <asm/delay.h>
 | ||
| #include <asm/mce.h>
 | ||
| 
 | ||
| #include "proto.h"
 | ||
| #include "pci_impl.h"
 | ||
| 
 | ||
| /* For dumping initial DMA window settings. */
 | ||
| #define DEBUG_PRINT_INITIAL_SETTINGS 0
 | ||
| 
 | ||
| /* For dumping final DMA window settings. */
 | ||
| #define DEBUG_PRINT_FINAL_SETTINGS 0
 | ||
| 
 | ||
| /*
 | ||
|  * By default, we direct-map starting at 2GB, in order to allow the
 | ||
|  * maximum size direct-map window (2GB) to match the maximum amount of
 | ||
|  * memory (2GB) that can be present on SABLEs. But that limits the
 | ||
|  * floppy to DMA only via the scatter/gather window set up for 8MB
 | ||
|  * ISA DMA, since the maximum ISA DMA address is 2GB-1.
 | ||
|  *
 | ||
|  * For now, this seems a reasonable trade-off: even though most SABLEs
 | ||
|  * have less than 1GB of memory, floppy usage/performance will not
 | ||
|  * really be affected by forcing it to go via scatter/gather...
 | ||
|  */
 | ||
| #define T2_DIRECTMAP_2G 1
 | ||
| 
 | ||
| #if T2_DIRECTMAP_2G
 | ||
| # define T2_DIRECTMAP_START	0x80000000UL
 | ||
| # define T2_DIRECTMAP_LENGTH	0x80000000UL
 | ||
| #else
 | ||
| # define T2_DIRECTMAP_START	0x40000000UL
 | ||
| # define T2_DIRECTMAP_LENGTH	0x40000000UL
 | ||
| #endif
 | ||
| 
 | ||
| /* The ISA scatter/gather window settings. */
 | ||
| #define T2_ISA_SG_START		0x00800000UL
 | ||
| #define T2_ISA_SG_LENGTH	0x00800000UL
 | ||
| 
 | ||
| /*
 | ||
|  * NOTE: Herein lie back-to-back mb instructions.  They are magic. 
 | ||
|  * One plausible explanation is that the i/o controller does not properly
 | ||
|  * handle the system transaction.  Another involves timing.  Ho hum.
 | ||
|  */
 | ||
| 
 | ||
| /*
 | ||
|  * BIOS32-style PCI interface:
 | ||
|  */
 | ||
| 
 | ||
| #define DEBUG_CONFIG 0
 | ||
| 
 | ||
| #if DEBUG_CONFIG
 | ||
| # define DBG(args)	printk args
 | ||
| #else
 | ||
| # define DBG(args)
 | ||
| #endif
 | ||
| 
 | ||
| static volatile unsigned int t2_mcheck_any_expected;
 | ||
| static volatile unsigned int t2_mcheck_last_taken;
 | ||
| 
 | ||
| /* Place to save the DMA Window registers as set up by SRM
 | ||
|    for restoration during shutdown. */
 | ||
| static struct
 | ||
| {
 | ||
| 	struct {
 | ||
| 		unsigned long wbase;
 | ||
| 		unsigned long wmask;
 | ||
| 		unsigned long tbase;
 | ||
| 	} window[2];
 | ||
| 	unsigned long hae_1;
 | ||
|   	unsigned long hae_2;
 | ||
| 	unsigned long hae_3;
 | ||
| 	unsigned long hae_4;
 | ||
| 	unsigned long hbase;
 | ||
| } t2_saved_config __attribute((common));
 | ||
| 
 | ||
| /*
 | ||
|  * Given a bus, device, and function number, compute resulting
 | ||
|  * configuration space address and setup the T2_HAXR2 register
 | ||
|  * accordingly.  It is therefore not safe to have concurrent
 | ||
|  * invocations to configuration space access routines, but there
 | ||
|  * really shouldn't be any need for this.
 | ||
|  *
 | ||
|  * Type 0:
 | ||
|  *
 | ||
|  *  3 3|3 3 2 2|2 2 2 2|2 2 2 2|1 1 1 1|1 1 1 1|1 1 
 | ||
|  *  3 2|1 0 9 8|7 6 5 4|3 2 1 0|9 8 7 6|5 4 3 2|1 0 9 8|7 6 5 4|3 2 1 0
 | ||
|  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | ||
|  * | | |D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|F|F|F|R|R|R|R|R|R|0|0|
 | ||
|  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | ||
|  *
 | ||
|  *	31:11	Device select bit.
 | ||
|  * 	10:8	Function number
 | ||
|  * 	 7:2	Register number
 | ||
|  *
 | ||
|  * Type 1:
 | ||
|  *
 | ||
|  *  3 3|3 3 2 2|2 2 2 2|2 2 2 2|1 1 1 1|1 1 1 1|1 1 
 | ||
|  *  3 2|1 0 9 8|7 6 5 4|3 2 1 0|9 8 7 6|5 4 3 2|1 0 9 8|7 6 5 4|3 2 1 0
 | ||
|  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | ||
|  * | | | | | | | | | | |B|B|B|B|B|B|B|B|D|D|D|D|D|F|F|F|R|R|R|R|R|R|0|1|
 | ||
|  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | ||
|  *
 | ||
|  *	31:24	reserved
 | ||
|  *	23:16	bus number (8 bits = 128 possible buses)
 | ||
|  *	15:11	Device number (5 bits)
 | ||
|  *	10:8	function number
 | ||
|  *	 7:2	register number
 | ||
|  *  
 | ||
|  * Notes:
 | ||
|  *	The function number selects which function of a multi-function device 
 | ||
|  *	(e.g., SCSI and Ethernet).
 | ||
|  * 
 | ||
|  *	The register selects a DWORD (32 bit) register offset.  Hence it
 | ||
|  *	doesn't get shifted by 2 bits as we want to "drop" the bottom two
 | ||
|  *	bits.
 | ||
|  */
 | ||
| 
 | ||
| static int
 | ||
| mk_conf_addr(struct pci_bus *pbus, unsigned int device_fn, int where,
 | ||
| 	     unsigned long *pci_addr, unsigned char *type1)
 | ||
| {
 | ||
| 	unsigned long addr;
 | ||
| 	u8 bus = pbus->number;
 | ||
| 
 | ||
| 	DBG(("mk_conf_addr(bus=%d, dfn=0x%x, where=0x%x,"
 | ||
| 	     " addr=0x%lx, type1=0x%x)\n",
 | ||
| 	     bus, device_fn, where, pci_addr, type1));
 | ||
| 
 | ||
| 	if (bus == 0) {
 | ||
| 		int device = device_fn >> 3;
 | ||
| 
 | ||
| 		/* Type 0 configuration cycle.  */
 | ||
| 
 | ||
| 		if (device > 8) {
 | ||
| 			DBG(("mk_conf_addr: device (%d)>20, returning -1\n",
 | ||
| 			     device));
 | ||
| 			return -1;
 | ||
| 		}
 | ||
| 
 | ||
| 		*type1 = 0;
 | ||
| 		addr = (0x0800L << device) | ((device_fn & 7) << 8) | (where);
 | ||
| 	} else {
 | ||
| 		/* Type 1 configuration cycle.  */
 | ||
| 		*type1 = 1;
 | ||
| 		addr = (bus << 16) | (device_fn << 8) | (where);
 | ||
| 	}
 | ||
| 	*pci_addr = addr;
 | ||
| 	DBG(("mk_conf_addr: returning pci_addr 0x%lx\n", addr));
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * NOTE: both conf_read() and conf_write() may set HAE_3 when needing
 | ||
|  *       to do type1 access. This is protected by the use of spinlock IRQ
 | ||
|  *       primitives in the wrapper functions pci_{read,write}_config_*()
 | ||
|  *       defined in drivers/pci/pci.c.
 | ||
|  */
 | ||
| static unsigned int
 | ||
| conf_read(unsigned long addr, unsigned char type1)
 | ||
| {
 | ||
| 	unsigned int value, cpu, taken;
 | ||
| 	unsigned long t2_cfg = 0;
 | ||
| 
 | ||
| 	cpu = smp_processor_id();
 | ||
| 
 | ||
| 	DBG(("conf_read(addr=0x%lx, type1=%d)\n", addr, type1));
 | ||
| 
 | ||
| 	/* If Type1 access, must set T2 CFG.  */
 | ||
| 	if (type1) {
 | ||
| 		t2_cfg = *(vulp)T2_HAE_3 & ~0xc0000000UL;
 | ||
| 		*(vulp)T2_HAE_3 = 0x40000000UL | t2_cfg;
 | ||
| 		mb();
 | ||
| 	}
 | ||
| 	mb();
 | ||
| 	draina();
 | ||
| 
 | ||
| 	mcheck_expected(cpu) = 1;
 | ||
| 	mcheck_taken(cpu) = 0;
 | ||
| 	t2_mcheck_any_expected |= (1 << cpu);
 | ||
| 	mb();
 | ||
| 
 | ||
| 	/* Access configuration space. */
 | ||
| 	value = *(vuip)addr;
 | ||
| 	mb();
 | ||
| 	mb();  /* magic */
 | ||
| 
 | ||
| 	/* Wait for possible mcheck. Also, this lets other CPUs clear
 | ||
| 	   their mchecks as well, as they can reliably tell when
 | ||
| 	   another CPU is in the midst of handling a real mcheck via
 | ||
| 	   the "taken" function. */
 | ||
| 	udelay(100);
 | ||
| 
 | ||
| 	if ((taken = mcheck_taken(cpu))) {
 | ||
| 		mcheck_taken(cpu) = 0;
 | ||
| 		t2_mcheck_last_taken |= (1 << cpu);
 | ||
| 		value = 0xffffffffU;
 | ||
| 		mb();
 | ||
| 	}
 | ||
| 	mcheck_expected(cpu) = 0;
 | ||
| 	t2_mcheck_any_expected = 0;
 | ||
| 	mb();
 | ||
| 
 | ||
| 	/* If Type1 access, must reset T2 CFG so normal IO space ops work.  */
 | ||
| 	if (type1) {
 | ||
| 		*(vulp)T2_HAE_3 = t2_cfg;
 | ||
| 		mb();
 | ||
| 	}
 | ||
| 
 | ||
| 	return value;
 | ||
| }
 | ||
| 
 | ||
| static void
 | ||
| conf_write(unsigned long addr, unsigned int value, unsigned char type1)
 | ||
| {
 | ||
| 	unsigned int cpu, taken;
 | ||
| 	unsigned long t2_cfg = 0;
 | ||
| 
 | ||
| 	cpu = smp_processor_id();
 | ||
| 
 | ||
| 	/* If Type1 access, must set T2 CFG.  */
 | ||
| 	if (type1) {
 | ||
| 		t2_cfg = *(vulp)T2_HAE_3 & ~0xc0000000UL;
 | ||
| 		*(vulp)T2_HAE_3 = t2_cfg | 0x40000000UL;
 | ||
| 		mb();
 | ||
| 	}
 | ||
| 	mb();
 | ||
| 	draina();
 | ||
| 
 | ||
| 	mcheck_expected(cpu) = 1;
 | ||
| 	mcheck_taken(cpu) = 0;
 | ||
| 	t2_mcheck_any_expected |= (1 << cpu);
 | ||
| 	mb();
 | ||
| 
 | ||
| 	/* Access configuration space.  */
 | ||
| 	*(vuip)addr = value;
 | ||
| 	mb();
 | ||
| 	mb();  /* magic */
 | ||
| 
 | ||
| 	/* Wait for possible mcheck. Also, this lets other CPUs clear
 | ||
| 	   their mchecks as well, as they can reliably tell when
 | ||
| 	   this CPU is in the midst of handling a real mcheck via
 | ||
| 	   the "taken" function. */
 | ||
| 	udelay(100);
 | ||
| 
 | ||
| 	if ((taken = mcheck_taken(cpu))) {
 | ||
| 		mcheck_taken(cpu) = 0;
 | ||
| 		t2_mcheck_last_taken |= (1 << cpu);
 | ||
| 		mb();
 | ||
| 	}
 | ||
| 	mcheck_expected(cpu) = 0;
 | ||
| 	t2_mcheck_any_expected = 0;
 | ||
| 	mb();
 | ||
| 
 | ||
| 	/* If Type1 access, must reset T2 CFG so normal IO space ops work.  */
 | ||
| 	if (type1) {
 | ||
| 		*(vulp)T2_HAE_3 = t2_cfg;
 | ||
| 		mb();
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| static int
 | ||
| t2_read_config(struct pci_bus *bus, unsigned int devfn, int where,
 | ||
| 	       int size, u32 *value)
 | ||
| {
 | ||
| 	unsigned long addr, pci_addr;
 | ||
| 	unsigned char type1;
 | ||
| 	int shift;
 | ||
| 	long mask;
 | ||
| 
 | ||
| 	if (mk_conf_addr(bus, devfn, where, &pci_addr, &type1))
 | ||
| 		return PCIBIOS_DEVICE_NOT_FOUND;
 | ||
| 
 | ||
| 	mask = (size - 1) * 8;
 | ||
| 	shift = (where & 3) * 8;
 | ||
| 	addr = (pci_addr << 5) + mask + T2_CONF;
 | ||
| 	*value = conf_read(addr, type1) >> (shift);
 | ||
| 	return PCIBIOS_SUCCESSFUL;
 | ||
| }
 | ||
| 
 | ||
| static int 
 | ||
| t2_write_config(struct pci_bus *bus, unsigned int devfn, int where, int size,
 | ||
| 		u32 value)
 | ||
| {
 | ||
| 	unsigned long addr, pci_addr;
 | ||
| 	unsigned char type1;
 | ||
| 	long mask;
 | ||
| 
 | ||
| 	if (mk_conf_addr(bus, devfn, where, &pci_addr, &type1))
 | ||
| 		return PCIBIOS_DEVICE_NOT_FOUND;
 | ||
| 
 | ||
| 	mask = (size - 1) * 8;
 | ||
| 	addr = (pci_addr << 5) + mask + T2_CONF;
 | ||
| 	conf_write(addr, value << ((where & 3) * 8), type1);
 | ||
| 	return PCIBIOS_SUCCESSFUL;
 | ||
| }
 | ||
| 
 | ||
| struct pci_ops t2_pci_ops = 
 | ||
| {
 | ||
| 	.read =		t2_read_config,
 | ||
| 	.write =	t2_write_config,
 | ||
| };
 | ||
| 
 | ||
| static void __init
 | ||
| t2_direct_map_window1(unsigned long base, unsigned long length)
 | ||
| {
 | ||
| 	unsigned long temp;
 | ||
| 
 | ||
| 	__direct_map_base = base;
 | ||
| 	__direct_map_size = length;
 | ||
| 
 | ||
| 	temp = (base & 0xfff00000UL) | ((base + length - 1) >> 20);
 | ||
| 	*(vulp)T2_WBASE1 = temp | 0x80000UL; /* OR in ENABLE bit */
 | ||
| 	temp = (length - 1) & 0xfff00000UL;
 | ||
| 	*(vulp)T2_WMASK1 = temp;
 | ||
| 	*(vulp)T2_TBASE1 = 0;
 | ||
| 
 | ||
| #if DEBUG_PRINT_FINAL_SETTINGS
 | ||
| 	printk("%s: setting WBASE1=0x%lx WMASK1=0x%lx TBASE1=0x%lx\n",
 | ||
| 	       __func__, *(vulp)T2_WBASE1, *(vulp)T2_WMASK1, *(vulp)T2_TBASE1);
 | ||
| #endif
 | ||
| }
 | ||
| 
 | ||
| static void __init
 | ||
| t2_sg_map_window2(struct pci_controller *hose,
 | ||
| 		  unsigned long base,
 | ||
| 		  unsigned long length)
 | ||
| {
 | ||
| 	unsigned long temp;
 | ||
| 
 | ||
| 	/* Note we can only do 1 SG window, as the other is for direct, so
 | ||
| 	   do an ISA SG area, especially for the floppy. */
 | ||
| 	hose->sg_isa = iommu_arena_new(hose, base, length, 0);
 | ||
| 	hose->sg_pci = NULL;
 | ||
| 
 | ||
| 	temp = (base & 0xfff00000UL) | ((base + length - 1) >> 20);
 | ||
| 	*(vulp)T2_WBASE2 = temp | 0xc0000UL; /* OR in ENABLE/SG bits */
 | ||
| 	temp = (length - 1) & 0xfff00000UL;
 | ||
| 	*(vulp)T2_WMASK2 = temp;
 | ||
| 	*(vulp)T2_TBASE2 = virt_to_phys(hose->sg_isa->ptes) >> 1;
 | ||
| 	mb();
 | ||
| 
 | ||
| 	t2_pci_tbi(hose, 0, -1); /* flush TLB all */
 | ||
| 
 | ||
| #if DEBUG_PRINT_FINAL_SETTINGS
 | ||
| 	printk("%s: setting WBASE2=0x%lx WMASK2=0x%lx TBASE2=0x%lx\n",
 | ||
| 	       __func__, *(vulp)T2_WBASE2, *(vulp)T2_WMASK2, *(vulp)T2_TBASE2);
 | ||
| #endif
 | ||
| }
 | ||
| 
 | ||
| static void __init
 | ||
| t2_save_configuration(void)
 | ||
| {
 | ||
| #if DEBUG_PRINT_INITIAL_SETTINGS
 | ||
| 	printk("%s: HAE_1 was 0x%lx\n", __func__, srm_hae); /* HW is 0 */
 | ||
| 	printk("%s: HAE_2 was 0x%lx\n", __func__, *(vulp)T2_HAE_2);
 | ||
| 	printk("%s: HAE_3 was 0x%lx\n", __func__, *(vulp)T2_HAE_3);
 | ||
| 	printk("%s: HAE_4 was 0x%lx\n", __func__, *(vulp)T2_HAE_4);
 | ||
| 	printk("%s: HBASE was 0x%lx\n", __func__, *(vulp)T2_HBASE);
 | ||
| 
 | ||
| 	printk("%s: WBASE1=0x%lx WMASK1=0x%lx TBASE1=0x%lx\n", __func__,
 | ||
| 	       *(vulp)T2_WBASE1, *(vulp)T2_WMASK1, *(vulp)T2_TBASE1);
 | ||
| 	printk("%s: WBASE2=0x%lx WMASK2=0x%lx TBASE2=0x%lx\n", __func__,
 | ||
| 	       *(vulp)T2_WBASE2, *(vulp)T2_WMASK2, *(vulp)T2_TBASE2);
 | ||
| #endif
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Save the DMA Window registers.
 | ||
| 	 */
 | ||
| 	t2_saved_config.window[0].wbase = *(vulp)T2_WBASE1;
 | ||
| 	t2_saved_config.window[0].wmask = *(vulp)T2_WMASK1;
 | ||
| 	t2_saved_config.window[0].tbase = *(vulp)T2_TBASE1;
 | ||
| 	t2_saved_config.window[1].wbase = *(vulp)T2_WBASE2;
 | ||
| 	t2_saved_config.window[1].wmask = *(vulp)T2_WMASK2;
 | ||
| 	t2_saved_config.window[1].tbase = *(vulp)T2_TBASE2;
 | ||
| 
 | ||
| 	t2_saved_config.hae_1 = srm_hae; /* HW is already set to 0 */
 | ||
| 	t2_saved_config.hae_2 = *(vulp)T2_HAE_2;
 | ||
| 	t2_saved_config.hae_3 = *(vulp)T2_HAE_3;
 | ||
| 	t2_saved_config.hae_4 = *(vulp)T2_HAE_4;
 | ||
| 	t2_saved_config.hbase = *(vulp)T2_HBASE;
 | ||
| }
 | ||
| 
 | ||
| void __init
 | ||
| t2_init_arch(void)
 | ||
| {
 | ||
| 	struct pci_controller *hose;
 | ||
| 	struct resource *hae_mem;
 | ||
| 	unsigned long temp;
 | ||
| 	unsigned int i;
 | ||
| 
 | ||
| 	for (i = 0; i < NR_CPUS; i++) {
 | ||
| 		mcheck_expected(i) = 0;
 | ||
| 		mcheck_taken(i) = 0;
 | ||
| 	}
 | ||
| 	t2_mcheck_any_expected = 0;
 | ||
| 	t2_mcheck_last_taken = 0;
 | ||
| 
 | ||
| 	/* Enable scatter/gather TLB use.  */
 | ||
| 	temp = *(vulp)T2_IOCSR;
 | ||
| 	if (!(temp & (0x1UL << 26))) {
 | ||
| 		printk("t2_init_arch: enabling SG TLB, IOCSR was 0x%lx\n",
 | ||
| 		       temp);
 | ||
| 		*(vulp)T2_IOCSR = temp | (0x1UL << 26);
 | ||
| 		mb();	
 | ||
| 		*(vulp)T2_IOCSR; /* read it back to make sure */
 | ||
| 	}
 | ||
| 
 | ||
| 	t2_save_configuration();
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Create our single hose.
 | ||
| 	 */
 | ||
| 	pci_isa_hose = hose = alloc_pci_controller();
 | ||
| 	hose->io_space = &ioport_resource;
 | ||
| 	hae_mem = alloc_resource();
 | ||
| 	hae_mem->start = 0;
 | ||
| 	hae_mem->end = T2_MEM_R1_MASK;
 | ||
| 	hae_mem->name = pci_hae0_name;
 | ||
| 	if (request_resource(&iomem_resource, hae_mem) < 0)
 | ||
| 		printk(KERN_ERR "Failed to request HAE_MEM\n");
 | ||
| 	hose->mem_space = hae_mem;
 | ||
| 	hose->index = 0;
 | ||
| 
 | ||
| 	hose->sparse_mem_base = T2_SPARSE_MEM - IDENT_ADDR;
 | ||
| 	hose->dense_mem_base = T2_DENSE_MEM - IDENT_ADDR;
 | ||
| 	hose->sparse_io_base = T2_IO - IDENT_ADDR;
 | ||
| 	hose->dense_io_base = 0;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Set up the PCI->physical memory translation windows.
 | ||
| 	 *
 | ||
| 	 * Window 1 is direct mapped.
 | ||
| 	 * Window 2 is scatter/gather (for ISA).
 | ||
| 	 */
 | ||
| 
 | ||
| 	t2_direct_map_window1(T2_DIRECTMAP_START, T2_DIRECTMAP_LENGTH);
 | ||
| 
 | ||
| 	/* Always make an ISA DMA window. */
 | ||
| 	t2_sg_map_window2(hose, T2_ISA_SG_START, T2_ISA_SG_LENGTH);
 | ||
| 
 | ||
| 	*(vulp)T2_HBASE = 0x0; /* Disable HOLES. */
 | ||
| 
 | ||
| 	/* Zero HAE.  */
 | ||
| 	*(vulp)T2_HAE_1 = 0; mb(); /* Sparse MEM HAE */
 | ||
| 	*(vulp)T2_HAE_2 = 0; mb(); /* Sparse I/O HAE */
 | ||
| 	*(vulp)T2_HAE_3 = 0; mb(); /* Config Space HAE */
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * We also now zero out HAE_4, the dense memory HAE, so that
 | ||
| 	 * we need not account for its "offset" when accessing dense
 | ||
| 	 * memory resources which we allocated in our normal way. This
 | ||
| 	 * HAE would need to stay untouched were we to keep the SRM
 | ||
| 	 * resource settings.
 | ||
| 	 *
 | ||
| 	 * Thus we can now run standard X servers on SABLE/LYNX. :-)
 | ||
| 	 */
 | ||
| 	*(vulp)T2_HAE_4 = 0; mb();
 | ||
| }
 | ||
| 
 | ||
| void
 | ||
| t2_kill_arch(int mode)
 | ||
| {
 | ||
| 	/*
 | ||
| 	 * Restore the DMA Window registers.
 | ||
| 	 */
 | ||
| 	*(vulp)T2_WBASE1 = t2_saved_config.window[0].wbase;
 | ||
| 	*(vulp)T2_WMASK1 = t2_saved_config.window[0].wmask;
 | ||
| 	*(vulp)T2_TBASE1 = t2_saved_config.window[0].tbase;
 | ||
| 	*(vulp)T2_WBASE2 = t2_saved_config.window[1].wbase;
 | ||
| 	*(vulp)T2_WMASK2 = t2_saved_config.window[1].wmask;
 | ||
| 	*(vulp)T2_TBASE2 = t2_saved_config.window[1].tbase;
 | ||
| 	mb();
 | ||
| 
 | ||
| 	*(vulp)T2_HAE_1 = srm_hae;
 | ||
| 	*(vulp)T2_HAE_2 = t2_saved_config.hae_2;
 | ||
| 	*(vulp)T2_HAE_3 = t2_saved_config.hae_3;
 | ||
| 	*(vulp)T2_HAE_4 = t2_saved_config.hae_4;
 | ||
| 	*(vulp)T2_HBASE = t2_saved_config.hbase;
 | ||
| 	mb();
 | ||
| 	*(vulp)T2_HBASE; /* READ it back to ensure WRITE occurred. */
 | ||
| }
 | ||
| 
 | ||
| void
 | ||
| t2_pci_tbi(struct pci_controller *hose, dma_addr_t start, dma_addr_t end)
 | ||
| {
 | ||
| 	unsigned long t2_iocsr;
 | ||
| 
 | ||
| 	t2_iocsr = *(vulp)T2_IOCSR;
 | ||
| 
 | ||
| 	/* set the TLB Clear bit */
 | ||
| 	*(vulp)T2_IOCSR = t2_iocsr | (0x1UL << 28);
 | ||
| 	mb();
 | ||
| 	*(vulp)T2_IOCSR; /* read it back to make sure */
 | ||
| 
 | ||
| 	/* clear the TLB Clear bit */
 | ||
| 	*(vulp)T2_IOCSR = t2_iocsr & ~(0x1UL << 28);
 | ||
| 	mb();
 | ||
| 	*(vulp)T2_IOCSR; /* read it back to make sure */
 | ||
| }
 | ||
| 
 | ||
| #define SIC_SEIC (1UL << 33)    /* System Event Clear */
 | ||
| 
 | ||
| static void
 | ||
| t2_clear_errors(int cpu)
 | ||
| {
 | ||
| 	struct sable_cpu_csr *cpu_regs;
 | ||
| 
 | ||
| 	cpu_regs = (struct sable_cpu_csr *)T2_CPUn_BASE(cpu);
 | ||
| 		
 | ||
| 	cpu_regs->sic &= ~SIC_SEIC;
 | ||
| 
 | ||
| 	/* Clear CPU errors.  */
 | ||
| 	cpu_regs->bcce |= cpu_regs->bcce;
 | ||
| 	cpu_regs->cbe  |= cpu_regs->cbe;
 | ||
| 	cpu_regs->bcue |= cpu_regs->bcue;
 | ||
| 	cpu_regs->dter |= cpu_regs->dter;
 | ||
| 
 | ||
| 	*(vulp)T2_CERR1 |= *(vulp)T2_CERR1;
 | ||
| 	*(vulp)T2_PERR1 |= *(vulp)T2_PERR1;
 | ||
| 
 | ||
| 	mb();
 | ||
| 	mb();  /* magic */
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * SABLE seems to have a "broadcast" style machine check, in that all
 | ||
|  * CPUs receive it. And, the issuing CPU, in the case of PCI Config
 | ||
|  * space read/write faults, will also receive a second mcheck, upon
 | ||
|  * lowering IPL during completion processing in pci_read_config_byte()
 | ||
|  * et al.
 | ||
|  *
 | ||
|  * Hence all the taken/expected/any_expected/last_taken stuff...
 | ||
|  */
 | ||
| void
 | ||
| t2_machine_check(unsigned long vector, unsigned long la_ptr)
 | ||
| {
 | ||
| 	int cpu = smp_processor_id();
 | ||
| #ifdef CONFIG_VERBOSE_MCHECK
 | ||
| 	struct el_common *mchk_header = (struct el_common *)la_ptr;
 | ||
| #endif
 | ||
| 
 | ||
| 	/* Clear the error before any reporting.  */
 | ||
| 	mb();
 | ||
| 	mb();  /* magic */
 | ||
| 	draina();
 | ||
| 	t2_clear_errors(cpu);
 | ||
| 
 | ||
| 	/* This should not actually be done until the logout frame is
 | ||
| 	   examined, but, since we don't do that, go on and do this... */
 | ||
| 	wrmces(0x7);
 | ||
| 	mb();
 | ||
| 
 | ||
| 	/* Now, do testing for the anomalous conditions. */
 | ||
| 	if (!mcheck_expected(cpu) && t2_mcheck_any_expected) {
 | ||
| 		/*
 | ||
| 		 * FUNKY: Received mcheck on a CPU and not
 | ||
| 		 * expecting it, but another CPU is expecting one.
 | ||
| 		 *
 | ||
| 		 * Just dismiss it for now on this CPU...
 | ||
| 		 */
 | ||
| #ifdef CONFIG_VERBOSE_MCHECK
 | ||
| 		if (alpha_verbose_mcheck > 1) {
 | ||
| 			printk("t2_machine_check(cpu%d): any_expected 0x%x -"
 | ||
| 			       " (assumed) spurious -"
 | ||
| 			       " code 0x%x\n", cpu, t2_mcheck_any_expected,
 | ||
| 			       (unsigned int)mchk_header->code);
 | ||
| 		}
 | ||
| #endif
 | ||
| 		return;
 | ||
| 	}
 | ||
| 
 | ||
| 	if (!mcheck_expected(cpu) && !t2_mcheck_any_expected) {
 | ||
| 		if (t2_mcheck_last_taken & (1 << cpu)) {
 | ||
| #ifdef CONFIG_VERBOSE_MCHECK
 | ||
| 		    if (alpha_verbose_mcheck > 1) {
 | ||
| 			printk("t2_machine_check(cpu%d): last_taken 0x%x - "
 | ||
| 			       "unexpected mcheck - code 0x%x\n",
 | ||
| 			       cpu, t2_mcheck_last_taken,
 | ||
| 			       (unsigned int)mchk_header->code);
 | ||
| 		    }
 | ||
| #endif
 | ||
| 		    t2_mcheck_last_taken = 0;
 | ||
| 		    mb();
 | ||
| 		    return;
 | ||
| 		} else {
 | ||
| 			t2_mcheck_last_taken = 0;
 | ||
| 			mb();
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| #ifdef CONFIG_VERBOSE_MCHECK
 | ||
| 	if (alpha_verbose_mcheck > 1) {
 | ||
| 		printk("%s t2_mcheck(cpu%d): last_taken 0x%x - "
 | ||
| 		       "any_expected 0x%x - code 0x%x\n",
 | ||
| 		       (mcheck_expected(cpu) ? "EX" : "UN"), cpu,
 | ||
| 		       t2_mcheck_last_taken, t2_mcheck_any_expected,
 | ||
| 		       (unsigned int)mchk_header->code);
 | ||
| 	}
 | ||
| #endif
 | ||
| 
 | ||
| 	process_mcheck_info(vector, la_ptr, "T2", mcheck_expected(cpu));
 | ||
| }
 |