 ff40dd5d44
			
		
	
	
	ff40dd5d44
	
	
	
		
			
			We don't need context descriptors for every packet, only tso or timesync. This fixes a bug in the driver where it would always add a context even if all the passed in values to the context descriptor function were 0/default values. Change-ID: I0101d2b893380707b5c2de61aab3e16d4310e9a1 Signed-off-by: Jesse Brandeburg <jesse.brandeburg@intel.com> Signed-off-by: Catherine Sullivan <catherine.sullivan@intel.com> Tested-by: Kavindya Deegala <kavindya.s.deegala@intel.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
		
			
				
	
	
		
			2313 lines
		
	
	
	
		
			64 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2313 lines
		
	
	
	
		
			64 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*******************************************************************************
 | |
|  *
 | |
|  * Intel Ethernet Controller XL710 Family Linux Driver
 | |
|  * Copyright(c) 2013 - 2014 Intel Corporation.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify it
 | |
|  * under the terms and conditions of the GNU General Public License,
 | |
|  * version 2, as published by the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope it will be useful, but WITHOUT
 | |
|  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 | |
|  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 | |
|  * more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License along
 | |
|  * with this program.  If not, see <http://www.gnu.org/licenses/>.
 | |
|  *
 | |
|  * The full GNU General Public License is included in this distribution in
 | |
|  * the file called "COPYING".
 | |
|  *
 | |
|  * Contact Information:
 | |
|  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
 | |
|  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 | |
|  *
 | |
|  ******************************************************************************/
 | |
| 
 | |
| #include "i40e.h"
 | |
| #include "i40e_prototype.h"
 | |
| 
 | |
| static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
 | |
| 				u32 td_tag)
 | |
| {
 | |
| 	return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
 | |
| 			   ((u64)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
 | |
| 			   ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
 | |
| 			   ((u64)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
 | |
| 			   ((u64)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
 | |
| }
 | |
| 
 | |
| #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
 | |
| /**
 | |
|  * i40e_program_fdir_filter - Program a Flow Director filter
 | |
|  * @fdir_data: Packet data that will be filter parameters
 | |
|  * @raw_packet: the pre-allocated packet buffer for FDir
 | |
|  * @pf: The pf pointer
 | |
|  * @add: True for add/update, False for remove
 | |
|  **/
 | |
| int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data, u8 *raw_packet,
 | |
| 			     struct i40e_pf *pf, bool add)
 | |
| {
 | |
| 	struct i40e_filter_program_desc *fdir_desc;
 | |
| 	struct i40e_tx_buffer *tx_buf;
 | |
| 	struct i40e_tx_desc *tx_desc;
 | |
| 	struct i40e_ring *tx_ring;
 | |
| 	unsigned int fpt, dcc;
 | |
| 	struct i40e_vsi *vsi;
 | |
| 	struct device *dev;
 | |
| 	dma_addr_t dma;
 | |
| 	u32 td_cmd = 0;
 | |
| 	u16 i;
 | |
| 
 | |
| 	/* find existing FDIR VSI */
 | |
| 	vsi = NULL;
 | |
| 	for (i = 0; i < pf->hw.func_caps.num_vsis; i++)
 | |
| 		if (pf->vsi[i] && pf->vsi[i]->type == I40E_VSI_FDIR)
 | |
| 			vsi = pf->vsi[i];
 | |
| 	if (!vsi)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	tx_ring = vsi->tx_rings[0];
 | |
| 	dev = tx_ring->dev;
 | |
| 
 | |
| 	dma = dma_map_single(dev, raw_packet,
 | |
| 			     I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
 | |
| 	if (dma_mapping_error(dev, dma))
 | |
| 		goto dma_fail;
 | |
| 
 | |
| 	/* grab the next descriptor */
 | |
| 	i = tx_ring->next_to_use;
 | |
| 	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
 | |
| 
 | |
| 	tx_ring->next_to_use = (i + 1 < tx_ring->count) ? i + 1 : 0;
 | |
| 
 | |
| 	fpt = (fdir_data->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
 | |
| 	      I40E_TXD_FLTR_QW0_QINDEX_MASK;
 | |
| 
 | |
| 	fpt |= (fdir_data->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT) &
 | |
| 	       I40E_TXD_FLTR_QW0_FLEXOFF_MASK;
 | |
| 
 | |
| 	fpt |= (fdir_data->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) &
 | |
| 	       I40E_TXD_FLTR_QW0_PCTYPE_MASK;
 | |
| 
 | |
| 	/* Use LAN VSI Id if not programmed by user */
 | |
| 	if (fdir_data->dest_vsi == 0)
 | |
| 		fpt |= (pf->vsi[pf->lan_vsi]->id) <<
 | |
| 		       I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
 | |
| 	else
 | |
| 		fpt |= ((u32)fdir_data->dest_vsi <<
 | |
| 			I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT) &
 | |
| 		       I40E_TXD_FLTR_QW0_DEST_VSI_MASK;
 | |
| 
 | |
| 	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(fpt);
 | |
| 
 | |
| 	dcc = I40E_TX_DESC_DTYPE_FILTER_PROG;
 | |
| 
 | |
| 	if (add)
 | |
| 		dcc |= I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
 | |
| 		       I40E_TXD_FLTR_QW1_PCMD_SHIFT;
 | |
| 	else
 | |
| 		dcc |= I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
 | |
| 		       I40E_TXD_FLTR_QW1_PCMD_SHIFT;
 | |
| 
 | |
| 	dcc |= (fdir_data->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT) &
 | |
| 	       I40E_TXD_FLTR_QW1_DEST_MASK;
 | |
| 
 | |
| 	dcc |= (fdir_data->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT) &
 | |
| 	       I40E_TXD_FLTR_QW1_FD_STATUS_MASK;
 | |
| 
 | |
| 	if (fdir_data->cnt_index != 0) {
 | |
| 		dcc |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
 | |
| 		dcc |= ((u32)fdir_data->cnt_index <<
 | |
| 			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
 | |
| 		       I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
 | |
| 	}
 | |
| 
 | |
| 	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dcc);
 | |
| 	fdir_desc->fd_id = cpu_to_le32(fdir_data->fd_id);
 | |
| 
 | |
| 	/* Now program a dummy descriptor */
 | |
| 	i = tx_ring->next_to_use;
 | |
| 	tx_desc = I40E_TX_DESC(tx_ring, i);
 | |
| 	tx_buf = &tx_ring->tx_bi[i];
 | |
| 
 | |
| 	tx_ring->next_to_use = (i + 1 < tx_ring->count) ? i + 1 : 0;
 | |
| 
 | |
| 	/* record length, and DMA address */
 | |
| 	dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
 | |
| 	dma_unmap_addr_set(tx_buf, dma, dma);
 | |
| 
 | |
| 	tx_desc->buffer_addr = cpu_to_le64(dma);
 | |
| 	td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
 | |
| 
 | |
| 	tx_desc->cmd_type_offset_bsz =
 | |
| 		build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
 | |
| 
 | |
| 	/* set the timestamp */
 | |
| 	tx_buf->time_stamp = jiffies;
 | |
| 
 | |
| 	/* Force memory writes to complete before letting h/w
 | |
| 	 * know there are new descriptors to fetch.  (Only
 | |
| 	 * applicable for weak-ordered memory model archs,
 | |
| 	 * such as IA-64).
 | |
| 	 */
 | |
| 	wmb();
 | |
| 
 | |
| 	/* Mark the data descriptor to be watched */
 | |
| 	tx_buf->next_to_watch = tx_desc;
 | |
| 
 | |
| 	writel(tx_ring->next_to_use, tx_ring->tail);
 | |
| 	return 0;
 | |
| 
 | |
| dma_fail:
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| #define IP_HEADER_OFFSET 14
 | |
| #define I40E_UDPIP_DUMMY_PACKET_LEN 42
 | |
| /**
 | |
|  * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
 | |
|  * @vsi: pointer to the targeted VSI
 | |
|  * @fd_data: the flow director data required for the FDir descriptor
 | |
|  * @raw_packet: the pre-allocated packet buffer for FDir
 | |
|  * @add: true adds a filter, false removes it
 | |
|  *
 | |
|  * Returns 0 if the filters were successfully added or removed
 | |
|  **/
 | |
| static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
 | |
| 				   struct i40e_fdir_filter *fd_data,
 | |
| 				   u8 *raw_packet, bool add)
 | |
| {
 | |
| 	struct i40e_pf *pf = vsi->back;
 | |
| 	struct udphdr *udp;
 | |
| 	struct iphdr *ip;
 | |
| 	bool err = false;
 | |
| 	int ret;
 | |
| 	int i;
 | |
| 	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
 | |
| 		0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
 | |
| 		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
 | |
| 
 | |
| 	memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);
 | |
| 
 | |
| 	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
 | |
| 	udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
 | |
| 	      + sizeof(struct iphdr));
 | |
| 
 | |
| 	ip->daddr = fd_data->dst_ip[0];
 | |
| 	udp->dest = fd_data->dst_port;
 | |
| 	ip->saddr = fd_data->src_ip[0];
 | |
| 	udp->source = fd_data->src_port;
 | |
| 
 | |
| 	for (i = I40E_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP;
 | |
| 	     i <= I40E_FILTER_PCTYPE_NONF_IPV4_UDP; i++) {
 | |
| 		fd_data->pctype = i;
 | |
| 		ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
 | |
| 
 | |
| 		if (ret) {
 | |
| 			dev_info(&pf->pdev->dev,
 | |
| 				 "Filter command send failed for PCTYPE %d (ret = %d)\n",
 | |
| 				 fd_data->pctype, ret);
 | |
| 			err = true;
 | |
| 		} else {
 | |
| 			dev_info(&pf->pdev->dev,
 | |
| 				 "Filter OK for PCTYPE %d (ret = %d)\n",
 | |
| 				 fd_data->pctype, ret);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return err ? -EOPNOTSUPP : 0;
 | |
| }
 | |
| 
 | |
| #define I40E_TCPIP_DUMMY_PACKET_LEN 54
 | |
| /**
 | |
|  * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
 | |
|  * @vsi: pointer to the targeted VSI
 | |
|  * @fd_data: the flow director data required for the FDir descriptor
 | |
|  * @raw_packet: the pre-allocated packet buffer for FDir
 | |
|  * @add: true adds a filter, false removes it
 | |
|  *
 | |
|  * Returns 0 if the filters were successfully added or removed
 | |
|  **/
 | |
| static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
 | |
| 				   struct i40e_fdir_filter *fd_data,
 | |
| 				   u8 *raw_packet, bool add)
 | |
| {
 | |
| 	struct i40e_pf *pf = vsi->back;
 | |
| 	struct tcphdr *tcp;
 | |
| 	struct iphdr *ip;
 | |
| 	bool err = false;
 | |
| 	int ret;
 | |
| 	/* Dummy packet */
 | |
| 	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
 | |
| 		0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
 | |
| 		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
 | |
| 		0x0, 0x72, 0, 0, 0, 0};
 | |
| 
 | |
| 	memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);
 | |
| 
 | |
| 	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
 | |
| 	tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
 | |
| 	      + sizeof(struct iphdr));
 | |
| 
 | |
| 	ip->daddr = fd_data->dst_ip[0];
 | |
| 	tcp->dest = fd_data->dst_port;
 | |
| 	ip->saddr = fd_data->src_ip[0];
 | |
| 	tcp->source = fd_data->src_port;
 | |
| 
 | |
| 	if (add) {
 | |
| 		if (pf->flags & I40E_FLAG_FD_ATR_ENABLED) {
 | |
| 			dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
 | |
| 			pf->flags &= ~I40E_FLAG_FD_ATR_ENABLED;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP_SYN;
 | |
| 	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
 | |
| 
 | |
| 	if (ret) {
 | |
| 		dev_info(&pf->pdev->dev,
 | |
| 			 "Filter command send failed for PCTYPE %d (ret = %d)\n",
 | |
| 			 fd_data->pctype, ret);
 | |
| 		err = true;
 | |
| 	} else {
 | |
| 		dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d (ret = %d)\n",
 | |
| 			 fd_data->pctype, ret);
 | |
| 	}
 | |
| 
 | |
| 	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
 | |
| 
 | |
| 	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
 | |
| 	if (ret) {
 | |
| 		dev_info(&pf->pdev->dev,
 | |
| 			 "Filter command send failed for PCTYPE %d (ret = %d)\n",
 | |
| 			 fd_data->pctype, ret);
 | |
| 		err = true;
 | |
| 	} else {
 | |
| 		dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d (ret = %d)\n",
 | |
| 			  fd_data->pctype, ret);
 | |
| 	}
 | |
| 
 | |
| 	return err ? -EOPNOTSUPP : 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
 | |
|  * a specific flow spec
 | |
|  * @vsi: pointer to the targeted VSI
 | |
|  * @fd_data: the flow director data required for the FDir descriptor
 | |
|  * @raw_packet: the pre-allocated packet buffer for FDir
 | |
|  * @add: true adds a filter, false removes it
 | |
|  *
 | |
|  * Returns 0 if the filters were successfully added or removed
 | |
|  **/
 | |
| static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
 | |
| 				    struct i40e_fdir_filter *fd_data,
 | |
| 				    u8 *raw_packet, bool add)
 | |
| {
 | |
| 	return -EOPNOTSUPP;
 | |
| }
 | |
| 
 | |
| #define I40E_IP_DUMMY_PACKET_LEN 34
 | |
| /**
 | |
|  * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
 | |
|  * a specific flow spec
 | |
|  * @vsi: pointer to the targeted VSI
 | |
|  * @fd_data: the flow director data required for the FDir descriptor
 | |
|  * @raw_packet: the pre-allocated packet buffer for FDir
 | |
|  * @add: true adds a filter, false removes it
 | |
|  *
 | |
|  * Returns 0 if the filters were successfully added or removed
 | |
|  **/
 | |
| static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
 | |
| 				  struct i40e_fdir_filter *fd_data,
 | |
| 				  u8 *raw_packet, bool add)
 | |
| {
 | |
| 	struct i40e_pf *pf = vsi->back;
 | |
| 	struct iphdr *ip;
 | |
| 	bool err = false;
 | |
| 	int ret;
 | |
| 	int i;
 | |
| 	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
 | |
| 		0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
 | |
| 		0, 0, 0, 0};
 | |
| 
 | |
| 	memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
 | |
| 	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
 | |
| 
 | |
| 	ip->saddr = fd_data->src_ip[0];
 | |
| 	ip->daddr = fd_data->dst_ip[0];
 | |
| 	ip->protocol = 0;
 | |
| 
 | |
| 	for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
 | |
| 	     i <= I40E_FILTER_PCTYPE_FRAG_IPV4;	i++) {
 | |
| 		fd_data->pctype = i;
 | |
| 		ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
 | |
| 
 | |
| 		if (ret) {
 | |
| 			dev_info(&pf->pdev->dev,
 | |
| 				 "Filter command send failed for PCTYPE %d (ret = %d)\n",
 | |
| 				 fd_data->pctype, ret);
 | |
| 			err = true;
 | |
| 		} else {
 | |
| 			dev_info(&pf->pdev->dev,
 | |
| 				 "Filter OK for PCTYPE %d (ret = %d)\n",
 | |
| 				 fd_data->pctype, ret);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return err ? -EOPNOTSUPP : 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * i40e_add_del_fdir - Build raw packets to add/del fdir filter
 | |
|  * @vsi: pointer to the targeted VSI
 | |
|  * @cmd: command to get or set RX flow classification rules
 | |
|  * @add: true adds a filter, false removes it
 | |
|  *
 | |
|  **/
 | |
| int i40e_add_del_fdir(struct i40e_vsi *vsi,
 | |
| 		      struct i40e_fdir_filter *input, bool add)
 | |
| {
 | |
| 	struct i40e_pf *pf = vsi->back;
 | |
| 	u8 *raw_packet;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Populate the Flow Director that we have at the moment
 | |
| 	 * and allocate the raw packet buffer for the calling functions
 | |
| 	 */
 | |
| 	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 | |
| 	if (!raw_packet)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	switch (input->flow_type & ~FLOW_EXT) {
 | |
| 	case TCP_V4_FLOW:
 | |
| 		ret = i40e_add_del_fdir_tcpv4(vsi, input, raw_packet,
 | |
| 					      add);
 | |
| 		break;
 | |
| 	case UDP_V4_FLOW:
 | |
| 		ret = i40e_add_del_fdir_udpv4(vsi, input, raw_packet,
 | |
| 					      add);
 | |
| 		break;
 | |
| 	case SCTP_V4_FLOW:
 | |
| 		ret = i40e_add_del_fdir_sctpv4(vsi, input, raw_packet,
 | |
| 					       add);
 | |
| 		break;
 | |
| 	case IPV4_FLOW:
 | |
| 		ret = i40e_add_del_fdir_ipv4(vsi, input, raw_packet,
 | |
| 					     add);
 | |
| 		break;
 | |
| 	case IP_USER_FLOW:
 | |
| 		switch (input->ip4_proto) {
 | |
| 		case IPPROTO_TCP:
 | |
| 			ret = i40e_add_del_fdir_tcpv4(vsi, input,
 | |
| 						      raw_packet, add);
 | |
| 			break;
 | |
| 		case IPPROTO_UDP:
 | |
| 			ret = i40e_add_del_fdir_udpv4(vsi, input,
 | |
| 						      raw_packet, add);
 | |
| 			break;
 | |
| 		case IPPROTO_SCTP:
 | |
| 			ret = i40e_add_del_fdir_sctpv4(vsi, input,
 | |
| 						       raw_packet, add);
 | |
| 			break;
 | |
| 		default:
 | |
| 			ret = i40e_add_del_fdir_ipv4(vsi, input,
 | |
| 						     raw_packet, add);
 | |
| 			break;
 | |
| 		}
 | |
| 		break;
 | |
| 	default:
 | |
| 		dev_info(&pf->pdev->dev, "Could not specify spec type %d",
 | |
| 			 input->flow_type);
 | |
| 		ret = -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	kfree(raw_packet);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * i40e_fd_handle_status - check the Programming Status for FD
 | |
|  * @rx_ring: the Rx ring for this descriptor
 | |
|  * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor.
 | |
|  * @prog_id: the id originally used for programming
 | |
|  *
 | |
|  * This is used to verify if the FD programming or invalidation
 | |
|  * requested by SW to the HW is successful or not and take actions accordingly.
 | |
|  **/
 | |
| static void i40e_fd_handle_status(struct i40e_ring *rx_ring,
 | |
| 				  union i40e_rx_desc *rx_desc, u8 prog_id)
 | |
| {
 | |
| 	struct i40e_pf *pf = rx_ring->vsi->back;
 | |
| 	struct pci_dev *pdev = pf->pdev;
 | |
| 	u32 fcnt_prog, fcnt_avail;
 | |
| 	u32 error;
 | |
| 	u64 qw;
 | |
| 
 | |
| 	qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
 | |
| 	error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
 | |
| 		I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
 | |
| 
 | |
| 	if (error == (0x1 << I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
 | |
| 		dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
 | |
| 			 rx_desc->wb.qword0.hi_dword.fd_id);
 | |
| 
 | |
| 		/* filter programming failed most likely due to table full */
 | |
| 		fcnt_prog = i40e_get_current_fd_count(pf);
 | |
| 		fcnt_avail = pf->hw.fdir_shared_filter_count +
 | |
| 						       pf->fdir_pf_filter_count;
 | |
| 
 | |
| 		/* If ATR is running fcnt_prog can quickly change,
 | |
| 		 * if we are very close to full, it makes sense to disable
 | |
| 		 * FD ATR/SB and then re-enable it when there is room.
 | |
| 		 */
 | |
| 		if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
 | |
| 			/* Turn off ATR first */
 | |
| 			if (pf->flags | I40E_FLAG_FD_ATR_ENABLED) {
 | |
| 				pf->flags &= ~I40E_FLAG_FD_ATR_ENABLED;
 | |
| 				dev_warn(&pdev->dev, "FD filter space full, ATR for further flows will be turned off\n");
 | |
| 				pf->auto_disable_flags |=
 | |
| 						       I40E_FLAG_FD_ATR_ENABLED;
 | |
| 				pf->flags |= I40E_FLAG_FDIR_REQUIRES_REINIT;
 | |
| 			} else if (pf->flags | I40E_FLAG_FD_SB_ENABLED) {
 | |
| 				pf->flags &= ~I40E_FLAG_FD_SB_ENABLED;
 | |
| 				dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
 | |
| 				pf->auto_disable_flags |=
 | |
| 							I40E_FLAG_FD_SB_ENABLED;
 | |
| 				pf->flags |= I40E_FLAG_FDIR_REQUIRES_REINIT;
 | |
| 			}
 | |
| 		} else {
 | |
| 			dev_info(&pdev->dev, "FD filter programming error");
 | |
| 		}
 | |
| 	} else if (error ==
 | |
| 			  (0x1 << I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
 | |
| 		netdev_info(rx_ring->vsi->netdev, "ntuple filter loc = %d, could not be removed\n",
 | |
| 			    rx_desc->wb.qword0.hi_dword.fd_id);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * i40e_unmap_and_free_tx_resource - Release a Tx buffer
 | |
|  * @ring:      the ring that owns the buffer
 | |
|  * @tx_buffer: the buffer to free
 | |
|  **/
 | |
| static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
 | |
| 					    struct i40e_tx_buffer *tx_buffer)
 | |
| {
 | |
| 	if (tx_buffer->skb) {
 | |
| 		dev_kfree_skb_any(tx_buffer->skb);
 | |
| 		if (dma_unmap_len(tx_buffer, len))
 | |
| 			dma_unmap_single(ring->dev,
 | |
| 					 dma_unmap_addr(tx_buffer, dma),
 | |
| 					 dma_unmap_len(tx_buffer, len),
 | |
| 					 DMA_TO_DEVICE);
 | |
| 	} else if (dma_unmap_len(tx_buffer, len)) {
 | |
| 		dma_unmap_page(ring->dev,
 | |
| 			       dma_unmap_addr(tx_buffer, dma),
 | |
| 			       dma_unmap_len(tx_buffer, len),
 | |
| 			       DMA_TO_DEVICE);
 | |
| 	}
 | |
| 	tx_buffer->next_to_watch = NULL;
 | |
| 	tx_buffer->skb = NULL;
 | |
| 	dma_unmap_len_set(tx_buffer, len, 0);
 | |
| 	/* tx_buffer must be completely set up in the transmit path */
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * i40e_clean_tx_ring - Free any empty Tx buffers
 | |
|  * @tx_ring: ring to be cleaned
 | |
|  **/
 | |
| void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
 | |
| {
 | |
| 	unsigned long bi_size;
 | |
| 	u16 i;
 | |
| 
 | |
| 	/* ring already cleared, nothing to do */
 | |
| 	if (!tx_ring->tx_bi)
 | |
| 		return;
 | |
| 
 | |
| 	/* Free all the Tx ring sk_buffs */
 | |
| 	for (i = 0; i < tx_ring->count; i++)
 | |
| 		i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
 | |
| 
 | |
| 	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
 | |
| 	memset(tx_ring->tx_bi, 0, bi_size);
 | |
| 
 | |
| 	/* Zero out the descriptor ring */
 | |
| 	memset(tx_ring->desc, 0, tx_ring->size);
 | |
| 
 | |
| 	tx_ring->next_to_use = 0;
 | |
| 	tx_ring->next_to_clean = 0;
 | |
| 
 | |
| 	if (!tx_ring->netdev)
 | |
| 		return;
 | |
| 
 | |
| 	/* cleanup Tx queue statistics */
 | |
| 	netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
 | |
| 						  tx_ring->queue_index));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * i40e_free_tx_resources - Free Tx resources per queue
 | |
|  * @tx_ring: Tx descriptor ring for a specific queue
 | |
|  *
 | |
|  * Free all transmit software resources
 | |
|  **/
 | |
| void i40e_free_tx_resources(struct i40e_ring *tx_ring)
 | |
| {
 | |
| 	i40e_clean_tx_ring(tx_ring);
 | |
| 	kfree(tx_ring->tx_bi);
 | |
| 	tx_ring->tx_bi = NULL;
 | |
| 
 | |
| 	if (tx_ring->desc) {
 | |
| 		dma_free_coherent(tx_ring->dev, tx_ring->size,
 | |
| 				  tx_ring->desc, tx_ring->dma);
 | |
| 		tx_ring->desc = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * i40e_get_tx_pending - how many tx descriptors not processed
 | |
|  * @tx_ring: the ring of descriptors
 | |
|  *
 | |
|  * Since there is no access to the ring head register
 | |
|  * in XL710, we need to use our local copies
 | |
|  **/
 | |
| static u32 i40e_get_tx_pending(struct i40e_ring *ring)
 | |
| {
 | |
| 	u32 ntu = ((ring->next_to_clean <= ring->next_to_use)
 | |
| 			? ring->next_to_use
 | |
| 			: ring->next_to_use + ring->count);
 | |
| 	return ntu - ring->next_to_clean;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * i40e_check_tx_hang - Is there a hang in the Tx queue
 | |
|  * @tx_ring: the ring of descriptors
 | |
|  **/
 | |
| static bool i40e_check_tx_hang(struct i40e_ring *tx_ring)
 | |
| {
 | |
| 	u32 tx_pending = i40e_get_tx_pending(tx_ring);
 | |
| 	bool ret = false;
 | |
| 
 | |
| 	clear_check_for_tx_hang(tx_ring);
 | |
| 
 | |
| 	/* Check for a hung queue, but be thorough. This verifies
 | |
| 	 * that a transmit has been completed since the previous
 | |
| 	 * check AND there is at least one packet pending. The
 | |
| 	 * ARMED bit is set to indicate a potential hang. The
 | |
| 	 * bit is cleared if a pause frame is received to remove
 | |
| 	 * false hang detection due to PFC or 802.3x frames. By
 | |
| 	 * requiring this to fail twice we avoid races with
 | |
| 	 * PFC clearing the ARMED bit and conditions where we
 | |
| 	 * run the check_tx_hang logic with a transmit completion
 | |
| 	 * pending but without time to complete it yet.
 | |
| 	 */
 | |
| 	if ((tx_ring->tx_stats.tx_done_old == tx_ring->stats.packets) &&
 | |
| 	    tx_pending) {
 | |
| 		/* make sure it is true for two checks in a row */
 | |
| 		ret = test_and_set_bit(__I40E_HANG_CHECK_ARMED,
 | |
| 				       &tx_ring->state);
 | |
| 	} else {
 | |
| 		/* update completed stats and disarm the hang check */
 | |
| 		tx_ring->tx_stats.tx_done_old = tx_ring->stats.packets;
 | |
| 		clear_bit(__I40E_HANG_CHECK_ARMED, &tx_ring->state);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * i40e_get_head - Retrieve head from head writeback
 | |
|  * @tx_ring:  tx ring to fetch head of
 | |
|  *
 | |
|  * Returns value of Tx ring head based on value stored
 | |
|  * in head write-back location
 | |
|  **/
 | |
| static inline u32 i40e_get_head(struct i40e_ring *tx_ring)
 | |
| {
 | |
| 	void *head = (struct i40e_tx_desc *)tx_ring->desc + tx_ring->count;
 | |
| 
 | |
| 	return le32_to_cpu(*(volatile __le32 *)head);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * i40e_clean_tx_irq - Reclaim resources after transmit completes
 | |
|  * @tx_ring:  tx ring to clean
 | |
|  * @budget:   how many cleans we're allowed
 | |
|  *
 | |
|  * Returns true if there's any budget left (e.g. the clean is finished)
 | |
|  **/
 | |
| static bool i40e_clean_tx_irq(struct i40e_ring *tx_ring, int budget)
 | |
| {
 | |
| 	u16 i = tx_ring->next_to_clean;
 | |
| 	struct i40e_tx_buffer *tx_buf;
 | |
| 	struct i40e_tx_desc *tx_head;
 | |
| 	struct i40e_tx_desc *tx_desc;
 | |
| 	unsigned int total_packets = 0;
 | |
| 	unsigned int total_bytes = 0;
 | |
| 
 | |
| 	tx_buf = &tx_ring->tx_bi[i];
 | |
| 	tx_desc = I40E_TX_DESC(tx_ring, i);
 | |
| 	i -= tx_ring->count;
 | |
| 
 | |
| 	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
 | |
| 
 | |
| 	do {
 | |
| 		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
 | |
| 
 | |
| 		/* if next_to_watch is not set then there is no work pending */
 | |
| 		if (!eop_desc)
 | |
| 			break;
 | |
| 
 | |
| 		/* prevent any other reads prior to eop_desc */
 | |
| 		read_barrier_depends();
 | |
| 
 | |
| 		/* we have caught up to head, no work left to do */
 | |
| 		if (tx_head == tx_desc)
 | |
| 			break;
 | |
| 
 | |
| 		/* clear next_to_watch to prevent false hangs */
 | |
| 		tx_buf->next_to_watch = NULL;
 | |
| 
 | |
| 		/* update the statistics for this packet */
 | |
| 		total_bytes += tx_buf->bytecount;
 | |
| 		total_packets += tx_buf->gso_segs;
 | |
| 
 | |
| 		/* free the skb */
 | |
| 		dev_kfree_skb_any(tx_buf->skb);
 | |
| 
 | |
| 		/* unmap skb header data */
 | |
| 		dma_unmap_single(tx_ring->dev,
 | |
| 				 dma_unmap_addr(tx_buf, dma),
 | |
| 				 dma_unmap_len(tx_buf, len),
 | |
| 				 DMA_TO_DEVICE);
 | |
| 
 | |
| 		/* clear tx_buffer data */
 | |
| 		tx_buf->skb = NULL;
 | |
| 		dma_unmap_len_set(tx_buf, len, 0);
 | |
| 
 | |
| 		/* unmap remaining buffers */
 | |
| 		while (tx_desc != eop_desc) {
 | |
| 
 | |
| 			tx_buf++;
 | |
| 			tx_desc++;
 | |
| 			i++;
 | |
| 			if (unlikely(!i)) {
 | |
| 				i -= tx_ring->count;
 | |
| 				tx_buf = tx_ring->tx_bi;
 | |
| 				tx_desc = I40E_TX_DESC(tx_ring, 0);
 | |
| 			}
 | |
| 
 | |
| 			/* unmap any remaining paged data */
 | |
| 			if (dma_unmap_len(tx_buf, len)) {
 | |
| 				dma_unmap_page(tx_ring->dev,
 | |
| 					       dma_unmap_addr(tx_buf, dma),
 | |
| 					       dma_unmap_len(tx_buf, len),
 | |
| 					       DMA_TO_DEVICE);
 | |
| 				dma_unmap_len_set(tx_buf, len, 0);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* move us one more past the eop_desc for start of next pkt */
 | |
| 		tx_buf++;
 | |
| 		tx_desc++;
 | |
| 		i++;
 | |
| 		if (unlikely(!i)) {
 | |
| 			i -= tx_ring->count;
 | |
| 			tx_buf = tx_ring->tx_bi;
 | |
| 			tx_desc = I40E_TX_DESC(tx_ring, 0);
 | |
| 		}
 | |
| 
 | |
| 		/* update budget accounting */
 | |
| 		budget--;
 | |
| 	} while (likely(budget));
 | |
| 
 | |
| 	i += tx_ring->count;
 | |
| 	tx_ring->next_to_clean = i;
 | |
| 	u64_stats_update_begin(&tx_ring->syncp);
 | |
| 	tx_ring->stats.bytes += total_bytes;
 | |
| 	tx_ring->stats.packets += total_packets;
 | |
| 	u64_stats_update_end(&tx_ring->syncp);
 | |
| 	tx_ring->q_vector->tx.total_bytes += total_bytes;
 | |
| 	tx_ring->q_vector->tx.total_packets += total_packets;
 | |
| 
 | |
| 	if (check_for_tx_hang(tx_ring) && i40e_check_tx_hang(tx_ring)) {
 | |
| 		/* schedule immediate reset if we believe we hung */
 | |
| 		dev_info(tx_ring->dev, "Detected Tx Unit Hang\n"
 | |
| 			 "  VSI                  <%d>\n"
 | |
| 			 "  Tx Queue             <%d>\n"
 | |
| 			 "  next_to_use          <%x>\n"
 | |
| 			 "  next_to_clean        <%x>\n",
 | |
| 			 tx_ring->vsi->seid,
 | |
| 			 tx_ring->queue_index,
 | |
| 			 tx_ring->next_to_use, i);
 | |
| 		dev_info(tx_ring->dev, "tx_bi[next_to_clean]\n"
 | |
| 			 "  time_stamp           <%lx>\n"
 | |
| 			 "  jiffies              <%lx>\n",
 | |
| 			 tx_ring->tx_bi[i].time_stamp, jiffies);
 | |
| 
 | |
| 		netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
 | |
| 
 | |
| 		dev_info(tx_ring->dev,
 | |
| 			 "tx hang detected on queue %d, resetting adapter\n",
 | |
| 			 tx_ring->queue_index);
 | |
| 
 | |
| 		tx_ring->netdev->netdev_ops->ndo_tx_timeout(tx_ring->netdev);
 | |
| 
 | |
| 		/* the adapter is about to reset, no point in enabling stuff */
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev,
 | |
| 						      tx_ring->queue_index),
 | |
| 				  total_packets, total_bytes);
 | |
| 
 | |
| #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
 | |
| 	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
 | |
| 		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
 | |
| 		/* Make sure that anybody stopping the queue after this
 | |
| 		 * sees the new next_to_clean.
 | |
| 		 */
 | |
| 		smp_mb();
 | |
| 		if (__netif_subqueue_stopped(tx_ring->netdev,
 | |
| 					     tx_ring->queue_index) &&
 | |
| 		   !test_bit(__I40E_DOWN, &tx_ring->vsi->state)) {
 | |
| 			netif_wake_subqueue(tx_ring->netdev,
 | |
| 					    tx_ring->queue_index);
 | |
| 			++tx_ring->tx_stats.restart_queue;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return budget > 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * i40e_set_new_dynamic_itr - Find new ITR level
 | |
|  * @rc: structure containing ring performance data
 | |
|  *
 | |
|  * Stores a new ITR value based on packets and byte counts during
 | |
|  * the last interrupt.  The advantage of per interrupt computation
 | |
|  * is faster updates and more accurate ITR for the current traffic
 | |
|  * pattern.  Constants in this function were computed based on
 | |
|  * theoretical maximum wire speed and thresholds were set based on
 | |
|  * testing data as well as attempting to minimize response time
 | |
|  * while increasing bulk throughput.
 | |
|  **/
 | |
| static void i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
 | |
| {
 | |
| 	enum i40e_latency_range new_latency_range = rc->latency_range;
 | |
| 	u32 new_itr = rc->itr;
 | |
| 	int bytes_per_int;
 | |
| 
 | |
| 	if (rc->total_packets == 0 || !rc->itr)
 | |
| 		return;
 | |
| 
 | |
| 	/* simple throttlerate management
 | |
| 	 *   0-10MB/s   lowest (100000 ints/s)
 | |
| 	 *  10-20MB/s   low    (20000 ints/s)
 | |
| 	 *  20-1249MB/s bulk   (8000 ints/s)
 | |
| 	 */
 | |
| 	bytes_per_int = rc->total_bytes / rc->itr;
 | |
| 	switch (rc->itr) {
 | |
| 	case I40E_LOWEST_LATENCY:
 | |
| 		if (bytes_per_int > 10)
 | |
| 			new_latency_range = I40E_LOW_LATENCY;
 | |
| 		break;
 | |
| 	case I40E_LOW_LATENCY:
 | |
| 		if (bytes_per_int > 20)
 | |
| 			new_latency_range = I40E_BULK_LATENCY;
 | |
| 		else if (bytes_per_int <= 10)
 | |
| 			new_latency_range = I40E_LOWEST_LATENCY;
 | |
| 		break;
 | |
| 	case I40E_BULK_LATENCY:
 | |
| 		if (bytes_per_int <= 20)
 | |
| 			rc->latency_range = I40E_LOW_LATENCY;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	switch (new_latency_range) {
 | |
| 	case I40E_LOWEST_LATENCY:
 | |
| 		new_itr = I40E_ITR_100K;
 | |
| 		break;
 | |
| 	case I40E_LOW_LATENCY:
 | |
| 		new_itr = I40E_ITR_20K;
 | |
| 		break;
 | |
| 	case I40E_BULK_LATENCY:
 | |
| 		new_itr = I40E_ITR_8K;
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (new_itr != rc->itr) {
 | |
| 		/* do an exponential smoothing */
 | |
| 		new_itr = (10 * new_itr * rc->itr) /
 | |
| 			  ((9 * new_itr) + rc->itr);
 | |
| 		rc->itr = new_itr & I40E_MAX_ITR;
 | |
| 	}
 | |
| 
 | |
| 	rc->total_bytes = 0;
 | |
| 	rc->total_packets = 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * i40e_update_dynamic_itr - Adjust ITR based on bytes per int
 | |
|  * @q_vector: the vector to adjust
 | |
|  **/
 | |
| static void i40e_update_dynamic_itr(struct i40e_q_vector *q_vector)
 | |
| {
 | |
| 	u16 vector = q_vector->vsi->base_vector + q_vector->v_idx;
 | |
| 	struct i40e_hw *hw = &q_vector->vsi->back->hw;
 | |
| 	u32 reg_addr;
 | |
| 	u16 old_itr;
 | |
| 
 | |
| 	reg_addr = I40E_PFINT_ITRN(I40E_RX_ITR, vector - 1);
 | |
| 	old_itr = q_vector->rx.itr;
 | |
| 	i40e_set_new_dynamic_itr(&q_vector->rx);
 | |
| 	if (old_itr != q_vector->rx.itr)
 | |
| 		wr32(hw, reg_addr, q_vector->rx.itr);
 | |
| 
 | |
| 	reg_addr = I40E_PFINT_ITRN(I40E_TX_ITR, vector - 1);
 | |
| 	old_itr = q_vector->tx.itr;
 | |
| 	i40e_set_new_dynamic_itr(&q_vector->tx);
 | |
| 	if (old_itr != q_vector->tx.itr)
 | |
| 		wr32(hw, reg_addr, q_vector->tx.itr);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * i40e_clean_programming_status - clean the programming status descriptor
 | |
|  * @rx_ring: the rx ring that has this descriptor
 | |
|  * @rx_desc: the rx descriptor written back by HW
 | |
|  *
 | |
|  * Flow director should handle FD_FILTER_STATUS to check its filter programming
 | |
|  * status being successful or not and take actions accordingly. FCoE should
 | |
|  * handle its context/filter programming/invalidation status and take actions.
 | |
|  *
 | |
|  **/
 | |
| static void i40e_clean_programming_status(struct i40e_ring *rx_ring,
 | |
| 					  union i40e_rx_desc *rx_desc)
 | |
| {
 | |
| 	u64 qw;
 | |
| 	u8 id;
 | |
| 
 | |
| 	qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
 | |
| 	id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
 | |
| 		  I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
 | |
| 
 | |
| 	if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
 | |
| 		i40e_fd_handle_status(rx_ring, rx_desc, id);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * i40e_setup_tx_descriptors - Allocate the Tx descriptors
 | |
|  * @tx_ring: the tx ring to set up
 | |
|  *
 | |
|  * Return 0 on success, negative on error
 | |
|  **/
 | |
| int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
 | |
| {
 | |
| 	struct device *dev = tx_ring->dev;
 | |
| 	int bi_size;
 | |
| 
 | |
| 	if (!dev)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
 | |
| 	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
 | |
| 	if (!tx_ring->tx_bi)
 | |
| 		goto err;
 | |
| 
 | |
| 	/* round up to nearest 4K */
 | |
| 	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
 | |
| 	/* add u32 for head writeback, align after this takes care of
 | |
| 	 * guaranteeing this is at least one cache line in size
 | |
| 	 */
 | |
| 	tx_ring->size += sizeof(u32);
 | |
| 	tx_ring->size = ALIGN(tx_ring->size, 4096);
 | |
| 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
 | |
| 					   &tx_ring->dma, GFP_KERNEL);
 | |
| 	if (!tx_ring->desc) {
 | |
| 		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
 | |
| 			 tx_ring->size);
 | |
| 		goto err;
 | |
| 	}
 | |
| 
 | |
| 	tx_ring->next_to_use = 0;
 | |
| 	tx_ring->next_to_clean = 0;
 | |
| 	return 0;
 | |
| 
 | |
| err:
 | |
| 	kfree(tx_ring->tx_bi);
 | |
| 	tx_ring->tx_bi = NULL;
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * i40e_clean_rx_ring - Free Rx buffers
 | |
|  * @rx_ring: ring to be cleaned
 | |
|  **/
 | |
| void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
 | |
| {
 | |
| 	struct device *dev = rx_ring->dev;
 | |
| 	struct i40e_rx_buffer *rx_bi;
 | |
| 	unsigned long bi_size;
 | |
| 	u16 i;
 | |
| 
 | |
| 	/* ring already cleared, nothing to do */
 | |
| 	if (!rx_ring->rx_bi)
 | |
| 		return;
 | |
| 
 | |
| 	/* Free all the Rx ring sk_buffs */
 | |
| 	for (i = 0; i < rx_ring->count; i++) {
 | |
| 		rx_bi = &rx_ring->rx_bi[i];
 | |
| 		if (rx_bi->dma) {
 | |
| 			dma_unmap_single(dev,
 | |
| 					 rx_bi->dma,
 | |
| 					 rx_ring->rx_buf_len,
 | |
| 					 DMA_FROM_DEVICE);
 | |
| 			rx_bi->dma = 0;
 | |
| 		}
 | |
| 		if (rx_bi->skb) {
 | |
| 			dev_kfree_skb(rx_bi->skb);
 | |
| 			rx_bi->skb = NULL;
 | |
| 		}
 | |
| 		if (rx_bi->page) {
 | |
| 			if (rx_bi->page_dma) {
 | |
| 				dma_unmap_page(dev,
 | |
| 					       rx_bi->page_dma,
 | |
| 					       PAGE_SIZE / 2,
 | |
| 					       DMA_FROM_DEVICE);
 | |
| 				rx_bi->page_dma = 0;
 | |
| 			}
 | |
| 			__free_page(rx_bi->page);
 | |
| 			rx_bi->page = NULL;
 | |
| 			rx_bi->page_offset = 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
 | |
| 	memset(rx_ring->rx_bi, 0, bi_size);
 | |
| 
 | |
| 	/* Zero out the descriptor ring */
 | |
| 	memset(rx_ring->desc, 0, rx_ring->size);
 | |
| 
 | |
| 	rx_ring->next_to_clean = 0;
 | |
| 	rx_ring->next_to_use = 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * i40e_free_rx_resources - Free Rx resources
 | |
|  * @rx_ring: ring to clean the resources from
 | |
|  *
 | |
|  * Free all receive software resources
 | |
|  **/
 | |
| void i40e_free_rx_resources(struct i40e_ring *rx_ring)
 | |
| {
 | |
| 	i40e_clean_rx_ring(rx_ring);
 | |
| 	kfree(rx_ring->rx_bi);
 | |
| 	rx_ring->rx_bi = NULL;
 | |
| 
 | |
| 	if (rx_ring->desc) {
 | |
| 		dma_free_coherent(rx_ring->dev, rx_ring->size,
 | |
| 				  rx_ring->desc, rx_ring->dma);
 | |
| 		rx_ring->desc = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * i40e_setup_rx_descriptors - Allocate Rx descriptors
 | |
|  * @rx_ring: Rx descriptor ring (for a specific queue) to setup
 | |
|  *
 | |
|  * Returns 0 on success, negative on failure
 | |
|  **/
 | |
| int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
 | |
| {
 | |
| 	struct device *dev = rx_ring->dev;
 | |
| 	int bi_size;
 | |
| 
 | |
| 	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
 | |
| 	rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
 | |
| 	if (!rx_ring->rx_bi)
 | |
| 		goto err;
 | |
| 
 | |
| 	/* Round up to nearest 4K */
 | |
| 	rx_ring->size = ring_is_16byte_desc_enabled(rx_ring)
 | |
| 		? rx_ring->count * sizeof(union i40e_16byte_rx_desc)
 | |
| 		: rx_ring->count * sizeof(union i40e_32byte_rx_desc);
 | |
| 	rx_ring->size = ALIGN(rx_ring->size, 4096);
 | |
| 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
 | |
| 					   &rx_ring->dma, GFP_KERNEL);
 | |
| 
 | |
| 	if (!rx_ring->desc) {
 | |
| 		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
 | |
| 			 rx_ring->size);
 | |
| 		goto err;
 | |
| 	}
 | |
| 
 | |
| 	rx_ring->next_to_clean = 0;
 | |
| 	rx_ring->next_to_use = 0;
 | |
| 
 | |
| 	return 0;
 | |
| err:
 | |
| 	kfree(rx_ring->rx_bi);
 | |
| 	rx_ring->rx_bi = NULL;
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * i40e_release_rx_desc - Store the new tail and head values
 | |
|  * @rx_ring: ring to bump
 | |
|  * @val: new head index
 | |
|  **/
 | |
| static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
 | |
| {
 | |
| 	rx_ring->next_to_use = val;
 | |
| 	/* Force memory writes to complete before letting h/w
 | |
| 	 * know there are new descriptors to fetch.  (Only
 | |
| 	 * applicable for weak-ordered memory model archs,
 | |
| 	 * such as IA-64).
 | |
| 	 */
 | |
| 	wmb();
 | |
| 	writel(val, rx_ring->tail);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * i40e_alloc_rx_buffers - Replace used receive buffers; packet split
 | |
|  * @rx_ring: ring to place buffers on
 | |
|  * @cleaned_count: number of buffers to replace
 | |
|  **/
 | |
| void i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
 | |
| {
 | |
| 	u16 i = rx_ring->next_to_use;
 | |
| 	union i40e_rx_desc *rx_desc;
 | |
| 	struct i40e_rx_buffer *bi;
 | |
| 	struct sk_buff *skb;
 | |
| 
 | |
| 	/* do nothing if no valid netdev defined */
 | |
| 	if (!rx_ring->netdev || !cleaned_count)
 | |
| 		return;
 | |
| 
 | |
| 	while (cleaned_count--) {
 | |
| 		rx_desc = I40E_RX_DESC(rx_ring, i);
 | |
| 		bi = &rx_ring->rx_bi[i];
 | |
| 		skb = bi->skb;
 | |
| 
 | |
| 		if (!skb) {
 | |
| 			skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
 | |
| 							rx_ring->rx_buf_len);
 | |
| 			if (!skb) {
 | |
| 				rx_ring->rx_stats.alloc_buff_failed++;
 | |
| 				goto no_buffers;
 | |
| 			}
 | |
| 			/* initialize queue mapping */
 | |
| 			skb_record_rx_queue(skb, rx_ring->queue_index);
 | |
| 			bi->skb = skb;
 | |
| 		}
 | |
| 
 | |
| 		if (!bi->dma) {
 | |
| 			bi->dma = dma_map_single(rx_ring->dev,
 | |
| 						 skb->data,
 | |
| 						 rx_ring->rx_buf_len,
 | |
| 						 DMA_FROM_DEVICE);
 | |
| 			if (dma_mapping_error(rx_ring->dev, bi->dma)) {
 | |
| 				rx_ring->rx_stats.alloc_buff_failed++;
 | |
| 				bi->dma = 0;
 | |
| 				goto no_buffers;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (ring_is_ps_enabled(rx_ring)) {
 | |
| 			if (!bi->page) {
 | |
| 				bi->page = alloc_page(GFP_ATOMIC);
 | |
| 				if (!bi->page) {
 | |
| 					rx_ring->rx_stats.alloc_page_failed++;
 | |
| 					goto no_buffers;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			if (!bi->page_dma) {
 | |
| 				/* use a half page if we're re-using */
 | |
| 				bi->page_offset ^= PAGE_SIZE / 2;
 | |
| 				bi->page_dma = dma_map_page(rx_ring->dev,
 | |
| 							    bi->page,
 | |
| 							    bi->page_offset,
 | |
| 							    PAGE_SIZE / 2,
 | |
| 							    DMA_FROM_DEVICE);
 | |
| 				if (dma_mapping_error(rx_ring->dev,
 | |
| 						      bi->page_dma)) {
 | |
| 					rx_ring->rx_stats.alloc_page_failed++;
 | |
| 					bi->page_dma = 0;
 | |
| 					goto no_buffers;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			/* Refresh the desc even if buffer_addrs didn't change
 | |
| 			 * because each write-back erases this info.
 | |
| 			 */
 | |
| 			rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
 | |
| 			rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
 | |
| 		} else {
 | |
| 			rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
 | |
| 			rx_desc->read.hdr_addr = 0;
 | |
| 		}
 | |
| 		i++;
 | |
| 		if (i == rx_ring->count)
 | |
| 			i = 0;
 | |
| 	}
 | |
| 
 | |
| no_buffers:
 | |
| 	if (rx_ring->next_to_use != i)
 | |
| 		i40e_release_rx_desc(rx_ring, i);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * i40e_receive_skb - Send a completed packet up the stack
 | |
|  * @rx_ring:  rx ring in play
 | |
|  * @skb: packet to send up
 | |
|  * @vlan_tag: vlan tag for packet
 | |
|  **/
 | |
| static void i40e_receive_skb(struct i40e_ring *rx_ring,
 | |
| 			     struct sk_buff *skb, u16 vlan_tag)
 | |
| {
 | |
| 	struct i40e_q_vector *q_vector = rx_ring->q_vector;
 | |
| 	struct i40e_vsi *vsi = rx_ring->vsi;
 | |
| 	u64 flags = vsi->back->flags;
 | |
| 
 | |
| 	if (vlan_tag & VLAN_VID_MASK)
 | |
| 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
 | |
| 
 | |
| 	if (flags & I40E_FLAG_IN_NETPOLL)
 | |
| 		netif_rx(skb);
 | |
| 	else
 | |
| 		napi_gro_receive(&q_vector->napi, skb);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
 | |
|  * @vsi: the VSI we care about
 | |
|  * @skb: skb currently being received and modified
 | |
|  * @rx_status: status value of last descriptor in packet
 | |
|  * @rx_error: error value of last descriptor in packet
 | |
|  * @rx_ptype: ptype value of last descriptor in packet
 | |
|  **/
 | |
| static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
 | |
| 				    struct sk_buff *skb,
 | |
| 				    u32 rx_status,
 | |
| 				    u32 rx_error,
 | |
| 				    u16 rx_ptype)
 | |
| {
 | |
| 	bool ipv4_tunnel, ipv6_tunnel;
 | |
| 	__wsum rx_udp_csum;
 | |
| 	__sum16 csum;
 | |
| 	struct iphdr *iph;
 | |
| 
 | |
| 	ipv4_tunnel = (rx_ptype > I40E_RX_PTYPE_GRENAT4_MAC_PAY3) &&
 | |
| 		      (rx_ptype < I40E_RX_PTYPE_GRENAT4_MACVLAN_IPV6_ICMP_PAY4);
 | |
| 	ipv6_tunnel = (rx_ptype > I40E_RX_PTYPE_GRENAT6_MAC_PAY3) &&
 | |
| 		      (rx_ptype < I40E_RX_PTYPE_GRENAT6_MACVLAN_IPV6_ICMP_PAY4);
 | |
| 
 | |
| 	skb->encapsulation = ipv4_tunnel || ipv6_tunnel;
 | |
| 	skb->ip_summed = CHECKSUM_NONE;
 | |
| 
 | |
| 	/* Rx csum enabled and ip headers found? */
 | |
| 	if (!(vsi->netdev->features & NETIF_F_RXCSUM &&
 | |
| 	      rx_status & (1 << I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
 | |
| 		return;
 | |
| 
 | |
| 	/* likely incorrect csum if alternate IP extension headers found */
 | |
| 	if (rx_status & (1 << I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
 | |
| 		return;
 | |
| 
 | |
| 	/* IP or L4 or outmost IP checksum error */
 | |
| 	if (rx_error & ((1 << I40E_RX_DESC_ERROR_IPE_SHIFT) |
 | |
| 			(1 << I40E_RX_DESC_ERROR_L4E_SHIFT) |
 | |
| 			(1 << I40E_RX_DESC_ERROR_EIPE_SHIFT))) {
 | |
| 		vsi->back->hw_csum_rx_error++;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (ipv4_tunnel &&
 | |
| 	    !(rx_status & (1 << I40E_RX_DESC_STATUS_UDP_0_SHIFT))) {
 | |
| 		/* If VXLAN traffic has an outer UDPv4 checksum we need to check
 | |
| 		 * it in the driver, hardware does not do it for us.
 | |
| 		 * Since L3L4P bit was set we assume a valid IHL value (>=5)
 | |
| 		 * so the total length of IPv4 header is IHL*4 bytes
 | |
| 		 */
 | |
| 		skb->transport_header = skb->mac_header +
 | |
| 					sizeof(struct ethhdr) +
 | |
| 					(ip_hdr(skb)->ihl * 4);
 | |
| 
 | |
| 		/* Add 4 bytes for VLAN tagged packets */
 | |
| 		skb->transport_header += (skb->protocol == htons(ETH_P_8021Q) ||
 | |
| 					  skb->protocol == htons(ETH_P_8021AD))
 | |
| 					  ? VLAN_HLEN : 0;
 | |
| 
 | |
| 		rx_udp_csum = udp_csum(skb);
 | |
| 		iph = ip_hdr(skb);
 | |
| 		csum = csum_tcpudp_magic(
 | |
| 				iph->saddr, iph->daddr,
 | |
| 				(skb->len - skb_transport_offset(skb)),
 | |
| 				IPPROTO_UDP, rx_udp_csum);
 | |
| 
 | |
| 		if (udp_hdr(skb)->check != csum) {
 | |
| 			vsi->back->hw_csum_rx_error++;
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	skb->ip_summed = CHECKSUM_UNNECESSARY;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * i40e_rx_hash - returns the hash value from the Rx descriptor
 | |
|  * @ring: descriptor ring
 | |
|  * @rx_desc: specific descriptor
 | |
|  **/
 | |
| static inline u32 i40e_rx_hash(struct i40e_ring *ring,
 | |
| 			       union i40e_rx_desc *rx_desc)
 | |
| {
 | |
| 	const __le64 rss_mask =
 | |
| 		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
 | |
| 			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
 | |
| 
 | |
| 	if ((ring->netdev->features & NETIF_F_RXHASH) &&
 | |
| 	    (rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask)
 | |
| 		return le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
 | |
| 	else
 | |
| 		return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * i40e_ptype_to_hash - get a hash type
 | |
|  * @ptype: the ptype value from the descriptor
 | |
|  *
 | |
|  * Returns a hash type to be used by skb_set_hash
 | |
|  **/
 | |
| static inline enum pkt_hash_types i40e_ptype_to_hash(u8 ptype)
 | |
| {
 | |
| 	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
 | |
| 
 | |
| 	if (!decoded.known)
 | |
| 		return PKT_HASH_TYPE_NONE;
 | |
| 
 | |
| 	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
 | |
| 	    decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
 | |
| 		return PKT_HASH_TYPE_L4;
 | |
| 	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
 | |
| 		 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
 | |
| 		return PKT_HASH_TYPE_L3;
 | |
| 	else
 | |
| 		return PKT_HASH_TYPE_L2;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * i40e_clean_rx_irq - Reclaim resources after receive completes
 | |
|  * @rx_ring:  rx ring to clean
 | |
|  * @budget:   how many cleans we're allowed
 | |
|  *
 | |
|  * Returns true if there's any budget left (e.g. the clean is finished)
 | |
|  **/
 | |
| static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
 | |
| {
 | |
| 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
 | |
| 	u16 rx_packet_len, rx_header_len, rx_sph, rx_hbo;
 | |
| 	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
 | |
| 	const int current_node = numa_node_id();
 | |
| 	struct i40e_vsi *vsi = rx_ring->vsi;
 | |
| 	u16 i = rx_ring->next_to_clean;
 | |
| 	union i40e_rx_desc *rx_desc;
 | |
| 	u32 rx_error, rx_status;
 | |
| 	u8 rx_ptype;
 | |
| 	u64 qword;
 | |
| 
 | |
| 	if (budget <= 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	rx_desc = I40E_RX_DESC(rx_ring, i);
 | |
| 	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
 | |
| 	rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
 | |
| 		    I40E_RXD_QW1_STATUS_SHIFT;
 | |
| 
 | |
| 	while (rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)) {
 | |
| 		union i40e_rx_desc *next_rxd;
 | |
| 		struct i40e_rx_buffer *rx_bi;
 | |
| 		struct sk_buff *skb;
 | |
| 		u16 vlan_tag;
 | |
| 		if (i40e_rx_is_programming_status(qword)) {
 | |
| 			i40e_clean_programming_status(rx_ring, rx_desc);
 | |
| 			I40E_RX_NEXT_DESC_PREFETCH(rx_ring, i, next_rxd);
 | |
| 			goto next_desc;
 | |
| 		}
 | |
| 		rx_bi = &rx_ring->rx_bi[i];
 | |
| 		skb = rx_bi->skb;
 | |
| 		prefetch(skb->data);
 | |
| 
 | |
| 		rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
 | |
| 				I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
 | |
| 		rx_header_len = (qword & I40E_RXD_QW1_LENGTH_HBUF_MASK) >>
 | |
| 				I40E_RXD_QW1_LENGTH_HBUF_SHIFT;
 | |
| 		rx_sph = (qword & I40E_RXD_QW1_LENGTH_SPH_MASK) >>
 | |
| 			 I40E_RXD_QW1_LENGTH_SPH_SHIFT;
 | |
| 
 | |
| 		rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
 | |
| 			   I40E_RXD_QW1_ERROR_SHIFT;
 | |
| 		rx_hbo = rx_error & (1 << I40E_RX_DESC_ERROR_HBO_SHIFT);
 | |
| 		rx_error &= ~(1 << I40E_RX_DESC_ERROR_HBO_SHIFT);
 | |
| 
 | |
| 		rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
 | |
| 			   I40E_RXD_QW1_PTYPE_SHIFT;
 | |
| 		rx_bi->skb = NULL;
 | |
| 
 | |
| 		/* This memory barrier is needed to keep us from reading
 | |
| 		 * any other fields out of the rx_desc until we know the
 | |
| 		 * STATUS_DD bit is set
 | |
| 		 */
 | |
| 		rmb();
 | |
| 
 | |
| 		/* Get the header and possibly the whole packet
 | |
| 		 * If this is an skb from previous receive dma will be 0
 | |
| 		 */
 | |
| 		if (rx_bi->dma) {
 | |
| 			u16 len;
 | |
| 
 | |
| 			if (rx_hbo)
 | |
| 				len = I40E_RX_HDR_SIZE;
 | |
| 			else if (rx_sph)
 | |
| 				len = rx_header_len;
 | |
| 			else if (rx_packet_len)
 | |
| 				len = rx_packet_len;   /* 1buf/no split found */
 | |
| 			else
 | |
| 				len = rx_header_len;   /* split always mode */
 | |
| 
 | |
| 			skb_put(skb, len);
 | |
| 			dma_unmap_single(rx_ring->dev,
 | |
| 					 rx_bi->dma,
 | |
| 					 rx_ring->rx_buf_len,
 | |
| 					 DMA_FROM_DEVICE);
 | |
| 			rx_bi->dma = 0;
 | |
| 		}
 | |
| 
 | |
| 		/* Get the rest of the data if this was a header split */
 | |
| 		if (ring_is_ps_enabled(rx_ring) && rx_packet_len) {
 | |
| 
 | |
| 			skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
 | |
| 					   rx_bi->page,
 | |
| 					   rx_bi->page_offset,
 | |
| 					   rx_packet_len);
 | |
| 
 | |
| 			skb->len += rx_packet_len;
 | |
| 			skb->data_len += rx_packet_len;
 | |
| 			skb->truesize += rx_packet_len;
 | |
| 
 | |
| 			if ((page_count(rx_bi->page) == 1) &&
 | |
| 			    (page_to_nid(rx_bi->page) == current_node))
 | |
| 				get_page(rx_bi->page);
 | |
| 			else
 | |
| 				rx_bi->page = NULL;
 | |
| 
 | |
| 			dma_unmap_page(rx_ring->dev,
 | |
| 				       rx_bi->page_dma,
 | |
| 				       PAGE_SIZE / 2,
 | |
| 				       DMA_FROM_DEVICE);
 | |
| 			rx_bi->page_dma = 0;
 | |
| 		}
 | |
| 		I40E_RX_NEXT_DESC_PREFETCH(rx_ring, i, next_rxd);
 | |
| 
 | |
| 		if (unlikely(
 | |
| 		    !(rx_status & (1 << I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
 | |
| 			struct i40e_rx_buffer *next_buffer;
 | |
| 
 | |
| 			next_buffer = &rx_ring->rx_bi[i];
 | |
| 
 | |
| 			if (ring_is_ps_enabled(rx_ring)) {
 | |
| 				rx_bi->skb = next_buffer->skb;
 | |
| 				rx_bi->dma = next_buffer->dma;
 | |
| 				next_buffer->skb = skb;
 | |
| 				next_buffer->dma = 0;
 | |
| 			}
 | |
| 			rx_ring->rx_stats.non_eop_descs++;
 | |
| 			goto next_desc;
 | |
| 		}
 | |
| 
 | |
| 		/* ERR_MASK will only have valid bits if EOP set */
 | |
| 		if (unlikely(rx_error & (1 << I40E_RX_DESC_ERROR_RXE_SHIFT))) {
 | |
| 			dev_kfree_skb_any(skb);
 | |
| 			goto next_desc;
 | |
| 		}
 | |
| 
 | |
| 		skb_set_hash(skb, i40e_rx_hash(rx_ring, rx_desc),
 | |
| 			     i40e_ptype_to_hash(rx_ptype));
 | |
| 		if (unlikely(rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK)) {
 | |
| 			i40e_ptp_rx_hwtstamp(vsi->back, skb, (rx_status &
 | |
| 					   I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
 | |
| 					   I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT);
 | |
| 			rx_ring->last_rx_timestamp = jiffies;
 | |
| 		}
 | |
| 
 | |
| 		/* probably a little skewed due to removing CRC */
 | |
| 		total_rx_bytes += skb->len;
 | |
| 		total_rx_packets++;
 | |
| 
 | |
| 		skb->protocol = eth_type_trans(skb, rx_ring->netdev);
 | |
| 
 | |
| 		i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
 | |
| 
 | |
| 		vlan_tag = rx_status & (1 << I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
 | |
| 			 ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
 | |
| 			 : 0;
 | |
| 		i40e_receive_skb(rx_ring, skb, vlan_tag);
 | |
| 
 | |
| 		rx_ring->netdev->last_rx = jiffies;
 | |
| 		budget--;
 | |
| next_desc:
 | |
| 		rx_desc->wb.qword1.status_error_len = 0;
 | |
| 		if (!budget)
 | |
| 			break;
 | |
| 
 | |
| 		cleaned_count++;
 | |
| 		/* return some buffers to hardware, one at a time is too slow */
 | |
| 		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
 | |
| 			i40e_alloc_rx_buffers(rx_ring, cleaned_count);
 | |
| 			cleaned_count = 0;
 | |
| 		}
 | |
| 
 | |
| 		/* use prefetched values */
 | |
| 		rx_desc = next_rxd;
 | |
| 		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
 | |
| 		rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
 | |
| 			    I40E_RXD_QW1_STATUS_SHIFT;
 | |
| 	}
 | |
| 
 | |
| 	rx_ring->next_to_clean = i;
 | |
| 	u64_stats_update_begin(&rx_ring->syncp);
 | |
| 	rx_ring->stats.packets += total_rx_packets;
 | |
| 	rx_ring->stats.bytes += total_rx_bytes;
 | |
| 	u64_stats_update_end(&rx_ring->syncp);
 | |
| 	rx_ring->q_vector->rx.total_packets += total_rx_packets;
 | |
| 	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
 | |
| 
 | |
| 	if (cleaned_count)
 | |
| 		i40e_alloc_rx_buffers(rx_ring, cleaned_count);
 | |
| 
 | |
| 	return budget > 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
 | |
|  * @napi: napi struct with our devices info in it
 | |
|  * @budget: amount of work driver is allowed to do this pass, in packets
 | |
|  *
 | |
|  * This function will clean all queues associated with a q_vector.
 | |
|  *
 | |
|  * Returns the amount of work done
 | |
|  **/
 | |
| int i40e_napi_poll(struct napi_struct *napi, int budget)
 | |
| {
 | |
| 	struct i40e_q_vector *q_vector =
 | |
| 			       container_of(napi, struct i40e_q_vector, napi);
 | |
| 	struct i40e_vsi *vsi = q_vector->vsi;
 | |
| 	struct i40e_ring *ring;
 | |
| 	bool clean_complete = true;
 | |
| 	int budget_per_ring;
 | |
| 
 | |
| 	if (test_bit(__I40E_DOWN, &vsi->state)) {
 | |
| 		napi_complete(napi);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Since the actual Tx work is minimal, we can give the Tx a larger
 | |
| 	 * budget and be more aggressive about cleaning up the Tx descriptors.
 | |
| 	 */
 | |
| 	i40e_for_each_ring(ring, q_vector->tx)
 | |
| 		clean_complete &= i40e_clean_tx_irq(ring, vsi->work_limit);
 | |
| 
 | |
| 	/* We attempt to distribute budget to each Rx queue fairly, but don't
 | |
| 	 * allow the budget to go below 1 because that would exit polling early.
 | |
| 	 */
 | |
| 	budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
 | |
| 
 | |
| 	i40e_for_each_ring(ring, q_vector->rx)
 | |
| 		clean_complete &= i40e_clean_rx_irq(ring, budget_per_ring);
 | |
| 
 | |
| 	/* If work not completed, return budget and polling will return */
 | |
| 	if (!clean_complete)
 | |
| 		return budget;
 | |
| 
 | |
| 	/* Work is done so exit the polling mode and re-enable the interrupt */
 | |
| 	napi_complete(napi);
 | |
| 	if (ITR_IS_DYNAMIC(vsi->rx_itr_setting) ||
 | |
| 	    ITR_IS_DYNAMIC(vsi->tx_itr_setting))
 | |
| 		i40e_update_dynamic_itr(q_vector);
 | |
| 
 | |
| 	if (!test_bit(__I40E_DOWN, &vsi->state)) {
 | |
| 		if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
 | |
| 			i40e_irq_dynamic_enable(vsi,
 | |
| 					q_vector->v_idx + vsi->base_vector);
 | |
| 		} else {
 | |
| 			struct i40e_hw *hw = &vsi->back->hw;
 | |
| 			/* We re-enable the queue 0 cause, but
 | |
| 			 * don't worry about dynamic_enable
 | |
| 			 * because we left it on for the other
 | |
| 			 * possible interrupts during napi
 | |
| 			 */
 | |
| 			u32 qval = rd32(hw, I40E_QINT_RQCTL(0));
 | |
| 			qval |= I40E_QINT_RQCTL_CAUSE_ENA_MASK;
 | |
| 			wr32(hw, I40E_QINT_RQCTL(0), qval);
 | |
| 
 | |
| 			qval = rd32(hw, I40E_QINT_TQCTL(0));
 | |
| 			qval |= I40E_QINT_TQCTL_CAUSE_ENA_MASK;
 | |
| 			wr32(hw, I40E_QINT_TQCTL(0), qval);
 | |
| 
 | |
| 			i40e_irq_dynamic_enable_icr0(vsi->back);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * i40e_atr - Add a Flow Director ATR filter
 | |
|  * @tx_ring:  ring to add programming descriptor to
 | |
|  * @skb:      send buffer
 | |
|  * @flags:    send flags
 | |
|  * @protocol: wire protocol
 | |
|  **/
 | |
| static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
 | |
| 		     u32 flags, __be16 protocol)
 | |
| {
 | |
| 	struct i40e_filter_program_desc *fdir_desc;
 | |
| 	struct i40e_pf *pf = tx_ring->vsi->back;
 | |
| 	union {
 | |
| 		unsigned char *network;
 | |
| 		struct iphdr *ipv4;
 | |
| 		struct ipv6hdr *ipv6;
 | |
| 	} hdr;
 | |
| 	struct tcphdr *th;
 | |
| 	unsigned int hlen;
 | |
| 	u32 flex_ptype, dtype_cmd;
 | |
| 	u16 i;
 | |
| 
 | |
| 	/* make sure ATR is enabled */
 | |
| 	if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
 | |
| 		return;
 | |
| 
 | |
| 	/* if sampling is disabled do nothing */
 | |
| 	if (!tx_ring->atr_sample_rate)
 | |
| 		return;
 | |
| 
 | |
| 	/* snag network header to get L4 type and address */
 | |
| 	hdr.network = skb_network_header(skb);
 | |
| 
 | |
| 	/* Currently only IPv4/IPv6 with TCP is supported */
 | |
| 	if (protocol == htons(ETH_P_IP)) {
 | |
| 		if (hdr.ipv4->protocol != IPPROTO_TCP)
 | |
| 			return;
 | |
| 
 | |
| 		/* access ihl as a u8 to avoid unaligned access on ia64 */
 | |
| 		hlen = (hdr.network[0] & 0x0F) << 2;
 | |
| 	} else if (protocol == htons(ETH_P_IPV6)) {
 | |
| 		if (hdr.ipv6->nexthdr != IPPROTO_TCP)
 | |
| 			return;
 | |
| 
 | |
| 		hlen = sizeof(struct ipv6hdr);
 | |
| 	} else {
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	th = (struct tcphdr *)(hdr.network + hlen);
 | |
| 
 | |
| 	/* Due to lack of space, no more new filters can be programmed */
 | |
| 	if (th->syn && (pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED))
 | |
| 		return;
 | |
| 
 | |
| 	tx_ring->atr_count++;
 | |
| 
 | |
| 	/* sample on all syn/fin packets or once every atr sample rate */
 | |
| 	if (!th->fin && !th->syn && (tx_ring->atr_count < tx_ring->atr_sample_rate))
 | |
| 		return;
 | |
| 
 | |
| 	tx_ring->atr_count = 0;
 | |
| 
 | |
| 	/* grab the next descriptor */
 | |
| 	i = tx_ring->next_to_use;
 | |
| 	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
 | |
| 
 | |
| 	i++;
 | |
| 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
 | |
| 
 | |
| 	flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
 | |
| 		      I40E_TXD_FLTR_QW0_QINDEX_MASK;
 | |
| 	flex_ptype |= (protocol == htons(ETH_P_IP)) ?
 | |
| 		      (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
 | |
| 		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
 | |
| 		      (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
 | |
| 		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
 | |
| 
 | |
| 	flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
 | |
| 
 | |
| 	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
 | |
| 
 | |
| 	dtype_cmd |= th->fin ?
 | |
| 		     (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
 | |
| 		      I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
 | |
| 		     (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
 | |
| 		      I40E_TXD_FLTR_QW1_PCMD_SHIFT);
 | |
| 
 | |
| 	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
 | |
| 		     I40E_TXD_FLTR_QW1_DEST_SHIFT;
 | |
| 
 | |
| 	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
 | |
| 		     I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
 | |
| 
 | |
| 	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
 | |
| 	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
 | |
|  * @skb:     send buffer
 | |
|  * @tx_ring: ring to send buffer on
 | |
|  * @flags:   the tx flags to be set
 | |
|  *
 | |
|  * Checks the skb and set up correspondingly several generic transmit flags
 | |
|  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
 | |
|  *
 | |
|  * Returns error code indicate the frame should be dropped upon error and the
 | |
|  * otherwise  returns 0 to indicate the flags has been set properly.
 | |
|  **/
 | |
| static int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
 | |
| 				      struct i40e_ring *tx_ring,
 | |
| 				      u32 *flags)
 | |
| {
 | |
| 	__be16 protocol = skb->protocol;
 | |
| 	u32  tx_flags = 0;
 | |
| 
 | |
| 	/* if we have a HW VLAN tag being added, default to the HW one */
 | |
| 	if (vlan_tx_tag_present(skb)) {
 | |
| 		tx_flags |= vlan_tx_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
 | |
| 		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
 | |
| 	/* else if it is a SW VLAN, check the next protocol and store the tag */
 | |
| 	} else if (protocol == htons(ETH_P_8021Q)) {
 | |
| 		struct vlan_hdr *vhdr, _vhdr;
 | |
| 		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
 | |
| 		if (!vhdr)
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		protocol = vhdr->h_vlan_encapsulated_proto;
 | |
| 		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
 | |
| 		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
 | |
| 	}
 | |
| 
 | |
| 	/* Insert 802.1p priority into VLAN header */
 | |
| 	if ((tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED) &&
 | |
| 	    ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
 | |
| 	     (skb->priority != TC_PRIO_CONTROL))) {
 | |
| 		tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
 | |
| 		tx_flags |= (skb->priority & 0x7) <<
 | |
| 				I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
 | |
| 		if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
 | |
| 			struct vlan_ethhdr *vhdr;
 | |
| 			if (skb_header_cloned(skb) &&
 | |
| 			    pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
 | |
| 				return -ENOMEM;
 | |
| 			vhdr = (struct vlan_ethhdr *)skb->data;
 | |
| 			vhdr->h_vlan_TCI = htons(tx_flags >>
 | |
| 						 I40E_TX_FLAGS_VLAN_SHIFT);
 | |
| 		} else {
 | |
| 			tx_flags |= I40E_TX_FLAGS_HW_VLAN;
 | |
| 		}
 | |
| 	}
 | |
| 	*flags = tx_flags;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * i40e_tso - set up the tso context descriptor
 | |
|  * @tx_ring:  ptr to the ring to send
 | |
|  * @skb:      ptr to the skb we're sending
 | |
|  * @tx_flags: the collected send information
 | |
|  * @protocol: the send protocol
 | |
|  * @hdr_len:  ptr to the size of the packet header
 | |
|  * @cd_tunneling: ptr to context descriptor bits
 | |
|  *
 | |
|  * Returns 0 if no TSO can happen, 1 if tso is going, or error
 | |
|  **/
 | |
| static int i40e_tso(struct i40e_ring *tx_ring, struct sk_buff *skb,
 | |
| 		    u32 tx_flags, __be16 protocol, u8 *hdr_len,
 | |
| 		    u64 *cd_type_cmd_tso_mss, u32 *cd_tunneling)
 | |
| {
 | |
| 	u32 cd_cmd, cd_tso_len, cd_mss;
 | |
| 	struct tcphdr *tcph;
 | |
| 	struct iphdr *iph;
 | |
| 	u32 l4len;
 | |
| 	int err;
 | |
| 	struct ipv6hdr *ipv6h;
 | |
| 
 | |
| 	if (!skb_is_gso(skb))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (skb_header_cloned(skb)) {
 | |
| 		err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 	}
 | |
| 
 | |
| 	if (protocol == htons(ETH_P_IP)) {
 | |
| 		iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
 | |
| 		tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
 | |
| 		iph->tot_len = 0;
 | |
| 		iph->check = 0;
 | |
| 		tcph->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
 | |
| 						 0, IPPROTO_TCP, 0);
 | |
| 	} else if (skb_is_gso_v6(skb)) {
 | |
| 
 | |
| 		ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb)
 | |
| 					   : ipv6_hdr(skb);
 | |
| 		tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
 | |
| 		ipv6h->payload_len = 0;
 | |
| 		tcph->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr,
 | |
| 					       0, IPPROTO_TCP, 0);
 | |
| 	}
 | |
| 
 | |
| 	l4len = skb->encapsulation ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb);
 | |
| 	*hdr_len = (skb->encapsulation
 | |
| 		    ? (skb_inner_transport_header(skb) - skb->data)
 | |
| 		    : skb_transport_offset(skb)) + l4len;
 | |
| 
 | |
| 	/* find the field values */
 | |
| 	cd_cmd = I40E_TX_CTX_DESC_TSO;
 | |
| 	cd_tso_len = skb->len - *hdr_len;
 | |
| 	cd_mss = skb_shinfo(skb)->gso_size;
 | |
| 	*cd_type_cmd_tso_mss |= ((u64)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
 | |
| 				((u64)cd_tso_len <<
 | |
| 				 I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
 | |
| 				((u64)cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * i40e_tsyn - set up the tsyn context descriptor
 | |
|  * @tx_ring:  ptr to the ring to send
 | |
|  * @skb:      ptr to the skb we're sending
 | |
|  * @tx_flags: the collected send information
 | |
|  *
 | |
|  * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
 | |
|  **/
 | |
| static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
 | |
| 		     u32 tx_flags, u64 *cd_type_cmd_tso_mss)
 | |
| {
 | |
| 	struct i40e_pf *pf;
 | |
| 
 | |
| 	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Tx timestamps cannot be sampled when doing TSO */
 | |
| 	if (tx_flags & I40E_TX_FLAGS_TSO)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* only timestamp the outbound packet if the user has requested it and
 | |
| 	 * we are not already transmitting a packet to be timestamped
 | |
| 	 */
 | |
| 	pf = i40e_netdev_to_pf(tx_ring->netdev);
 | |
| 	if (pf->ptp_tx && !pf->ptp_tx_skb) {
 | |
| 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
 | |
| 		pf->ptp_tx_skb = skb_get(skb);
 | |
| 	} else {
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	*cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
 | |
| 				I40E_TXD_CTX_QW1_CMD_SHIFT;
 | |
| 
 | |
| 	pf->ptp_tx_start = jiffies;
 | |
| 	schedule_work(&pf->ptp_tx_work);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * i40e_tx_enable_csum - Enable Tx checksum offloads
 | |
|  * @skb: send buffer
 | |
|  * @tx_flags: Tx flags currently set
 | |
|  * @td_cmd: Tx descriptor command bits to set
 | |
|  * @td_offset: Tx descriptor header offsets to set
 | |
|  * @cd_tunneling: ptr to context desc bits
 | |
|  **/
 | |
| static void i40e_tx_enable_csum(struct sk_buff *skb, u32 tx_flags,
 | |
| 				u32 *td_cmd, u32 *td_offset,
 | |
| 				struct i40e_ring *tx_ring,
 | |
| 				u32 *cd_tunneling)
 | |
| {
 | |
| 	struct ipv6hdr *this_ipv6_hdr;
 | |
| 	unsigned int this_tcp_hdrlen;
 | |
| 	struct iphdr *this_ip_hdr;
 | |
| 	u32 network_hdr_len;
 | |
| 	u8 l4_hdr = 0;
 | |
| 
 | |
| 	if (skb->encapsulation) {
 | |
| 		network_hdr_len = skb_inner_network_header_len(skb);
 | |
| 		this_ip_hdr = inner_ip_hdr(skb);
 | |
| 		this_ipv6_hdr = inner_ipv6_hdr(skb);
 | |
| 		this_tcp_hdrlen = inner_tcp_hdrlen(skb);
 | |
| 
 | |
| 		if (tx_flags & I40E_TX_FLAGS_IPV4) {
 | |
| 
 | |
| 			if (tx_flags & I40E_TX_FLAGS_TSO) {
 | |
| 				*cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4;
 | |
| 				ip_hdr(skb)->check = 0;
 | |
| 			} else {
 | |
| 				*cd_tunneling |=
 | |
| 					 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
 | |
| 			}
 | |
| 		} else if (tx_flags & I40E_TX_FLAGS_IPV6) {
 | |
| 			if (tx_flags & I40E_TX_FLAGS_TSO) {
 | |
| 				*cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6;
 | |
| 				ip_hdr(skb)->check = 0;
 | |
| 			} else {
 | |
| 				*cd_tunneling |=
 | |
| 					 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* Now set the ctx descriptor fields */
 | |
| 		*cd_tunneling |= (skb_network_header_len(skb) >> 2) <<
 | |
| 					I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT |
 | |
| 				   I40E_TXD_CTX_UDP_TUNNELING            |
 | |
| 				   ((skb_inner_network_offset(skb) -
 | |
| 					skb_transport_offset(skb)) >> 1) <<
 | |
| 				   I40E_TXD_CTX_QW0_NATLEN_SHIFT;
 | |
| 
 | |
| 	} else {
 | |
| 		network_hdr_len = skb_network_header_len(skb);
 | |
| 		this_ip_hdr = ip_hdr(skb);
 | |
| 		this_ipv6_hdr = ipv6_hdr(skb);
 | |
| 		this_tcp_hdrlen = tcp_hdrlen(skb);
 | |
| 	}
 | |
| 
 | |
| 	/* Enable IP checksum offloads */
 | |
| 	if (tx_flags & I40E_TX_FLAGS_IPV4) {
 | |
| 		l4_hdr = this_ip_hdr->protocol;
 | |
| 		/* the stack computes the IP header already, the only time we
 | |
| 		 * need the hardware to recompute it is in the case of TSO.
 | |
| 		 */
 | |
| 		if (tx_flags & I40E_TX_FLAGS_TSO) {
 | |
| 			*td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
 | |
| 			this_ip_hdr->check = 0;
 | |
| 		} else {
 | |
| 			*td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
 | |
| 		}
 | |
| 		/* Now set the td_offset for IP header length */
 | |
| 		*td_offset = (network_hdr_len >> 2) <<
 | |
| 			      I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
 | |
| 	} else if (tx_flags & I40E_TX_FLAGS_IPV6) {
 | |
| 		l4_hdr = this_ipv6_hdr->nexthdr;
 | |
| 		*td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
 | |
| 		/* Now set the td_offset for IP header length */
 | |
| 		*td_offset = (network_hdr_len >> 2) <<
 | |
| 			      I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
 | |
| 	}
 | |
| 	/* words in MACLEN + dwords in IPLEN + dwords in L4Len */
 | |
| 	*td_offset |= (skb_network_offset(skb) >> 1) <<
 | |
| 		       I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
 | |
| 
 | |
| 	/* Enable L4 checksum offloads */
 | |
| 	switch (l4_hdr) {
 | |
| 	case IPPROTO_TCP:
 | |
| 		/* enable checksum offloads */
 | |
| 		*td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
 | |
| 		*td_offset |= (this_tcp_hdrlen >> 2) <<
 | |
| 			       I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
 | |
| 		break;
 | |
| 	case IPPROTO_SCTP:
 | |
| 		/* enable SCTP checksum offload */
 | |
| 		*td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
 | |
| 		*td_offset |= (sizeof(struct sctphdr) >> 2) <<
 | |
| 			       I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
 | |
| 		break;
 | |
| 	case IPPROTO_UDP:
 | |
| 		/* enable UDP checksum offload */
 | |
| 		*td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
 | |
| 		*td_offset |= (sizeof(struct udphdr) >> 2) <<
 | |
| 			       I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * i40e_create_tx_ctx Build the Tx context descriptor
 | |
|  * @tx_ring:  ring to create the descriptor on
 | |
|  * @cd_type_cmd_tso_mss: Quad Word 1
 | |
|  * @cd_tunneling: Quad Word 0 - bits 0-31
 | |
|  * @cd_l2tag2: Quad Word 0 - bits 32-63
 | |
|  **/
 | |
| static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
 | |
| 			       const u64 cd_type_cmd_tso_mss,
 | |
| 			       const u32 cd_tunneling, const u32 cd_l2tag2)
 | |
| {
 | |
| 	struct i40e_tx_context_desc *context_desc;
 | |
| 	int i = tx_ring->next_to_use;
 | |
| 
 | |
| 	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
 | |
| 	    !cd_tunneling && !cd_l2tag2)
 | |
| 		return;
 | |
| 
 | |
| 	/* grab the next descriptor */
 | |
| 	context_desc = I40E_TX_CTXTDESC(tx_ring, i);
 | |
| 
 | |
| 	i++;
 | |
| 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
 | |
| 
 | |
| 	/* cpu_to_le32 and assign to struct fields */
 | |
| 	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
 | |
| 	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
 | |
| 	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * i40e_tx_map - Build the Tx descriptor
 | |
|  * @tx_ring:  ring to send buffer on
 | |
|  * @skb:      send buffer
 | |
|  * @first:    first buffer info buffer to use
 | |
|  * @tx_flags: collected send information
 | |
|  * @hdr_len:  size of the packet header
 | |
|  * @td_cmd:   the command field in the descriptor
 | |
|  * @td_offset: offset for checksum or crc
 | |
|  **/
 | |
| static void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
 | |
| 			struct i40e_tx_buffer *first, u32 tx_flags,
 | |
| 			const u8 hdr_len, u32 td_cmd, u32 td_offset)
 | |
| {
 | |
| 	unsigned int data_len = skb->data_len;
 | |
| 	unsigned int size = skb_headlen(skb);
 | |
| 	struct skb_frag_struct *frag;
 | |
| 	struct i40e_tx_buffer *tx_bi;
 | |
| 	struct i40e_tx_desc *tx_desc;
 | |
| 	u16 i = tx_ring->next_to_use;
 | |
| 	u32 td_tag = 0;
 | |
| 	dma_addr_t dma;
 | |
| 	u16 gso_segs;
 | |
| 
 | |
| 	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
 | |
| 		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
 | |
| 		td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
 | |
| 			 I40E_TX_FLAGS_VLAN_SHIFT;
 | |
| 	}
 | |
| 
 | |
| 	if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
 | |
| 		gso_segs = skb_shinfo(skb)->gso_segs;
 | |
| 	else
 | |
| 		gso_segs = 1;
 | |
| 
 | |
| 	/* multiply data chunks by size of headers */
 | |
| 	first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
 | |
| 	first->gso_segs = gso_segs;
 | |
| 	first->skb = skb;
 | |
| 	first->tx_flags = tx_flags;
 | |
| 
 | |
| 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
 | |
| 
 | |
| 	tx_desc = I40E_TX_DESC(tx_ring, i);
 | |
| 	tx_bi = first;
 | |
| 
 | |
| 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
 | |
| 		if (dma_mapping_error(tx_ring->dev, dma))
 | |
| 			goto dma_error;
 | |
| 
 | |
| 		/* record length, and DMA address */
 | |
| 		dma_unmap_len_set(tx_bi, len, size);
 | |
| 		dma_unmap_addr_set(tx_bi, dma, dma);
 | |
| 
 | |
| 		tx_desc->buffer_addr = cpu_to_le64(dma);
 | |
| 
 | |
| 		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
 | |
| 			tx_desc->cmd_type_offset_bsz =
 | |
| 				build_ctob(td_cmd, td_offset,
 | |
| 					   I40E_MAX_DATA_PER_TXD, td_tag);
 | |
| 
 | |
| 			tx_desc++;
 | |
| 			i++;
 | |
| 			if (i == tx_ring->count) {
 | |
| 				tx_desc = I40E_TX_DESC(tx_ring, 0);
 | |
| 				i = 0;
 | |
| 			}
 | |
| 
 | |
| 			dma += I40E_MAX_DATA_PER_TXD;
 | |
| 			size -= I40E_MAX_DATA_PER_TXD;
 | |
| 
 | |
| 			tx_desc->buffer_addr = cpu_to_le64(dma);
 | |
| 		}
 | |
| 
 | |
| 		if (likely(!data_len))
 | |
| 			break;
 | |
| 
 | |
| 		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
 | |
| 							  size, td_tag);
 | |
| 
 | |
| 		tx_desc++;
 | |
| 		i++;
 | |
| 		if (i == tx_ring->count) {
 | |
| 			tx_desc = I40E_TX_DESC(tx_ring, 0);
 | |
| 			i = 0;
 | |
| 		}
 | |
| 
 | |
| 		size = skb_frag_size(frag);
 | |
| 		data_len -= size;
 | |
| 
 | |
| 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
 | |
| 				       DMA_TO_DEVICE);
 | |
| 
 | |
| 		tx_bi = &tx_ring->tx_bi[i];
 | |
| 	}
 | |
| 
 | |
| 	/* Place RS bit on last descriptor of any packet that spans across the
 | |
| 	 * 4th descriptor (WB_STRIDE aka 0x3) in a 64B cacheline.
 | |
| 	 */
 | |
| #define WB_STRIDE 0x3
 | |
| 	if (((i & WB_STRIDE) != WB_STRIDE) &&
 | |
| 	    (first <= &tx_ring->tx_bi[i]) &&
 | |
| 	    (first >= &tx_ring->tx_bi[i & ~WB_STRIDE])) {
 | |
| 		tx_desc->cmd_type_offset_bsz =
 | |
| 			build_ctob(td_cmd, td_offset, size, td_tag) |
 | |
| 			cpu_to_le64((u64)I40E_TX_DESC_CMD_EOP <<
 | |
| 					 I40E_TXD_QW1_CMD_SHIFT);
 | |
| 	} else {
 | |
| 		tx_desc->cmd_type_offset_bsz =
 | |
| 			build_ctob(td_cmd, td_offset, size, td_tag) |
 | |
| 			cpu_to_le64((u64)I40E_TXD_CMD <<
 | |
| 					 I40E_TXD_QW1_CMD_SHIFT);
 | |
| 	}
 | |
| 
 | |
| 	netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev,
 | |
| 						 tx_ring->queue_index),
 | |
| 			     first->bytecount);
 | |
| 
 | |
| 	/* set the timestamp */
 | |
| 	first->time_stamp = jiffies;
 | |
| 
 | |
| 	/* Force memory writes to complete before letting h/w
 | |
| 	 * know there are new descriptors to fetch.  (Only
 | |
| 	 * applicable for weak-ordered memory model archs,
 | |
| 	 * such as IA-64).
 | |
| 	 */
 | |
| 	wmb();
 | |
| 
 | |
| 	/* set next_to_watch value indicating a packet is present */
 | |
| 	first->next_to_watch = tx_desc;
 | |
| 
 | |
| 	i++;
 | |
| 	if (i == tx_ring->count)
 | |
| 		i = 0;
 | |
| 
 | |
| 	tx_ring->next_to_use = i;
 | |
| 
 | |
| 	/* notify HW of packet */
 | |
| 	writel(i, tx_ring->tail);
 | |
| 
 | |
| 	return;
 | |
| 
 | |
| dma_error:
 | |
| 	dev_info(tx_ring->dev, "TX DMA map failed\n");
 | |
| 
 | |
| 	/* clear dma mappings for failed tx_bi map */
 | |
| 	for (;;) {
 | |
| 		tx_bi = &tx_ring->tx_bi[i];
 | |
| 		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
 | |
| 		if (tx_bi == first)
 | |
| 			break;
 | |
| 		if (i == 0)
 | |
| 			i = tx_ring->count;
 | |
| 		i--;
 | |
| 	}
 | |
| 
 | |
| 	tx_ring->next_to_use = i;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
 | |
|  * @tx_ring: the ring to be checked
 | |
|  * @size:    the size buffer we want to assure is available
 | |
|  *
 | |
|  * Returns -EBUSY if a stop is needed, else 0
 | |
|  **/
 | |
| static inline int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
 | |
| {
 | |
| 	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
 | |
| 	/* Memory barrier before checking head and tail */
 | |
| 	smp_mb();
 | |
| 
 | |
| 	/* Check again in a case another CPU has just made room available. */
 | |
| 	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	/* A reprieve! - use start_queue because it doesn't call schedule */
 | |
| 	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
 | |
| 	++tx_ring->tx_stats.restart_queue;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * i40e_maybe_stop_tx - 1st level check for tx stop conditions
 | |
|  * @tx_ring: the ring to be checked
 | |
|  * @size:    the size buffer we want to assure is available
 | |
|  *
 | |
|  * Returns 0 if stop is not needed
 | |
|  **/
 | |
| static int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
 | |
| {
 | |
| 	if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
 | |
| 		return 0;
 | |
| 	return __i40e_maybe_stop_tx(tx_ring, size);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * i40e_xmit_descriptor_count - calculate number of tx descriptors needed
 | |
|  * @skb:     send buffer
 | |
|  * @tx_ring: ring to send buffer on
 | |
|  *
 | |
|  * Returns number of data descriptors needed for this skb. Returns 0 to indicate
 | |
|  * there is not enough descriptors available in this ring since we need at least
 | |
|  * one descriptor.
 | |
|  **/
 | |
| static int i40e_xmit_descriptor_count(struct sk_buff *skb,
 | |
| 				      struct i40e_ring *tx_ring)
 | |
| {
 | |
| #if PAGE_SIZE > I40E_MAX_DATA_PER_TXD
 | |
| 	unsigned int f;
 | |
| #endif
 | |
| 	int count = 0;
 | |
| 
 | |
| 	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
 | |
| 	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
 | |
| 	 *       + 4 desc gap to avoid the cache line where head is,
 | |
| 	 *       + 1 desc for context descriptor,
 | |
| 	 * otherwise try next time
 | |
| 	 */
 | |
| #if PAGE_SIZE > I40E_MAX_DATA_PER_TXD
 | |
| 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
 | |
| 		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
 | |
| #else
 | |
| 	count += skb_shinfo(skb)->nr_frags;
 | |
| #endif
 | |
| 	count += TXD_USE_COUNT(skb_headlen(skb));
 | |
| 	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
 | |
| 		tx_ring->tx_stats.tx_busy++;
 | |
| 		return 0;
 | |
| 	}
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * i40e_xmit_frame_ring - Sends buffer on Tx ring
 | |
|  * @skb:     send buffer
 | |
|  * @tx_ring: ring to send buffer on
 | |
|  *
 | |
|  * Returns NETDEV_TX_OK if sent, else an error code
 | |
|  **/
 | |
| static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
 | |
| 					struct i40e_ring *tx_ring)
 | |
| {
 | |
| 	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
 | |
| 	u32 cd_tunneling = 0, cd_l2tag2 = 0;
 | |
| 	struct i40e_tx_buffer *first;
 | |
| 	u32 td_offset = 0;
 | |
| 	u32 tx_flags = 0;
 | |
| 	__be16 protocol;
 | |
| 	u32 td_cmd = 0;
 | |
| 	u8 hdr_len = 0;
 | |
| 	int tsyn;
 | |
| 	int tso;
 | |
| 	if (0 == i40e_xmit_descriptor_count(skb, tx_ring))
 | |
| 		return NETDEV_TX_BUSY;
 | |
| 
 | |
| 	/* prepare the xmit flags */
 | |
| 	if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
 | |
| 		goto out_drop;
 | |
| 
 | |
| 	/* obtain protocol of skb */
 | |
| 	protocol = skb->protocol;
 | |
| 
 | |
| 	/* record the location of the first descriptor for this packet */
 | |
| 	first = &tx_ring->tx_bi[tx_ring->next_to_use];
 | |
| 
 | |
| 	/* setup IPv4/IPv6 offloads */
 | |
| 	if (protocol == htons(ETH_P_IP))
 | |
| 		tx_flags |= I40E_TX_FLAGS_IPV4;
 | |
| 	else if (protocol == htons(ETH_P_IPV6))
 | |
| 		tx_flags |= I40E_TX_FLAGS_IPV6;
 | |
| 
 | |
| 	tso = i40e_tso(tx_ring, skb, tx_flags, protocol, &hdr_len,
 | |
| 		       &cd_type_cmd_tso_mss, &cd_tunneling);
 | |
| 
 | |
| 	if (tso < 0)
 | |
| 		goto out_drop;
 | |
| 	else if (tso)
 | |
| 		tx_flags |= I40E_TX_FLAGS_TSO;
 | |
| 
 | |
| 	skb_tx_timestamp(skb);
 | |
| 
 | |
| 	tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
 | |
| 
 | |
| 	if (tsyn)
 | |
| 		tx_flags |= I40E_TX_FLAGS_TSYN;
 | |
| 
 | |
| 	/* always enable CRC insertion offload */
 | |
| 	td_cmd |= I40E_TX_DESC_CMD_ICRC;
 | |
| 
 | |
| 	/* Always offload the checksum, since it's in the data descriptor */
 | |
| 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
 | |
| 		tx_flags |= I40E_TX_FLAGS_CSUM;
 | |
| 
 | |
| 		i40e_tx_enable_csum(skb, tx_flags, &td_cmd, &td_offset,
 | |
| 				    tx_ring, &cd_tunneling);
 | |
| 	}
 | |
| 
 | |
| 	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
 | |
| 			   cd_tunneling, cd_l2tag2);
 | |
| 
 | |
| 	/* Add Flow Director ATR if it's enabled.
 | |
| 	 *
 | |
| 	 * NOTE: this must always be directly before the data descriptor.
 | |
| 	 */
 | |
| 	i40e_atr(tx_ring, skb, tx_flags, protocol);
 | |
| 
 | |
| 	i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
 | |
| 		    td_cmd, td_offset);
 | |
| 
 | |
| 	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
 | |
| 
 | |
| 	return NETDEV_TX_OK;
 | |
| 
 | |
| out_drop:
 | |
| 	dev_kfree_skb_any(skb);
 | |
| 	return NETDEV_TX_OK;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
 | |
|  * @skb:    send buffer
 | |
|  * @netdev: network interface device structure
 | |
|  *
 | |
|  * Returns NETDEV_TX_OK if sent, else an error code
 | |
|  **/
 | |
| netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
 | |
| {
 | |
| 	struct i40e_netdev_priv *np = netdev_priv(netdev);
 | |
| 	struct i40e_vsi *vsi = np->vsi;
 | |
| 	struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
 | |
| 
 | |
| 	/* hardware can't handle really short frames, hardware padding works
 | |
| 	 * beyond this point
 | |
| 	 */
 | |
| 	if (unlikely(skb->len < I40E_MIN_TX_LEN)) {
 | |
| 		if (skb_pad(skb, I40E_MIN_TX_LEN - skb->len))
 | |
| 			return NETDEV_TX_OK;
 | |
| 		skb->len = I40E_MIN_TX_LEN;
 | |
| 		skb_set_tail_pointer(skb, I40E_MIN_TX_LEN);
 | |
| 	}
 | |
| 
 | |
| 	return i40e_xmit_frame_ring(skb, tx_ring);
 | |
| }
 |