Disintegrate asm/system.h for PowerPC. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> cc: linuxppc-dev@lists.ozlabs.org
		
			
				
	
	
		
			521 lines
		
	
	
	
		
			14 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			521 lines
		
	
	
	
		
			14 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 *  PowerPC version
 | 
						|
 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
 | 
						|
 *
 | 
						|
 *  Derived from "arch/i386/mm/fault.c"
 | 
						|
 *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 | 
						|
 *
 | 
						|
 *  Modified by Cort Dougan and Paul Mackerras.
 | 
						|
 *
 | 
						|
 *  Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
 | 
						|
 *
 | 
						|
 *  This program is free software; you can redistribute it and/or
 | 
						|
 *  modify it under the terms of the GNU General Public License
 | 
						|
 *  as published by the Free Software Foundation; either version
 | 
						|
 *  2 of the License, or (at your option) any later version.
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/signal.h>
 | 
						|
#include <linux/sched.h>
 | 
						|
#include <linux/kernel.h>
 | 
						|
#include <linux/errno.h>
 | 
						|
#include <linux/string.h>
 | 
						|
#include <linux/types.h>
 | 
						|
#include <linux/ptrace.h>
 | 
						|
#include <linux/mman.h>
 | 
						|
#include <linux/mm.h>
 | 
						|
#include <linux/interrupt.h>
 | 
						|
#include <linux/highmem.h>
 | 
						|
#include <linux/module.h>
 | 
						|
#include <linux/kprobes.h>
 | 
						|
#include <linux/kdebug.h>
 | 
						|
#include <linux/perf_event.h>
 | 
						|
#include <linux/magic.h>
 | 
						|
#include <linux/ratelimit.h>
 | 
						|
 | 
						|
#include <asm/firmware.h>
 | 
						|
#include <asm/page.h>
 | 
						|
#include <asm/pgtable.h>
 | 
						|
#include <asm/mmu.h>
 | 
						|
#include <asm/mmu_context.h>
 | 
						|
#include <asm/uaccess.h>
 | 
						|
#include <asm/tlbflush.h>
 | 
						|
#include <asm/siginfo.h>
 | 
						|
#include <asm/debug.h>
 | 
						|
#include <mm/mmu_decl.h>
 | 
						|
 | 
						|
#include "icswx.h"
 | 
						|
 | 
						|
#ifdef CONFIG_KPROBES
 | 
						|
static inline int notify_page_fault(struct pt_regs *regs)
 | 
						|
{
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	/* kprobe_running() needs smp_processor_id() */
 | 
						|
	if (!user_mode(regs)) {
 | 
						|
		preempt_disable();
 | 
						|
		if (kprobe_running() && kprobe_fault_handler(regs, 11))
 | 
						|
			ret = 1;
 | 
						|
		preempt_enable();
 | 
						|
	}
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
#else
 | 
						|
static inline int notify_page_fault(struct pt_regs *regs)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * Check whether the instruction at regs->nip is a store using
 | 
						|
 * an update addressing form which will update r1.
 | 
						|
 */
 | 
						|
static int store_updates_sp(struct pt_regs *regs)
 | 
						|
{
 | 
						|
	unsigned int inst;
 | 
						|
 | 
						|
	if (get_user(inst, (unsigned int __user *)regs->nip))
 | 
						|
		return 0;
 | 
						|
	/* check for 1 in the rA field */
 | 
						|
	if (((inst >> 16) & 0x1f) != 1)
 | 
						|
		return 0;
 | 
						|
	/* check major opcode */
 | 
						|
	switch (inst >> 26) {
 | 
						|
	case 37:	/* stwu */
 | 
						|
	case 39:	/* stbu */
 | 
						|
	case 45:	/* sthu */
 | 
						|
	case 53:	/* stfsu */
 | 
						|
	case 55:	/* stfdu */
 | 
						|
		return 1;
 | 
						|
	case 62:	/* std or stdu */
 | 
						|
		return (inst & 3) == 1;
 | 
						|
	case 31:
 | 
						|
		/* check minor opcode */
 | 
						|
		switch ((inst >> 1) & 0x3ff) {
 | 
						|
		case 181:	/* stdux */
 | 
						|
		case 183:	/* stwux */
 | 
						|
		case 247:	/* stbux */
 | 
						|
		case 439:	/* sthux */
 | 
						|
		case 695:	/* stfsux */
 | 
						|
		case 759:	/* stfdux */
 | 
						|
			return 1;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
/*
 | 
						|
 * do_page_fault error handling helpers
 | 
						|
 */
 | 
						|
 | 
						|
#define MM_FAULT_RETURN		0
 | 
						|
#define MM_FAULT_CONTINUE	-1
 | 
						|
#define MM_FAULT_ERR(sig)	(sig)
 | 
						|
 | 
						|
static int out_of_memory(struct pt_regs *regs)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * We ran out of memory, or some other thing happened to us that made
 | 
						|
	 * us unable to handle the page fault gracefully.
 | 
						|
	 */
 | 
						|
	up_read(¤t->mm->mmap_sem);
 | 
						|
	if (!user_mode(regs))
 | 
						|
		return MM_FAULT_ERR(SIGKILL);
 | 
						|
	pagefault_out_of_memory();
 | 
						|
	return MM_FAULT_RETURN;
 | 
						|
}
 | 
						|
 | 
						|
static int do_sigbus(struct pt_regs *regs, unsigned long address)
 | 
						|
{
 | 
						|
	siginfo_t info;
 | 
						|
 | 
						|
	up_read(¤t->mm->mmap_sem);
 | 
						|
 | 
						|
	if (user_mode(regs)) {
 | 
						|
		info.si_signo = SIGBUS;
 | 
						|
		info.si_errno = 0;
 | 
						|
		info.si_code = BUS_ADRERR;
 | 
						|
		info.si_addr = (void __user *)address;
 | 
						|
		force_sig_info(SIGBUS, &info, current);
 | 
						|
		return MM_FAULT_RETURN;
 | 
						|
	}
 | 
						|
	return MM_FAULT_ERR(SIGBUS);
 | 
						|
}
 | 
						|
 | 
						|
static int mm_fault_error(struct pt_regs *regs, unsigned long addr, int fault)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Pagefault was interrupted by SIGKILL. We have no reason to
 | 
						|
	 * continue the pagefault.
 | 
						|
	 */
 | 
						|
	if (fatal_signal_pending(current)) {
 | 
						|
		/*
 | 
						|
		 * If we have retry set, the mmap semaphore will have
 | 
						|
		 * alrady been released in __lock_page_or_retry(). Else
 | 
						|
		 * we release it now.
 | 
						|
		 */
 | 
						|
		if (!(fault & VM_FAULT_RETRY))
 | 
						|
			up_read(¤t->mm->mmap_sem);
 | 
						|
		/* Coming from kernel, we need to deal with uaccess fixups */
 | 
						|
		if (user_mode(regs))
 | 
						|
			return MM_FAULT_RETURN;
 | 
						|
		return MM_FAULT_ERR(SIGKILL);
 | 
						|
	}
 | 
						|
 | 
						|
	/* No fault: be happy */
 | 
						|
	if (!(fault & VM_FAULT_ERROR))
 | 
						|
		return MM_FAULT_CONTINUE;
 | 
						|
 | 
						|
	/* Out of memory */
 | 
						|
	if (fault & VM_FAULT_OOM)
 | 
						|
		return out_of_memory(regs);
 | 
						|
 | 
						|
	/* Bus error. x86 handles HWPOISON here, we'll add this if/when
 | 
						|
	 * we support the feature in HW
 | 
						|
	 */
 | 
						|
	if (fault & VM_FAULT_SIGBUS)
 | 
						|
		return do_sigbus(regs, addr);
 | 
						|
 | 
						|
	/* We don't understand the fault code, this is fatal */
 | 
						|
	BUG();
 | 
						|
	return MM_FAULT_CONTINUE;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * For 600- and 800-family processors, the error_code parameter is DSISR
 | 
						|
 * for a data fault, SRR1 for an instruction fault. For 400-family processors
 | 
						|
 * the error_code parameter is ESR for a data fault, 0 for an instruction
 | 
						|
 * fault.
 | 
						|
 * For 64-bit processors, the error_code parameter is
 | 
						|
 *  - DSISR for a non-SLB data access fault,
 | 
						|
 *  - SRR1 & 0x08000000 for a non-SLB instruction access fault
 | 
						|
 *  - 0 any SLB fault.
 | 
						|
 *
 | 
						|
 * The return value is 0 if the fault was handled, or the signal
 | 
						|
 * number if this is a kernel fault that can't be handled here.
 | 
						|
 */
 | 
						|
int __kprobes do_page_fault(struct pt_regs *regs, unsigned long address,
 | 
						|
			    unsigned long error_code)
 | 
						|
{
 | 
						|
	struct vm_area_struct * vma;
 | 
						|
	struct mm_struct *mm = current->mm;
 | 
						|
	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
 | 
						|
	int code = SEGV_MAPERR;
 | 
						|
	int is_write = 0;
 | 
						|
	int trap = TRAP(regs);
 | 
						|
 	int is_exec = trap == 0x400;
 | 
						|
	int fault;
 | 
						|
 | 
						|
#if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
 | 
						|
	/*
 | 
						|
	 * Fortunately the bit assignments in SRR1 for an instruction
 | 
						|
	 * fault and DSISR for a data fault are mostly the same for the
 | 
						|
	 * bits we are interested in.  But there are some bits which
 | 
						|
	 * indicate errors in DSISR but can validly be set in SRR1.
 | 
						|
	 */
 | 
						|
	if (trap == 0x400)
 | 
						|
		error_code &= 0x48200000;
 | 
						|
	else
 | 
						|
		is_write = error_code & DSISR_ISSTORE;
 | 
						|
#else
 | 
						|
	is_write = error_code & ESR_DST;
 | 
						|
#endif /* CONFIG_4xx || CONFIG_BOOKE */
 | 
						|
 | 
						|
	if (is_write)
 | 
						|
		flags |= FAULT_FLAG_WRITE;
 | 
						|
 | 
						|
#ifdef CONFIG_PPC_ICSWX
 | 
						|
	/*
 | 
						|
	 * we need to do this early because this "data storage
 | 
						|
	 * interrupt" does not update the DAR/DEAR so we don't want to
 | 
						|
	 * look at it
 | 
						|
	 */
 | 
						|
	if (error_code & ICSWX_DSI_UCT) {
 | 
						|
		int rc = acop_handle_fault(regs, address, error_code);
 | 
						|
		if (rc)
 | 
						|
			return rc;
 | 
						|
	}
 | 
						|
#endif /* CONFIG_PPC_ICSWX */
 | 
						|
 | 
						|
	if (notify_page_fault(regs))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	if (unlikely(debugger_fault_handler(regs)))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	/* On a kernel SLB miss we can only check for a valid exception entry */
 | 
						|
	if (!user_mode(regs) && (address >= TASK_SIZE))
 | 
						|
		return SIGSEGV;
 | 
						|
 | 
						|
#if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE) || \
 | 
						|
			     defined(CONFIG_PPC_BOOK3S_64))
 | 
						|
  	if (error_code & DSISR_DABRMATCH) {
 | 
						|
		/* DABR match */
 | 
						|
		do_dabr(regs, address, error_code);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
#endif
 | 
						|
 | 
						|
	/* We restore the interrupt state now */
 | 
						|
	if (!arch_irq_disabled_regs(regs))
 | 
						|
		local_irq_enable();
 | 
						|
 | 
						|
	if (in_atomic() || mm == NULL) {
 | 
						|
		if (!user_mode(regs))
 | 
						|
			return SIGSEGV;
 | 
						|
		/* in_atomic() in user mode is really bad,
 | 
						|
		   as is current->mm == NULL. */
 | 
						|
		printk(KERN_EMERG "Page fault in user mode with "
 | 
						|
		       "in_atomic() = %d mm = %p\n", in_atomic(), mm);
 | 
						|
		printk(KERN_EMERG "NIP = %lx  MSR = %lx\n",
 | 
						|
		       regs->nip, regs->msr);
 | 
						|
		die("Weird page fault", regs, SIGSEGV);
 | 
						|
	}
 | 
						|
 | 
						|
	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
 | 
						|
 | 
						|
	/* When running in the kernel we expect faults to occur only to
 | 
						|
	 * addresses in user space.  All other faults represent errors in the
 | 
						|
	 * kernel and should generate an OOPS.  Unfortunately, in the case of an
 | 
						|
	 * erroneous fault occurring in a code path which already holds mmap_sem
 | 
						|
	 * we will deadlock attempting to validate the fault against the
 | 
						|
	 * address space.  Luckily the kernel only validly references user
 | 
						|
	 * space from well defined areas of code, which are listed in the
 | 
						|
	 * exceptions table.
 | 
						|
	 *
 | 
						|
	 * As the vast majority of faults will be valid we will only perform
 | 
						|
	 * the source reference check when there is a possibility of a deadlock.
 | 
						|
	 * Attempt to lock the address space, if we cannot we then validate the
 | 
						|
	 * source.  If this is invalid we can skip the address space check,
 | 
						|
	 * thus avoiding the deadlock.
 | 
						|
	 */
 | 
						|
	if (!down_read_trylock(&mm->mmap_sem)) {
 | 
						|
		if (!user_mode(regs) && !search_exception_tables(regs->nip))
 | 
						|
			goto bad_area_nosemaphore;
 | 
						|
 | 
						|
retry:
 | 
						|
		down_read(&mm->mmap_sem);
 | 
						|
	} else {
 | 
						|
		/*
 | 
						|
		 * The above down_read_trylock() might have succeeded in
 | 
						|
		 * which case we'll have missed the might_sleep() from
 | 
						|
		 * down_read():
 | 
						|
		 */
 | 
						|
		might_sleep();
 | 
						|
	}
 | 
						|
 | 
						|
	vma = find_vma(mm, address);
 | 
						|
	if (!vma)
 | 
						|
		goto bad_area;
 | 
						|
	if (vma->vm_start <= address)
 | 
						|
		goto good_area;
 | 
						|
	if (!(vma->vm_flags & VM_GROWSDOWN))
 | 
						|
		goto bad_area;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * N.B. The POWER/Open ABI allows programs to access up to
 | 
						|
	 * 288 bytes below the stack pointer.
 | 
						|
	 * The kernel signal delivery code writes up to about 1.5kB
 | 
						|
	 * below the stack pointer (r1) before decrementing it.
 | 
						|
	 * The exec code can write slightly over 640kB to the stack
 | 
						|
	 * before setting the user r1.  Thus we allow the stack to
 | 
						|
	 * expand to 1MB without further checks.
 | 
						|
	 */
 | 
						|
	if (address + 0x100000 < vma->vm_end) {
 | 
						|
		/* get user regs even if this fault is in kernel mode */
 | 
						|
		struct pt_regs *uregs = current->thread.regs;
 | 
						|
		if (uregs == NULL)
 | 
						|
			goto bad_area;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * A user-mode access to an address a long way below
 | 
						|
		 * the stack pointer is only valid if the instruction
 | 
						|
		 * is one which would update the stack pointer to the
 | 
						|
		 * address accessed if the instruction completed,
 | 
						|
		 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
 | 
						|
		 * (or the byte, halfword, float or double forms).
 | 
						|
		 *
 | 
						|
		 * If we don't check this then any write to the area
 | 
						|
		 * between the last mapped region and the stack will
 | 
						|
		 * expand the stack rather than segfaulting.
 | 
						|
		 */
 | 
						|
		if (address + 2048 < uregs->gpr[1]
 | 
						|
		    && (!user_mode(regs) || !store_updates_sp(regs)))
 | 
						|
			goto bad_area;
 | 
						|
	}
 | 
						|
	if (expand_stack(vma, address))
 | 
						|
		goto bad_area;
 | 
						|
 | 
						|
good_area:
 | 
						|
	code = SEGV_ACCERR;
 | 
						|
#if defined(CONFIG_6xx)
 | 
						|
	if (error_code & 0x95700000)
 | 
						|
		/* an error such as lwarx to I/O controller space,
 | 
						|
		   address matching DABR, eciwx, etc. */
 | 
						|
		goto bad_area;
 | 
						|
#endif /* CONFIG_6xx */
 | 
						|
#if defined(CONFIG_8xx)
 | 
						|
	/* 8xx sometimes need to load a invalid/non-present TLBs.
 | 
						|
	 * These must be invalidated separately as linux mm don't.
 | 
						|
	 */
 | 
						|
	if (error_code & 0x40000000) /* no translation? */
 | 
						|
		_tlbil_va(address, 0, 0, 0);
 | 
						|
 | 
						|
        /* The MPC8xx seems to always set 0x80000000, which is
 | 
						|
         * "undefined".  Of those that can be set, this is the only
 | 
						|
         * one which seems bad.
 | 
						|
         */
 | 
						|
	if (error_code & 0x10000000)
 | 
						|
                /* Guarded storage error. */
 | 
						|
		goto bad_area;
 | 
						|
#endif /* CONFIG_8xx */
 | 
						|
 | 
						|
	if (is_exec) {
 | 
						|
#ifdef CONFIG_PPC_STD_MMU
 | 
						|
		/* Protection fault on exec go straight to failure on
 | 
						|
		 * Hash based MMUs as they either don't support per-page
 | 
						|
		 * execute permission, or if they do, it's handled already
 | 
						|
		 * at the hash level. This test would probably have to
 | 
						|
		 * be removed if we change the way this works to make hash
 | 
						|
		 * processors use the same I/D cache coherency mechanism
 | 
						|
		 * as embedded.
 | 
						|
		 */
 | 
						|
		if (error_code & DSISR_PROTFAULT)
 | 
						|
			goto bad_area;
 | 
						|
#endif /* CONFIG_PPC_STD_MMU */
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Allow execution from readable areas if the MMU does not
 | 
						|
		 * provide separate controls over reading and executing.
 | 
						|
		 *
 | 
						|
		 * Note: That code used to not be enabled for 4xx/BookE.
 | 
						|
		 * It is now as I/D cache coherency for these is done at
 | 
						|
		 * set_pte_at() time and I see no reason why the test
 | 
						|
		 * below wouldn't be valid on those processors. This -may-
 | 
						|
		 * break programs compiled with a really old ABI though.
 | 
						|
		 */
 | 
						|
		if (!(vma->vm_flags & VM_EXEC) &&
 | 
						|
		    (cpu_has_feature(CPU_FTR_NOEXECUTE) ||
 | 
						|
		     !(vma->vm_flags & (VM_READ | VM_WRITE))))
 | 
						|
			goto bad_area;
 | 
						|
	/* a write */
 | 
						|
	} else if (is_write) {
 | 
						|
		if (!(vma->vm_flags & VM_WRITE))
 | 
						|
			goto bad_area;
 | 
						|
	/* a read */
 | 
						|
	} else {
 | 
						|
		/* protection fault */
 | 
						|
		if (error_code & 0x08000000)
 | 
						|
			goto bad_area;
 | 
						|
		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
 | 
						|
			goto bad_area;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If for any reason at all we couldn't handle the fault,
 | 
						|
	 * make sure we exit gracefully rather than endlessly redo
 | 
						|
	 * the fault.
 | 
						|
	 */
 | 
						|
	fault = handle_mm_fault(mm, vma, address, flags);
 | 
						|
	if (unlikely(fault & (VM_FAULT_RETRY|VM_FAULT_ERROR))) {
 | 
						|
		int rc = mm_fault_error(regs, address, fault);
 | 
						|
		if (rc >= MM_FAULT_RETURN)
 | 
						|
			return rc;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Major/minor page fault accounting is only done on the
 | 
						|
	 * initial attempt. If we go through a retry, it is extremely
 | 
						|
	 * likely that the page will be found in page cache at that point.
 | 
						|
	 */
 | 
						|
	if (flags & FAULT_FLAG_ALLOW_RETRY) {
 | 
						|
		if (fault & VM_FAULT_MAJOR) {
 | 
						|
			current->maj_flt++;
 | 
						|
			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
 | 
						|
				      regs, address);
 | 
						|
#ifdef CONFIG_PPC_SMLPAR
 | 
						|
			if (firmware_has_feature(FW_FEATURE_CMO)) {
 | 
						|
				preempt_disable();
 | 
						|
				get_lppaca()->page_ins += (1 << PAGE_FACTOR);
 | 
						|
				preempt_enable();
 | 
						|
			}
 | 
						|
#endif /* CONFIG_PPC_SMLPAR */
 | 
						|
		} else {
 | 
						|
			current->min_flt++;
 | 
						|
			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
 | 
						|
				      regs, address);
 | 
						|
		}
 | 
						|
		if (fault & VM_FAULT_RETRY) {
 | 
						|
			/* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
 | 
						|
			 * of starvation. */
 | 
						|
			flags &= ~FAULT_FLAG_ALLOW_RETRY;
 | 
						|
			goto retry;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	up_read(&mm->mmap_sem);
 | 
						|
	return 0;
 | 
						|
 | 
						|
bad_area:
 | 
						|
	up_read(&mm->mmap_sem);
 | 
						|
 | 
						|
bad_area_nosemaphore:
 | 
						|
	/* User mode accesses cause a SIGSEGV */
 | 
						|
	if (user_mode(regs)) {
 | 
						|
		_exception(SIGSEGV, regs, code, address);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	if (is_exec && (error_code & DSISR_PROTFAULT))
 | 
						|
		printk_ratelimited(KERN_CRIT "kernel tried to execute NX-protected"
 | 
						|
				   " page (%lx) - exploit attempt? (uid: %d)\n",
 | 
						|
				   address, current_uid());
 | 
						|
 | 
						|
	return SIGSEGV;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * bad_page_fault is called when we have a bad access from the kernel.
 | 
						|
 * It is called from the DSI and ISI handlers in head.S and from some
 | 
						|
 * of the procedures in traps.c.
 | 
						|
 */
 | 
						|
void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
 | 
						|
{
 | 
						|
	const struct exception_table_entry *entry;
 | 
						|
	unsigned long *stackend;
 | 
						|
 | 
						|
	/* Are we prepared to handle this fault?  */
 | 
						|
	if ((entry = search_exception_tables(regs->nip)) != NULL) {
 | 
						|
		regs->nip = entry->fixup;
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	/* kernel has accessed a bad area */
 | 
						|
 | 
						|
	switch (regs->trap) {
 | 
						|
	case 0x300:
 | 
						|
	case 0x380:
 | 
						|
		printk(KERN_ALERT "Unable to handle kernel paging request for "
 | 
						|
			"data at address 0x%08lx\n", regs->dar);
 | 
						|
		break;
 | 
						|
	case 0x400:
 | 
						|
	case 0x480:
 | 
						|
		printk(KERN_ALERT "Unable to handle kernel paging request for "
 | 
						|
			"instruction fetch\n");
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		printk(KERN_ALERT "Unable to handle kernel paging request for "
 | 
						|
			"unknown fault\n");
 | 
						|
		break;
 | 
						|
	}
 | 
						|
	printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
 | 
						|
		regs->nip);
 | 
						|
 | 
						|
	stackend = end_of_stack(current);
 | 
						|
	if (current != &init_task && *stackend != STACK_END_MAGIC)
 | 
						|
		printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
 | 
						|
 | 
						|
	die("Kernel access of bad area", regs, sig);
 | 
						|
}
 |