Disintegrate asm/system.h for ARM. Signed-off-by: David Howells <dhowells@redhat.com> cc: Russell King <linux@arm.linux.org.uk> cc: linux-arm-kernel@lists.infradead.org
		
			
				
	
	
		
			317 lines
		
	
	
	
		
			7.8 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			317 lines
		
	
	
	
		
			7.8 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Copyright 1995, Russell King.
 | 
						|
 * Various bits and pieces copyrights include:
 | 
						|
 *  Linus Torvalds (test_bit).
 | 
						|
 * Big endian support: Copyright 2001, Nicolas Pitre
 | 
						|
 *  reworked by rmk.
 | 
						|
 *
 | 
						|
 * bit 0 is the LSB of an "unsigned long" quantity.
 | 
						|
 *
 | 
						|
 * Please note that the code in this file should never be included
 | 
						|
 * from user space.  Many of these are not implemented in assembler
 | 
						|
 * since they would be too costly.  Also, they require privileged
 | 
						|
 * instructions (which are not available from user mode) to ensure
 | 
						|
 * that they are atomic.
 | 
						|
 */
 | 
						|
 | 
						|
#ifndef __ASM_ARM_BITOPS_H
 | 
						|
#define __ASM_ARM_BITOPS_H
 | 
						|
 | 
						|
#ifdef __KERNEL__
 | 
						|
 | 
						|
#ifndef _LINUX_BITOPS_H
 | 
						|
#error only <linux/bitops.h> can be included directly
 | 
						|
#endif
 | 
						|
 | 
						|
#include <linux/compiler.h>
 | 
						|
#include <linux/irqflags.h>
 | 
						|
 | 
						|
#define smp_mb__before_clear_bit()	smp_mb()
 | 
						|
#define smp_mb__after_clear_bit()	smp_mb()
 | 
						|
 | 
						|
/*
 | 
						|
 * These functions are the basis of our bit ops.
 | 
						|
 *
 | 
						|
 * First, the atomic bitops. These use native endian.
 | 
						|
 */
 | 
						|
static inline void ____atomic_set_bit(unsigned int bit, volatile unsigned long *p)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	unsigned long mask = 1UL << (bit & 31);
 | 
						|
 | 
						|
	p += bit >> 5;
 | 
						|
 | 
						|
	raw_local_irq_save(flags);
 | 
						|
	*p |= mask;
 | 
						|
	raw_local_irq_restore(flags);
 | 
						|
}
 | 
						|
 | 
						|
static inline void ____atomic_clear_bit(unsigned int bit, volatile unsigned long *p)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	unsigned long mask = 1UL << (bit & 31);
 | 
						|
 | 
						|
	p += bit >> 5;
 | 
						|
 | 
						|
	raw_local_irq_save(flags);
 | 
						|
	*p &= ~mask;
 | 
						|
	raw_local_irq_restore(flags);
 | 
						|
}
 | 
						|
 | 
						|
static inline void ____atomic_change_bit(unsigned int bit, volatile unsigned long *p)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	unsigned long mask = 1UL << (bit & 31);
 | 
						|
 | 
						|
	p += bit >> 5;
 | 
						|
 | 
						|
	raw_local_irq_save(flags);
 | 
						|
	*p ^= mask;
 | 
						|
	raw_local_irq_restore(flags);
 | 
						|
}
 | 
						|
 | 
						|
static inline int
 | 
						|
____atomic_test_and_set_bit(unsigned int bit, volatile unsigned long *p)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	unsigned int res;
 | 
						|
	unsigned long mask = 1UL << (bit & 31);
 | 
						|
 | 
						|
	p += bit >> 5;
 | 
						|
 | 
						|
	raw_local_irq_save(flags);
 | 
						|
	res = *p;
 | 
						|
	*p = res | mask;
 | 
						|
	raw_local_irq_restore(flags);
 | 
						|
 | 
						|
	return (res & mask) != 0;
 | 
						|
}
 | 
						|
 | 
						|
static inline int
 | 
						|
____atomic_test_and_clear_bit(unsigned int bit, volatile unsigned long *p)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	unsigned int res;
 | 
						|
	unsigned long mask = 1UL << (bit & 31);
 | 
						|
 | 
						|
	p += bit >> 5;
 | 
						|
 | 
						|
	raw_local_irq_save(flags);
 | 
						|
	res = *p;
 | 
						|
	*p = res & ~mask;
 | 
						|
	raw_local_irq_restore(flags);
 | 
						|
 | 
						|
	return (res & mask) != 0;
 | 
						|
}
 | 
						|
 | 
						|
static inline int
 | 
						|
____atomic_test_and_change_bit(unsigned int bit, volatile unsigned long *p)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	unsigned int res;
 | 
						|
	unsigned long mask = 1UL << (bit & 31);
 | 
						|
 | 
						|
	p += bit >> 5;
 | 
						|
 | 
						|
	raw_local_irq_save(flags);
 | 
						|
	res = *p;
 | 
						|
	*p = res ^ mask;
 | 
						|
	raw_local_irq_restore(flags);
 | 
						|
 | 
						|
	return (res & mask) != 0;
 | 
						|
}
 | 
						|
 | 
						|
#include <asm-generic/bitops/non-atomic.h>
 | 
						|
 | 
						|
/*
 | 
						|
 *  A note about Endian-ness.
 | 
						|
 *  -------------------------
 | 
						|
 *
 | 
						|
 * When the ARM is put into big endian mode via CR15, the processor
 | 
						|
 * merely swaps the order of bytes within words, thus:
 | 
						|
 *
 | 
						|
 *          ------------ physical data bus bits -----------
 | 
						|
 *          D31 ... D24  D23 ... D16  D15 ... D8  D7 ... D0
 | 
						|
 * little     byte 3       byte 2       byte 1      byte 0
 | 
						|
 * big        byte 0       byte 1       byte 2      byte 3
 | 
						|
 *
 | 
						|
 * This means that reading a 32-bit word at address 0 returns the same
 | 
						|
 * value irrespective of the endian mode bit.
 | 
						|
 *
 | 
						|
 * Peripheral devices should be connected with the data bus reversed in
 | 
						|
 * "Big Endian" mode.  ARM Application Note 61 is applicable, and is
 | 
						|
 * available from http://www.arm.com/.
 | 
						|
 *
 | 
						|
 * The following assumes that the data bus connectivity for big endian
 | 
						|
 * mode has been followed.
 | 
						|
 *
 | 
						|
 * Note that bit 0 is defined to be 32-bit word bit 0, not byte 0 bit 0.
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * Native endian assembly bitops.  nr = 0 -> word 0 bit 0.
 | 
						|
 */
 | 
						|
extern void _set_bit(int nr, volatile unsigned long * p);
 | 
						|
extern void _clear_bit(int nr, volatile unsigned long * p);
 | 
						|
extern void _change_bit(int nr, volatile unsigned long * p);
 | 
						|
extern int _test_and_set_bit(int nr, volatile unsigned long * p);
 | 
						|
extern int _test_and_clear_bit(int nr, volatile unsigned long * p);
 | 
						|
extern int _test_and_change_bit(int nr, volatile unsigned long * p);
 | 
						|
 | 
						|
/*
 | 
						|
 * Little endian assembly bitops.  nr = 0 -> byte 0 bit 0.
 | 
						|
 */
 | 
						|
extern int _find_first_zero_bit_le(const void * p, unsigned size);
 | 
						|
extern int _find_next_zero_bit_le(const void * p, int size, int offset);
 | 
						|
extern int _find_first_bit_le(const unsigned long *p, unsigned size);
 | 
						|
extern int _find_next_bit_le(const unsigned long *p, int size, int offset);
 | 
						|
 | 
						|
/*
 | 
						|
 * Big endian assembly bitops.  nr = 0 -> byte 3 bit 0.
 | 
						|
 */
 | 
						|
extern int _find_first_zero_bit_be(const void * p, unsigned size);
 | 
						|
extern int _find_next_zero_bit_be(const void * p, int size, int offset);
 | 
						|
extern int _find_first_bit_be(const unsigned long *p, unsigned size);
 | 
						|
extern int _find_next_bit_be(const unsigned long *p, int size, int offset);
 | 
						|
 | 
						|
#ifndef CONFIG_SMP
 | 
						|
/*
 | 
						|
 * The __* form of bitops are non-atomic and may be reordered.
 | 
						|
 */
 | 
						|
#define ATOMIC_BITOP(name,nr,p)			\
 | 
						|
	(__builtin_constant_p(nr) ? ____atomic_##name(nr, p) : _##name(nr,p))
 | 
						|
#else
 | 
						|
#define ATOMIC_BITOP(name,nr,p)		_##name(nr,p)
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * Native endian atomic definitions.
 | 
						|
 */
 | 
						|
#define set_bit(nr,p)			ATOMIC_BITOP(set_bit,nr,p)
 | 
						|
#define clear_bit(nr,p)			ATOMIC_BITOP(clear_bit,nr,p)
 | 
						|
#define change_bit(nr,p)		ATOMIC_BITOP(change_bit,nr,p)
 | 
						|
#define test_and_set_bit(nr,p)		ATOMIC_BITOP(test_and_set_bit,nr,p)
 | 
						|
#define test_and_clear_bit(nr,p)	ATOMIC_BITOP(test_and_clear_bit,nr,p)
 | 
						|
#define test_and_change_bit(nr,p)	ATOMIC_BITOP(test_and_change_bit,nr,p)
 | 
						|
 | 
						|
#ifndef __ARMEB__
 | 
						|
/*
 | 
						|
 * These are the little endian, atomic definitions.
 | 
						|
 */
 | 
						|
#define find_first_zero_bit(p,sz)	_find_first_zero_bit_le(p,sz)
 | 
						|
#define find_next_zero_bit(p,sz,off)	_find_next_zero_bit_le(p,sz,off)
 | 
						|
#define find_first_bit(p,sz)		_find_first_bit_le(p,sz)
 | 
						|
#define find_next_bit(p,sz,off)		_find_next_bit_le(p,sz,off)
 | 
						|
 | 
						|
#else
 | 
						|
/*
 | 
						|
 * These are the big endian, atomic definitions.
 | 
						|
 */
 | 
						|
#define find_first_zero_bit(p,sz)	_find_first_zero_bit_be(p,sz)
 | 
						|
#define find_next_zero_bit(p,sz,off)	_find_next_zero_bit_be(p,sz,off)
 | 
						|
#define find_first_bit(p,sz)		_find_first_bit_be(p,sz)
 | 
						|
#define find_next_bit(p,sz,off)		_find_next_bit_be(p,sz,off)
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
#if __LINUX_ARM_ARCH__ < 5
 | 
						|
 | 
						|
#include <asm-generic/bitops/ffz.h>
 | 
						|
#include <asm-generic/bitops/__fls.h>
 | 
						|
#include <asm-generic/bitops/__ffs.h>
 | 
						|
#include <asm-generic/bitops/fls.h>
 | 
						|
#include <asm-generic/bitops/ffs.h>
 | 
						|
 | 
						|
#else
 | 
						|
 | 
						|
static inline int constant_fls(int x)
 | 
						|
{
 | 
						|
	int r = 32;
 | 
						|
 | 
						|
	if (!x)
 | 
						|
		return 0;
 | 
						|
	if (!(x & 0xffff0000u)) {
 | 
						|
		x <<= 16;
 | 
						|
		r -= 16;
 | 
						|
	}
 | 
						|
	if (!(x & 0xff000000u)) {
 | 
						|
		x <<= 8;
 | 
						|
		r -= 8;
 | 
						|
	}
 | 
						|
	if (!(x & 0xf0000000u)) {
 | 
						|
		x <<= 4;
 | 
						|
		r -= 4;
 | 
						|
	}
 | 
						|
	if (!(x & 0xc0000000u)) {
 | 
						|
		x <<= 2;
 | 
						|
		r -= 2;
 | 
						|
	}
 | 
						|
	if (!(x & 0x80000000u)) {
 | 
						|
		x <<= 1;
 | 
						|
		r -= 1;
 | 
						|
	}
 | 
						|
	return r;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * On ARMv5 and above those functions can be implemented around
 | 
						|
 * the clz instruction for much better code efficiency.
 | 
						|
 */
 | 
						|
 | 
						|
static inline int fls(int x)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
 | 
						|
	if (__builtin_constant_p(x))
 | 
						|
	       return constant_fls(x);
 | 
						|
 | 
						|
	asm("clz\t%0, %1" : "=r" (ret) : "r" (x));
 | 
						|
       	ret = 32 - ret;
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
#define __fls(x) (fls(x) - 1)
 | 
						|
#define ffs(x) ({ unsigned long __t = (x); fls(__t & -__t); })
 | 
						|
#define __ffs(x) (ffs(x) - 1)
 | 
						|
#define ffz(x) __ffs( ~(x) )
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
#include <asm-generic/bitops/fls64.h>
 | 
						|
 | 
						|
#include <asm-generic/bitops/sched.h>
 | 
						|
#include <asm-generic/bitops/hweight.h>
 | 
						|
#include <asm-generic/bitops/lock.h>
 | 
						|
 | 
						|
#ifdef __ARMEB__
 | 
						|
 | 
						|
static inline int find_first_zero_bit_le(const void *p, unsigned size)
 | 
						|
{
 | 
						|
	return _find_first_zero_bit_le(p, size);
 | 
						|
}
 | 
						|
#define find_first_zero_bit_le find_first_zero_bit_le
 | 
						|
 | 
						|
static inline int find_next_zero_bit_le(const void *p, int size, int offset)
 | 
						|
{
 | 
						|
	return _find_next_zero_bit_le(p, size, offset);
 | 
						|
}
 | 
						|
#define find_next_zero_bit_le find_next_zero_bit_le
 | 
						|
 | 
						|
static inline int find_next_bit_le(const void *p, int size, int offset)
 | 
						|
{
 | 
						|
	return _find_next_bit_le(p, size, offset);
 | 
						|
}
 | 
						|
#define find_next_bit_le find_next_bit_le
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
#include <asm-generic/bitops/le.h>
 | 
						|
 | 
						|
/*
 | 
						|
 * Ext2 is defined to use little-endian byte ordering.
 | 
						|
 */
 | 
						|
#include <asm-generic/bitops/ext2-atomic-setbit.h>
 | 
						|
 | 
						|
#endif /* __KERNEL__ */
 | 
						|
 | 
						|
#endif /* _ARM_BITOPS_H */
 |