 a27bb332c0
			
		
	
	
	a27bb332c0
	
	
	
		
			
			Faster kernel compiles by way of fewer unnecessary includes. [akpm@linux-foundation.org: fix fallout] [akpm@linux-foundation.org: fix build] Signed-off-by: Kent Overstreet <koverstreet@google.com> Cc: Zach Brown <zab@redhat.com> Cc: Felipe Balbi <balbi@ti.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Mark Fasheh <mfasheh@suse.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Jens Axboe <axboe@kernel.dk> Cc: Asai Thambi S P <asamymuthupa@micron.com> Cc: Selvan Mani <smani@micron.com> Cc: Sam Bradshaw <sbradshaw@micron.com> Cc: Jeff Moyer <jmoyer@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Benjamin LaHaise <bcrl@kvack.org> Reviewed-by: "Theodore Ts'o" <tytso@mit.edu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			883 lines
		
	
	
	
		
			24 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			883 lines
		
	
	
	
		
			24 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  linux/mm/swap.c
 | |
|  *
 | |
|  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * This file contains the default values for the operation of the
 | |
|  * Linux VM subsystem. Fine-tuning documentation can be found in
 | |
|  * Documentation/sysctl/vm.txt.
 | |
|  * Started 18.12.91
 | |
|  * Swap aging added 23.2.95, Stephen Tweedie.
 | |
|  * Buffermem limits added 12.3.98, Rik van Riel.
 | |
|  */
 | |
| 
 | |
| #include <linux/mm.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/kernel_stat.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/mman.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/pagevec.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/mm_inline.h>
 | |
| #include <linux/percpu_counter.h>
 | |
| #include <linux/percpu.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/notifier.h>
 | |
| #include <linux/backing-dev.h>
 | |
| #include <linux/memcontrol.h>
 | |
| #include <linux/gfp.h>
 | |
| #include <linux/uio.h>
 | |
| 
 | |
| #include "internal.h"
 | |
| 
 | |
| /* How many pages do we try to swap or page in/out together? */
 | |
| int page_cluster;
 | |
| 
 | |
| static DEFINE_PER_CPU(struct pagevec[NR_LRU_LISTS], lru_add_pvecs);
 | |
| static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
 | |
| static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
 | |
| 
 | |
| /*
 | |
|  * This path almost never happens for VM activity - pages are normally
 | |
|  * freed via pagevecs.  But it gets used by networking.
 | |
|  */
 | |
| static void __page_cache_release(struct page *page)
 | |
| {
 | |
| 	if (PageLRU(page)) {
 | |
| 		struct zone *zone = page_zone(page);
 | |
| 		struct lruvec *lruvec;
 | |
| 		unsigned long flags;
 | |
| 
 | |
| 		spin_lock_irqsave(&zone->lru_lock, flags);
 | |
| 		lruvec = mem_cgroup_page_lruvec(page, zone);
 | |
| 		VM_BUG_ON(!PageLRU(page));
 | |
| 		__ClearPageLRU(page);
 | |
| 		del_page_from_lru_list(page, lruvec, page_off_lru(page));
 | |
| 		spin_unlock_irqrestore(&zone->lru_lock, flags);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __put_single_page(struct page *page)
 | |
| {
 | |
| 	__page_cache_release(page);
 | |
| 	free_hot_cold_page(page, 0);
 | |
| }
 | |
| 
 | |
| static void __put_compound_page(struct page *page)
 | |
| {
 | |
| 	compound_page_dtor *dtor;
 | |
| 
 | |
| 	__page_cache_release(page);
 | |
| 	dtor = get_compound_page_dtor(page);
 | |
| 	(*dtor)(page);
 | |
| }
 | |
| 
 | |
| static void put_compound_page(struct page *page)
 | |
| {
 | |
| 	if (unlikely(PageTail(page))) {
 | |
| 		/* __split_huge_page_refcount can run under us */
 | |
| 		struct page *page_head = compound_trans_head(page);
 | |
| 
 | |
| 		if (likely(page != page_head &&
 | |
| 			   get_page_unless_zero(page_head))) {
 | |
| 			unsigned long flags;
 | |
| 
 | |
| 			/*
 | |
| 			 * THP can not break up slab pages so avoid taking
 | |
| 			 * compound_lock().  Slab performs non-atomic bit ops
 | |
| 			 * on page->flags for better performance.  In particular
 | |
| 			 * slab_unlock() in slub used to be a hot path.  It is
 | |
| 			 * still hot on arches that do not support
 | |
| 			 * this_cpu_cmpxchg_double().
 | |
| 			 */
 | |
| 			if (PageSlab(page_head)) {
 | |
| 				if (PageTail(page)) {
 | |
| 					if (put_page_testzero(page_head))
 | |
| 						VM_BUG_ON(1);
 | |
| 
 | |
| 					atomic_dec(&page->_mapcount);
 | |
| 					goto skip_lock_tail;
 | |
| 				} else
 | |
| 					goto skip_lock;
 | |
| 			}
 | |
| 			/*
 | |
| 			 * page_head wasn't a dangling pointer but it
 | |
| 			 * may not be a head page anymore by the time
 | |
| 			 * we obtain the lock. That is ok as long as it
 | |
| 			 * can't be freed from under us.
 | |
| 			 */
 | |
| 			flags = compound_lock_irqsave(page_head);
 | |
| 			if (unlikely(!PageTail(page))) {
 | |
| 				/* __split_huge_page_refcount run before us */
 | |
| 				compound_unlock_irqrestore(page_head, flags);
 | |
| skip_lock:
 | |
| 				if (put_page_testzero(page_head))
 | |
| 					__put_single_page(page_head);
 | |
| out_put_single:
 | |
| 				if (put_page_testzero(page))
 | |
| 					__put_single_page(page);
 | |
| 				return;
 | |
| 			}
 | |
| 			VM_BUG_ON(page_head != page->first_page);
 | |
| 			/*
 | |
| 			 * We can release the refcount taken by
 | |
| 			 * get_page_unless_zero() now that
 | |
| 			 * __split_huge_page_refcount() is blocked on
 | |
| 			 * the compound_lock.
 | |
| 			 */
 | |
| 			if (put_page_testzero(page_head))
 | |
| 				VM_BUG_ON(1);
 | |
| 			/* __split_huge_page_refcount will wait now */
 | |
| 			VM_BUG_ON(page_mapcount(page) <= 0);
 | |
| 			atomic_dec(&page->_mapcount);
 | |
| 			VM_BUG_ON(atomic_read(&page_head->_count) <= 0);
 | |
| 			VM_BUG_ON(atomic_read(&page->_count) != 0);
 | |
| 			compound_unlock_irqrestore(page_head, flags);
 | |
| 
 | |
| skip_lock_tail:
 | |
| 			if (put_page_testzero(page_head)) {
 | |
| 				if (PageHead(page_head))
 | |
| 					__put_compound_page(page_head);
 | |
| 				else
 | |
| 					__put_single_page(page_head);
 | |
| 			}
 | |
| 		} else {
 | |
| 			/* page_head is a dangling pointer */
 | |
| 			VM_BUG_ON(PageTail(page));
 | |
| 			goto out_put_single;
 | |
| 		}
 | |
| 	} else if (put_page_testzero(page)) {
 | |
| 		if (PageHead(page))
 | |
| 			__put_compound_page(page);
 | |
| 		else
 | |
| 			__put_single_page(page);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void put_page(struct page *page)
 | |
| {
 | |
| 	if (unlikely(PageCompound(page)))
 | |
| 		put_compound_page(page);
 | |
| 	else if (put_page_testzero(page))
 | |
| 		__put_single_page(page);
 | |
| }
 | |
| EXPORT_SYMBOL(put_page);
 | |
| 
 | |
| /*
 | |
|  * This function is exported but must not be called by anything other
 | |
|  * than get_page(). It implements the slow path of get_page().
 | |
|  */
 | |
| bool __get_page_tail(struct page *page)
 | |
| {
 | |
| 	/*
 | |
| 	 * This takes care of get_page() if run on a tail page
 | |
| 	 * returned by one of the get_user_pages/follow_page variants.
 | |
| 	 * get_user_pages/follow_page itself doesn't need the compound
 | |
| 	 * lock because it runs __get_page_tail_foll() under the
 | |
| 	 * proper PT lock that already serializes against
 | |
| 	 * split_huge_page().
 | |
| 	 */
 | |
| 	unsigned long flags;
 | |
| 	bool got = false;
 | |
| 	struct page *page_head = compound_trans_head(page);
 | |
| 
 | |
| 	if (likely(page != page_head && get_page_unless_zero(page_head))) {
 | |
| 
 | |
| 		/* Ref to put_compound_page() comment. */
 | |
| 		if (PageSlab(page_head)) {
 | |
| 			if (likely(PageTail(page))) {
 | |
| 				__get_page_tail_foll(page, false);
 | |
| 				return true;
 | |
| 			} else {
 | |
| 				put_page(page_head);
 | |
| 				return false;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * page_head wasn't a dangling pointer but it
 | |
| 		 * may not be a head page anymore by the time
 | |
| 		 * we obtain the lock. That is ok as long as it
 | |
| 		 * can't be freed from under us.
 | |
| 		 */
 | |
| 		flags = compound_lock_irqsave(page_head);
 | |
| 		/* here __split_huge_page_refcount won't run anymore */
 | |
| 		if (likely(PageTail(page))) {
 | |
| 			__get_page_tail_foll(page, false);
 | |
| 			got = true;
 | |
| 		}
 | |
| 		compound_unlock_irqrestore(page_head, flags);
 | |
| 		if (unlikely(!got))
 | |
| 			put_page(page_head);
 | |
| 	}
 | |
| 	return got;
 | |
| }
 | |
| EXPORT_SYMBOL(__get_page_tail);
 | |
| 
 | |
| /**
 | |
|  * put_pages_list() - release a list of pages
 | |
|  * @pages: list of pages threaded on page->lru
 | |
|  *
 | |
|  * Release a list of pages which are strung together on page.lru.  Currently
 | |
|  * used by read_cache_pages() and related error recovery code.
 | |
|  */
 | |
| void put_pages_list(struct list_head *pages)
 | |
| {
 | |
| 	while (!list_empty(pages)) {
 | |
| 		struct page *victim;
 | |
| 
 | |
| 		victim = list_entry(pages->prev, struct page, lru);
 | |
| 		list_del(&victim->lru);
 | |
| 		page_cache_release(victim);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(put_pages_list);
 | |
| 
 | |
| /*
 | |
|  * get_kernel_pages() - pin kernel pages in memory
 | |
|  * @kiov:	An array of struct kvec structures
 | |
|  * @nr_segs:	number of segments to pin
 | |
|  * @write:	pinning for read/write, currently ignored
 | |
|  * @pages:	array that receives pointers to the pages pinned.
 | |
|  *		Should be at least nr_segs long.
 | |
|  *
 | |
|  * Returns number of pages pinned. This may be fewer than the number
 | |
|  * requested. If nr_pages is 0 or negative, returns 0. If no pages
 | |
|  * were pinned, returns -errno. Each page returned must be released
 | |
|  * with a put_page() call when it is finished with.
 | |
|  */
 | |
| int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
 | |
| 		struct page **pages)
 | |
| {
 | |
| 	int seg;
 | |
| 
 | |
| 	for (seg = 0; seg < nr_segs; seg++) {
 | |
| 		if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
 | |
| 			return seg;
 | |
| 
 | |
| 		pages[seg] = kmap_to_page(kiov[seg].iov_base);
 | |
| 		page_cache_get(pages[seg]);
 | |
| 	}
 | |
| 
 | |
| 	return seg;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(get_kernel_pages);
 | |
| 
 | |
| /*
 | |
|  * get_kernel_page() - pin a kernel page in memory
 | |
|  * @start:	starting kernel address
 | |
|  * @write:	pinning for read/write, currently ignored
 | |
|  * @pages:	array that receives pointer to the page pinned.
 | |
|  *		Must be at least nr_segs long.
 | |
|  *
 | |
|  * Returns 1 if page is pinned. If the page was not pinned, returns
 | |
|  * -errno. The page returned must be released with a put_page() call
 | |
|  * when it is finished with.
 | |
|  */
 | |
| int get_kernel_page(unsigned long start, int write, struct page **pages)
 | |
| {
 | |
| 	const struct kvec kiov = {
 | |
| 		.iov_base = (void *)start,
 | |
| 		.iov_len = PAGE_SIZE
 | |
| 	};
 | |
| 
 | |
| 	return get_kernel_pages(&kiov, 1, write, pages);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(get_kernel_page);
 | |
| 
 | |
| static void pagevec_lru_move_fn(struct pagevec *pvec,
 | |
| 	void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
 | |
| 	void *arg)
 | |
| {
 | |
| 	int i;
 | |
| 	struct zone *zone = NULL;
 | |
| 	struct lruvec *lruvec;
 | |
| 	unsigned long flags = 0;
 | |
| 
 | |
| 	for (i = 0; i < pagevec_count(pvec); i++) {
 | |
| 		struct page *page = pvec->pages[i];
 | |
| 		struct zone *pagezone = page_zone(page);
 | |
| 
 | |
| 		if (pagezone != zone) {
 | |
| 			if (zone)
 | |
| 				spin_unlock_irqrestore(&zone->lru_lock, flags);
 | |
| 			zone = pagezone;
 | |
| 			spin_lock_irqsave(&zone->lru_lock, flags);
 | |
| 		}
 | |
| 
 | |
| 		lruvec = mem_cgroup_page_lruvec(page, zone);
 | |
| 		(*move_fn)(page, lruvec, arg);
 | |
| 	}
 | |
| 	if (zone)
 | |
| 		spin_unlock_irqrestore(&zone->lru_lock, flags);
 | |
| 	release_pages(pvec->pages, pvec->nr, pvec->cold);
 | |
| 	pagevec_reinit(pvec);
 | |
| }
 | |
| 
 | |
| static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
 | |
| 				 void *arg)
 | |
| {
 | |
| 	int *pgmoved = arg;
 | |
| 
 | |
| 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
 | |
| 		enum lru_list lru = page_lru_base_type(page);
 | |
| 		list_move_tail(&page->lru, &lruvec->lists[lru]);
 | |
| 		(*pgmoved)++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * pagevec_move_tail() must be called with IRQ disabled.
 | |
|  * Otherwise this may cause nasty races.
 | |
|  */
 | |
| static void pagevec_move_tail(struct pagevec *pvec)
 | |
| {
 | |
| 	int pgmoved = 0;
 | |
| 
 | |
| 	pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
 | |
| 	__count_vm_events(PGROTATED, pgmoved);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Writeback is about to end against a page which has been marked for immediate
 | |
|  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
 | |
|  * inactive list.
 | |
|  */
 | |
| void rotate_reclaimable_page(struct page *page)
 | |
| {
 | |
| 	if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
 | |
| 	    !PageUnevictable(page) && PageLRU(page)) {
 | |
| 		struct pagevec *pvec;
 | |
| 		unsigned long flags;
 | |
| 
 | |
| 		page_cache_get(page);
 | |
| 		local_irq_save(flags);
 | |
| 		pvec = &__get_cpu_var(lru_rotate_pvecs);
 | |
| 		if (!pagevec_add(pvec, page))
 | |
| 			pagevec_move_tail(pvec);
 | |
| 		local_irq_restore(flags);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void update_page_reclaim_stat(struct lruvec *lruvec,
 | |
| 				     int file, int rotated)
 | |
| {
 | |
| 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
 | |
| 
 | |
| 	reclaim_stat->recent_scanned[file]++;
 | |
| 	if (rotated)
 | |
| 		reclaim_stat->recent_rotated[file]++;
 | |
| }
 | |
| 
 | |
| static void __activate_page(struct page *page, struct lruvec *lruvec,
 | |
| 			    void *arg)
 | |
| {
 | |
| 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
 | |
| 		int file = page_is_file_cache(page);
 | |
| 		int lru = page_lru_base_type(page);
 | |
| 
 | |
| 		del_page_from_lru_list(page, lruvec, lru);
 | |
| 		SetPageActive(page);
 | |
| 		lru += LRU_ACTIVE;
 | |
| 		add_page_to_lru_list(page, lruvec, lru);
 | |
| 
 | |
| 		__count_vm_event(PGACTIVATE);
 | |
| 		update_page_reclaim_stat(lruvec, file, 1);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
 | |
| 
 | |
| static void activate_page_drain(int cpu)
 | |
| {
 | |
| 	struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
 | |
| 
 | |
| 	if (pagevec_count(pvec))
 | |
| 		pagevec_lru_move_fn(pvec, __activate_page, NULL);
 | |
| }
 | |
| 
 | |
| void activate_page(struct page *page)
 | |
| {
 | |
| 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
 | |
| 		struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
 | |
| 
 | |
| 		page_cache_get(page);
 | |
| 		if (!pagevec_add(pvec, page))
 | |
| 			pagevec_lru_move_fn(pvec, __activate_page, NULL);
 | |
| 		put_cpu_var(activate_page_pvecs);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #else
 | |
| static inline void activate_page_drain(int cpu)
 | |
| {
 | |
| }
 | |
| 
 | |
| void activate_page(struct page *page)
 | |
| {
 | |
| 	struct zone *zone = page_zone(page);
 | |
| 
 | |
| 	spin_lock_irq(&zone->lru_lock);
 | |
| 	__activate_page(page, mem_cgroup_page_lruvec(page, zone), NULL);
 | |
| 	spin_unlock_irq(&zone->lru_lock);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Mark a page as having seen activity.
 | |
|  *
 | |
|  * inactive,unreferenced	->	inactive,referenced
 | |
|  * inactive,referenced		->	active,unreferenced
 | |
|  * active,unreferenced		->	active,referenced
 | |
|  */
 | |
| void mark_page_accessed(struct page *page)
 | |
| {
 | |
| 	if (!PageActive(page) && !PageUnevictable(page) &&
 | |
| 			PageReferenced(page) && PageLRU(page)) {
 | |
| 		activate_page(page);
 | |
| 		ClearPageReferenced(page);
 | |
| 	} else if (!PageReferenced(page)) {
 | |
| 		SetPageReferenced(page);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(mark_page_accessed);
 | |
| 
 | |
| /*
 | |
|  * Order of operations is important: flush the pagevec when it's already
 | |
|  * full, not when adding the last page, to make sure that last page is
 | |
|  * not added to the LRU directly when passed to this function. Because
 | |
|  * mark_page_accessed() (called after this when writing) only activates
 | |
|  * pages that are on the LRU, linear writes in subpage chunks would see
 | |
|  * every PAGEVEC_SIZE page activated, which is unexpected.
 | |
|  */
 | |
| void __lru_cache_add(struct page *page, enum lru_list lru)
 | |
| {
 | |
| 	struct pagevec *pvec = &get_cpu_var(lru_add_pvecs)[lru];
 | |
| 
 | |
| 	page_cache_get(page);
 | |
| 	if (!pagevec_space(pvec))
 | |
| 		__pagevec_lru_add(pvec, lru);
 | |
| 	pagevec_add(pvec, page);
 | |
| 	put_cpu_var(lru_add_pvecs);
 | |
| }
 | |
| EXPORT_SYMBOL(__lru_cache_add);
 | |
| 
 | |
| /**
 | |
|  * lru_cache_add_lru - add a page to a page list
 | |
|  * @page: the page to be added to the LRU.
 | |
|  * @lru: the LRU list to which the page is added.
 | |
|  */
 | |
| void lru_cache_add_lru(struct page *page, enum lru_list lru)
 | |
| {
 | |
| 	if (PageActive(page)) {
 | |
| 		VM_BUG_ON(PageUnevictable(page));
 | |
| 		ClearPageActive(page);
 | |
| 	} else if (PageUnevictable(page)) {
 | |
| 		VM_BUG_ON(PageActive(page));
 | |
| 		ClearPageUnevictable(page);
 | |
| 	}
 | |
| 
 | |
| 	VM_BUG_ON(PageLRU(page) || PageActive(page) || PageUnevictable(page));
 | |
| 	__lru_cache_add(page, lru);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * add_page_to_unevictable_list - add a page to the unevictable list
 | |
|  * @page:  the page to be added to the unevictable list
 | |
|  *
 | |
|  * Add page directly to its zone's unevictable list.  To avoid races with
 | |
|  * tasks that might be making the page evictable, through eg. munlock,
 | |
|  * munmap or exit, while it's not on the lru, we want to add the page
 | |
|  * while it's locked or otherwise "invisible" to other tasks.  This is
 | |
|  * difficult to do when using the pagevec cache, so bypass that.
 | |
|  */
 | |
| void add_page_to_unevictable_list(struct page *page)
 | |
| {
 | |
| 	struct zone *zone = page_zone(page);
 | |
| 	struct lruvec *lruvec;
 | |
| 
 | |
| 	spin_lock_irq(&zone->lru_lock);
 | |
| 	lruvec = mem_cgroup_page_lruvec(page, zone);
 | |
| 	SetPageUnevictable(page);
 | |
| 	SetPageLRU(page);
 | |
| 	add_page_to_lru_list(page, lruvec, LRU_UNEVICTABLE);
 | |
| 	spin_unlock_irq(&zone->lru_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If the page can not be invalidated, it is moved to the
 | |
|  * inactive list to speed up its reclaim.  It is moved to the
 | |
|  * head of the list, rather than the tail, to give the flusher
 | |
|  * threads some time to write it out, as this is much more
 | |
|  * effective than the single-page writeout from reclaim.
 | |
|  *
 | |
|  * If the page isn't page_mapped and dirty/writeback, the page
 | |
|  * could reclaim asap using PG_reclaim.
 | |
|  *
 | |
|  * 1. active, mapped page -> none
 | |
|  * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
 | |
|  * 3. inactive, mapped page -> none
 | |
|  * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
 | |
|  * 5. inactive, clean -> inactive, tail
 | |
|  * 6. Others -> none
 | |
|  *
 | |
|  * In 4, why it moves inactive's head, the VM expects the page would
 | |
|  * be write it out by flusher threads as this is much more effective
 | |
|  * than the single-page writeout from reclaim.
 | |
|  */
 | |
| static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec,
 | |
| 			      void *arg)
 | |
| {
 | |
| 	int lru, file;
 | |
| 	bool active;
 | |
| 
 | |
| 	if (!PageLRU(page))
 | |
| 		return;
 | |
| 
 | |
| 	if (PageUnevictable(page))
 | |
| 		return;
 | |
| 
 | |
| 	/* Some processes are using the page */
 | |
| 	if (page_mapped(page))
 | |
| 		return;
 | |
| 
 | |
| 	active = PageActive(page);
 | |
| 	file = page_is_file_cache(page);
 | |
| 	lru = page_lru_base_type(page);
 | |
| 
 | |
| 	del_page_from_lru_list(page, lruvec, lru + active);
 | |
| 	ClearPageActive(page);
 | |
| 	ClearPageReferenced(page);
 | |
| 	add_page_to_lru_list(page, lruvec, lru);
 | |
| 
 | |
| 	if (PageWriteback(page) || PageDirty(page)) {
 | |
| 		/*
 | |
| 		 * PG_reclaim could be raced with end_page_writeback
 | |
| 		 * It can make readahead confusing.  But race window
 | |
| 		 * is _really_ small and  it's non-critical problem.
 | |
| 		 */
 | |
| 		SetPageReclaim(page);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * The page's writeback ends up during pagevec
 | |
| 		 * We moves tha page into tail of inactive.
 | |
| 		 */
 | |
| 		list_move_tail(&page->lru, &lruvec->lists[lru]);
 | |
| 		__count_vm_event(PGROTATED);
 | |
| 	}
 | |
| 
 | |
| 	if (active)
 | |
| 		__count_vm_event(PGDEACTIVATE);
 | |
| 	update_page_reclaim_stat(lruvec, file, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Drain pages out of the cpu's pagevecs.
 | |
|  * Either "cpu" is the current CPU, and preemption has already been
 | |
|  * disabled; or "cpu" is being hot-unplugged, and is already dead.
 | |
|  */
 | |
| void lru_add_drain_cpu(int cpu)
 | |
| {
 | |
| 	struct pagevec *pvecs = per_cpu(lru_add_pvecs, cpu);
 | |
| 	struct pagevec *pvec;
 | |
| 	int lru;
 | |
| 
 | |
| 	for_each_lru(lru) {
 | |
| 		pvec = &pvecs[lru - LRU_BASE];
 | |
| 		if (pagevec_count(pvec))
 | |
| 			__pagevec_lru_add(pvec, lru);
 | |
| 	}
 | |
| 
 | |
| 	pvec = &per_cpu(lru_rotate_pvecs, cpu);
 | |
| 	if (pagevec_count(pvec)) {
 | |
| 		unsigned long flags;
 | |
| 
 | |
| 		/* No harm done if a racing interrupt already did this */
 | |
| 		local_irq_save(flags);
 | |
| 		pagevec_move_tail(pvec);
 | |
| 		local_irq_restore(flags);
 | |
| 	}
 | |
| 
 | |
| 	pvec = &per_cpu(lru_deactivate_pvecs, cpu);
 | |
| 	if (pagevec_count(pvec))
 | |
| 		pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
 | |
| 
 | |
| 	activate_page_drain(cpu);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * deactivate_page - forcefully deactivate a page
 | |
|  * @page: page to deactivate
 | |
|  *
 | |
|  * This function hints the VM that @page is a good reclaim candidate,
 | |
|  * for example if its invalidation fails due to the page being dirty
 | |
|  * or under writeback.
 | |
|  */
 | |
| void deactivate_page(struct page *page)
 | |
| {
 | |
| 	/*
 | |
| 	 * In a workload with many unevictable page such as mprotect, unevictable
 | |
| 	 * page deactivation for accelerating reclaim is pointless.
 | |
| 	 */
 | |
| 	if (PageUnevictable(page))
 | |
| 		return;
 | |
| 
 | |
| 	if (likely(get_page_unless_zero(page))) {
 | |
| 		struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
 | |
| 
 | |
| 		if (!pagevec_add(pvec, page))
 | |
| 			pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
 | |
| 		put_cpu_var(lru_deactivate_pvecs);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void lru_add_drain(void)
 | |
| {
 | |
| 	lru_add_drain_cpu(get_cpu());
 | |
| 	put_cpu();
 | |
| }
 | |
| 
 | |
| static void lru_add_drain_per_cpu(struct work_struct *dummy)
 | |
| {
 | |
| 	lru_add_drain();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns 0 for success
 | |
|  */
 | |
| int lru_add_drain_all(void)
 | |
| {
 | |
| 	return schedule_on_each_cpu(lru_add_drain_per_cpu);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Batched page_cache_release().  Decrement the reference count on all the
 | |
|  * passed pages.  If it fell to zero then remove the page from the LRU and
 | |
|  * free it.
 | |
|  *
 | |
|  * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
 | |
|  * for the remainder of the operation.
 | |
|  *
 | |
|  * The locking in this function is against shrink_inactive_list(): we recheck
 | |
|  * the page count inside the lock to see whether shrink_inactive_list()
 | |
|  * grabbed the page via the LRU.  If it did, give up: shrink_inactive_list()
 | |
|  * will free it.
 | |
|  */
 | |
| void release_pages(struct page **pages, int nr, int cold)
 | |
| {
 | |
| 	int i;
 | |
| 	LIST_HEAD(pages_to_free);
 | |
| 	struct zone *zone = NULL;
 | |
| 	struct lruvec *lruvec;
 | |
| 	unsigned long uninitialized_var(flags);
 | |
| 
 | |
| 	for (i = 0; i < nr; i++) {
 | |
| 		struct page *page = pages[i];
 | |
| 
 | |
| 		if (unlikely(PageCompound(page))) {
 | |
| 			if (zone) {
 | |
| 				spin_unlock_irqrestore(&zone->lru_lock, flags);
 | |
| 				zone = NULL;
 | |
| 			}
 | |
| 			put_compound_page(page);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (!put_page_testzero(page))
 | |
| 			continue;
 | |
| 
 | |
| 		if (PageLRU(page)) {
 | |
| 			struct zone *pagezone = page_zone(page);
 | |
| 
 | |
| 			if (pagezone != zone) {
 | |
| 				if (zone)
 | |
| 					spin_unlock_irqrestore(&zone->lru_lock,
 | |
| 									flags);
 | |
| 				zone = pagezone;
 | |
| 				spin_lock_irqsave(&zone->lru_lock, flags);
 | |
| 			}
 | |
| 
 | |
| 			lruvec = mem_cgroup_page_lruvec(page, zone);
 | |
| 			VM_BUG_ON(!PageLRU(page));
 | |
| 			__ClearPageLRU(page);
 | |
| 			del_page_from_lru_list(page, lruvec, page_off_lru(page));
 | |
| 		}
 | |
| 
 | |
| 		list_add(&page->lru, &pages_to_free);
 | |
| 	}
 | |
| 	if (zone)
 | |
| 		spin_unlock_irqrestore(&zone->lru_lock, flags);
 | |
| 
 | |
| 	free_hot_cold_page_list(&pages_to_free, cold);
 | |
| }
 | |
| EXPORT_SYMBOL(release_pages);
 | |
| 
 | |
| /*
 | |
|  * The pages which we're about to release may be in the deferred lru-addition
 | |
|  * queues.  That would prevent them from really being freed right now.  That's
 | |
|  * OK from a correctness point of view but is inefficient - those pages may be
 | |
|  * cache-warm and we want to give them back to the page allocator ASAP.
 | |
|  *
 | |
|  * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
 | |
|  * and __pagevec_lru_add_active() call release_pages() directly to avoid
 | |
|  * mutual recursion.
 | |
|  */
 | |
| void __pagevec_release(struct pagevec *pvec)
 | |
| {
 | |
| 	lru_add_drain();
 | |
| 	release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
 | |
| 	pagevec_reinit(pvec);
 | |
| }
 | |
| EXPORT_SYMBOL(__pagevec_release);
 | |
| 
 | |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | |
| /* used by __split_huge_page_refcount() */
 | |
| void lru_add_page_tail(struct page *page, struct page *page_tail,
 | |
| 		       struct lruvec *lruvec, struct list_head *list)
 | |
| {
 | |
| 	int uninitialized_var(active);
 | |
| 	enum lru_list lru;
 | |
| 	const int file = 0;
 | |
| 
 | |
| 	VM_BUG_ON(!PageHead(page));
 | |
| 	VM_BUG_ON(PageCompound(page_tail));
 | |
| 	VM_BUG_ON(PageLRU(page_tail));
 | |
| 	VM_BUG_ON(NR_CPUS != 1 &&
 | |
| 		  !spin_is_locked(&lruvec_zone(lruvec)->lru_lock));
 | |
| 
 | |
| 	if (!list)
 | |
| 		SetPageLRU(page_tail);
 | |
| 
 | |
| 	if (page_evictable(page_tail)) {
 | |
| 		if (PageActive(page)) {
 | |
| 			SetPageActive(page_tail);
 | |
| 			active = 1;
 | |
| 			lru = LRU_ACTIVE_ANON;
 | |
| 		} else {
 | |
| 			active = 0;
 | |
| 			lru = LRU_INACTIVE_ANON;
 | |
| 		}
 | |
| 	} else {
 | |
| 		SetPageUnevictable(page_tail);
 | |
| 		lru = LRU_UNEVICTABLE;
 | |
| 	}
 | |
| 
 | |
| 	if (likely(PageLRU(page)))
 | |
| 		list_add_tail(&page_tail->lru, &page->lru);
 | |
| 	else if (list) {
 | |
| 		/* page reclaim is reclaiming a huge page */
 | |
| 		get_page(page_tail);
 | |
| 		list_add_tail(&page_tail->lru, list);
 | |
| 	} else {
 | |
| 		struct list_head *list_head;
 | |
| 		/*
 | |
| 		 * Head page has not yet been counted, as an hpage,
 | |
| 		 * so we must account for each subpage individually.
 | |
| 		 *
 | |
| 		 * Use the standard add function to put page_tail on the list,
 | |
| 		 * but then correct its position so they all end up in order.
 | |
| 		 */
 | |
| 		add_page_to_lru_list(page_tail, lruvec, lru);
 | |
| 		list_head = page_tail->lru.prev;
 | |
| 		list_move_tail(&page_tail->lru, list_head);
 | |
| 	}
 | |
| 
 | |
| 	if (!PageUnevictable(page))
 | |
| 		update_page_reclaim_stat(lruvec, file, active);
 | |
| }
 | |
| #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 | |
| 
 | |
| static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
 | |
| 				 void *arg)
 | |
| {
 | |
| 	enum lru_list lru = (enum lru_list)arg;
 | |
| 	int file = is_file_lru(lru);
 | |
| 	int active = is_active_lru(lru);
 | |
| 
 | |
| 	VM_BUG_ON(PageActive(page));
 | |
| 	VM_BUG_ON(PageUnevictable(page));
 | |
| 	VM_BUG_ON(PageLRU(page));
 | |
| 
 | |
| 	SetPageLRU(page);
 | |
| 	if (active)
 | |
| 		SetPageActive(page);
 | |
| 	add_page_to_lru_list(page, lruvec, lru);
 | |
| 	update_page_reclaim_stat(lruvec, file, active);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Add the passed pages to the LRU, then drop the caller's refcount
 | |
|  * on them.  Reinitialises the caller's pagevec.
 | |
|  */
 | |
| void __pagevec_lru_add(struct pagevec *pvec, enum lru_list lru)
 | |
| {
 | |
| 	VM_BUG_ON(is_unevictable_lru(lru));
 | |
| 
 | |
| 	pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, (void *)lru);
 | |
| }
 | |
| EXPORT_SYMBOL(__pagevec_lru_add);
 | |
| 
 | |
| /**
 | |
|  * pagevec_lookup - gang pagecache lookup
 | |
|  * @pvec:	Where the resulting pages are placed
 | |
|  * @mapping:	The address_space to search
 | |
|  * @start:	The starting page index
 | |
|  * @nr_pages:	The maximum number of pages
 | |
|  *
 | |
|  * pagevec_lookup() will search for and return a group of up to @nr_pages pages
 | |
|  * in the mapping.  The pages are placed in @pvec.  pagevec_lookup() takes a
 | |
|  * reference against the pages in @pvec.
 | |
|  *
 | |
|  * The search returns a group of mapping-contiguous pages with ascending
 | |
|  * indexes.  There may be holes in the indices due to not-present pages.
 | |
|  *
 | |
|  * pagevec_lookup() returns the number of pages which were found.
 | |
|  */
 | |
| unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
 | |
| 		pgoff_t start, unsigned nr_pages)
 | |
| {
 | |
| 	pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
 | |
| 	return pagevec_count(pvec);
 | |
| }
 | |
| EXPORT_SYMBOL(pagevec_lookup);
 | |
| 
 | |
| unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
 | |
| 		pgoff_t *index, int tag, unsigned nr_pages)
 | |
| {
 | |
| 	pvec->nr = find_get_pages_tag(mapping, index, tag,
 | |
| 					nr_pages, pvec->pages);
 | |
| 	return pagevec_count(pvec);
 | |
| }
 | |
| EXPORT_SYMBOL(pagevec_lookup_tag);
 | |
| 
 | |
| /*
 | |
|  * Perform any setup for the swap system
 | |
|  */
 | |
| void __init swap_setup(void)
 | |
| {
 | |
| 	unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
 | |
| #ifdef CONFIG_SWAP
 | |
| 	int i;
 | |
| 
 | |
| 	bdi_init(swapper_spaces[0].backing_dev_info);
 | |
| 	for (i = 0; i < MAX_SWAPFILES; i++) {
 | |
| 		spin_lock_init(&swapper_spaces[i].tree_lock);
 | |
| 		INIT_LIST_HEAD(&swapper_spaces[i].i_mmap_nonlinear);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	/* Use a smaller cluster for small-memory machines */
 | |
| 	if (megs < 16)
 | |
| 		page_cluster = 2;
 | |
| 	else
 | |
| 		page_cluster = 3;
 | |
| 	/*
 | |
| 	 * Right now other parts of the system means that we
 | |
| 	 * _really_ don't want to cluster much more
 | |
| 	 */
 | |
| }
 |