 901f1379f6
			
		
	
	
	901f1379f6
	
	
	
		
			
			Don't opencode sg_init_one() Signed-off-by: Fabian Frederick <fabf@skynet.be> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
		
			
				
	
	
		
			984 lines
		
	
	
	
		
			24 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			984 lines
		
	
	
	
		
			24 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  linux/net/sunrpc/gss_krb5_crypto.c
 | |
|  *
 | |
|  *  Copyright (c) 2000-2008 The Regents of the University of Michigan.
 | |
|  *  All rights reserved.
 | |
|  *
 | |
|  *  Andy Adamson   <andros@umich.edu>
 | |
|  *  Bruce Fields   <bfields@umich.edu>
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Copyright (C) 1998 by the FundsXpress, INC.
 | |
|  *
 | |
|  * All rights reserved.
 | |
|  *
 | |
|  * Export of this software from the United States of America may require
 | |
|  * a specific license from the United States Government.  It is the
 | |
|  * responsibility of any person or organization contemplating export to
 | |
|  * obtain such a license before exporting.
 | |
|  *
 | |
|  * WITHIN THAT CONSTRAINT, permission to use, copy, modify, and
 | |
|  * distribute this software and its documentation for any purpose and
 | |
|  * without fee is hereby granted, provided that the above copyright
 | |
|  * notice appear in all copies and that both that copyright notice and
 | |
|  * this permission notice appear in supporting documentation, and that
 | |
|  * the name of FundsXpress. not be used in advertising or publicity pertaining
 | |
|  * to distribution of the software without specific, written prior
 | |
|  * permission.  FundsXpress makes no representations about the suitability of
 | |
|  * this software for any purpose.  It is provided "as is" without express
 | |
|  * or implied warranty.
 | |
|  *
 | |
|  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
 | |
|  * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
 | |
|  * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
 | |
|  */
 | |
| 
 | |
| #include <linux/err.h>
 | |
| #include <linux/types.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/scatterlist.h>
 | |
| #include <linux/crypto.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/random.h>
 | |
| #include <linux/sunrpc/gss_krb5.h>
 | |
| #include <linux/sunrpc/xdr.h>
 | |
| 
 | |
| #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
 | |
| # define RPCDBG_FACILITY        RPCDBG_AUTH
 | |
| #endif
 | |
| 
 | |
| u32
 | |
| krb5_encrypt(
 | |
| 	struct crypto_blkcipher *tfm,
 | |
| 	void * iv,
 | |
| 	void * in,
 | |
| 	void * out,
 | |
| 	int length)
 | |
| {
 | |
| 	u32 ret = -EINVAL;
 | |
| 	struct scatterlist sg[1];
 | |
| 	u8 local_iv[GSS_KRB5_MAX_BLOCKSIZE] = {0};
 | |
| 	struct blkcipher_desc desc = { .tfm = tfm, .info = local_iv };
 | |
| 
 | |
| 	if (length % crypto_blkcipher_blocksize(tfm) != 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (crypto_blkcipher_ivsize(tfm) > GSS_KRB5_MAX_BLOCKSIZE) {
 | |
| 		dprintk("RPC:       gss_k5encrypt: tfm iv size too large %d\n",
 | |
| 			crypto_blkcipher_ivsize(tfm));
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (iv)
 | |
| 		memcpy(local_iv, iv, crypto_blkcipher_ivsize(tfm));
 | |
| 
 | |
| 	memcpy(out, in, length);
 | |
| 	sg_init_one(sg, out, length);
 | |
| 
 | |
| 	ret = crypto_blkcipher_encrypt_iv(&desc, sg, sg, length);
 | |
| out:
 | |
| 	dprintk("RPC:       krb5_encrypt returns %d\n", ret);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| u32
 | |
| krb5_decrypt(
 | |
|      struct crypto_blkcipher *tfm,
 | |
|      void * iv,
 | |
|      void * in,
 | |
|      void * out,
 | |
|      int length)
 | |
| {
 | |
| 	u32 ret = -EINVAL;
 | |
| 	struct scatterlist sg[1];
 | |
| 	u8 local_iv[GSS_KRB5_MAX_BLOCKSIZE] = {0};
 | |
| 	struct blkcipher_desc desc = { .tfm = tfm, .info = local_iv };
 | |
| 
 | |
| 	if (length % crypto_blkcipher_blocksize(tfm) != 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (crypto_blkcipher_ivsize(tfm) > GSS_KRB5_MAX_BLOCKSIZE) {
 | |
| 		dprintk("RPC:       gss_k5decrypt: tfm iv size too large %d\n",
 | |
| 			crypto_blkcipher_ivsize(tfm));
 | |
| 		goto out;
 | |
| 	}
 | |
| 	if (iv)
 | |
| 		memcpy(local_iv,iv, crypto_blkcipher_ivsize(tfm));
 | |
| 
 | |
| 	memcpy(out, in, length);
 | |
| 	sg_init_one(sg, out, length);
 | |
| 
 | |
| 	ret = crypto_blkcipher_decrypt_iv(&desc, sg, sg, length);
 | |
| out:
 | |
| 	dprintk("RPC:       gss_k5decrypt returns %d\n",ret);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int
 | |
| checksummer(struct scatterlist *sg, void *data)
 | |
| {
 | |
| 	struct hash_desc *desc = data;
 | |
| 
 | |
| 	return crypto_hash_update(desc, sg, sg->length);
 | |
| }
 | |
| 
 | |
| static int
 | |
| arcfour_hmac_md5_usage_to_salt(unsigned int usage, u8 salt[4])
 | |
| {
 | |
| 	unsigned int ms_usage;
 | |
| 
 | |
| 	switch (usage) {
 | |
| 	case KG_USAGE_SIGN:
 | |
| 		ms_usage = 15;
 | |
| 		break;
 | |
| 	case KG_USAGE_SEAL:
 | |
| 		ms_usage = 13;
 | |
| 		break;
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	salt[0] = (ms_usage >> 0) & 0xff;
 | |
| 	salt[1] = (ms_usage >> 8) & 0xff;
 | |
| 	salt[2] = (ms_usage >> 16) & 0xff;
 | |
| 	salt[3] = (ms_usage >> 24) & 0xff;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static u32
 | |
| make_checksum_hmac_md5(struct krb5_ctx *kctx, char *header, int hdrlen,
 | |
| 		       struct xdr_buf *body, int body_offset, u8 *cksumkey,
 | |
| 		       unsigned int usage, struct xdr_netobj *cksumout)
 | |
| {
 | |
| 	struct hash_desc                desc;
 | |
| 	struct scatterlist              sg[1];
 | |
| 	int err;
 | |
| 	u8 checksumdata[GSS_KRB5_MAX_CKSUM_LEN];
 | |
| 	u8 rc4salt[4];
 | |
| 	struct crypto_hash *md5;
 | |
| 	struct crypto_hash *hmac_md5;
 | |
| 
 | |
| 	if (cksumkey == NULL)
 | |
| 		return GSS_S_FAILURE;
 | |
| 
 | |
| 	if (cksumout->len < kctx->gk5e->cksumlength) {
 | |
| 		dprintk("%s: checksum buffer length, %u, too small for %s\n",
 | |
| 			__func__, cksumout->len, kctx->gk5e->name);
 | |
| 		return GSS_S_FAILURE;
 | |
| 	}
 | |
| 
 | |
| 	if (arcfour_hmac_md5_usage_to_salt(usage, rc4salt)) {
 | |
| 		dprintk("%s: invalid usage value %u\n", __func__, usage);
 | |
| 		return GSS_S_FAILURE;
 | |
| 	}
 | |
| 
 | |
| 	md5 = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
 | |
| 	if (IS_ERR(md5))
 | |
| 		return GSS_S_FAILURE;
 | |
| 
 | |
| 	hmac_md5 = crypto_alloc_hash(kctx->gk5e->cksum_name, 0,
 | |
| 				     CRYPTO_ALG_ASYNC);
 | |
| 	if (IS_ERR(hmac_md5)) {
 | |
| 		crypto_free_hash(md5);
 | |
| 		return GSS_S_FAILURE;
 | |
| 	}
 | |
| 
 | |
| 	desc.tfm = md5;
 | |
| 	desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
 | |
| 
 | |
| 	err = crypto_hash_init(&desc);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 	sg_init_one(sg, rc4salt, 4);
 | |
| 	err = crypto_hash_update(&desc, sg, 4);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 
 | |
| 	sg_init_one(sg, header, hdrlen);
 | |
| 	err = crypto_hash_update(&desc, sg, hdrlen);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 	err = xdr_process_buf(body, body_offset, body->len - body_offset,
 | |
| 			      checksummer, &desc);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 	err = crypto_hash_final(&desc, checksumdata);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 
 | |
| 	desc.tfm = hmac_md5;
 | |
| 	desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
 | |
| 
 | |
| 	err = crypto_hash_init(&desc);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 	err = crypto_hash_setkey(hmac_md5, cksumkey, kctx->gk5e->keylength);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 
 | |
| 	sg_init_one(sg, checksumdata, crypto_hash_digestsize(md5));
 | |
| 	err = crypto_hash_digest(&desc, sg, crypto_hash_digestsize(md5),
 | |
| 				 checksumdata);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 
 | |
| 	memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
 | |
| 	cksumout->len = kctx->gk5e->cksumlength;
 | |
| out:
 | |
| 	crypto_free_hash(md5);
 | |
| 	crypto_free_hash(hmac_md5);
 | |
| 	return err ? GSS_S_FAILURE : 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * checksum the plaintext data and hdrlen bytes of the token header
 | |
|  * The checksum is performed over the first 8 bytes of the
 | |
|  * gss token header and then over the data body
 | |
|  */
 | |
| u32
 | |
| make_checksum(struct krb5_ctx *kctx, char *header, int hdrlen,
 | |
| 	      struct xdr_buf *body, int body_offset, u8 *cksumkey,
 | |
| 	      unsigned int usage, struct xdr_netobj *cksumout)
 | |
| {
 | |
| 	struct hash_desc                desc;
 | |
| 	struct scatterlist              sg[1];
 | |
| 	int err;
 | |
| 	u8 checksumdata[GSS_KRB5_MAX_CKSUM_LEN];
 | |
| 	unsigned int checksumlen;
 | |
| 
 | |
| 	if (kctx->gk5e->ctype == CKSUMTYPE_HMAC_MD5_ARCFOUR)
 | |
| 		return make_checksum_hmac_md5(kctx, header, hdrlen,
 | |
| 					      body, body_offset,
 | |
| 					      cksumkey, usage, cksumout);
 | |
| 
 | |
| 	if (cksumout->len < kctx->gk5e->cksumlength) {
 | |
| 		dprintk("%s: checksum buffer length, %u, too small for %s\n",
 | |
| 			__func__, cksumout->len, kctx->gk5e->name);
 | |
| 		return GSS_S_FAILURE;
 | |
| 	}
 | |
| 
 | |
| 	desc.tfm = crypto_alloc_hash(kctx->gk5e->cksum_name, 0, CRYPTO_ALG_ASYNC);
 | |
| 	if (IS_ERR(desc.tfm))
 | |
| 		return GSS_S_FAILURE;
 | |
| 	desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
 | |
| 
 | |
| 	checksumlen = crypto_hash_digestsize(desc.tfm);
 | |
| 
 | |
| 	if (cksumkey != NULL) {
 | |
| 		err = crypto_hash_setkey(desc.tfm, cksumkey,
 | |
| 					 kctx->gk5e->keylength);
 | |
| 		if (err)
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	err = crypto_hash_init(&desc);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 	sg_init_one(sg, header, hdrlen);
 | |
| 	err = crypto_hash_update(&desc, sg, hdrlen);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 	err = xdr_process_buf(body, body_offset, body->len - body_offset,
 | |
| 			      checksummer, &desc);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 	err = crypto_hash_final(&desc, checksumdata);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 
 | |
| 	switch (kctx->gk5e->ctype) {
 | |
| 	case CKSUMTYPE_RSA_MD5:
 | |
| 		err = kctx->gk5e->encrypt(kctx->seq, NULL, checksumdata,
 | |
| 					  checksumdata, checksumlen);
 | |
| 		if (err)
 | |
| 			goto out;
 | |
| 		memcpy(cksumout->data,
 | |
| 		       checksumdata + checksumlen - kctx->gk5e->cksumlength,
 | |
| 		       kctx->gk5e->cksumlength);
 | |
| 		break;
 | |
| 	case CKSUMTYPE_HMAC_SHA1_DES3:
 | |
| 		memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
 | |
| 		break;
 | |
| 	default:
 | |
| 		BUG();
 | |
| 		break;
 | |
| 	}
 | |
| 	cksumout->len = kctx->gk5e->cksumlength;
 | |
| out:
 | |
| 	crypto_free_hash(desc.tfm);
 | |
| 	return err ? GSS_S_FAILURE : 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * checksum the plaintext data and hdrlen bytes of the token header
 | |
|  * Per rfc4121, sec. 4.2.4, the checksum is performed over the data
 | |
|  * body then over the first 16 octets of the MIC token
 | |
|  * Inclusion of the header data in the calculation of the
 | |
|  * checksum is optional.
 | |
|  */
 | |
| u32
 | |
| make_checksum_v2(struct krb5_ctx *kctx, char *header, int hdrlen,
 | |
| 		 struct xdr_buf *body, int body_offset, u8 *cksumkey,
 | |
| 		 unsigned int usage, struct xdr_netobj *cksumout)
 | |
| {
 | |
| 	struct hash_desc desc;
 | |
| 	struct scatterlist sg[1];
 | |
| 	int err;
 | |
| 	u8 checksumdata[GSS_KRB5_MAX_CKSUM_LEN];
 | |
| 	unsigned int checksumlen;
 | |
| 
 | |
| 	if (kctx->gk5e->keyed_cksum == 0) {
 | |
| 		dprintk("%s: expected keyed hash for %s\n",
 | |
| 			__func__, kctx->gk5e->name);
 | |
| 		return GSS_S_FAILURE;
 | |
| 	}
 | |
| 	if (cksumkey == NULL) {
 | |
| 		dprintk("%s: no key supplied for %s\n",
 | |
| 			__func__, kctx->gk5e->name);
 | |
| 		return GSS_S_FAILURE;
 | |
| 	}
 | |
| 
 | |
| 	desc.tfm = crypto_alloc_hash(kctx->gk5e->cksum_name, 0,
 | |
| 							CRYPTO_ALG_ASYNC);
 | |
| 	if (IS_ERR(desc.tfm))
 | |
| 		return GSS_S_FAILURE;
 | |
| 	checksumlen = crypto_hash_digestsize(desc.tfm);
 | |
| 	desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
 | |
| 
 | |
| 	err = crypto_hash_setkey(desc.tfm, cksumkey, kctx->gk5e->keylength);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 
 | |
| 	err = crypto_hash_init(&desc);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 	err = xdr_process_buf(body, body_offset, body->len - body_offset,
 | |
| 			      checksummer, &desc);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 	if (header != NULL) {
 | |
| 		sg_init_one(sg, header, hdrlen);
 | |
| 		err = crypto_hash_update(&desc, sg, hdrlen);
 | |
| 		if (err)
 | |
| 			goto out;
 | |
| 	}
 | |
| 	err = crypto_hash_final(&desc, checksumdata);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 
 | |
| 	cksumout->len = kctx->gk5e->cksumlength;
 | |
| 
 | |
| 	switch (kctx->gk5e->ctype) {
 | |
| 	case CKSUMTYPE_HMAC_SHA1_96_AES128:
 | |
| 	case CKSUMTYPE_HMAC_SHA1_96_AES256:
 | |
| 		/* note that this truncates the hash */
 | |
| 		memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
 | |
| 		break;
 | |
| 	default:
 | |
| 		BUG();
 | |
| 		break;
 | |
| 	}
 | |
| out:
 | |
| 	crypto_free_hash(desc.tfm);
 | |
| 	return err ? GSS_S_FAILURE : 0;
 | |
| }
 | |
| 
 | |
| struct encryptor_desc {
 | |
| 	u8 iv[GSS_KRB5_MAX_BLOCKSIZE];
 | |
| 	struct blkcipher_desc desc;
 | |
| 	int pos;
 | |
| 	struct xdr_buf *outbuf;
 | |
| 	struct page **pages;
 | |
| 	struct scatterlist infrags[4];
 | |
| 	struct scatterlist outfrags[4];
 | |
| 	int fragno;
 | |
| 	int fraglen;
 | |
| };
 | |
| 
 | |
| static int
 | |
| encryptor(struct scatterlist *sg, void *data)
 | |
| {
 | |
| 	struct encryptor_desc *desc = data;
 | |
| 	struct xdr_buf *outbuf = desc->outbuf;
 | |
| 	struct page *in_page;
 | |
| 	int thislen = desc->fraglen + sg->length;
 | |
| 	int fraglen, ret;
 | |
| 	int page_pos;
 | |
| 
 | |
| 	/* Worst case is 4 fragments: head, end of page 1, start
 | |
| 	 * of page 2, tail.  Anything more is a bug. */
 | |
| 	BUG_ON(desc->fragno > 3);
 | |
| 
 | |
| 	page_pos = desc->pos - outbuf->head[0].iov_len;
 | |
| 	if (page_pos >= 0 && page_pos < outbuf->page_len) {
 | |
| 		/* pages are not in place: */
 | |
| 		int i = (page_pos + outbuf->page_base) >> PAGE_CACHE_SHIFT;
 | |
| 		in_page = desc->pages[i];
 | |
| 	} else {
 | |
| 		in_page = sg_page(sg);
 | |
| 	}
 | |
| 	sg_set_page(&desc->infrags[desc->fragno], in_page, sg->length,
 | |
| 		    sg->offset);
 | |
| 	sg_set_page(&desc->outfrags[desc->fragno], sg_page(sg), sg->length,
 | |
| 		    sg->offset);
 | |
| 	desc->fragno++;
 | |
| 	desc->fraglen += sg->length;
 | |
| 	desc->pos += sg->length;
 | |
| 
 | |
| 	fraglen = thislen & (crypto_blkcipher_blocksize(desc->desc.tfm) - 1);
 | |
| 	thislen -= fraglen;
 | |
| 
 | |
| 	if (thislen == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	sg_mark_end(&desc->infrags[desc->fragno - 1]);
 | |
| 	sg_mark_end(&desc->outfrags[desc->fragno - 1]);
 | |
| 
 | |
| 	ret = crypto_blkcipher_encrypt_iv(&desc->desc, desc->outfrags,
 | |
| 					  desc->infrags, thislen);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	sg_init_table(desc->infrags, 4);
 | |
| 	sg_init_table(desc->outfrags, 4);
 | |
| 
 | |
| 	if (fraglen) {
 | |
| 		sg_set_page(&desc->outfrags[0], sg_page(sg), fraglen,
 | |
| 				sg->offset + sg->length - fraglen);
 | |
| 		desc->infrags[0] = desc->outfrags[0];
 | |
| 		sg_assign_page(&desc->infrags[0], in_page);
 | |
| 		desc->fragno = 1;
 | |
| 		desc->fraglen = fraglen;
 | |
| 	} else {
 | |
| 		desc->fragno = 0;
 | |
| 		desc->fraglen = 0;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int
 | |
| gss_encrypt_xdr_buf(struct crypto_blkcipher *tfm, struct xdr_buf *buf,
 | |
| 		    int offset, struct page **pages)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct encryptor_desc desc;
 | |
| 
 | |
| 	BUG_ON((buf->len - offset) % crypto_blkcipher_blocksize(tfm) != 0);
 | |
| 
 | |
| 	memset(desc.iv, 0, sizeof(desc.iv));
 | |
| 	desc.desc.tfm = tfm;
 | |
| 	desc.desc.info = desc.iv;
 | |
| 	desc.desc.flags = 0;
 | |
| 	desc.pos = offset;
 | |
| 	desc.outbuf = buf;
 | |
| 	desc.pages = pages;
 | |
| 	desc.fragno = 0;
 | |
| 	desc.fraglen = 0;
 | |
| 
 | |
| 	sg_init_table(desc.infrags, 4);
 | |
| 	sg_init_table(desc.outfrags, 4);
 | |
| 
 | |
| 	ret = xdr_process_buf(buf, offset, buf->len - offset, encryptor, &desc);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| struct decryptor_desc {
 | |
| 	u8 iv[GSS_KRB5_MAX_BLOCKSIZE];
 | |
| 	struct blkcipher_desc desc;
 | |
| 	struct scatterlist frags[4];
 | |
| 	int fragno;
 | |
| 	int fraglen;
 | |
| };
 | |
| 
 | |
| static int
 | |
| decryptor(struct scatterlist *sg, void *data)
 | |
| {
 | |
| 	struct decryptor_desc *desc = data;
 | |
| 	int thislen = desc->fraglen + sg->length;
 | |
| 	int fraglen, ret;
 | |
| 
 | |
| 	/* Worst case is 4 fragments: head, end of page 1, start
 | |
| 	 * of page 2, tail.  Anything more is a bug. */
 | |
| 	BUG_ON(desc->fragno > 3);
 | |
| 	sg_set_page(&desc->frags[desc->fragno], sg_page(sg), sg->length,
 | |
| 		    sg->offset);
 | |
| 	desc->fragno++;
 | |
| 	desc->fraglen += sg->length;
 | |
| 
 | |
| 	fraglen = thislen & (crypto_blkcipher_blocksize(desc->desc.tfm) - 1);
 | |
| 	thislen -= fraglen;
 | |
| 
 | |
| 	if (thislen == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	sg_mark_end(&desc->frags[desc->fragno - 1]);
 | |
| 
 | |
| 	ret = crypto_blkcipher_decrypt_iv(&desc->desc, desc->frags,
 | |
| 					  desc->frags, thislen);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	sg_init_table(desc->frags, 4);
 | |
| 
 | |
| 	if (fraglen) {
 | |
| 		sg_set_page(&desc->frags[0], sg_page(sg), fraglen,
 | |
| 				sg->offset + sg->length - fraglen);
 | |
| 		desc->fragno = 1;
 | |
| 		desc->fraglen = fraglen;
 | |
| 	} else {
 | |
| 		desc->fragno = 0;
 | |
| 		desc->fraglen = 0;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int
 | |
| gss_decrypt_xdr_buf(struct crypto_blkcipher *tfm, struct xdr_buf *buf,
 | |
| 		    int offset)
 | |
| {
 | |
| 	struct decryptor_desc desc;
 | |
| 
 | |
| 	/* XXXJBF: */
 | |
| 	BUG_ON((buf->len - offset) % crypto_blkcipher_blocksize(tfm) != 0);
 | |
| 
 | |
| 	memset(desc.iv, 0, sizeof(desc.iv));
 | |
| 	desc.desc.tfm = tfm;
 | |
| 	desc.desc.info = desc.iv;
 | |
| 	desc.desc.flags = 0;
 | |
| 	desc.fragno = 0;
 | |
| 	desc.fraglen = 0;
 | |
| 
 | |
| 	sg_init_table(desc.frags, 4);
 | |
| 
 | |
| 	return xdr_process_buf(buf, offset, buf->len - offset, decryptor, &desc);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function makes the assumption that it was ultimately called
 | |
|  * from gss_wrap().
 | |
|  *
 | |
|  * The client auth_gss code moves any existing tail data into a
 | |
|  * separate page before calling gss_wrap.
 | |
|  * The server svcauth_gss code ensures that both the head and the
 | |
|  * tail have slack space of RPC_MAX_AUTH_SIZE before calling gss_wrap.
 | |
|  *
 | |
|  * Even with that guarantee, this function may be called more than
 | |
|  * once in the processing of gss_wrap().  The best we can do is
 | |
|  * verify at compile-time (see GSS_KRB5_SLACK_CHECK) that the
 | |
|  * largest expected shift will fit within RPC_MAX_AUTH_SIZE.
 | |
|  * At run-time we can verify that a single invocation of this
 | |
|  * function doesn't attempt to use more the RPC_MAX_AUTH_SIZE.
 | |
|  */
 | |
| 
 | |
| int
 | |
| xdr_extend_head(struct xdr_buf *buf, unsigned int base, unsigned int shiftlen)
 | |
| {
 | |
| 	u8 *p;
 | |
| 
 | |
| 	if (shiftlen == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	BUILD_BUG_ON(GSS_KRB5_MAX_SLACK_NEEDED > RPC_MAX_AUTH_SIZE);
 | |
| 	BUG_ON(shiftlen > RPC_MAX_AUTH_SIZE);
 | |
| 
 | |
| 	p = buf->head[0].iov_base + base;
 | |
| 
 | |
| 	memmove(p + shiftlen, p, buf->head[0].iov_len - base);
 | |
| 
 | |
| 	buf->head[0].iov_len += shiftlen;
 | |
| 	buf->len += shiftlen;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static u32
 | |
| gss_krb5_cts_crypt(struct crypto_blkcipher *cipher, struct xdr_buf *buf,
 | |
| 		   u32 offset, u8 *iv, struct page **pages, int encrypt)
 | |
| {
 | |
| 	u32 ret;
 | |
| 	struct scatterlist sg[1];
 | |
| 	struct blkcipher_desc desc = { .tfm = cipher, .info = iv };
 | |
| 	u8 data[GSS_KRB5_MAX_BLOCKSIZE * 2];
 | |
| 	struct page **save_pages;
 | |
| 	u32 len = buf->len - offset;
 | |
| 
 | |
| 	if (len > ARRAY_SIZE(data)) {
 | |
| 		WARN_ON(0);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * For encryption, we want to read from the cleartext
 | |
| 	 * page cache pages, and write the encrypted data to
 | |
| 	 * the supplied xdr_buf pages.
 | |
| 	 */
 | |
| 	save_pages = buf->pages;
 | |
| 	if (encrypt)
 | |
| 		buf->pages = pages;
 | |
| 
 | |
| 	ret = read_bytes_from_xdr_buf(buf, offset, data, len);
 | |
| 	buf->pages = save_pages;
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	sg_init_one(sg, data, len);
 | |
| 
 | |
| 	if (encrypt)
 | |
| 		ret = crypto_blkcipher_encrypt_iv(&desc, sg, sg, len);
 | |
| 	else
 | |
| 		ret = crypto_blkcipher_decrypt_iv(&desc, sg, sg, len);
 | |
| 
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	ret = write_bytes_to_xdr_buf(buf, offset, data, len);
 | |
| 
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| u32
 | |
| gss_krb5_aes_encrypt(struct krb5_ctx *kctx, u32 offset,
 | |
| 		     struct xdr_buf *buf, struct page **pages)
 | |
| {
 | |
| 	u32 err;
 | |
| 	struct xdr_netobj hmac;
 | |
| 	u8 *cksumkey;
 | |
| 	u8 *ecptr;
 | |
| 	struct crypto_blkcipher *cipher, *aux_cipher;
 | |
| 	int blocksize;
 | |
| 	struct page **save_pages;
 | |
| 	int nblocks, nbytes;
 | |
| 	struct encryptor_desc desc;
 | |
| 	u32 cbcbytes;
 | |
| 	unsigned int usage;
 | |
| 
 | |
| 	if (kctx->initiate) {
 | |
| 		cipher = kctx->initiator_enc;
 | |
| 		aux_cipher = kctx->initiator_enc_aux;
 | |
| 		cksumkey = kctx->initiator_integ;
 | |
| 		usage = KG_USAGE_INITIATOR_SEAL;
 | |
| 	} else {
 | |
| 		cipher = kctx->acceptor_enc;
 | |
| 		aux_cipher = kctx->acceptor_enc_aux;
 | |
| 		cksumkey = kctx->acceptor_integ;
 | |
| 		usage = KG_USAGE_ACCEPTOR_SEAL;
 | |
| 	}
 | |
| 	blocksize = crypto_blkcipher_blocksize(cipher);
 | |
| 
 | |
| 	/* hide the gss token header and insert the confounder */
 | |
| 	offset += GSS_KRB5_TOK_HDR_LEN;
 | |
| 	if (xdr_extend_head(buf, offset, kctx->gk5e->conflen))
 | |
| 		return GSS_S_FAILURE;
 | |
| 	gss_krb5_make_confounder(buf->head[0].iov_base + offset, kctx->gk5e->conflen);
 | |
| 	offset -= GSS_KRB5_TOK_HDR_LEN;
 | |
| 
 | |
| 	if (buf->tail[0].iov_base != NULL) {
 | |
| 		ecptr = buf->tail[0].iov_base + buf->tail[0].iov_len;
 | |
| 	} else {
 | |
| 		buf->tail[0].iov_base = buf->head[0].iov_base
 | |
| 							+ buf->head[0].iov_len;
 | |
| 		buf->tail[0].iov_len = 0;
 | |
| 		ecptr = buf->tail[0].iov_base;
 | |
| 	}
 | |
| 
 | |
| 	/* copy plaintext gss token header after filler (if any) */
 | |
| 	memcpy(ecptr, buf->head[0].iov_base + offset, GSS_KRB5_TOK_HDR_LEN);
 | |
| 	buf->tail[0].iov_len += GSS_KRB5_TOK_HDR_LEN;
 | |
| 	buf->len += GSS_KRB5_TOK_HDR_LEN;
 | |
| 
 | |
| 	/* Do the HMAC */
 | |
| 	hmac.len = GSS_KRB5_MAX_CKSUM_LEN;
 | |
| 	hmac.data = buf->tail[0].iov_base + buf->tail[0].iov_len;
 | |
| 
 | |
| 	/*
 | |
| 	 * When we are called, pages points to the real page cache
 | |
| 	 * data -- which we can't go and encrypt!  buf->pages points
 | |
| 	 * to scratch pages which we are going to send off to the
 | |
| 	 * client/server.  Swap in the plaintext pages to calculate
 | |
| 	 * the hmac.
 | |
| 	 */
 | |
| 	save_pages = buf->pages;
 | |
| 	buf->pages = pages;
 | |
| 
 | |
| 	err = make_checksum_v2(kctx, NULL, 0, buf,
 | |
| 			       offset + GSS_KRB5_TOK_HDR_LEN,
 | |
| 			       cksumkey, usage, &hmac);
 | |
| 	buf->pages = save_pages;
 | |
| 	if (err)
 | |
| 		return GSS_S_FAILURE;
 | |
| 
 | |
| 	nbytes = buf->len - offset - GSS_KRB5_TOK_HDR_LEN;
 | |
| 	nblocks = (nbytes + blocksize - 1) / blocksize;
 | |
| 	cbcbytes = 0;
 | |
| 	if (nblocks > 2)
 | |
| 		cbcbytes = (nblocks - 2) * blocksize;
 | |
| 
 | |
| 	memset(desc.iv, 0, sizeof(desc.iv));
 | |
| 
 | |
| 	if (cbcbytes) {
 | |
| 		desc.pos = offset + GSS_KRB5_TOK_HDR_LEN;
 | |
| 		desc.fragno = 0;
 | |
| 		desc.fraglen = 0;
 | |
| 		desc.pages = pages;
 | |
| 		desc.outbuf = buf;
 | |
| 		desc.desc.info = desc.iv;
 | |
| 		desc.desc.flags = 0;
 | |
| 		desc.desc.tfm = aux_cipher;
 | |
| 
 | |
| 		sg_init_table(desc.infrags, 4);
 | |
| 		sg_init_table(desc.outfrags, 4);
 | |
| 
 | |
| 		err = xdr_process_buf(buf, offset + GSS_KRB5_TOK_HDR_LEN,
 | |
| 				      cbcbytes, encryptor, &desc);
 | |
| 		if (err)
 | |
| 			goto out_err;
 | |
| 	}
 | |
| 
 | |
| 	/* Make sure IV carries forward from any CBC results. */
 | |
| 	err = gss_krb5_cts_crypt(cipher, buf,
 | |
| 				 offset + GSS_KRB5_TOK_HDR_LEN + cbcbytes,
 | |
| 				 desc.iv, pages, 1);
 | |
| 	if (err) {
 | |
| 		err = GSS_S_FAILURE;
 | |
| 		goto out_err;
 | |
| 	}
 | |
| 
 | |
| 	/* Now update buf to account for HMAC */
 | |
| 	buf->tail[0].iov_len += kctx->gk5e->cksumlength;
 | |
| 	buf->len += kctx->gk5e->cksumlength;
 | |
| 
 | |
| out_err:
 | |
| 	if (err)
 | |
| 		err = GSS_S_FAILURE;
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| u32
 | |
| gss_krb5_aes_decrypt(struct krb5_ctx *kctx, u32 offset, struct xdr_buf *buf,
 | |
| 		     u32 *headskip, u32 *tailskip)
 | |
| {
 | |
| 	struct xdr_buf subbuf;
 | |
| 	u32 ret = 0;
 | |
| 	u8 *cksum_key;
 | |
| 	struct crypto_blkcipher *cipher, *aux_cipher;
 | |
| 	struct xdr_netobj our_hmac_obj;
 | |
| 	u8 our_hmac[GSS_KRB5_MAX_CKSUM_LEN];
 | |
| 	u8 pkt_hmac[GSS_KRB5_MAX_CKSUM_LEN];
 | |
| 	int nblocks, blocksize, cbcbytes;
 | |
| 	struct decryptor_desc desc;
 | |
| 	unsigned int usage;
 | |
| 
 | |
| 	if (kctx->initiate) {
 | |
| 		cipher = kctx->acceptor_enc;
 | |
| 		aux_cipher = kctx->acceptor_enc_aux;
 | |
| 		cksum_key = kctx->acceptor_integ;
 | |
| 		usage = KG_USAGE_ACCEPTOR_SEAL;
 | |
| 	} else {
 | |
| 		cipher = kctx->initiator_enc;
 | |
| 		aux_cipher = kctx->initiator_enc_aux;
 | |
| 		cksum_key = kctx->initiator_integ;
 | |
| 		usage = KG_USAGE_INITIATOR_SEAL;
 | |
| 	}
 | |
| 	blocksize = crypto_blkcipher_blocksize(cipher);
 | |
| 
 | |
| 
 | |
| 	/* create a segment skipping the header and leaving out the checksum */
 | |
| 	xdr_buf_subsegment(buf, &subbuf, offset + GSS_KRB5_TOK_HDR_LEN,
 | |
| 				    (buf->len - offset - GSS_KRB5_TOK_HDR_LEN -
 | |
| 				     kctx->gk5e->cksumlength));
 | |
| 
 | |
| 	nblocks = (subbuf.len + blocksize - 1) / blocksize;
 | |
| 
 | |
| 	cbcbytes = 0;
 | |
| 	if (nblocks > 2)
 | |
| 		cbcbytes = (nblocks - 2) * blocksize;
 | |
| 
 | |
| 	memset(desc.iv, 0, sizeof(desc.iv));
 | |
| 
 | |
| 	if (cbcbytes) {
 | |
| 		desc.fragno = 0;
 | |
| 		desc.fraglen = 0;
 | |
| 		desc.desc.info = desc.iv;
 | |
| 		desc.desc.flags = 0;
 | |
| 		desc.desc.tfm = aux_cipher;
 | |
| 
 | |
| 		sg_init_table(desc.frags, 4);
 | |
| 
 | |
| 		ret = xdr_process_buf(&subbuf, 0, cbcbytes, decryptor, &desc);
 | |
| 		if (ret)
 | |
| 			goto out_err;
 | |
| 	}
 | |
| 
 | |
| 	/* Make sure IV carries forward from any CBC results. */
 | |
| 	ret = gss_krb5_cts_crypt(cipher, &subbuf, cbcbytes, desc.iv, NULL, 0);
 | |
| 	if (ret)
 | |
| 		goto out_err;
 | |
| 
 | |
| 
 | |
| 	/* Calculate our hmac over the plaintext data */
 | |
| 	our_hmac_obj.len = sizeof(our_hmac);
 | |
| 	our_hmac_obj.data = our_hmac;
 | |
| 
 | |
| 	ret = make_checksum_v2(kctx, NULL, 0, &subbuf, 0,
 | |
| 			       cksum_key, usage, &our_hmac_obj);
 | |
| 	if (ret)
 | |
| 		goto out_err;
 | |
| 
 | |
| 	/* Get the packet's hmac value */
 | |
| 	ret = read_bytes_from_xdr_buf(buf, buf->len - kctx->gk5e->cksumlength,
 | |
| 				      pkt_hmac, kctx->gk5e->cksumlength);
 | |
| 	if (ret)
 | |
| 		goto out_err;
 | |
| 
 | |
| 	if (memcmp(pkt_hmac, our_hmac, kctx->gk5e->cksumlength) != 0) {
 | |
| 		ret = GSS_S_BAD_SIG;
 | |
| 		goto out_err;
 | |
| 	}
 | |
| 	*headskip = kctx->gk5e->conflen;
 | |
| 	*tailskip = kctx->gk5e->cksumlength;
 | |
| out_err:
 | |
| 	if (ret && ret != GSS_S_BAD_SIG)
 | |
| 		ret = GSS_S_FAILURE;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Compute Kseq given the initial session key and the checksum.
 | |
|  * Set the key of the given cipher.
 | |
|  */
 | |
| int
 | |
| krb5_rc4_setup_seq_key(struct krb5_ctx *kctx, struct crypto_blkcipher *cipher,
 | |
| 		       unsigned char *cksum)
 | |
| {
 | |
| 	struct crypto_hash *hmac;
 | |
| 	struct hash_desc desc;
 | |
| 	struct scatterlist sg[1];
 | |
| 	u8 Kseq[GSS_KRB5_MAX_KEYLEN];
 | |
| 	u32 zeroconstant = 0;
 | |
| 	int err;
 | |
| 
 | |
| 	dprintk("%s: entered\n", __func__);
 | |
| 
 | |
| 	hmac = crypto_alloc_hash(kctx->gk5e->cksum_name, 0, CRYPTO_ALG_ASYNC);
 | |
| 	if (IS_ERR(hmac)) {
 | |
| 		dprintk("%s: error %ld, allocating hash '%s'\n",
 | |
| 			__func__, PTR_ERR(hmac), kctx->gk5e->cksum_name);
 | |
| 		return PTR_ERR(hmac);
 | |
| 	}
 | |
| 
 | |
| 	desc.tfm = hmac;
 | |
| 	desc.flags = 0;
 | |
| 
 | |
| 	err = crypto_hash_init(&desc);
 | |
| 	if (err)
 | |
| 		goto out_err;
 | |
| 
 | |
| 	/* Compute intermediate Kseq from session key */
 | |
| 	err = crypto_hash_setkey(hmac, kctx->Ksess, kctx->gk5e->keylength);
 | |
| 	if (err)
 | |
| 		goto out_err;
 | |
| 
 | |
| 	sg_init_one(sg, &zeroconstant, 4);
 | |
| 	err = crypto_hash_digest(&desc, sg, 4, Kseq);
 | |
| 	if (err)
 | |
| 		goto out_err;
 | |
| 
 | |
| 	/* Compute final Kseq from the checksum and intermediate Kseq */
 | |
| 	err = crypto_hash_setkey(hmac, Kseq, kctx->gk5e->keylength);
 | |
| 	if (err)
 | |
| 		goto out_err;
 | |
| 
 | |
| 	sg_set_buf(sg, cksum, 8);
 | |
| 
 | |
| 	err = crypto_hash_digest(&desc, sg, 8, Kseq);
 | |
| 	if (err)
 | |
| 		goto out_err;
 | |
| 
 | |
| 	err = crypto_blkcipher_setkey(cipher, Kseq, kctx->gk5e->keylength);
 | |
| 	if (err)
 | |
| 		goto out_err;
 | |
| 
 | |
| 	err = 0;
 | |
| 
 | |
| out_err:
 | |
| 	crypto_free_hash(hmac);
 | |
| 	dprintk("%s: returning %d\n", __func__, err);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Compute Kcrypt given the initial session key and the plaintext seqnum.
 | |
|  * Set the key of cipher kctx->enc.
 | |
|  */
 | |
| int
 | |
| krb5_rc4_setup_enc_key(struct krb5_ctx *kctx, struct crypto_blkcipher *cipher,
 | |
| 		       s32 seqnum)
 | |
| {
 | |
| 	struct crypto_hash *hmac;
 | |
| 	struct hash_desc desc;
 | |
| 	struct scatterlist sg[1];
 | |
| 	u8 Kcrypt[GSS_KRB5_MAX_KEYLEN];
 | |
| 	u8 zeroconstant[4] = {0};
 | |
| 	u8 seqnumarray[4];
 | |
| 	int err, i;
 | |
| 
 | |
| 	dprintk("%s: entered, seqnum %u\n", __func__, seqnum);
 | |
| 
 | |
| 	hmac = crypto_alloc_hash(kctx->gk5e->cksum_name, 0, CRYPTO_ALG_ASYNC);
 | |
| 	if (IS_ERR(hmac)) {
 | |
| 		dprintk("%s: error %ld, allocating hash '%s'\n",
 | |
| 			__func__, PTR_ERR(hmac), kctx->gk5e->cksum_name);
 | |
| 		return PTR_ERR(hmac);
 | |
| 	}
 | |
| 
 | |
| 	desc.tfm = hmac;
 | |
| 	desc.flags = 0;
 | |
| 
 | |
| 	err = crypto_hash_init(&desc);
 | |
| 	if (err)
 | |
| 		goto out_err;
 | |
| 
 | |
| 	/* Compute intermediate Kcrypt from session key */
 | |
| 	for (i = 0; i < kctx->gk5e->keylength; i++)
 | |
| 		Kcrypt[i] = kctx->Ksess[i] ^ 0xf0;
 | |
| 
 | |
| 	err = crypto_hash_setkey(hmac, Kcrypt, kctx->gk5e->keylength);
 | |
| 	if (err)
 | |
| 		goto out_err;
 | |
| 
 | |
| 	sg_init_one(sg, zeroconstant, 4);
 | |
| 	err = crypto_hash_digest(&desc, sg, 4, Kcrypt);
 | |
| 	if (err)
 | |
| 		goto out_err;
 | |
| 
 | |
| 	/* Compute final Kcrypt from the seqnum and intermediate Kcrypt */
 | |
| 	err = crypto_hash_setkey(hmac, Kcrypt, kctx->gk5e->keylength);
 | |
| 	if (err)
 | |
| 		goto out_err;
 | |
| 
 | |
| 	seqnumarray[0] = (unsigned char) ((seqnum >> 24) & 0xff);
 | |
| 	seqnumarray[1] = (unsigned char) ((seqnum >> 16) & 0xff);
 | |
| 	seqnumarray[2] = (unsigned char) ((seqnum >> 8) & 0xff);
 | |
| 	seqnumarray[3] = (unsigned char) ((seqnum >> 0) & 0xff);
 | |
| 
 | |
| 	sg_set_buf(sg, seqnumarray, 4);
 | |
| 
 | |
| 	err = crypto_hash_digest(&desc, sg, 4, Kcrypt);
 | |
| 	if (err)
 | |
| 		goto out_err;
 | |
| 
 | |
| 	err = crypto_blkcipher_setkey(cipher, Kcrypt, kctx->gk5e->keylength);
 | |
| 	if (err)
 | |
| 		goto out_err;
 | |
| 
 | |
| 	err = 0;
 | |
| 
 | |
| out_err:
 | |
| 	crypto_free_hash(hmac);
 | |
| 	dprintk("%s: returning %d\n", __func__, err);
 | |
| 	return err;
 | |
| }
 | |
| 
 |