 9a75551aea
			
		
	
	
	9a75551aea
	
	
	
		
			
			__ptr_t type is a glibc-specific type, while the generally documented type is a void*. That's what other C libraries use, too. Signed-off-by: Hans-Werner Hilse <hwhilse@gmail.com> Signed-off-by: Richard Weinberger <richard@nod.at>
		
			
				
	
	
		
			316 lines
		
	
	
	
		
			6.7 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			316 lines
		
	
	
	
		
			6.7 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (C) 2004 PathScale, Inc
 | |
|  * Copyright (C) 2004 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
 | |
|  * Licensed under the GPL
 | |
|  */
 | |
| 
 | |
| #include <stdlib.h>
 | |
| #include <stdarg.h>
 | |
| #include <errno.h>
 | |
| #include <signal.h>
 | |
| #include <strings.h>
 | |
| #include <as-layout.h>
 | |
| #include <kern_util.h>
 | |
| #include <os.h>
 | |
| #include <sysdep/mcontext.h>
 | |
| #include "internal.h"
 | |
| 
 | |
| void (*sig_info[NSIG])(int, struct siginfo *, struct uml_pt_regs *) = {
 | |
| 	[SIGTRAP]	= relay_signal,
 | |
| 	[SIGFPE]	= relay_signal,
 | |
| 	[SIGILL]	= relay_signal,
 | |
| 	[SIGWINCH]	= winch,
 | |
| 	[SIGBUS]	= bus_handler,
 | |
| 	[SIGSEGV]	= segv_handler,
 | |
| 	[SIGIO]		= sigio_handler,
 | |
| 	[SIGVTALRM]	= timer_handler };
 | |
| 
 | |
| static void sig_handler_common(int sig, struct siginfo *si, mcontext_t *mc)
 | |
| {
 | |
| 	struct uml_pt_regs r;
 | |
| 	int save_errno = errno;
 | |
| 
 | |
| 	r.is_user = 0;
 | |
| 	if (sig == SIGSEGV) {
 | |
| 		/* For segfaults, we want the data from the sigcontext. */
 | |
| 		get_regs_from_mc(&r, mc);
 | |
| 		GET_FAULTINFO_FROM_MC(r.faultinfo, mc);
 | |
| 	}
 | |
| 
 | |
| 	/* enable signals if sig isn't IRQ signal */
 | |
| 	if ((sig != SIGIO) && (sig != SIGWINCH) && (sig != SIGVTALRM))
 | |
| 		unblock_signals();
 | |
| 
 | |
| 	(*sig_info[sig])(sig, si, &r);
 | |
| 
 | |
| 	errno = save_errno;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * These are the asynchronous signals.  SIGPROF is excluded because we want to
 | |
|  * be able to profile all of UML, not just the non-critical sections.  If
 | |
|  * profiling is not thread-safe, then that is not my problem.  We can disable
 | |
|  * profiling when SMP is enabled in that case.
 | |
|  */
 | |
| #define SIGIO_BIT 0
 | |
| #define SIGIO_MASK (1 << SIGIO_BIT)
 | |
| 
 | |
| #define SIGVTALRM_BIT 1
 | |
| #define SIGVTALRM_MASK (1 << SIGVTALRM_BIT)
 | |
| 
 | |
| static int signals_enabled;
 | |
| static unsigned int signals_pending;
 | |
| 
 | |
| void sig_handler(int sig, struct siginfo *si, mcontext_t *mc)
 | |
| {
 | |
| 	int enabled;
 | |
| 
 | |
| 	enabled = signals_enabled;
 | |
| 	if (!enabled && (sig == SIGIO)) {
 | |
| 		signals_pending |= SIGIO_MASK;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	block_signals();
 | |
| 
 | |
| 	sig_handler_common(sig, si, mc);
 | |
| 
 | |
| 	set_signals(enabled);
 | |
| }
 | |
| 
 | |
| static void real_alarm_handler(mcontext_t *mc)
 | |
| {
 | |
| 	struct uml_pt_regs regs;
 | |
| 
 | |
| 	if (mc != NULL)
 | |
| 		get_regs_from_mc(®s, mc);
 | |
| 	regs.is_user = 0;
 | |
| 	unblock_signals();
 | |
| 	timer_handler(SIGVTALRM, NULL, ®s);
 | |
| }
 | |
| 
 | |
| void alarm_handler(int sig, struct siginfo *unused_si, mcontext_t *mc)
 | |
| {
 | |
| 	int enabled;
 | |
| 
 | |
| 	enabled = signals_enabled;
 | |
| 	if (!signals_enabled) {
 | |
| 		signals_pending |= SIGVTALRM_MASK;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	block_signals();
 | |
| 
 | |
| 	real_alarm_handler(mc);
 | |
| 	set_signals(enabled);
 | |
| }
 | |
| 
 | |
| void timer_init(void)
 | |
| {
 | |
| 	set_handler(SIGVTALRM);
 | |
| }
 | |
| 
 | |
| void set_sigstack(void *sig_stack, int size)
 | |
| {
 | |
| 	stack_t stack = {
 | |
| 		.ss_flags = 0,
 | |
| 		.ss_sp = sig_stack,
 | |
| 		.ss_size = size - sizeof(void *)
 | |
| 	};
 | |
| 
 | |
| 	if (sigaltstack(&stack, NULL) != 0)
 | |
| 		panic("enabling signal stack failed, errno = %d\n", errno);
 | |
| }
 | |
| 
 | |
| static void (*handlers[_NSIG])(int sig, struct siginfo *si, mcontext_t *mc) = {
 | |
| 	[SIGSEGV] = sig_handler,
 | |
| 	[SIGBUS] = sig_handler,
 | |
| 	[SIGILL] = sig_handler,
 | |
| 	[SIGFPE] = sig_handler,
 | |
| 	[SIGTRAP] = sig_handler,
 | |
| 
 | |
| 	[SIGIO] = sig_handler,
 | |
| 	[SIGWINCH] = sig_handler,
 | |
| 	[SIGVTALRM] = alarm_handler
 | |
| };
 | |
| 
 | |
| 
 | |
| static void hard_handler(int sig, siginfo_t *si, void *p)
 | |
| {
 | |
| 	struct ucontext *uc = p;
 | |
| 	mcontext_t *mc = &uc->uc_mcontext;
 | |
| 	unsigned long pending = 1UL << sig;
 | |
| 
 | |
| 	do {
 | |
| 		int nested, bail;
 | |
| 
 | |
| 		/*
 | |
| 		 * pending comes back with one bit set for each
 | |
| 		 * interrupt that arrived while setting up the stack,
 | |
| 		 * plus a bit for this interrupt, plus the zero bit is
 | |
| 		 * set if this is a nested interrupt.
 | |
| 		 * If bail is true, then we interrupted another
 | |
| 		 * handler setting up the stack.  In this case, we
 | |
| 		 * have to return, and the upper handler will deal
 | |
| 		 * with this interrupt.
 | |
| 		 */
 | |
| 		bail = to_irq_stack(&pending);
 | |
| 		if (bail)
 | |
| 			return;
 | |
| 
 | |
| 		nested = pending & 1;
 | |
| 		pending &= ~1;
 | |
| 
 | |
| 		while ((sig = ffs(pending)) != 0){
 | |
| 			sig--;
 | |
| 			pending &= ~(1 << sig);
 | |
| 			(*handlers[sig])(sig, (struct siginfo *)si, mc);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Again, pending comes back with a mask of signals
 | |
| 		 * that arrived while tearing down the stack.  If this
 | |
| 		 * is non-zero, we just go back, set up the stack
 | |
| 		 * again, and handle the new interrupts.
 | |
| 		 */
 | |
| 		if (!nested)
 | |
| 			pending = from_irq_stack(nested);
 | |
| 	} while (pending);
 | |
| }
 | |
| 
 | |
| void set_handler(int sig)
 | |
| {
 | |
| 	struct sigaction action;
 | |
| 	int flags = SA_SIGINFO | SA_ONSTACK;
 | |
| 	sigset_t sig_mask;
 | |
| 
 | |
| 	action.sa_sigaction = hard_handler;
 | |
| 
 | |
| 	/* block irq ones */
 | |
| 	sigemptyset(&action.sa_mask);
 | |
| 	sigaddset(&action.sa_mask, SIGVTALRM);
 | |
| 	sigaddset(&action.sa_mask, SIGIO);
 | |
| 	sigaddset(&action.sa_mask, SIGWINCH);
 | |
| 
 | |
| 	if (sig == SIGSEGV)
 | |
| 		flags |= SA_NODEFER;
 | |
| 
 | |
| 	if (sigismember(&action.sa_mask, sig))
 | |
| 		flags |= SA_RESTART; /* if it's an irq signal */
 | |
| 
 | |
| 	action.sa_flags = flags;
 | |
| 	action.sa_restorer = NULL;
 | |
| 	if (sigaction(sig, &action, NULL) < 0)
 | |
| 		panic("sigaction failed - errno = %d\n", errno);
 | |
| 
 | |
| 	sigemptyset(&sig_mask);
 | |
| 	sigaddset(&sig_mask, sig);
 | |
| 	if (sigprocmask(SIG_UNBLOCK, &sig_mask, NULL) < 0)
 | |
| 		panic("sigprocmask failed - errno = %d\n", errno);
 | |
| }
 | |
| 
 | |
| int change_sig(int signal, int on)
 | |
| {
 | |
| 	sigset_t sigset;
 | |
| 
 | |
| 	sigemptyset(&sigset);
 | |
| 	sigaddset(&sigset, signal);
 | |
| 	if (sigprocmask(on ? SIG_UNBLOCK : SIG_BLOCK, &sigset, NULL) < 0)
 | |
| 		return -errno;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void block_signals(void)
 | |
| {
 | |
| 	signals_enabled = 0;
 | |
| 	/*
 | |
| 	 * This must return with signals disabled, so this barrier
 | |
| 	 * ensures that writes are flushed out before the return.
 | |
| 	 * This might matter if gcc figures out how to inline this and
 | |
| 	 * decides to shuffle this code into the caller.
 | |
| 	 */
 | |
| 	barrier();
 | |
| }
 | |
| 
 | |
| void unblock_signals(void)
 | |
| {
 | |
| 	int save_pending;
 | |
| 
 | |
| 	if (signals_enabled == 1)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * We loop because the IRQ handler returns with interrupts off.  So,
 | |
| 	 * interrupts may have arrived and we need to re-enable them and
 | |
| 	 * recheck signals_pending.
 | |
| 	 */
 | |
| 	while (1) {
 | |
| 		/*
 | |
| 		 * Save and reset save_pending after enabling signals.  This
 | |
| 		 * way, signals_pending won't be changed while we're reading it.
 | |
| 		 */
 | |
| 		signals_enabled = 1;
 | |
| 
 | |
| 		/*
 | |
| 		 * Setting signals_enabled and reading signals_pending must
 | |
| 		 * happen in this order.
 | |
| 		 */
 | |
| 		barrier();
 | |
| 
 | |
| 		save_pending = signals_pending;
 | |
| 		if (save_pending == 0)
 | |
| 			return;
 | |
| 
 | |
| 		signals_pending = 0;
 | |
| 
 | |
| 		/*
 | |
| 		 * We have pending interrupts, so disable signals, as the
 | |
| 		 * handlers expect them off when they are called.  They will
 | |
| 		 * be enabled again above.
 | |
| 		 */
 | |
| 
 | |
| 		signals_enabled = 0;
 | |
| 
 | |
| 		/*
 | |
| 		 * Deal with SIGIO first because the alarm handler might
 | |
| 		 * schedule, leaving the pending SIGIO stranded until we come
 | |
| 		 * back here.
 | |
| 		 *
 | |
| 		 * SIGIO's handler doesn't use siginfo or mcontext,
 | |
| 		 * so they can be NULL.
 | |
| 		 */
 | |
| 		if (save_pending & SIGIO_MASK)
 | |
| 			sig_handler_common(SIGIO, NULL, NULL);
 | |
| 
 | |
| 		if (save_pending & SIGVTALRM_MASK)
 | |
| 			real_alarm_handler(NULL);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int get_signals(void)
 | |
| {
 | |
| 	return signals_enabled;
 | |
| }
 | |
| 
 | |
| int set_signals(int enable)
 | |
| {
 | |
| 	int ret;
 | |
| 	if (signals_enabled == enable)
 | |
| 		return enable;
 | |
| 
 | |
| 	ret = signals_enabled;
 | |
| 	if (enable)
 | |
| 		unblock_signals();
 | |
| 	else block_signals();
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int os_is_signal_stack(void)
 | |
| {
 | |
| 	stack_t ss;
 | |
| 	sigaltstack(NULL, &ss);
 | |
| 
 | |
| 	return ss.ss_flags & SS_ONSTACK;
 | |
| }
 |