 b92b8b35a2
			
		
	
	
	b92b8b35a2
	
	
	
		
			
			Since set_mb() is really about an smp_mb() -- not a IO/DMA barrier like mb() rename it to match the recent smp_load_acquire() and smp_store_release(). Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
		
			
				
	
	
		
			77 lines
		
	
	
	
		
			2.4 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			77 lines
		
	
	
	
		
			2.4 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| #ifndef __SPARC64_BARRIER_H
 | |
| #define __SPARC64_BARRIER_H
 | |
| 
 | |
| /* These are here in an effort to more fully work around Spitfire Errata
 | |
|  * #51.  Essentially, if a memory barrier occurs soon after a mispredicted
 | |
|  * branch, the chip can stop executing instructions until a trap occurs.
 | |
|  * Therefore, if interrupts are disabled, the chip can hang forever.
 | |
|  *
 | |
|  * It used to be believed that the memory barrier had to be right in the
 | |
|  * delay slot, but a case has been traced recently wherein the memory barrier
 | |
|  * was one instruction after the branch delay slot and the chip still hung.
 | |
|  * The offending sequence was the following in sym_wakeup_done() of the
 | |
|  * sym53c8xx_2 driver:
 | |
|  *
 | |
|  *	call	sym_ccb_from_dsa, 0
 | |
|  *	 movge	%icc, 0, %l0
 | |
|  *	brz,pn	%o0, .LL1303
 | |
|  *	 mov	%o0, %l2
 | |
|  *	membar	#LoadLoad
 | |
|  *
 | |
|  * The branch has to be mispredicted for the bug to occur.  Therefore, we put
 | |
|  * the memory barrier explicitly into a "branch always, predicted taken"
 | |
|  * delay slot to avoid the problem case.
 | |
|  */
 | |
| #define membar_safe(type) \
 | |
| do {	__asm__ __volatile__("ba,pt	%%xcc, 1f\n\t" \
 | |
| 			     " membar	" type "\n" \
 | |
| 			     "1:\n" \
 | |
| 			     : : : "memory"); \
 | |
| } while (0)
 | |
| 
 | |
| /* The kernel always executes in TSO memory model these days,
 | |
|  * and furthermore most sparc64 chips implement more stringent
 | |
|  * memory ordering than required by the specifications.
 | |
|  */
 | |
| #define mb()	membar_safe("#StoreLoad")
 | |
| #define rmb()	__asm__ __volatile__("":::"memory")
 | |
| #define wmb()	__asm__ __volatile__("":::"memory")
 | |
| 
 | |
| #define dma_rmb()	rmb()
 | |
| #define dma_wmb()	wmb()
 | |
| 
 | |
| #define smp_store_mb(__var, __value) \
 | |
| 	do { WRITE_ONCE(__var, __value); membar_safe("#StoreLoad"); } while(0)
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| #define smp_mb()	mb()
 | |
| #define smp_rmb()	rmb()
 | |
| #define smp_wmb()	wmb()
 | |
| #else
 | |
| #define smp_mb()	__asm__ __volatile__("":::"memory")
 | |
| #define smp_rmb()	__asm__ __volatile__("":::"memory")
 | |
| #define smp_wmb()	__asm__ __volatile__("":::"memory")
 | |
| #endif
 | |
| 
 | |
| #define read_barrier_depends()		do { } while (0)
 | |
| #define smp_read_barrier_depends()	do { } while (0)
 | |
| 
 | |
| #define smp_store_release(p, v)						\
 | |
| do {									\
 | |
| 	compiletime_assert_atomic_type(*p);				\
 | |
| 	barrier();							\
 | |
| 	ACCESS_ONCE(*p) = (v);						\
 | |
| } while (0)
 | |
| 
 | |
| #define smp_load_acquire(p)						\
 | |
| ({									\
 | |
| 	typeof(*p) ___p1 = ACCESS_ONCE(*p);				\
 | |
| 	compiletime_assert_atomic_type(*p);				\
 | |
| 	barrier();							\
 | |
| 	___p1;								\
 | |
| })
 | |
| 
 | |
| #define smp_mb__before_atomic()	barrier()
 | |
| #define smp_mb__after_atomic()	barrier()
 | |
| 
 | |
| #endif /* !(__SPARC64_BARRIER_H) */
 |