 1af135a1e7
			
		
	
	
	1af135a1e7
	
	
	
		
			
			Fix this compile error: arch/s390/kernel/setup.c:875:2: error: implicit declaration of function 'smp_save_dump_cpus' Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
		
			
				
	
	
		
			1172 lines
		
	
	
	
		
			30 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1172 lines
		
	
	
	
		
			30 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  SMP related functions
 | |
|  *
 | |
|  *    Copyright IBM Corp. 1999, 2012
 | |
|  *    Author(s): Denis Joseph Barrow,
 | |
|  *		 Martin Schwidefsky <schwidefsky@de.ibm.com>,
 | |
|  *		 Heiko Carstens <heiko.carstens@de.ibm.com>,
 | |
|  *
 | |
|  *  based on other smp stuff by
 | |
|  *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
 | |
|  *    (c) 1998 Ingo Molnar
 | |
|  *
 | |
|  * The code outside of smp.c uses logical cpu numbers, only smp.c does
 | |
|  * the translation of logical to physical cpu ids. All new code that
 | |
|  * operates on physical cpu numbers needs to go into smp.c.
 | |
|  */
 | |
| 
 | |
| #define KMSG_COMPONENT "cpu"
 | |
| #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
 | |
| 
 | |
| #include <linux/workqueue.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/err.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/kernel_stat.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/irqflags.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/crash_dump.h>
 | |
| #include <linux/memblock.h>
 | |
| #include <asm/asm-offsets.h>
 | |
| #include <asm/switch_to.h>
 | |
| #include <asm/facility.h>
 | |
| #include <asm/ipl.h>
 | |
| #include <asm/setup.h>
 | |
| #include <asm/irq.h>
 | |
| #include <asm/tlbflush.h>
 | |
| #include <asm/vtimer.h>
 | |
| #include <asm/lowcore.h>
 | |
| #include <asm/sclp.h>
 | |
| #include <asm/vdso.h>
 | |
| #include <asm/debug.h>
 | |
| #include <asm/os_info.h>
 | |
| #include <asm/sigp.h>
 | |
| #include <asm/idle.h>
 | |
| #include "entry.h"
 | |
| 
 | |
| enum {
 | |
| 	ec_schedule = 0,
 | |
| 	ec_call_function_single,
 | |
| 	ec_stop_cpu,
 | |
| };
 | |
| 
 | |
| enum {
 | |
| 	CPU_STATE_STANDBY,
 | |
| 	CPU_STATE_CONFIGURED,
 | |
| };
 | |
| 
 | |
| static DEFINE_PER_CPU(struct cpu *, cpu_device);
 | |
| 
 | |
| struct pcpu {
 | |
| 	struct _lowcore *lowcore;	/* lowcore page(s) for the cpu */
 | |
| 	unsigned long ec_mask;		/* bit mask for ec_xxx functions */
 | |
| 	signed char state;		/* physical cpu state */
 | |
| 	signed char polarization;	/* physical polarization */
 | |
| 	u16 address;			/* physical cpu address */
 | |
| };
 | |
| 
 | |
| static u8 boot_core_type;
 | |
| static struct pcpu pcpu_devices[NR_CPUS];
 | |
| 
 | |
| unsigned int smp_cpu_mt_shift;
 | |
| EXPORT_SYMBOL(smp_cpu_mt_shift);
 | |
| 
 | |
| unsigned int smp_cpu_mtid;
 | |
| EXPORT_SYMBOL(smp_cpu_mtid);
 | |
| 
 | |
| static unsigned int smp_max_threads __initdata = -1U;
 | |
| 
 | |
| static int __init early_nosmt(char *s)
 | |
| {
 | |
| 	smp_max_threads = 1;
 | |
| 	return 0;
 | |
| }
 | |
| early_param("nosmt", early_nosmt);
 | |
| 
 | |
| static int __init early_smt(char *s)
 | |
| {
 | |
| 	get_option(&s, &smp_max_threads);
 | |
| 	return 0;
 | |
| }
 | |
| early_param("smt", early_smt);
 | |
| 
 | |
| /*
 | |
|  * The smp_cpu_state_mutex must be held when changing the state or polarization
 | |
|  * member of a pcpu data structure within the pcpu_devices arreay.
 | |
|  */
 | |
| DEFINE_MUTEX(smp_cpu_state_mutex);
 | |
| 
 | |
| /*
 | |
|  * Signal processor helper functions.
 | |
|  */
 | |
| static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm,
 | |
| 				    u32 *status)
 | |
| {
 | |
| 	int cc;
 | |
| 
 | |
| 	while (1) {
 | |
| 		cc = __pcpu_sigp(addr, order, parm, NULL);
 | |
| 		if (cc != SIGP_CC_BUSY)
 | |
| 			return cc;
 | |
| 		cpu_relax();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
 | |
| {
 | |
| 	int cc, retry;
 | |
| 
 | |
| 	for (retry = 0; ; retry++) {
 | |
| 		cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
 | |
| 		if (cc != SIGP_CC_BUSY)
 | |
| 			break;
 | |
| 		if (retry >= 3)
 | |
| 			udelay(10);
 | |
| 	}
 | |
| 	return cc;
 | |
| }
 | |
| 
 | |
| static inline int pcpu_stopped(struct pcpu *pcpu)
 | |
| {
 | |
| 	u32 uninitialized_var(status);
 | |
| 
 | |
| 	if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
 | |
| 			0, &status) != SIGP_CC_STATUS_STORED)
 | |
| 		return 0;
 | |
| 	return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
 | |
| }
 | |
| 
 | |
| static inline int pcpu_running(struct pcpu *pcpu)
 | |
| {
 | |
| 	if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
 | |
| 			0, NULL) != SIGP_CC_STATUS_STORED)
 | |
| 		return 1;
 | |
| 	/* Status stored condition code is equivalent to cpu not running. */
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find struct pcpu by cpu address.
 | |
|  */
 | |
| static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	for_each_cpu(cpu, mask)
 | |
| 		if (pcpu_devices[cpu].address == address)
 | |
| 			return pcpu_devices + cpu;
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
 | |
| {
 | |
| 	int order;
 | |
| 
 | |
| 	if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
 | |
| 		return;
 | |
| 	order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
 | |
| 	pcpu_sigp_retry(pcpu, order, 0);
 | |
| }
 | |
| 
 | |
| #define ASYNC_FRAME_OFFSET (ASYNC_SIZE - STACK_FRAME_OVERHEAD - __PT_SIZE)
 | |
| #define PANIC_FRAME_OFFSET (PAGE_SIZE - STACK_FRAME_OVERHEAD - __PT_SIZE)
 | |
| 
 | |
| static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
 | |
| {
 | |
| 	unsigned long async_stack, panic_stack;
 | |
| 	struct _lowcore *lc;
 | |
| 
 | |
| 	if (pcpu != &pcpu_devices[0]) {
 | |
| 		pcpu->lowcore =	(struct _lowcore *)
 | |
| 			__get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
 | |
| 		async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
 | |
| 		panic_stack = __get_free_page(GFP_KERNEL);
 | |
| 		if (!pcpu->lowcore || !panic_stack || !async_stack)
 | |
| 			goto out;
 | |
| 	} else {
 | |
| 		async_stack = pcpu->lowcore->async_stack - ASYNC_FRAME_OFFSET;
 | |
| 		panic_stack = pcpu->lowcore->panic_stack - PANIC_FRAME_OFFSET;
 | |
| 	}
 | |
| 	lc = pcpu->lowcore;
 | |
| 	memcpy(lc, &S390_lowcore, 512);
 | |
| 	memset((char *) lc + 512, 0, sizeof(*lc) - 512);
 | |
| 	lc->async_stack = async_stack + ASYNC_FRAME_OFFSET;
 | |
| 	lc->panic_stack = panic_stack + PANIC_FRAME_OFFSET;
 | |
| 	lc->cpu_nr = cpu;
 | |
| 	lc->spinlock_lockval = arch_spin_lockval(cpu);
 | |
| 	if (MACHINE_HAS_VX)
 | |
| 		lc->vector_save_area_addr =
 | |
| 			(unsigned long) &lc->vector_save_area;
 | |
| 	if (vdso_alloc_per_cpu(lc))
 | |
| 		goto out;
 | |
| 	lowcore_ptr[cpu] = lc;
 | |
| 	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, (u32)(unsigned long) lc);
 | |
| 	return 0;
 | |
| out:
 | |
| 	if (pcpu != &pcpu_devices[0]) {
 | |
| 		free_page(panic_stack);
 | |
| 		free_pages(async_stack, ASYNC_ORDER);
 | |
| 		free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
 | |
| 	}
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HOTPLUG_CPU
 | |
| 
 | |
| static void pcpu_free_lowcore(struct pcpu *pcpu)
 | |
| {
 | |
| 	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
 | |
| 	lowcore_ptr[pcpu - pcpu_devices] = NULL;
 | |
| 	vdso_free_per_cpu(pcpu->lowcore);
 | |
| 	if (pcpu == &pcpu_devices[0])
 | |
| 		return;
 | |
| 	free_page(pcpu->lowcore->panic_stack-PANIC_FRAME_OFFSET);
 | |
| 	free_pages(pcpu->lowcore->async_stack-ASYNC_FRAME_OFFSET, ASYNC_ORDER);
 | |
| 	free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_HOTPLUG_CPU */
 | |
| 
 | |
| static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
 | |
| {
 | |
| 	struct _lowcore *lc = pcpu->lowcore;
 | |
| 
 | |
| 	if (MACHINE_HAS_TLB_LC)
 | |
| 		cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
 | |
| 	cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
 | |
| 	atomic_inc(&init_mm.context.attach_count);
 | |
| 	lc->cpu_nr = cpu;
 | |
| 	lc->spinlock_lockval = arch_spin_lockval(cpu);
 | |
| 	lc->percpu_offset = __per_cpu_offset[cpu];
 | |
| 	lc->kernel_asce = S390_lowcore.kernel_asce;
 | |
| 	lc->machine_flags = S390_lowcore.machine_flags;
 | |
| 	lc->user_timer = lc->system_timer = lc->steal_timer = 0;
 | |
| 	__ctl_store(lc->cregs_save_area, 0, 15);
 | |
| 	save_access_regs((unsigned int *) lc->access_regs_save_area);
 | |
| 	memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
 | |
| 	       MAX_FACILITY_BIT/8);
 | |
| }
 | |
| 
 | |
| static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
 | |
| {
 | |
| 	struct _lowcore *lc = pcpu->lowcore;
 | |
| 	struct thread_info *ti = task_thread_info(tsk);
 | |
| 
 | |
| 	lc->kernel_stack = (unsigned long) task_stack_page(tsk)
 | |
| 		+ THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
 | |
| 	lc->thread_info = (unsigned long) task_thread_info(tsk);
 | |
| 	lc->current_task = (unsigned long) tsk;
 | |
| 	lc->user_timer = ti->user_timer;
 | |
| 	lc->system_timer = ti->system_timer;
 | |
| 	lc->steal_timer = 0;
 | |
| }
 | |
| 
 | |
| static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
 | |
| {
 | |
| 	struct _lowcore *lc = pcpu->lowcore;
 | |
| 
 | |
| 	lc->restart_stack = lc->kernel_stack;
 | |
| 	lc->restart_fn = (unsigned long) func;
 | |
| 	lc->restart_data = (unsigned long) data;
 | |
| 	lc->restart_source = -1UL;
 | |
| 	pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Call function via PSW restart on pcpu and stop the current cpu.
 | |
|  */
 | |
| static void pcpu_delegate(struct pcpu *pcpu, void (*func)(void *),
 | |
| 			  void *data, unsigned long stack)
 | |
| {
 | |
| 	struct _lowcore *lc = lowcore_ptr[pcpu - pcpu_devices];
 | |
| 	unsigned long source_cpu = stap();
 | |
| 
 | |
| 	__load_psw_mask(PSW_KERNEL_BITS);
 | |
| 	if (pcpu->address == source_cpu)
 | |
| 		func(data);	/* should not return */
 | |
| 	/* Stop target cpu (if func returns this stops the current cpu). */
 | |
| 	pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
 | |
| 	/* Restart func on the target cpu and stop the current cpu. */
 | |
| 	mem_assign_absolute(lc->restart_stack, stack);
 | |
| 	mem_assign_absolute(lc->restart_fn, (unsigned long) func);
 | |
| 	mem_assign_absolute(lc->restart_data, (unsigned long) data);
 | |
| 	mem_assign_absolute(lc->restart_source, source_cpu);
 | |
| 	asm volatile(
 | |
| 		"0:	sigp	0,%0,%2	# sigp restart to target cpu\n"
 | |
| 		"	brc	2,0b	# busy, try again\n"
 | |
| 		"1:	sigp	0,%1,%3	# sigp stop to current cpu\n"
 | |
| 		"	brc	2,1b	# busy, try again\n"
 | |
| 		: : "d" (pcpu->address), "d" (source_cpu),
 | |
| 		    "K" (SIGP_RESTART), "K" (SIGP_STOP)
 | |
| 		: "0", "1", "cc");
 | |
| 	for (;;) ;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Enable additional logical cpus for multi-threading.
 | |
|  */
 | |
| static int pcpu_set_smt(unsigned int mtid)
 | |
| {
 | |
| 	register unsigned long reg1 asm ("1") = (unsigned long) mtid;
 | |
| 	int cc;
 | |
| 
 | |
| 	if (smp_cpu_mtid == mtid)
 | |
| 		return 0;
 | |
| 	asm volatile(
 | |
| 		"	sigp	%1,0,%2	# sigp set multi-threading\n"
 | |
| 		"	ipm	%0\n"
 | |
| 		"	srl	%0,28\n"
 | |
| 		: "=d" (cc) : "d" (reg1), "K" (SIGP_SET_MULTI_THREADING)
 | |
| 		: "cc");
 | |
| 	if (cc == 0) {
 | |
| 		smp_cpu_mtid = mtid;
 | |
| 		smp_cpu_mt_shift = 0;
 | |
| 		while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
 | |
| 			smp_cpu_mt_shift++;
 | |
| 		pcpu_devices[0].address = stap();
 | |
| 	}
 | |
| 	return cc;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Call function on an online CPU.
 | |
|  */
 | |
| void smp_call_online_cpu(void (*func)(void *), void *data)
 | |
| {
 | |
| 	struct pcpu *pcpu;
 | |
| 
 | |
| 	/* Use the current cpu if it is online. */
 | |
| 	pcpu = pcpu_find_address(cpu_online_mask, stap());
 | |
| 	if (!pcpu)
 | |
| 		/* Use the first online cpu. */
 | |
| 		pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
 | |
| 	pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Call function on the ipl CPU.
 | |
|  */
 | |
| void smp_call_ipl_cpu(void (*func)(void *), void *data)
 | |
| {
 | |
| 	pcpu_delegate(&pcpu_devices[0], func, data,
 | |
| 		      pcpu_devices->lowcore->panic_stack -
 | |
| 		      PANIC_FRAME_OFFSET + PAGE_SIZE);
 | |
| }
 | |
| 
 | |
| int smp_find_processor_id(u16 address)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	for_each_present_cpu(cpu)
 | |
| 		if (pcpu_devices[cpu].address == address)
 | |
| 			return cpu;
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| int smp_vcpu_scheduled(int cpu)
 | |
| {
 | |
| 	return pcpu_running(pcpu_devices + cpu);
 | |
| }
 | |
| 
 | |
| void smp_yield_cpu(int cpu)
 | |
| {
 | |
| 	if (MACHINE_HAS_DIAG9C)
 | |
| 		asm volatile("diag %0,0,0x9c"
 | |
| 			     : : "d" (pcpu_devices[cpu].address));
 | |
| 	else if (MACHINE_HAS_DIAG44)
 | |
| 		asm volatile("diag 0,0,0x44");
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Send cpus emergency shutdown signal. This gives the cpus the
 | |
|  * opportunity to complete outstanding interrupts.
 | |
|  */
 | |
| static void smp_emergency_stop(cpumask_t *cpumask)
 | |
| {
 | |
| 	u64 end;
 | |
| 	int cpu;
 | |
| 
 | |
| 	end = get_tod_clock() + (1000000UL << 12);
 | |
| 	for_each_cpu(cpu, cpumask) {
 | |
| 		struct pcpu *pcpu = pcpu_devices + cpu;
 | |
| 		set_bit(ec_stop_cpu, &pcpu->ec_mask);
 | |
| 		while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
 | |
| 				   0, NULL) == SIGP_CC_BUSY &&
 | |
| 		       get_tod_clock() < end)
 | |
| 			cpu_relax();
 | |
| 	}
 | |
| 	while (get_tod_clock() < end) {
 | |
| 		for_each_cpu(cpu, cpumask)
 | |
| 			if (pcpu_stopped(pcpu_devices + cpu))
 | |
| 				cpumask_clear_cpu(cpu, cpumask);
 | |
| 		if (cpumask_empty(cpumask))
 | |
| 			break;
 | |
| 		cpu_relax();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Stop all cpus but the current one.
 | |
|  */
 | |
| void smp_send_stop(void)
 | |
| {
 | |
| 	cpumask_t cpumask;
 | |
| 	int cpu;
 | |
| 
 | |
| 	/* Disable all interrupts/machine checks */
 | |
| 	__load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
 | |
| 	trace_hardirqs_off();
 | |
| 
 | |
| 	debug_set_critical();
 | |
| 	cpumask_copy(&cpumask, cpu_online_mask);
 | |
| 	cpumask_clear_cpu(smp_processor_id(), &cpumask);
 | |
| 
 | |
| 	if (oops_in_progress)
 | |
| 		smp_emergency_stop(&cpumask);
 | |
| 
 | |
| 	/* stop all processors */
 | |
| 	for_each_cpu(cpu, &cpumask) {
 | |
| 		struct pcpu *pcpu = pcpu_devices + cpu;
 | |
| 		pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
 | |
| 		while (!pcpu_stopped(pcpu))
 | |
| 			cpu_relax();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is the main routine where commands issued by other
 | |
|  * cpus are handled.
 | |
|  */
 | |
| static void smp_handle_ext_call(void)
 | |
| {
 | |
| 	unsigned long bits;
 | |
| 
 | |
| 	/* handle bit signal external calls */
 | |
| 	bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
 | |
| 	if (test_bit(ec_stop_cpu, &bits))
 | |
| 		smp_stop_cpu();
 | |
| 	if (test_bit(ec_schedule, &bits))
 | |
| 		scheduler_ipi();
 | |
| 	if (test_bit(ec_call_function_single, &bits))
 | |
| 		generic_smp_call_function_single_interrupt();
 | |
| }
 | |
| 
 | |
| static void do_ext_call_interrupt(struct ext_code ext_code,
 | |
| 				  unsigned int param32, unsigned long param64)
 | |
| {
 | |
| 	inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
 | |
| 	smp_handle_ext_call();
 | |
| }
 | |
| 
 | |
| void arch_send_call_function_ipi_mask(const struct cpumask *mask)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	for_each_cpu(cpu, mask)
 | |
| 		pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
 | |
| }
 | |
| 
 | |
| void arch_send_call_function_single_ipi(int cpu)
 | |
| {
 | |
| 	pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * this function sends a 'reschedule' IPI to another CPU.
 | |
|  * it goes straight through and wastes no time serializing
 | |
|  * anything. Worst case is that we lose a reschedule ...
 | |
|  */
 | |
| void smp_send_reschedule(int cpu)
 | |
| {
 | |
| 	pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * parameter area for the set/clear control bit callbacks
 | |
|  */
 | |
| struct ec_creg_mask_parms {
 | |
| 	unsigned long orval;
 | |
| 	unsigned long andval;
 | |
| 	int cr;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * callback for setting/clearing control bits
 | |
|  */
 | |
| static void smp_ctl_bit_callback(void *info)
 | |
| {
 | |
| 	struct ec_creg_mask_parms *pp = info;
 | |
| 	unsigned long cregs[16];
 | |
| 
 | |
| 	__ctl_store(cregs, 0, 15);
 | |
| 	cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
 | |
| 	__ctl_load(cregs, 0, 15);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set a bit in a control register of all cpus
 | |
|  */
 | |
| void smp_ctl_set_bit(int cr, int bit)
 | |
| {
 | |
| 	struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
 | |
| 
 | |
| 	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
 | |
| }
 | |
| EXPORT_SYMBOL(smp_ctl_set_bit);
 | |
| 
 | |
| /*
 | |
|  * Clear a bit in a control register of all cpus
 | |
|  */
 | |
| void smp_ctl_clear_bit(int cr, int bit)
 | |
| {
 | |
| 	struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
 | |
| 
 | |
| 	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
 | |
| }
 | |
| EXPORT_SYMBOL(smp_ctl_clear_bit);
 | |
| 
 | |
| #ifdef CONFIG_CRASH_DUMP
 | |
| 
 | |
| static void __smp_store_cpu_state(struct save_area_ext *sa_ext, u16 address,
 | |
| 				  int is_boot_cpu)
 | |
| {
 | |
| 	void *lc = (void *)(unsigned long) store_prefix();
 | |
| 	unsigned long vx_sa;
 | |
| 
 | |
| 	if (is_boot_cpu) {
 | |
| 		/* Copy the registers of the boot CPU. */
 | |
| 		copy_oldmem_page(1, (void *) &sa_ext->sa, sizeof(sa_ext->sa),
 | |
| 				 SAVE_AREA_BASE - PAGE_SIZE, 0);
 | |
| 		if (MACHINE_HAS_VX)
 | |
| 			save_vx_regs_safe(sa_ext->vx_regs);
 | |
| 		return;
 | |
| 	}
 | |
| 	/* Get the registers of a non-boot cpu. */
 | |
| 	__pcpu_sigp_relax(address, SIGP_STOP_AND_STORE_STATUS, 0, NULL);
 | |
| 	memcpy_real(&sa_ext->sa, lc + SAVE_AREA_BASE, sizeof(sa_ext->sa));
 | |
| 	if (!MACHINE_HAS_VX)
 | |
| 		return;
 | |
| 	/* Get the VX registers */
 | |
| 	vx_sa = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
 | |
| 	if (!vx_sa)
 | |
| 		panic("could not allocate memory for VX save area\n");
 | |
| 	__pcpu_sigp_relax(address, SIGP_STORE_ADDITIONAL_STATUS, vx_sa, NULL);
 | |
| 	memcpy(sa_ext->vx_regs, (void *) vx_sa, sizeof(sa_ext->vx_regs));
 | |
| 	memblock_free(vx_sa, PAGE_SIZE);
 | |
| }
 | |
| 
 | |
| int smp_store_status(int cpu)
 | |
| {
 | |
| 	unsigned long vx_sa;
 | |
| 	struct pcpu *pcpu;
 | |
| 
 | |
| 	pcpu = pcpu_devices + cpu;
 | |
| 	if (__pcpu_sigp_relax(pcpu->address, SIGP_STOP_AND_STORE_STATUS,
 | |
| 			      0, NULL) != SIGP_CC_ORDER_CODE_ACCEPTED)
 | |
| 		return -EIO;
 | |
| 	if (!MACHINE_HAS_VX)
 | |
| 		return 0;
 | |
| 	vx_sa = __pa(pcpu->lowcore->vector_save_area_addr);
 | |
| 	__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
 | |
| 			  vx_sa, NULL);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_CRASH_DUMP */
 | |
| 
 | |
| /*
 | |
|  * Collect CPU state of the previous, crashed system.
 | |
|  * There are four cases:
 | |
|  * 1) standard zfcp dump
 | |
|  *    condition: OLDMEM_BASE == NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
 | |
|  *    The state for all CPUs except the boot CPU needs to be collected
 | |
|  *    with sigp stop-and-store-status. The boot CPU state is located in
 | |
|  *    the absolute lowcore of the memory stored in the HSA. The zcore code
 | |
|  *    will allocate the save area and copy the boot CPU state from the HSA.
 | |
|  * 2) stand-alone kdump for SCSI (zfcp dump with swapped memory)
 | |
|  *    condition: OLDMEM_BASE != NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
 | |
|  *    The state for all CPUs except the boot CPU needs to be collected
 | |
|  *    with sigp stop-and-store-status. The firmware or the boot-loader
 | |
|  *    stored the registers of the boot CPU in the absolute lowcore in the
 | |
|  *    memory of the old system.
 | |
|  * 3) kdump and the old kernel did not store the CPU state,
 | |
|  *    or stand-alone kdump for DASD
 | |
|  *    condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
 | |
|  *    The state for all CPUs except the boot CPU needs to be collected
 | |
|  *    with sigp stop-and-store-status. The kexec code or the boot-loader
 | |
|  *    stored the registers of the boot CPU in the memory of the old system.
 | |
|  * 4) kdump and the old kernel stored the CPU state
 | |
|  *    condition: OLDMEM_BASE != NULL && is_kdump_kernel()
 | |
|  *    The state of all CPUs is stored in ELF sections in the memory of the
 | |
|  *    old system. The ELF sections are picked up by the crash_dump code
 | |
|  *    via elfcorehdr_addr.
 | |
|  */
 | |
| void __init smp_save_dump_cpus(void)
 | |
| {
 | |
| #ifdef CONFIG_CRASH_DUMP
 | |
| 	int addr, cpu, boot_cpu_addr, max_cpu_addr;
 | |
| 	struct save_area_ext *sa_ext;
 | |
| 	bool is_boot_cpu;
 | |
| 
 | |
| 	if (is_kdump_kernel())
 | |
| 		/* Previous system stored the CPU states. Nothing to do. */
 | |
| 		return;
 | |
| 	if (!(OLDMEM_BASE || ipl_info.type == IPL_TYPE_FCP_DUMP))
 | |
| 		/* No previous system present, normal boot. */
 | |
| 		return;
 | |
| 	/* Set multi-threading state to the previous system. */
 | |
| 	pcpu_set_smt(sclp.mtid_prev);
 | |
| 	max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
 | |
| 	for (cpu = 0, addr = 0; addr <= max_cpu_addr; addr++) {
 | |
| 		if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0, NULL) ==
 | |
| 		    SIGP_CC_NOT_OPERATIONAL)
 | |
| 			continue;
 | |
| 		cpu += 1;
 | |
| 	}
 | |
| 	dump_save_areas.areas = (void *)memblock_alloc(sizeof(void *) * cpu, 8);
 | |
| 	dump_save_areas.count = cpu;
 | |
| 	boot_cpu_addr = stap();
 | |
| 	for (cpu = 0, addr = 0; addr <= max_cpu_addr; addr++) {
 | |
| 		if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0, NULL) ==
 | |
| 		    SIGP_CC_NOT_OPERATIONAL)
 | |
| 			continue;
 | |
| 		sa_ext = (void *) memblock_alloc(sizeof(*sa_ext), 8);
 | |
| 		dump_save_areas.areas[cpu] = sa_ext;
 | |
| 		if (!sa_ext)
 | |
| 			panic("could not allocate memory for save area\n");
 | |
| 		is_boot_cpu = (addr == boot_cpu_addr);
 | |
| 		cpu += 1;
 | |
| 		if (is_boot_cpu && !OLDMEM_BASE)
 | |
| 			/* Skip boot CPU for standard zfcp dump. */
 | |
| 			continue;
 | |
| 		/* Get state for this CPU. */
 | |
| 		__smp_store_cpu_state(sa_ext, addr, is_boot_cpu);
 | |
| 	}
 | |
| 	diag308_reset();
 | |
| 	pcpu_set_smt(0);
 | |
| #endif /* CONFIG_CRASH_DUMP */
 | |
| }
 | |
| 
 | |
| void smp_cpu_set_polarization(int cpu, int val)
 | |
| {
 | |
| 	pcpu_devices[cpu].polarization = val;
 | |
| }
 | |
| 
 | |
| int smp_cpu_get_polarization(int cpu)
 | |
| {
 | |
| 	return pcpu_devices[cpu].polarization;
 | |
| }
 | |
| 
 | |
| static struct sclp_core_info *smp_get_core_info(void)
 | |
| {
 | |
| 	static int use_sigp_detection;
 | |
| 	struct sclp_core_info *info;
 | |
| 	int address;
 | |
| 
 | |
| 	info = kzalloc(sizeof(*info), GFP_KERNEL);
 | |
| 	if (info && (use_sigp_detection || sclp_get_core_info(info))) {
 | |
| 		use_sigp_detection = 1;
 | |
| 		for (address = 0;
 | |
| 		     address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
 | |
| 		     address += (1U << smp_cpu_mt_shift)) {
 | |
| 			if (__pcpu_sigp_relax(address, SIGP_SENSE, 0, NULL) ==
 | |
| 			    SIGP_CC_NOT_OPERATIONAL)
 | |
| 				continue;
 | |
| 			info->core[info->configured].core_id =
 | |
| 				address >> smp_cpu_mt_shift;
 | |
| 			info->configured++;
 | |
| 		}
 | |
| 		info->combined = info->configured;
 | |
| 	}
 | |
| 	return info;
 | |
| }
 | |
| 
 | |
| static int smp_add_present_cpu(int cpu);
 | |
| 
 | |
| static int __smp_rescan_cpus(struct sclp_core_info *info, int sysfs_add)
 | |
| {
 | |
| 	struct pcpu *pcpu;
 | |
| 	cpumask_t avail;
 | |
| 	int cpu, nr, i, j;
 | |
| 	u16 address;
 | |
| 
 | |
| 	nr = 0;
 | |
| 	cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
 | |
| 	cpu = cpumask_first(&avail);
 | |
| 	for (i = 0; (i < info->combined) && (cpu < nr_cpu_ids); i++) {
 | |
| 		if (sclp.has_core_type && info->core[i].type != boot_core_type)
 | |
| 			continue;
 | |
| 		address = info->core[i].core_id << smp_cpu_mt_shift;
 | |
| 		for (j = 0; j <= smp_cpu_mtid; j++) {
 | |
| 			if (pcpu_find_address(cpu_present_mask, address + j))
 | |
| 				continue;
 | |
| 			pcpu = pcpu_devices + cpu;
 | |
| 			pcpu->address = address + j;
 | |
| 			pcpu->state =
 | |
| 				(cpu >= info->configured*(smp_cpu_mtid + 1)) ?
 | |
| 				CPU_STATE_STANDBY : CPU_STATE_CONFIGURED;
 | |
| 			smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
 | |
| 			set_cpu_present(cpu, true);
 | |
| 			if (sysfs_add && smp_add_present_cpu(cpu) != 0)
 | |
| 				set_cpu_present(cpu, false);
 | |
| 			else
 | |
| 				nr++;
 | |
| 			cpu = cpumask_next(cpu, &avail);
 | |
| 			if (cpu >= nr_cpu_ids)
 | |
| 				break;
 | |
| 		}
 | |
| 	}
 | |
| 	return nr;
 | |
| }
 | |
| 
 | |
| static void __init smp_detect_cpus(void)
 | |
| {
 | |
| 	unsigned int cpu, mtid, c_cpus, s_cpus;
 | |
| 	struct sclp_core_info *info;
 | |
| 	u16 address;
 | |
| 
 | |
| 	/* Get CPU information */
 | |
| 	info = smp_get_core_info();
 | |
| 	if (!info)
 | |
| 		panic("smp_detect_cpus failed to allocate memory\n");
 | |
| 
 | |
| 	/* Find boot CPU type */
 | |
| 	if (sclp.has_core_type) {
 | |
| 		address = stap();
 | |
| 		for (cpu = 0; cpu < info->combined; cpu++)
 | |
| 			if (info->core[cpu].core_id == address) {
 | |
| 				/* The boot cpu dictates the cpu type. */
 | |
| 				boot_core_type = info->core[cpu].type;
 | |
| 				break;
 | |
| 			}
 | |
| 		if (cpu >= info->combined)
 | |
| 			panic("Could not find boot CPU type");
 | |
| 	}
 | |
| 
 | |
| 	/* Set multi-threading state for the current system */
 | |
| 	mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
 | |
| 	mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
 | |
| 	pcpu_set_smt(mtid);
 | |
| 
 | |
| 	/* Print number of CPUs */
 | |
| 	c_cpus = s_cpus = 0;
 | |
| 	for (cpu = 0; cpu < info->combined; cpu++) {
 | |
| 		if (sclp.has_core_type &&
 | |
| 		    info->core[cpu].type != boot_core_type)
 | |
| 			continue;
 | |
| 		if (cpu < info->configured)
 | |
| 			c_cpus += smp_cpu_mtid + 1;
 | |
| 		else
 | |
| 			s_cpus += smp_cpu_mtid + 1;
 | |
| 	}
 | |
| 	pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
 | |
| 
 | |
| 	/* Add CPUs present at boot */
 | |
| 	get_online_cpus();
 | |
| 	__smp_rescan_cpus(info, 0);
 | |
| 	put_online_cpus();
 | |
| 	kfree(info);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	Activate a secondary processor.
 | |
|  */
 | |
| static void smp_start_secondary(void *cpuvoid)
 | |
| {
 | |
| 	S390_lowcore.last_update_clock = get_tod_clock();
 | |
| 	S390_lowcore.restart_stack = (unsigned long) restart_stack;
 | |
| 	S390_lowcore.restart_fn = (unsigned long) do_restart;
 | |
| 	S390_lowcore.restart_data = 0;
 | |
| 	S390_lowcore.restart_source = -1UL;
 | |
| 	restore_access_regs(S390_lowcore.access_regs_save_area);
 | |
| 	__ctl_load(S390_lowcore.cregs_save_area, 0, 15);
 | |
| 	__load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
 | |
| 	cpu_init();
 | |
| 	preempt_disable();
 | |
| 	init_cpu_timer();
 | |
| 	vtime_init();
 | |
| 	pfault_init();
 | |
| 	notify_cpu_starting(smp_processor_id());
 | |
| 	set_cpu_online(smp_processor_id(), true);
 | |
| 	inc_irq_stat(CPU_RST);
 | |
| 	local_irq_enable();
 | |
| 	cpu_startup_entry(CPUHP_ONLINE);
 | |
| }
 | |
| 
 | |
| /* Upping and downing of CPUs */
 | |
| int __cpu_up(unsigned int cpu, struct task_struct *tidle)
 | |
| {
 | |
| 	struct pcpu *pcpu;
 | |
| 	int base, i, rc;
 | |
| 
 | |
| 	pcpu = pcpu_devices + cpu;
 | |
| 	if (pcpu->state != CPU_STATE_CONFIGURED)
 | |
| 		return -EIO;
 | |
| 	base = cpu - (cpu % (smp_cpu_mtid + 1));
 | |
| 	for (i = 0; i <= smp_cpu_mtid; i++) {
 | |
| 		if (base + i < nr_cpu_ids)
 | |
| 			if (cpu_online(base + i))
 | |
| 				break;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * If this is the first CPU of the core to get online
 | |
| 	 * do an initial CPU reset.
 | |
| 	 */
 | |
| 	if (i > smp_cpu_mtid &&
 | |
| 	    pcpu_sigp_retry(pcpu_devices + base, SIGP_INITIAL_CPU_RESET, 0) !=
 | |
| 	    SIGP_CC_ORDER_CODE_ACCEPTED)
 | |
| 		return -EIO;
 | |
| 
 | |
| 	rc = pcpu_alloc_lowcore(pcpu, cpu);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 	pcpu_prepare_secondary(pcpu, cpu);
 | |
| 	pcpu_attach_task(pcpu, tidle);
 | |
| 	pcpu_start_fn(pcpu, smp_start_secondary, NULL);
 | |
| 	/* Wait until cpu puts itself in the online & active maps */
 | |
| 	while (!cpu_online(cpu) || !cpu_active(cpu))
 | |
| 		cpu_relax();
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static unsigned int setup_possible_cpus __initdata;
 | |
| 
 | |
| static int __init _setup_possible_cpus(char *s)
 | |
| {
 | |
| 	get_option(&s, &setup_possible_cpus);
 | |
| 	return 0;
 | |
| }
 | |
| early_param("possible_cpus", _setup_possible_cpus);
 | |
| 
 | |
| #ifdef CONFIG_HOTPLUG_CPU
 | |
| 
 | |
| int __cpu_disable(void)
 | |
| {
 | |
| 	unsigned long cregs[16];
 | |
| 
 | |
| 	/* Handle possible pending IPIs */
 | |
| 	smp_handle_ext_call();
 | |
| 	set_cpu_online(smp_processor_id(), false);
 | |
| 	/* Disable pseudo page faults on this cpu. */
 | |
| 	pfault_fini();
 | |
| 	/* Disable interrupt sources via control register. */
 | |
| 	__ctl_store(cregs, 0, 15);
 | |
| 	cregs[0]  &= ~0x0000ee70UL;	/* disable all external interrupts */
 | |
| 	cregs[6]  &= ~0xff000000UL;	/* disable all I/O interrupts */
 | |
| 	cregs[14] &= ~0x1f000000UL;	/* disable most machine checks */
 | |
| 	__ctl_load(cregs, 0, 15);
 | |
| 	clear_cpu_flag(CIF_NOHZ_DELAY);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void __cpu_die(unsigned int cpu)
 | |
| {
 | |
| 	struct pcpu *pcpu;
 | |
| 
 | |
| 	/* Wait until target cpu is down */
 | |
| 	pcpu = pcpu_devices + cpu;
 | |
| 	while (!pcpu_stopped(pcpu))
 | |
| 		cpu_relax();
 | |
| 	pcpu_free_lowcore(pcpu);
 | |
| 	atomic_dec(&init_mm.context.attach_count);
 | |
| 	cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
 | |
| 	if (MACHINE_HAS_TLB_LC)
 | |
| 		cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
 | |
| }
 | |
| 
 | |
| void __noreturn cpu_die(void)
 | |
| {
 | |
| 	idle_task_exit();
 | |
| 	pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
 | |
| 	for (;;) ;
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_HOTPLUG_CPU */
 | |
| 
 | |
| void __init smp_fill_possible_mask(void)
 | |
| {
 | |
| 	unsigned int possible, sclp_max, cpu;
 | |
| 
 | |
| 	sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
 | |
| 	sclp_max = min(smp_max_threads, sclp_max);
 | |
| 	sclp_max = sclp.max_cores * sclp_max ?: nr_cpu_ids;
 | |
| 	possible = setup_possible_cpus ?: nr_cpu_ids;
 | |
| 	possible = min(possible, sclp_max);
 | |
| 	for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
 | |
| 		set_cpu_possible(cpu, true);
 | |
| }
 | |
| 
 | |
| void __init smp_prepare_cpus(unsigned int max_cpus)
 | |
| {
 | |
| 	/* request the 0x1201 emergency signal external interrupt */
 | |
| 	if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
 | |
| 		panic("Couldn't request external interrupt 0x1201");
 | |
| 	/* request the 0x1202 external call external interrupt */
 | |
| 	if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
 | |
| 		panic("Couldn't request external interrupt 0x1202");
 | |
| 	smp_detect_cpus();
 | |
| }
 | |
| 
 | |
| void __init smp_prepare_boot_cpu(void)
 | |
| {
 | |
| 	struct pcpu *pcpu = pcpu_devices;
 | |
| 
 | |
| 	pcpu->state = CPU_STATE_CONFIGURED;
 | |
| 	pcpu->address = stap();
 | |
| 	pcpu->lowcore = (struct _lowcore *)(unsigned long) store_prefix();
 | |
| 	S390_lowcore.percpu_offset = __per_cpu_offset[0];
 | |
| 	smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
 | |
| 	set_cpu_present(0, true);
 | |
| 	set_cpu_online(0, true);
 | |
| }
 | |
| 
 | |
| void __init smp_cpus_done(unsigned int max_cpus)
 | |
| {
 | |
| }
 | |
| 
 | |
| void __init smp_setup_processor_id(void)
 | |
| {
 | |
| 	S390_lowcore.cpu_nr = 0;
 | |
| 	S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * the frequency of the profiling timer can be changed
 | |
|  * by writing a multiplier value into /proc/profile.
 | |
|  *
 | |
|  * usually you want to run this on all CPUs ;)
 | |
|  */
 | |
| int setup_profiling_timer(unsigned int multiplier)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HOTPLUG_CPU
 | |
| static ssize_t cpu_configure_show(struct device *dev,
 | |
| 				  struct device_attribute *attr, char *buf)
 | |
| {
 | |
| 	ssize_t count;
 | |
| 
 | |
| 	mutex_lock(&smp_cpu_state_mutex);
 | |
| 	count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
 | |
| 	mutex_unlock(&smp_cpu_state_mutex);
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static ssize_t cpu_configure_store(struct device *dev,
 | |
| 				   struct device_attribute *attr,
 | |
| 				   const char *buf, size_t count)
 | |
| {
 | |
| 	struct pcpu *pcpu;
 | |
| 	int cpu, val, rc, i;
 | |
| 	char delim;
 | |
| 
 | |
| 	if (sscanf(buf, "%d %c", &val, &delim) != 1)
 | |
| 		return -EINVAL;
 | |
| 	if (val != 0 && val != 1)
 | |
| 		return -EINVAL;
 | |
| 	get_online_cpus();
 | |
| 	mutex_lock(&smp_cpu_state_mutex);
 | |
| 	rc = -EBUSY;
 | |
| 	/* disallow configuration changes of online cpus and cpu 0 */
 | |
| 	cpu = dev->id;
 | |
| 	cpu -= cpu % (smp_cpu_mtid + 1);
 | |
| 	if (cpu == 0)
 | |
| 		goto out;
 | |
| 	for (i = 0; i <= smp_cpu_mtid; i++)
 | |
| 		if (cpu_online(cpu + i))
 | |
| 			goto out;
 | |
| 	pcpu = pcpu_devices + cpu;
 | |
| 	rc = 0;
 | |
| 	switch (val) {
 | |
| 	case 0:
 | |
| 		if (pcpu->state != CPU_STATE_CONFIGURED)
 | |
| 			break;
 | |
| 		rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
 | |
| 		if (rc)
 | |
| 			break;
 | |
| 		for (i = 0; i <= smp_cpu_mtid; i++) {
 | |
| 			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
 | |
| 				continue;
 | |
| 			pcpu[i].state = CPU_STATE_STANDBY;
 | |
| 			smp_cpu_set_polarization(cpu + i,
 | |
| 						 POLARIZATION_UNKNOWN);
 | |
| 		}
 | |
| 		topology_expect_change();
 | |
| 		break;
 | |
| 	case 1:
 | |
| 		if (pcpu->state != CPU_STATE_STANDBY)
 | |
| 			break;
 | |
| 		rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
 | |
| 		if (rc)
 | |
| 			break;
 | |
| 		for (i = 0; i <= smp_cpu_mtid; i++) {
 | |
| 			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
 | |
| 				continue;
 | |
| 			pcpu[i].state = CPU_STATE_CONFIGURED;
 | |
| 			smp_cpu_set_polarization(cpu + i,
 | |
| 						 POLARIZATION_UNKNOWN);
 | |
| 		}
 | |
| 		topology_expect_change();
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| out:
 | |
| 	mutex_unlock(&smp_cpu_state_mutex);
 | |
| 	put_online_cpus();
 | |
| 	return rc ? rc : count;
 | |
| }
 | |
| static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
 | |
| #endif /* CONFIG_HOTPLUG_CPU */
 | |
| 
 | |
| static ssize_t show_cpu_address(struct device *dev,
 | |
| 				struct device_attribute *attr, char *buf)
 | |
| {
 | |
| 	return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
 | |
| }
 | |
| static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
 | |
| 
 | |
| static struct attribute *cpu_common_attrs[] = {
 | |
| #ifdef CONFIG_HOTPLUG_CPU
 | |
| 	&dev_attr_configure.attr,
 | |
| #endif
 | |
| 	&dev_attr_address.attr,
 | |
| 	NULL,
 | |
| };
 | |
| 
 | |
| static struct attribute_group cpu_common_attr_group = {
 | |
| 	.attrs = cpu_common_attrs,
 | |
| };
 | |
| 
 | |
| static struct attribute *cpu_online_attrs[] = {
 | |
| 	&dev_attr_idle_count.attr,
 | |
| 	&dev_attr_idle_time_us.attr,
 | |
| 	NULL,
 | |
| };
 | |
| 
 | |
| static struct attribute_group cpu_online_attr_group = {
 | |
| 	.attrs = cpu_online_attrs,
 | |
| };
 | |
| 
 | |
| static int smp_cpu_notify(struct notifier_block *self, unsigned long action,
 | |
| 			  void *hcpu)
 | |
| {
 | |
| 	unsigned int cpu = (unsigned int)(long)hcpu;
 | |
| 	struct device *s = &per_cpu(cpu_device, cpu)->dev;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	switch (action & ~CPU_TASKS_FROZEN) {
 | |
| 	case CPU_ONLINE:
 | |
| 		err = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
 | |
| 		break;
 | |
| 	case CPU_DEAD:
 | |
| 		sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
 | |
| 		break;
 | |
| 	}
 | |
| 	return notifier_from_errno(err);
 | |
| }
 | |
| 
 | |
| static int smp_add_present_cpu(int cpu)
 | |
| {
 | |
| 	struct device *s;
 | |
| 	struct cpu *c;
 | |
| 	int rc;
 | |
| 
 | |
| 	c = kzalloc(sizeof(*c), GFP_KERNEL);
 | |
| 	if (!c)
 | |
| 		return -ENOMEM;
 | |
| 	per_cpu(cpu_device, cpu) = c;
 | |
| 	s = &c->dev;
 | |
| 	c->hotpluggable = 1;
 | |
| 	rc = register_cpu(c, cpu);
 | |
| 	if (rc)
 | |
| 		goto out;
 | |
| 	rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
 | |
| 	if (rc)
 | |
| 		goto out_cpu;
 | |
| 	if (cpu_online(cpu)) {
 | |
| 		rc = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
 | |
| 		if (rc)
 | |
| 			goto out_online;
 | |
| 	}
 | |
| 	rc = topology_cpu_init(c);
 | |
| 	if (rc)
 | |
| 		goto out_topology;
 | |
| 	return 0;
 | |
| 
 | |
| out_topology:
 | |
| 	if (cpu_online(cpu))
 | |
| 		sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
 | |
| out_online:
 | |
| 	sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
 | |
| out_cpu:
 | |
| #ifdef CONFIG_HOTPLUG_CPU
 | |
| 	unregister_cpu(c);
 | |
| #endif
 | |
| out:
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HOTPLUG_CPU
 | |
| 
 | |
| int __ref smp_rescan_cpus(void)
 | |
| {
 | |
| 	struct sclp_core_info *info;
 | |
| 	int nr;
 | |
| 
 | |
| 	info = smp_get_core_info();
 | |
| 	if (!info)
 | |
| 		return -ENOMEM;
 | |
| 	get_online_cpus();
 | |
| 	mutex_lock(&smp_cpu_state_mutex);
 | |
| 	nr = __smp_rescan_cpus(info, 1);
 | |
| 	mutex_unlock(&smp_cpu_state_mutex);
 | |
| 	put_online_cpus();
 | |
| 	kfree(info);
 | |
| 	if (nr)
 | |
| 		topology_schedule_update();
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static ssize_t __ref rescan_store(struct device *dev,
 | |
| 				  struct device_attribute *attr,
 | |
| 				  const char *buf,
 | |
| 				  size_t count)
 | |
| {
 | |
| 	int rc;
 | |
| 
 | |
| 	rc = smp_rescan_cpus();
 | |
| 	return rc ? rc : count;
 | |
| }
 | |
| static DEVICE_ATTR(rescan, 0200, NULL, rescan_store);
 | |
| #endif /* CONFIG_HOTPLUG_CPU */
 | |
| 
 | |
| static int __init s390_smp_init(void)
 | |
| {
 | |
| 	int cpu, rc = 0;
 | |
| 
 | |
| #ifdef CONFIG_HOTPLUG_CPU
 | |
| 	rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| #endif
 | |
| 	cpu_notifier_register_begin();
 | |
| 	for_each_present_cpu(cpu) {
 | |
| 		rc = smp_add_present_cpu(cpu);
 | |
| 		if (rc)
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	__hotcpu_notifier(smp_cpu_notify, 0);
 | |
| 
 | |
| out:
 | |
| 	cpu_notifier_register_done();
 | |
| 	return rc;
 | |
| }
 | |
| subsys_initcall(s390_smp_init);
 |