1518 lines
		
	
	
	
		
			41 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1518 lines
		
	
	
	
		
			41 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  linux/arch/arm/mm/mmu.c
 | |
|  *
 | |
|  *  Copyright (C) 1995-2005 Russell King
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License version 2 as
 | |
|  * published by the Free Software Foundation.
 | |
|  */
 | |
| #include <linux/module.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/mman.h>
 | |
| #include <linux/nodemask.h>
 | |
| #include <linux/memblock.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/sizes.h>
 | |
| 
 | |
| #include <asm/cp15.h>
 | |
| #include <asm/cputype.h>
 | |
| #include <asm/sections.h>
 | |
| #include <asm/cachetype.h>
 | |
| #include <asm/fixmap.h>
 | |
| #include <asm/sections.h>
 | |
| #include <asm/setup.h>
 | |
| #include <asm/smp_plat.h>
 | |
| #include <asm/tlb.h>
 | |
| #include <asm/highmem.h>
 | |
| #include <asm/system_info.h>
 | |
| #include <asm/traps.h>
 | |
| #include <asm/procinfo.h>
 | |
| #include <asm/memory.h>
 | |
| 
 | |
| #include <asm/mach/arch.h>
 | |
| #include <asm/mach/map.h>
 | |
| #include <asm/mach/pci.h>
 | |
| #include <asm/fixmap.h>
 | |
| 
 | |
| #include "mm.h"
 | |
| #include "tcm.h"
 | |
| 
 | |
| /*
 | |
|  * empty_zero_page is a special page that is used for
 | |
|  * zero-initialized data and COW.
 | |
|  */
 | |
| struct page *empty_zero_page;
 | |
| EXPORT_SYMBOL(empty_zero_page);
 | |
| 
 | |
| /*
 | |
|  * The pmd table for the upper-most set of pages.
 | |
|  */
 | |
| pmd_t *top_pmd;
 | |
| 
 | |
| pmdval_t user_pmd_table = _PAGE_USER_TABLE;
 | |
| 
 | |
| #define CPOLICY_UNCACHED	0
 | |
| #define CPOLICY_BUFFERED	1
 | |
| #define CPOLICY_WRITETHROUGH	2
 | |
| #define CPOLICY_WRITEBACK	3
 | |
| #define CPOLICY_WRITEALLOC	4
 | |
| 
 | |
| static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
 | |
| static unsigned int ecc_mask __initdata = 0;
 | |
| pgprot_t pgprot_user;
 | |
| pgprot_t pgprot_kernel;
 | |
| pgprot_t pgprot_hyp_device;
 | |
| pgprot_t pgprot_s2;
 | |
| pgprot_t pgprot_s2_device;
 | |
| 
 | |
| EXPORT_SYMBOL(pgprot_user);
 | |
| EXPORT_SYMBOL(pgprot_kernel);
 | |
| 
 | |
| struct cachepolicy {
 | |
| 	const char	policy[16];
 | |
| 	unsigned int	cr_mask;
 | |
| 	pmdval_t	pmd;
 | |
| 	pteval_t	pte;
 | |
| 	pteval_t	pte_s2;
 | |
| };
 | |
| 
 | |
| #ifdef CONFIG_ARM_LPAE
 | |
| #define s2_policy(policy)	policy
 | |
| #else
 | |
| #define s2_policy(policy)	0
 | |
| #endif
 | |
| 
 | |
| static struct cachepolicy cache_policies[] __initdata = {
 | |
| 	{
 | |
| 		.policy		= "uncached",
 | |
| 		.cr_mask	= CR_W|CR_C,
 | |
| 		.pmd		= PMD_SECT_UNCACHED,
 | |
| 		.pte		= L_PTE_MT_UNCACHED,
 | |
| 		.pte_s2		= s2_policy(L_PTE_S2_MT_UNCACHED),
 | |
| 	}, {
 | |
| 		.policy		= "buffered",
 | |
| 		.cr_mask	= CR_C,
 | |
| 		.pmd		= PMD_SECT_BUFFERED,
 | |
| 		.pte		= L_PTE_MT_BUFFERABLE,
 | |
| 		.pte_s2		= s2_policy(L_PTE_S2_MT_UNCACHED),
 | |
| 	}, {
 | |
| 		.policy		= "writethrough",
 | |
| 		.cr_mask	= 0,
 | |
| 		.pmd		= PMD_SECT_WT,
 | |
| 		.pte		= L_PTE_MT_WRITETHROUGH,
 | |
| 		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITETHROUGH),
 | |
| 	}, {
 | |
| 		.policy		= "writeback",
 | |
| 		.cr_mask	= 0,
 | |
| 		.pmd		= PMD_SECT_WB,
 | |
| 		.pte		= L_PTE_MT_WRITEBACK,
 | |
| 		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITEBACK),
 | |
| 	}, {
 | |
| 		.policy		= "writealloc",
 | |
| 		.cr_mask	= 0,
 | |
| 		.pmd		= PMD_SECT_WBWA,
 | |
| 		.pte		= L_PTE_MT_WRITEALLOC,
 | |
| 		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITEBACK),
 | |
| 	}
 | |
| };
 | |
| 
 | |
| #ifdef CONFIG_CPU_CP15
 | |
| static unsigned long initial_pmd_value __initdata = 0;
 | |
| 
 | |
| /*
 | |
|  * Initialise the cache_policy variable with the initial state specified
 | |
|  * via the "pmd" value.  This is used to ensure that on ARMv6 and later,
 | |
|  * the C code sets the page tables up with the same policy as the head
 | |
|  * assembly code, which avoids an illegal state where the TLBs can get
 | |
|  * confused.  See comments in early_cachepolicy() for more information.
 | |
|  */
 | |
| void __init init_default_cache_policy(unsigned long pmd)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	initial_pmd_value = pmd;
 | |
| 
 | |
| 	pmd &= PMD_SECT_TEX(1) | PMD_SECT_BUFFERABLE | PMD_SECT_CACHEABLE;
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(cache_policies); i++)
 | |
| 		if (cache_policies[i].pmd == pmd) {
 | |
| 			cachepolicy = i;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 	if (i == ARRAY_SIZE(cache_policies))
 | |
| 		pr_err("ERROR: could not find cache policy\n");
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * These are useful for identifying cache coherency problems by allowing
 | |
|  * the cache or the cache and writebuffer to be turned off.  (Note: the
 | |
|  * write buffer should not be on and the cache off).
 | |
|  */
 | |
| static int __init early_cachepolicy(char *p)
 | |
| {
 | |
| 	int i, selected = -1;
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
 | |
| 		int len = strlen(cache_policies[i].policy);
 | |
| 
 | |
| 		if (memcmp(p, cache_policies[i].policy, len) == 0) {
 | |
| 			selected = i;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (selected == -1)
 | |
| 		pr_err("ERROR: unknown or unsupported cache policy\n");
 | |
| 
 | |
| 	/*
 | |
| 	 * This restriction is partly to do with the way we boot; it is
 | |
| 	 * unpredictable to have memory mapped using two different sets of
 | |
| 	 * memory attributes (shared, type, and cache attribs).  We can not
 | |
| 	 * change these attributes once the initial assembly has setup the
 | |
| 	 * page tables.
 | |
| 	 */
 | |
| 	if (cpu_architecture() >= CPU_ARCH_ARMv6 && selected != cachepolicy) {
 | |
| 		pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n",
 | |
| 			cache_policies[cachepolicy].policy);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (selected != cachepolicy) {
 | |
| 		unsigned long cr = __clear_cr(cache_policies[selected].cr_mask);
 | |
| 		cachepolicy = selected;
 | |
| 		flush_cache_all();
 | |
| 		set_cr(cr);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| early_param("cachepolicy", early_cachepolicy);
 | |
| 
 | |
| static int __init early_nocache(char *__unused)
 | |
| {
 | |
| 	char *p = "buffered";
 | |
| 	pr_warn("nocache is deprecated; use cachepolicy=%s\n", p);
 | |
| 	early_cachepolicy(p);
 | |
| 	return 0;
 | |
| }
 | |
| early_param("nocache", early_nocache);
 | |
| 
 | |
| static int __init early_nowrite(char *__unused)
 | |
| {
 | |
| 	char *p = "uncached";
 | |
| 	pr_warn("nowb is deprecated; use cachepolicy=%s\n", p);
 | |
| 	early_cachepolicy(p);
 | |
| 	return 0;
 | |
| }
 | |
| early_param("nowb", early_nowrite);
 | |
| 
 | |
| #ifndef CONFIG_ARM_LPAE
 | |
| static int __init early_ecc(char *p)
 | |
| {
 | |
| 	if (memcmp(p, "on", 2) == 0)
 | |
| 		ecc_mask = PMD_PROTECTION;
 | |
| 	else if (memcmp(p, "off", 3) == 0)
 | |
| 		ecc_mask = 0;
 | |
| 	return 0;
 | |
| }
 | |
| early_param("ecc", early_ecc);
 | |
| #endif
 | |
| 
 | |
| #else /* ifdef CONFIG_CPU_CP15 */
 | |
| 
 | |
| static int __init early_cachepolicy(char *p)
 | |
| {
 | |
| 	pr_warn("cachepolicy kernel parameter not supported without cp15\n");
 | |
| }
 | |
| early_param("cachepolicy", early_cachepolicy);
 | |
| 
 | |
| static int __init noalign_setup(char *__unused)
 | |
| {
 | |
| 	pr_warn("noalign kernel parameter not supported without cp15\n");
 | |
| }
 | |
| __setup("noalign", noalign_setup);
 | |
| 
 | |
| #endif /* ifdef CONFIG_CPU_CP15 / else */
 | |
| 
 | |
| #define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
 | |
| #define PROT_PTE_S2_DEVICE	PROT_PTE_DEVICE
 | |
| #define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE
 | |
| 
 | |
| static struct mem_type mem_types[] = {
 | |
| 	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
 | |
| 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
 | |
| 				  L_PTE_SHARED,
 | |
| 		.prot_pte_s2	= s2_policy(PROT_PTE_S2_DEVICE) |
 | |
| 				  s2_policy(L_PTE_S2_MT_DEV_SHARED) |
 | |
| 				  L_PTE_SHARED,
 | |
| 		.prot_l1	= PMD_TYPE_TABLE,
 | |
| 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,
 | |
| 		.domain		= DOMAIN_IO,
 | |
| 	},
 | |
| 	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
 | |
| 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
 | |
| 		.prot_l1	= PMD_TYPE_TABLE,
 | |
| 		.prot_sect	= PROT_SECT_DEVICE,
 | |
| 		.domain		= DOMAIN_IO,
 | |
| 	},
 | |
| 	[MT_DEVICE_CACHED] = {	  /* ioremap_cached */
 | |
| 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
 | |
| 		.prot_l1	= PMD_TYPE_TABLE,
 | |
| 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
 | |
| 		.domain		= DOMAIN_IO,
 | |
| 	},
 | |
| 	[MT_DEVICE_WC] = {	/* ioremap_wc */
 | |
| 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
 | |
| 		.prot_l1	= PMD_TYPE_TABLE,
 | |
| 		.prot_sect	= PROT_SECT_DEVICE,
 | |
| 		.domain		= DOMAIN_IO,
 | |
| 	},
 | |
| 	[MT_UNCACHED] = {
 | |
| 		.prot_pte	= PROT_PTE_DEVICE,
 | |
| 		.prot_l1	= PMD_TYPE_TABLE,
 | |
| 		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
 | |
| 		.domain		= DOMAIN_IO,
 | |
| 	},
 | |
| 	[MT_CACHECLEAN] = {
 | |
| 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
 | |
| 		.domain    = DOMAIN_KERNEL,
 | |
| 	},
 | |
| #ifndef CONFIG_ARM_LPAE
 | |
| 	[MT_MINICLEAN] = {
 | |
| 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
 | |
| 		.domain    = DOMAIN_KERNEL,
 | |
| 	},
 | |
| #endif
 | |
| 	[MT_LOW_VECTORS] = {
 | |
| 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 | |
| 				L_PTE_RDONLY,
 | |
| 		.prot_l1   = PMD_TYPE_TABLE,
 | |
| 		.domain    = DOMAIN_USER,
 | |
| 	},
 | |
| 	[MT_HIGH_VECTORS] = {
 | |
| 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 | |
| 				L_PTE_USER | L_PTE_RDONLY,
 | |
| 		.prot_l1   = PMD_TYPE_TABLE,
 | |
| 		.domain    = DOMAIN_USER,
 | |
| 	},
 | |
| 	[MT_MEMORY_RWX] = {
 | |
| 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
 | |
| 		.prot_l1   = PMD_TYPE_TABLE,
 | |
| 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
 | |
| 		.domain    = DOMAIN_KERNEL,
 | |
| 	},
 | |
| 	[MT_MEMORY_RW] = {
 | |
| 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 | |
| 			     L_PTE_XN,
 | |
| 		.prot_l1   = PMD_TYPE_TABLE,
 | |
| 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
 | |
| 		.domain    = DOMAIN_KERNEL,
 | |
| 	},
 | |
| 	[MT_ROM] = {
 | |
| 		.prot_sect = PMD_TYPE_SECT,
 | |
| 		.domain    = DOMAIN_KERNEL,
 | |
| 	},
 | |
| 	[MT_MEMORY_RWX_NONCACHED] = {
 | |
| 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 | |
| 				L_PTE_MT_BUFFERABLE,
 | |
| 		.prot_l1   = PMD_TYPE_TABLE,
 | |
| 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
 | |
| 		.domain    = DOMAIN_KERNEL,
 | |
| 	},
 | |
| 	[MT_MEMORY_RW_DTCM] = {
 | |
| 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 | |
| 				L_PTE_XN,
 | |
| 		.prot_l1   = PMD_TYPE_TABLE,
 | |
| 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
 | |
| 		.domain    = DOMAIN_KERNEL,
 | |
| 	},
 | |
| 	[MT_MEMORY_RWX_ITCM] = {
 | |
| 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
 | |
| 		.prot_l1   = PMD_TYPE_TABLE,
 | |
| 		.domain    = DOMAIN_KERNEL,
 | |
| 	},
 | |
| 	[MT_MEMORY_RW_SO] = {
 | |
| 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 | |
| 				L_PTE_MT_UNCACHED | L_PTE_XN,
 | |
| 		.prot_l1   = PMD_TYPE_TABLE,
 | |
| 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
 | |
| 				PMD_SECT_UNCACHED | PMD_SECT_XN,
 | |
| 		.domain    = DOMAIN_KERNEL,
 | |
| 	},
 | |
| 	[MT_MEMORY_DMA_READY] = {
 | |
| 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 | |
| 				L_PTE_XN,
 | |
| 		.prot_l1   = PMD_TYPE_TABLE,
 | |
| 		.domain    = DOMAIN_KERNEL,
 | |
| 	},
 | |
| };
 | |
| 
 | |
| const struct mem_type *get_mem_type(unsigned int type)
 | |
| {
 | |
| 	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
 | |
| }
 | |
| EXPORT_SYMBOL(get_mem_type);
 | |
| 
 | |
| /*
 | |
|  * To avoid TLB flush broadcasts, this uses local_flush_tlb_kernel_range().
 | |
|  * As a result, this can only be called with preemption disabled, as under
 | |
|  * stop_machine().
 | |
|  */
 | |
| void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot)
 | |
| {
 | |
| 	unsigned long vaddr = __fix_to_virt(idx);
 | |
| 	pte_t *pte = pte_offset_kernel(pmd_off_k(vaddr), vaddr);
 | |
| 
 | |
| 	/* Make sure fixmap region does not exceed available allocation. */
 | |
| 	BUILD_BUG_ON(FIXADDR_START + (__end_of_fixed_addresses * PAGE_SIZE) >
 | |
| 		     FIXADDR_END);
 | |
| 	BUG_ON(idx >= __end_of_fixed_addresses);
 | |
| 
 | |
| 	if (pgprot_val(prot))
 | |
| 		set_pte_at(NULL, vaddr, pte,
 | |
| 			pfn_pte(phys >> PAGE_SHIFT, prot));
 | |
| 	else
 | |
| 		pte_clear(NULL, vaddr, pte);
 | |
| 	local_flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Adjust the PMD section entries according to the CPU in use.
 | |
|  */
 | |
| static void __init build_mem_type_table(void)
 | |
| {
 | |
| 	struct cachepolicy *cp;
 | |
| 	unsigned int cr = get_cr();
 | |
| 	pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
 | |
| 	pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot;
 | |
| 	int cpu_arch = cpu_architecture();
 | |
| 	int i;
 | |
| 
 | |
| 	if (cpu_arch < CPU_ARCH_ARMv6) {
 | |
| #if defined(CONFIG_CPU_DCACHE_DISABLE)
 | |
| 		if (cachepolicy > CPOLICY_BUFFERED)
 | |
| 			cachepolicy = CPOLICY_BUFFERED;
 | |
| #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
 | |
| 		if (cachepolicy > CPOLICY_WRITETHROUGH)
 | |
| 			cachepolicy = CPOLICY_WRITETHROUGH;
 | |
| #endif
 | |
| 	}
 | |
| 	if (cpu_arch < CPU_ARCH_ARMv5) {
 | |
| 		if (cachepolicy >= CPOLICY_WRITEALLOC)
 | |
| 			cachepolicy = CPOLICY_WRITEBACK;
 | |
| 		ecc_mask = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (is_smp()) {
 | |
| 		if (cachepolicy != CPOLICY_WRITEALLOC) {
 | |
| 			pr_warn("Forcing write-allocate cache policy for SMP\n");
 | |
| 			cachepolicy = CPOLICY_WRITEALLOC;
 | |
| 		}
 | |
| 		if (!(initial_pmd_value & PMD_SECT_S)) {
 | |
| 			pr_warn("Forcing shared mappings for SMP\n");
 | |
| 			initial_pmd_value |= PMD_SECT_S;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Strip out features not present on earlier architectures.
 | |
| 	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
 | |
| 	 * without extended page tables don't have the 'Shared' bit.
 | |
| 	 */
 | |
| 	if (cpu_arch < CPU_ARCH_ARMv5)
 | |
| 		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
 | |
| 			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
 | |
| 	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
 | |
| 		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
 | |
| 			mem_types[i].prot_sect &= ~PMD_SECT_S;
 | |
| 
 | |
| 	/*
 | |
| 	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
 | |
| 	 * "update-able on write" bit on ARM610).  However, Xscale and
 | |
| 	 * Xscale3 require this bit to be cleared.
 | |
| 	 */
 | |
| 	if (cpu_is_xscale() || cpu_is_xsc3()) {
 | |
| 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 | |
| 			mem_types[i].prot_sect &= ~PMD_BIT4;
 | |
| 			mem_types[i].prot_l1 &= ~PMD_BIT4;
 | |
| 		}
 | |
| 	} else if (cpu_arch < CPU_ARCH_ARMv6) {
 | |
| 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 | |
| 			if (mem_types[i].prot_l1)
 | |
| 				mem_types[i].prot_l1 |= PMD_BIT4;
 | |
| 			if (mem_types[i].prot_sect)
 | |
| 				mem_types[i].prot_sect |= PMD_BIT4;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Mark the device areas according to the CPU/architecture.
 | |
| 	 */
 | |
| 	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
 | |
| 		if (!cpu_is_xsc3()) {
 | |
| 			/*
 | |
| 			 * Mark device regions on ARMv6+ as execute-never
 | |
| 			 * to prevent speculative instruction fetches.
 | |
| 			 */
 | |
| 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
 | |
| 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
 | |
| 			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
 | |
| 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
 | |
| 
 | |
| 			/* Also setup NX memory mapping */
 | |
| 			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
 | |
| 		}
 | |
| 		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
 | |
| 			/*
 | |
| 			 * For ARMv7 with TEX remapping,
 | |
| 			 * - shared device is SXCB=1100
 | |
| 			 * - nonshared device is SXCB=0100
 | |
| 			 * - write combine device mem is SXCB=0001
 | |
| 			 * (Uncached Normal memory)
 | |
| 			 */
 | |
| 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
 | |
| 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
 | |
| 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
 | |
| 		} else if (cpu_is_xsc3()) {
 | |
| 			/*
 | |
| 			 * For Xscale3,
 | |
| 			 * - shared device is TEXCB=00101
 | |
| 			 * - nonshared device is TEXCB=01000
 | |
| 			 * - write combine device mem is TEXCB=00100
 | |
| 			 * (Inner/Outer Uncacheable in xsc3 parlance)
 | |
| 			 */
 | |
| 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
 | |
| 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
 | |
| 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * For ARMv6 and ARMv7 without TEX remapping,
 | |
| 			 * - shared device is TEXCB=00001
 | |
| 			 * - nonshared device is TEXCB=01000
 | |
| 			 * - write combine device mem is TEXCB=00100
 | |
| 			 * (Uncached Normal in ARMv6 parlance).
 | |
| 			 */
 | |
| 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
 | |
| 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
 | |
| 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
 | |
| 		}
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * On others, write combining is "Uncached/Buffered"
 | |
| 		 */
 | |
| 		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Now deal with the memory-type mappings
 | |
| 	 */
 | |
| 	cp = &cache_policies[cachepolicy];
 | |
| 	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
 | |
| 	s2_pgprot = cp->pte_s2;
 | |
| 	hyp_device_pgprot = mem_types[MT_DEVICE].prot_pte;
 | |
| 	s2_device_pgprot = mem_types[MT_DEVICE].prot_pte_s2;
 | |
| 
 | |
| #ifndef CONFIG_ARM_LPAE
 | |
| 	/*
 | |
| 	 * We don't use domains on ARMv6 (since this causes problems with
 | |
| 	 * v6/v7 kernels), so we must use a separate memory type for user
 | |
| 	 * r/o, kernel r/w to map the vectors page.
 | |
| 	 */
 | |
| 	if (cpu_arch == CPU_ARCH_ARMv6)
 | |
| 		vecs_pgprot |= L_PTE_MT_VECTORS;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check is it with support for the PXN bit
 | |
| 	 * in the Short-descriptor translation table format descriptors.
 | |
| 	 */
 | |
| 	if (cpu_arch == CPU_ARCH_ARMv7 &&
 | |
| 		(read_cpuid_ext(CPUID_EXT_MMFR0) & 0xF) == 4) {
 | |
| 		user_pmd_table |= PMD_PXNTABLE;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * ARMv6 and above have extended page tables.
 | |
| 	 */
 | |
| 	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
 | |
| #ifndef CONFIG_ARM_LPAE
 | |
| 		/*
 | |
| 		 * Mark cache clean areas and XIP ROM read only
 | |
| 		 * from SVC mode and no access from userspace.
 | |
| 		 */
 | |
| 		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
 | |
| 		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
 | |
| 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
 | |
| #endif
 | |
| 
 | |
| 		/*
 | |
| 		 * If the initial page tables were created with the S bit
 | |
| 		 * set, then we need to do the same here for the same
 | |
| 		 * reasons given in early_cachepolicy().
 | |
| 		 */
 | |
| 		if (initial_pmd_value & PMD_SECT_S) {
 | |
| 			user_pgprot |= L_PTE_SHARED;
 | |
| 			kern_pgprot |= L_PTE_SHARED;
 | |
| 			vecs_pgprot |= L_PTE_SHARED;
 | |
| 			s2_pgprot |= L_PTE_SHARED;
 | |
| 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
 | |
| 			mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
 | |
| 			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
 | |
| 			mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
 | |
| 			mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
 | |
| 			mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
 | |
| 			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
 | |
| 			mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
 | |
| 			mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
 | |
| 			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
 | |
| 			mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Non-cacheable Normal - intended for memory areas that must
 | |
| 	 * not cause dirty cache line writebacks when used
 | |
| 	 */
 | |
| 	if (cpu_arch >= CPU_ARCH_ARMv6) {
 | |
| 		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
 | |
| 			/* Non-cacheable Normal is XCB = 001 */
 | |
| 			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
 | |
| 				PMD_SECT_BUFFERED;
 | |
| 		} else {
 | |
| 			/* For both ARMv6 and non-TEX-remapping ARMv7 */
 | |
| 			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
 | |
| 				PMD_SECT_TEX(1);
 | |
| 		}
 | |
| 	} else {
 | |
| 		mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_ARM_LPAE
 | |
| 	/*
 | |
| 	 * Do not generate access flag faults for the kernel mappings.
 | |
| 	 */
 | |
| 	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 | |
| 		mem_types[i].prot_pte |= PTE_EXT_AF;
 | |
| 		if (mem_types[i].prot_sect)
 | |
| 			mem_types[i].prot_sect |= PMD_SECT_AF;
 | |
| 	}
 | |
| 	kern_pgprot |= PTE_EXT_AF;
 | |
| 	vecs_pgprot |= PTE_EXT_AF;
 | |
| 
 | |
| 	/*
 | |
| 	 * Set PXN for user mappings
 | |
| 	 */
 | |
| 	user_pgprot |= PTE_EXT_PXN;
 | |
| #endif
 | |
| 
 | |
| 	for (i = 0; i < 16; i++) {
 | |
| 		pteval_t v = pgprot_val(protection_map[i]);
 | |
| 		protection_map[i] = __pgprot(v | user_pgprot);
 | |
| 	}
 | |
| 
 | |
| 	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
 | |
| 	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
 | |
| 
 | |
| 	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
 | |
| 	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
 | |
| 				 L_PTE_DIRTY | kern_pgprot);
 | |
| 	pgprot_s2  = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot);
 | |
| 	pgprot_s2_device  = __pgprot(s2_device_pgprot);
 | |
| 	pgprot_hyp_device  = __pgprot(hyp_device_pgprot);
 | |
| 
 | |
| 	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
 | |
| 	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
 | |
| 	mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
 | |
| 	mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
 | |
| 	mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
 | |
| 	mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
 | |
| 	mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
 | |
| 	mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
 | |
| 	mem_types[MT_ROM].prot_sect |= cp->pmd;
 | |
| 
 | |
| 	switch (cp->pmd) {
 | |
| 	case PMD_SECT_WT:
 | |
| 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
 | |
| 		break;
 | |
| 	case PMD_SECT_WB:
 | |
| 	case PMD_SECT_WBWA:
 | |
| 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
 | |
| 		break;
 | |
| 	}
 | |
| 	pr_info("Memory policy: %sData cache %s\n",
 | |
| 		ecc_mask ? "ECC enabled, " : "", cp->policy);
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 | |
| 		struct mem_type *t = &mem_types[i];
 | |
| 		if (t->prot_l1)
 | |
| 			t->prot_l1 |= PMD_DOMAIN(t->domain);
 | |
| 		if (t->prot_sect)
 | |
| 			t->prot_sect |= PMD_DOMAIN(t->domain);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
 | |
| pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
 | |
| 			      unsigned long size, pgprot_t vma_prot)
 | |
| {
 | |
| 	if (!pfn_valid(pfn))
 | |
| 		return pgprot_noncached(vma_prot);
 | |
| 	else if (file->f_flags & O_SYNC)
 | |
| 		return pgprot_writecombine(vma_prot);
 | |
| 	return vma_prot;
 | |
| }
 | |
| EXPORT_SYMBOL(phys_mem_access_prot);
 | |
| #endif
 | |
| 
 | |
| #define vectors_base()	(vectors_high() ? 0xffff0000 : 0)
 | |
| 
 | |
| static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
 | |
| {
 | |
| 	void *ptr = __va(memblock_alloc(sz, align));
 | |
| 	memset(ptr, 0, sz);
 | |
| 	return ptr;
 | |
| }
 | |
| 
 | |
| static void __init *early_alloc(unsigned long sz)
 | |
| {
 | |
| 	return early_alloc_aligned(sz, sz);
 | |
| }
 | |
| 
 | |
| static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
 | |
| {
 | |
| 	if (pmd_none(*pmd)) {
 | |
| 		pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
 | |
| 		__pmd_populate(pmd, __pa(pte), prot);
 | |
| 	}
 | |
| 	BUG_ON(pmd_bad(*pmd));
 | |
| 	return pte_offset_kernel(pmd, addr);
 | |
| }
 | |
| 
 | |
| static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
 | |
| 				  unsigned long end, unsigned long pfn,
 | |
| 				  const struct mem_type *type)
 | |
| {
 | |
| 	pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
 | |
| 	do {
 | |
| 		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
 | |
| 		pfn++;
 | |
| 	} while (pte++, addr += PAGE_SIZE, addr != end);
 | |
| }
 | |
| 
 | |
| static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
 | |
| 			unsigned long end, phys_addr_t phys,
 | |
| 			const struct mem_type *type)
 | |
| {
 | |
| 	pmd_t *p = pmd;
 | |
| 
 | |
| #ifndef CONFIG_ARM_LPAE
 | |
| 	/*
 | |
| 	 * In classic MMU format, puds and pmds are folded in to
 | |
| 	 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
 | |
| 	 * group of L1 entries making up one logical pointer to
 | |
| 	 * an L2 table (2MB), where as PMDs refer to the individual
 | |
| 	 * L1 entries (1MB). Hence increment to get the correct
 | |
| 	 * offset for odd 1MB sections.
 | |
| 	 * (See arch/arm/include/asm/pgtable-2level.h)
 | |
| 	 */
 | |
| 	if (addr & SECTION_SIZE)
 | |
| 		pmd++;
 | |
| #endif
 | |
| 	do {
 | |
| 		*pmd = __pmd(phys | type->prot_sect);
 | |
| 		phys += SECTION_SIZE;
 | |
| 	} while (pmd++, addr += SECTION_SIZE, addr != end);
 | |
| 
 | |
| 	flush_pmd_entry(p);
 | |
| }
 | |
| 
 | |
| static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
 | |
| 				      unsigned long end, phys_addr_t phys,
 | |
| 				      const struct mem_type *type)
 | |
| {
 | |
| 	pmd_t *pmd = pmd_offset(pud, addr);
 | |
| 	unsigned long next;
 | |
| 
 | |
| 	do {
 | |
| 		/*
 | |
| 		 * With LPAE, we must loop over to map
 | |
| 		 * all the pmds for the given range.
 | |
| 		 */
 | |
| 		next = pmd_addr_end(addr, end);
 | |
| 
 | |
| 		/*
 | |
| 		 * Try a section mapping - addr, next and phys must all be
 | |
| 		 * aligned to a section boundary.
 | |
| 		 */
 | |
| 		if (type->prot_sect &&
 | |
| 				((addr | next | phys) & ~SECTION_MASK) == 0) {
 | |
| 			__map_init_section(pmd, addr, next, phys, type);
 | |
| 		} else {
 | |
| 			alloc_init_pte(pmd, addr, next,
 | |
| 						__phys_to_pfn(phys), type);
 | |
| 		}
 | |
| 
 | |
| 		phys += next - addr;
 | |
| 
 | |
| 	} while (pmd++, addr = next, addr != end);
 | |
| }
 | |
| 
 | |
| static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
 | |
| 				  unsigned long end, phys_addr_t phys,
 | |
| 				  const struct mem_type *type)
 | |
| {
 | |
| 	pud_t *pud = pud_offset(pgd, addr);
 | |
| 	unsigned long next;
 | |
| 
 | |
| 	do {
 | |
| 		next = pud_addr_end(addr, end);
 | |
| 		alloc_init_pmd(pud, addr, next, phys, type);
 | |
| 		phys += next - addr;
 | |
| 	} while (pud++, addr = next, addr != end);
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_ARM_LPAE
 | |
| static void __init create_36bit_mapping(struct map_desc *md,
 | |
| 					const struct mem_type *type)
 | |
| {
 | |
| 	unsigned long addr, length, end;
 | |
| 	phys_addr_t phys;
 | |
| 	pgd_t *pgd;
 | |
| 
 | |
| 	addr = md->virtual;
 | |
| 	phys = __pfn_to_phys(md->pfn);
 | |
| 	length = PAGE_ALIGN(md->length);
 | |
| 
 | |
| 	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
 | |
| 		pr_err("MM: CPU does not support supersection mapping for 0x%08llx at 0x%08lx\n",
 | |
| 		       (long long)__pfn_to_phys((u64)md->pfn), addr);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
 | |
| 	 *	Since domain assignments can in fact be arbitrary, the
 | |
| 	 *	'domain == 0' check below is required to insure that ARMv6
 | |
| 	 *	supersections are only allocated for domain 0 regardless
 | |
| 	 *	of the actual domain assignments in use.
 | |
| 	 */
 | |
| 	if (type->domain) {
 | |
| 		pr_err("MM: invalid domain in supersection mapping for 0x%08llx at 0x%08lx\n",
 | |
| 		       (long long)__pfn_to_phys((u64)md->pfn), addr);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
 | |
| 		pr_err("MM: cannot create mapping for 0x%08llx at 0x%08lx invalid alignment\n",
 | |
| 		       (long long)__pfn_to_phys((u64)md->pfn), addr);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Shift bits [35:32] of address into bits [23:20] of PMD
 | |
| 	 * (See ARMv6 spec).
 | |
| 	 */
 | |
| 	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
 | |
| 
 | |
| 	pgd = pgd_offset_k(addr);
 | |
| 	end = addr + length;
 | |
| 	do {
 | |
| 		pud_t *pud = pud_offset(pgd, addr);
 | |
| 		pmd_t *pmd = pmd_offset(pud, addr);
 | |
| 		int i;
 | |
| 
 | |
| 		for (i = 0; i < 16; i++)
 | |
| 			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
 | |
| 
 | |
| 		addr += SUPERSECTION_SIZE;
 | |
| 		phys += SUPERSECTION_SIZE;
 | |
| 		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
 | |
| 	} while (addr != end);
 | |
| }
 | |
| #endif	/* !CONFIG_ARM_LPAE */
 | |
| 
 | |
| /*
 | |
|  * Create the page directory entries and any necessary
 | |
|  * page tables for the mapping specified by `md'.  We
 | |
|  * are able to cope here with varying sizes and address
 | |
|  * offsets, and we take full advantage of sections and
 | |
|  * supersections.
 | |
|  */
 | |
| static void __init create_mapping(struct map_desc *md)
 | |
| {
 | |
| 	unsigned long addr, length, end;
 | |
| 	phys_addr_t phys;
 | |
| 	const struct mem_type *type;
 | |
| 	pgd_t *pgd;
 | |
| 
 | |
| 	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
 | |
| 		pr_warn("BUG: not creating mapping for 0x%08llx at 0x%08lx in user region\n",
 | |
| 			(long long)__pfn_to_phys((u64)md->pfn), md->virtual);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
 | |
| 	    md->virtual >= PAGE_OFFSET &&
 | |
| 	    (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
 | |
| 		pr_warn("BUG: mapping for 0x%08llx at 0x%08lx out of vmalloc space\n",
 | |
| 			(long long)__pfn_to_phys((u64)md->pfn), md->virtual);
 | |
| 	}
 | |
| 
 | |
| 	type = &mem_types[md->type];
 | |
| 
 | |
| #ifndef CONFIG_ARM_LPAE
 | |
| 	/*
 | |
| 	 * Catch 36-bit addresses
 | |
| 	 */
 | |
| 	if (md->pfn >= 0x100000) {
 | |
| 		create_36bit_mapping(md, type);
 | |
| 		return;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	addr = md->virtual & PAGE_MASK;
 | |
| 	phys = __pfn_to_phys(md->pfn);
 | |
| 	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
 | |
| 
 | |
| 	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
 | |
| 		pr_warn("BUG: map for 0x%08llx at 0x%08lx can not be mapped using pages, ignoring.\n",
 | |
| 			(long long)__pfn_to_phys(md->pfn), addr);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	pgd = pgd_offset_k(addr);
 | |
| 	end = addr + length;
 | |
| 	do {
 | |
| 		unsigned long next = pgd_addr_end(addr, end);
 | |
| 
 | |
| 		alloc_init_pud(pgd, addr, next, phys, type);
 | |
| 
 | |
| 		phys += next - addr;
 | |
| 		addr = next;
 | |
| 	} while (pgd++, addr != end);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Create the architecture specific mappings
 | |
|  */
 | |
| void __init iotable_init(struct map_desc *io_desc, int nr)
 | |
| {
 | |
| 	struct map_desc *md;
 | |
| 	struct vm_struct *vm;
 | |
| 	struct static_vm *svm;
 | |
| 
 | |
| 	if (!nr)
 | |
| 		return;
 | |
| 
 | |
| 	svm = early_alloc_aligned(sizeof(*svm) * nr, __alignof__(*svm));
 | |
| 
 | |
| 	for (md = io_desc; nr; md++, nr--) {
 | |
| 		create_mapping(md);
 | |
| 
 | |
| 		vm = &svm->vm;
 | |
| 		vm->addr = (void *)(md->virtual & PAGE_MASK);
 | |
| 		vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
 | |
| 		vm->phys_addr = __pfn_to_phys(md->pfn);
 | |
| 		vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
 | |
| 		vm->flags |= VM_ARM_MTYPE(md->type);
 | |
| 		vm->caller = iotable_init;
 | |
| 		add_static_vm_early(svm++);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
 | |
| 				  void *caller)
 | |
| {
 | |
| 	struct vm_struct *vm;
 | |
| 	struct static_vm *svm;
 | |
| 
 | |
| 	svm = early_alloc_aligned(sizeof(*svm), __alignof__(*svm));
 | |
| 
 | |
| 	vm = &svm->vm;
 | |
| 	vm->addr = (void *)addr;
 | |
| 	vm->size = size;
 | |
| 	vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
 | |
| 	vm->caller = caller;
 | |
| 	add_static_vm_early(svm);
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_ARM_LPAE
 | |
| 
 | |
| /*
 | |
|  * The Linux PMD is made of two consecutive section entries covering 2MB
 | |
|  * (see definition in include/asm/pgtable-2level.h).  However a call to
 | |
|  * create_mapping() may optimize static mappings by using individual
 | |
|  * 1MB section mappings.  This leaves the actual PMD potentially half
 | |
|  * initialized if the top or bottom section entry isn't used, leaving it
 | |
|  * open to problems if a subsequent ioremap() or vmalloc() tries to use
 | |
|  * the virtual space left free by that unused section entry.
 | |
|  *
 | |
|  * Let's avoid the issue by inserting dummy vm entries covering the unused
 | |
|  * PMD halves once the static mappings are in place.
 | |
|  */
 | |
| 
 | |
| static void __init pmd_empty_section_gap(unsigned long addr)
 | |
| {
 | |
| 	vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
 | |
| }
 | |
| 
 | |
| static void __init fill_pmd_gaps(void)
 | |
| {
 | |
| 	struct static_vm *svm;
 | |
| 	struct vm_struct *vm;
 | |
| 	unsigned long addr, next = 0;
 | |
| 	pmd_t *pmd;
 | |
| 
 | |
| 	list_for_each_entry(svm, &static_vmlist, list) {
 | |
| 		vm = &svm->vm;
 | |
| 		addr = (unsigned long)vm->addr;
 | |
| 		if (addr < next)
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * Check if this vm starts on an odd section boundary.
 | |
| 		 * If so and the first section entry for this PMD is free
 | |
| 		 * then we block the corresponding virtual address.
 | |
| 		 */
 | |
| 		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
 | |
| 			pmd = pmd_off_k(addr);
 | |
| 			if (pmd_none(*pmd))
 | |
| 				pmd_empty_section_gap(addr & PMD_MASK);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Then check if this vm ends on an odd section boundary.
 | |
| 		 * If so and the second section entry for this PMD is empty
 | |
| 		 * then we block the corresponding virtual address.
 | |
| 		 */
 | |
| 		addr += vm->size;
 | |
| 		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
 | |
| 			pmd = pmd_off_k(addr) + 1;
 | |
| 			if (pmd_none(*pmd))
 | |
| 				pmd_empty_section_gap(addr);
 | |
| 		}
 | |
| 
 | |
| 		/* no need to look at any vm entry until we hit the next PMD */
 | |
| 		next = (addr + PMD_SIZE - 1) & PMD_MASK;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #else
 | |
| #define fill_pmd_gaps() do { } while (0)
 | |
| #endif
 | |
| 
 | |
| #if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
 | |
| static void __init pci_reserve_io(void)
 | |
| {
 | |
| 	struct static_vm *svm;
 | |
| 
 | |
| 	svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
 | |
| 	if (svm)
 | |
| 		return;
 | |
| 
 | |
| 	vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
 | |
| }
 | |
| #else
 | |
| #define pci_reserve_io() do { } while (0)
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_LL
 | |
| void __init debug_ll_io_init(void)
 | |
| {
 | |
| 	struct map_desc map;
 | |
| 
 | |
| 	debug_ll_addr(&map.pfn, &map.virtual);
 | |
| 	if (!map.pfn || !map.virtual)
 | |
| 		return;
 | |
| 	map.pfn = __phys_to_pfn(map.pfn);
 | |
| 	map.virtual &= PAGE_MASK;
 | |
| 	map.length = PAGE_SIZE;
 | |
| 	map.type = MT_DEVICE;
 | |
| 	iotable_init(&map, 1);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void * __initdata vmalloc_min =
 | |
| 	(void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
 | |
| 
 | |
| /*
 | |
|  * vmalloc=size forces the vmalloc area to be exactly 'size'
 | |
|  * bytes. This can be used to increase (or decrease) the vmalloc
 | |
|  * area - the default is 240m.
 | |
|  */
 | |
| static int __init early_vmalloc(char *arg)
 | |
| {
 | |
| 	unsigned long vmalloc_reserve = memparse(arg, NULL);
 | |
| 
 | |
| 	if (vmalloc_reserve < SZ_16M) {
 | |
| 		vmalloc_reserve = SZ_16M;
 | |
| 		pr_warn("vmalloc area too small, limiting to %luMB\n",
 | |
| 			vmalloc_reserve >> 20);
 | |
| 	}
 | |
| 
 | |
| 	if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
 | |
| 		vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
 | |
| 		pr_warn("vmalloc area is too big, limiting to %luMB\n",
 | |
| 			vmalloc_reserve >> 20);
 | |
| 	}
 | |
| 
 | |
| 	vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
 | |
| 	return 0;
 | |
| }
 | |
| early_param("vmalloc", early_vmalloc);
 | |
| 
 | |
| phys_addr_t arm_lowmem_limit __initdata = 0;
 | |
| 
 | |
| void __init sanity_check_meminfo(void)
 | |
| {
 | |
| 	phys_addr_t memblock_limit = 0;
 | |
| 	int highmem = 0;
 | |
| 	phys_addr_t vmalloc_limit = __pa(vmalloc_min - 1) + 1;
 | |
| 	struct memblock_region *reg;
 | |
| 	bool should_use_highmem = false;
 | |
| 
 | |
| 	for_each_memblock(memory, reg) {
 | |
| 		phys_addr_t block_start = reg->base;
 | |
| 		phys_addr_t block_end = reg->base + reg->size;
 | |
| 		phys_addr_t size_limit = reg->size;
 | |
| 
 | |
| 		if (reg->base >= vmalloc_limit)
 | |
| 			highmem = 1;
 | |
| 		else
 | |
| 			size_limit = vmalloc_limit - reg->base;
 | |
| 
 | |
| 
 | |
| 		if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) {
 | |
| 
 | |
| 			if (highmem) {
 | |
| 				pr_notice("Ignoring RAM at %pa-%pa (!CONFIG_HIGHMEM)\n",
 | |
| 					  &block_start, &block_end);
 | |
| 				memblock_remove(reg->base, reg->size);
 | |
| 				should_use_highmem = true;
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			if (reg->size > size_limit) {
 | |
| 				phys_addr_t overlap_size = reg->size - size_limit;
 | |
| 
 | |
| 				pr_notice("Truncating RAM at %pa-%pa to -%pa",
 | |
| 					  &block_start, &block_end, &vmalloc_limit);
 | |
| 				memblock_remove(vmalloc_limit, overlap_size);
 | |
| 				block_end = vmalloc_limit;
 | |
| 				should_use_highmem = true;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (!highmem) {
 | |
| 			if (block_end > arm_lowmem_limit) {
 | |
| 				if (reg->size > size_limit)
 | |
| 					arm_lowmem_limit = vmalloc_limit;
 | |
| 				else
 | |
| 					arm_lowmem_limit = block_end;
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * Find the first non-pmd-aligned page, and point
 | |
| 			 * memblock_limit at it. This relies on rounding the
 | |
| 			 * limit down to be pmd-aligned, which happens at the
 | |
| 			 * end of this function.
 | |
| 			 *
 | |
| 			 * With this algorithm, the start or end of almost any
 | |
| 			 * bank can be non-pmd-aligned. The only exception is
 | |
| 			 * that the start of the bank 0 must be section-
 | |
| 			 * aligned, since otherwise memory would need to be
 | |
| 			 * allocated when mapping the start of bank 0, which
 | |
| 			 * occurs before any free memory is mapped.
 | |
| 			 */
 | |
| 			if (!memblock_limit) {
 | |
| 				if (!IS_ALIGNED(block_start, PMD_SIZE))
 | |
| 					memblock_limit = block_start;
 | |
| 				else if (!IS_ALIGNED(block_end, PMD_SIZE))
 | |
| 					memblock_limit = arm_lowmem_limit;
 | |
| 			}
 | |
| 
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (should_use_highmem)
 | |
| 		pr_notice("Consider using a HIGHMEM enabled kernel.\n");
 | |
| 
 | |
| 	high_memory = __va(arm_lowmem_limit - 1) + 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Round the memblock limit down to a pmd size.  This
 | |
| 	 * helps to ensure that we will allocate memory from the
 | |
| 	 * last full pmd, which should be mapped.
 | |
| 	 */
 | |
| 	if (memblock_limit)
 | |
| 		memblock_limit = round_down(memblock_limit, PMD_SIZE);
 | |
| 	if (!memblock_limit)
 | |
| 		memblock_limit = arm_lowmem_limit;
 | |
| 
 | |
| 	memblock_set_current_limit(memblock_limit);
 | |
| }
 | |
| 
 | |
| static inline void prepare_page_table(void)
 | |
| {
 | |
| 	unsigned long addr;
 | |
| 	phys_addr_t end;
 | |
| 
 | |
| 	/*
 | |
| 	 * Clear out all the mappings below the kernel image.
 | |
| 	 */
 | |
| 	for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
 | |
| 		pmd_clear(pmd_off_k(addr));
 | |
| 
 | |
| #ifdef CONFIG_XIP_KERNEL
 | |
| 	/* The XIP kernel is mapped in the module area -- skip over it */
 | |
| 	addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
 | |
| #endif
 | |
| 	for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
 | |
| 		pmd_clear(pmd_off_k(addr));
 | |
| 
 | |
| 	/*
 | |
| 	 * Find the end of the first block of lowmem.
 | |
| 	 */
 | |
| 	end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
 | |
| 	if (end >= arm_lowmem_limit)
 | |
| 		end = arm_lowmem_limit;
 | |
| 
 | |
| 	/*
 | |
| 	 * Clear out all the kernel space mappings, except for the first
 | |
| 	 * memory bank, up to the vmalloc region.
 | |
| 	 */
 | |
| 	for (addr = __phys_to_virt(end);
 | |
| 	     addr < VMALLOC_START; addr += PMD_SIZE)
 | |
| 		pmd_clear(pmd_off_k(addr));
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_ARM_LPAE
 | |
| /* the first page is reserved for pgd */
 | |
| #define SWAPPER_PG_DIR_SIZE	(PAGE_SIZE + \
 | |
| 				 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
 | |
| #else
 | |
| #define SWAPPER_PG_DIR_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Reserve the special regions of memory
 | |
|  */
 | |
| void __init arm_mm_memblock_reserve(void)
 | |
| {
 | |
| 	/*
 | |
| 	 * Reserve the page tables.  These are already in use,
 | |
| 	 * and can only be in node 0.
 | |
| 	 */
 | |
| 	memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
 | |
| 
 | |
| #ifdef CONFIG_SA1111
 | |
| 	/*
 | |
| 	 * Because of the SA1111 DMA bug, we want to preserve our
 | |
| 	 * precious DMA-able memory...
 | |
| 	 */
 | |
| 	memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set up the device mappings.  Since we clear out the page tables for all
 | |
|  * mappings above VMALLOC_START, we will remove any debug device mappings.
 | |
|  * This means you have to be careful how you debug this function, or any
 | |
|  * called function.  This means you can't use any function or debugging
 | |
|  * method which may touch any device, otherwise the kernel _will_ crash.
 | |
|  */
 | |
| static void __init devicemaps_init(const struct machine_desc *mdesc)
 | |
| {
 | |
| 	struct map_desc map;
 | |
| 	unsigned long addr;
 | |
| 	void *vectors;
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocate the vector page early.
 | |
| 	 */
 | |
| 	vectors = early_alloc(PAGE_SIZE * 2);
 | |
| 
 | |
| 	early_trap_init(vectors);
 | |
| 
 | |
| 	for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
 | |
| 		pmd_clear(pmd_off_k(addr));
 | |
| 
 | |
| 	/*
 | |
| 	 * Map the kernel if it is XIP.
 | |
| 	 * It is always first in the modulearea.
 | |
| 	 */
 | |
| #ifdef CONFIG_XIP_KERNEL
 | |
| 	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
 | |
| 	map.virtual = MODULES_VADDR;
 | |
| 	map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
 | |
| 	map.type = MT_ROM;
 | |
| 	create_mapping(&map);
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * Map the cache flushing regions.
 | |
| 	 */
 | |
| #ifdef FLUSH_BASE
 | |
| 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
 | |
| 	map.virtual = FLUSH_BASE;
 | |
| 	map.length = SZ_1M;
 | |
| 	map.type = MT_CACHECLEAN;
 | |
| 	create_mapping(&map);
 | |
| #endif
 | |
| #ifdef FLUSH_BASE_MINICACHE
 | |
| 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
 | |
| 	map.virtual = FLUSH_BASE_MINICACHE;
 | |
| 	map.length = SZ_1M;
 | |
| 	map.type = MT_MINICLEAN;
 | |
| 	create_mapping(&map);
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * Create a mapping for the machine vectors at the high-vectors
 | |
| 	 * location (0xffff0000).  If we aren't using high-vectors, also
 | |
| 	 * create a mapping at the low-vectors virtual address.
 | |
| 	 */
 | |
| 	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
 | |
| 	map.virtual = 0xffff0000;
 | |
| 	map.length = PAGE_SIZE;
 | |
| #ifdef CONFIG_KUSER_HELPERS
 | |
| 	map.type = MT_HIGH_VECTORS;
 | |
| #else
 | |
| 	map.type = MT_LOW_VECTORS;
 | |
| #endif
 | |
| 	create_mapping(&map);
 | |
| 
 | |
| 	if (!vectors_high()) {
 | |
| 		map.virtual = 0;
 | |
| 		map.length = PAGE_SIZE * 2;
 | |
| 		map.type = MT_LOW_VECTORS;
 | |
| 		create_mapping(&map);
 | |
| 	}
 | |
| 
 | |
| 	/* Now create a kernel read-only mapping */
 | |
| 	map.pfn += 1;
 | |
| 	map.virtual = 0xffff0000 + PAGE_SIZE;
 | |
| 	map.length = PAGE_SIZE;
 | |
| 	map.type = MT_LOW_VECTORS;
 | |
| 	create_mapping(&map);
 | |
| 
 | |
| 	/*
 | |
| 	 * Ask the machine support to map in the statically mapped devices.
 | |
| 	 */
 | |
| 	if (mdesc->map_io)
 | |
| 		mdesc->map_io();
 | |
| 	else
 | |
| 		debug_ll_io_init();
 | |
| 	fill_pmd_gaps();
 | |
| 
 | |
| 	/* Reserve fixed i/o space in VMALLOC region */
 | |
| 	pci_reserve_io();
 | |
| 
 | |
| 	/*
 | |
| 	 * Finally flush the caches and tlb to ensure that we're in a
 | |
| 	 * consistent state wrt the writebuffer.  This also ensures that
 | |
| 	 * any write-allocated cache lines in the vector page are written
 | |
| 	 * back.  After this point, we can start to touch devices again.
 | |
| 	 */
 | |
| 	local_flush_tlb_all();
 | |
| 	flush_cache_all();
 | |
| }
 | |
| 
 | |
| static void __init kmap_init(void)
 | |
| {
 | |
| #ifdef CONFIG_HIGHMEM
 | |
| 	pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
 | |
| 		PKMAP_BASE, _PAGE_KERNEL_TABLE);
 | |
| #endif
 | |
| 
 | |
| 	early_pte_alloc(pmd_off_k(FIXADDR_START), FIXADDR_START,
 | |
| 			_PAGE_KERNEL_TABLE);
 | |
| }
 | |
| 
 | |
| static void __init map_lowmem(void)
 | |
| {
 | |
| 	struct memblock_region *reg;
 | |
| 	phys_addr_t kernel_x_start = round_down(__pa(_stext), SECTION_SIZE);
 | |
| 	phys_addr_t kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
 | |
| 
 | |
| 	/* Map all the lowmem memory banks. */
 | |
| 	for_each_memblock(memory, reg) {
 | |
| 		phys_addr_t start = reg->base;
 | |
| 		phys_addr_t end = start + reg->size;
 | |
| 		struct map_desc map;
 | |
| 
 | |
| 		if (end > arm_lowmem_limit)
 | |
| 			end = arm_lowmem_limit;
 | |
| 		if (start >= end)
 | |
| 			break;
 | |
| 
 | |
| 		if (end < kernel_x_start) {
 | |
| 			map.pfn = __phys_to_pfn(start);
 | |
| 			map.virtual = __phys_to_virt(start);
 | |
| 			map.length = end - start;
 | |
| 			map.type = MT_MEMORY_RWX;
 | |
| 
 | |
| 			create_mapping(&map);
 | |
| 		} else if (start >= kernel_x_end) {
 | |
| 			map.pfn = __phys_to_pfn(start);
 | |
| 			map.virtual = __phys_to_virt(start);
 | |
| 			map.length = end - start;
 | |
| 			map.type = MT_MEMORY_RW;
 | |
| 
 | |
| 			create_mapping(&map);
 | |
| 		} else {
 | |
| 			/* This better cover the entire kernel */
 | |
| 			if (start < kernel_x_start) {
 | |
| 				map.pfn = __phys_to_pfn(start);
 | |
| 				map.virtual = __phys_to_virt(start);
 | |
| 				map.length = kernel_x_start - start;
 | |
| 				map.type = MT_MEMORY_RW;
 | |
| 
 | |
| 				create_mapping(&map);
 | |
| 			}
 | |
| 
 | |
| 			map.pfn = __phys_to_pfn(kernel_x_start);
 | |
| 			map.virtual = __phys_to_virt(kernel_x_start);
 | |
| 			map.length = kernel_x_end - kernel_x_start;
 | |
| 			map.type = MT_MEMORY_RWX;
 | |
| 
 | |
| 			create_mapping(&map);
 | |
| 
 | |
| 			if (kernel_x_end < end) {
 | |
| 				map.pfn = __phys_to_pfn(kernel_x_end);
 | |
| 				map.virtual = __phys_to_virt(kernel_x_end);
 | |
| 				map.length = end - kernel_x_end;
 | |
| 				map.type = MT_MEMORY_RW;
 | |
| 
 | |
| 				create_mapping(&map);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_ARM_PV_FIXUP
 | |
| extern unsigned long __atags_pointer;
 | |
| typedef void pgtables_remap(long long offset, unsigned long pgd, void *bdata);
 | |
| pgtables_remap lpae_pgtables_remap_asm;
 | |
| 
 | |
| /*
 | |
|  * early_paging_init() recreates boot time page table setup, allowing machines
 | |
|  * to switch over to a high (>4G) address space on LPAE systems
 | |
|  */
 | |
| void __init early_paging_init(const struct machine_desc *mdesc)
 | |
| {
 | |
| 	pgtables_remap *lpae_pgtables_remap;
 | |
| 	unsigned long pa_pgd;
 | |
| 	unsigned int cr, ttbcr;
 | |
| 	long long offset;
 | |
| 	void *boot_data;
 | |
| 
 | |
| 	if (!mdesc->pv_fixup)
 | |
| 		return;
 | |
| 
 | |
| 	offset = mdesc->pv_fixup();
 | |
| 	if (offset == 0)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Get the address of the remap function in the 1:1 identity
 | |
| 	 * mapping setup by the early page table assembly code.  We
 | |
| 	 * must get this prior to the pv update.  The following barrier
 | |
| 	 * ensures that this is complete before we fixup any P:V offsets.
 | |
| 	 */
 | |
| 	lpae_pgtables_remap = (pgtables_remap *)(unsigned long)__pa(lpae_pgtables_remap_asm);
 | |
| 	pa_pgd = __pa(swapper_pg_dir);
 | |
| 	boot_data = __va(__atags_pointer);
 | |
| 	barrier();
 | |
| 
 | |
| 	pr_info("Switching physical address space to 0x%08llx\n",
 | |
| 		(u64)PHYS_OFFSET + offset);
 | |
| 
 | |
| 	/* Re-set the phys pfn offset, and the pv offset */
 | |
| 	__pv_offset += offset;
 | |
| 	__pv_phys_pfn_offset += PFN_DOWN(offset);
 | |
| 
 | |
| 	/* Run the patch stub to update the constants */
 | |
| 	fixup_pv_table(&__pv_table_begin,
 | |
| 		(&__pv_table_end - &__pv_table_begin) << 2);
 | |
| 
 | |
| 	/*
 | |
| 	 * We changing not only the virtual to physical mapping, but also
 | |
| 	 * the physical addresses used to access memory.  We need to flush
 | |
| 	 * all levels of cache in the system with caching disabled to
 | |
| 	 * ensure that all data is written back, and nothing is prefetched
 | |
| 	 * into the caches.  We also need to prevent the TLB walkers
 | |
| 	 * allocating into the caches too.  Note that this is ARMv7 LPAE
 | |
| 	 * specific.
 | |
| 	 */
 | |
| 	cr = get_cr();
 | |
| 	set_cr(cr & ~(CR_I | CR_C));
 | |
| 	asm("mrc p15, 0, %0, c2, c0, 2" : "=r" (ttbcr));
 | |
| 	asm volatile("mcr p15, 0, %0, c2, c0, 2"
 | |
| 		: : "r" (ttbcr & ~(3 << 8 | 3 << 10)));
 | |
| 	flush_cache_all();
 | |
| 
 | |
| 	/*
 | |
| 	 * Fixup the page tables - this must be in the idmap region as
 | |
| 	 * we need to disable the MMU to do this safely, and hence it
 | |
| 	 * needs to be assembly.  It's fairly simple, as we're using the
 | |
| 	 * temporary tables setup by the initial assembly code.
 | |
| 	 */
 | |
| 	lpae_pgtables_remap(offset, pa_pgd, boot_data);
 | |
| 
 | |
| 	/* Re-enable the caches and cacheable TLB walks */
 | |
| 	asm volatile("mcr p15, 0, %0, c2, c0, 2" : : "r" (ttbcr));
 | |
| 	set_cr(cr);
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| void __init early_paging_init(const struct machine_desc *mdesc)
 | |
| {
 | |
| 	long long offset;
 | |
| 
 | |
| 	if (!mdesc->pv_fixup)
 | |
| 		return;
 | |
| 
 | |
| 	offset = mdesc->pv_fixup();
 | |
| 	if (offset == 0)
 | |
| 		return;
 | |
| 
 | |
| 	pr_crit("Physical address space modification is only to support Keystone2.\n");
 | |
| 	pr_crit("Please enable ARM_LPAE and ARM_PATCH_PHYS_VIRT support to use this\n");
 | |
| 	pr_crit("feature. Your kernel may crash now, have a good day.\n");
 | |
| 	add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * paging_init() sets up the page tables, initialises the zone memory
 | |
|  * maps, and sets up the zero page, bad page and bad page tables.
 | |
|  */
 | |
| void __init paging_init(const struct machine_desc *mdesc)
 | |
| {
 | |
| 	void *zero_page;
 | |
| 
 | |
| 	build_mem_type_table();
 | |
| 	prepare_page_table();
 | |
| 	map_lowmem();
 | |
| 	memblock_set_current_limit(arm_lowmem_limit);
 | |
| 	dma_contiguous_remap();
 | |
| 	devicemaps_init(mdesc);
 | |
| 	kmap_init();
 | |
| 	tcm_init();
 | |
| 
 | |
| 	top_pmd = pmd_off_k(0xffff0000);
 | |
| 
 | |
| 	/* allocate the zero page. */
 | |
| 	zero_page = early_alloc(PAGE_SIZE);
 | |
| 
 | |
| 	bootmem_init();
 | |
| 
 | |
| 	empty_zero_page = virt_to_page(zero_page);
 | |
| 	__flush_dcache_page(NULL, empty_zero_page);
 | |
| }
 | 
