To increase compiler portability there is <linux/compiler.h> which provides convenience macros for various gcc constructs. Eg: __weak for __attribute__((weak)). I've replaced all instances of gcc attributes with the right macro in the kernel subsystem. Signed-off-by: Gideon Israel Dsouza <gidisrael@gmail.com> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			422 lines
		
	
	
	
		
			9.7 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			422 lines
		
	
	
	
		
			9.7 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * sched_clock for unstable cpu clocks
 | 
						|
 *
 | 
						|
 *  Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
 | 
						|
 *
 | 
						|
 *  Updates and enhancements:
 | 
						|
 *    Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com>
 | 
						|
 *
 | 
						|
 * Based on code by:
 | 
						|
 *   Ingo Molnar <mingo@redhat.com>
 | 
						|
 *   Guillaume Chazarain <guichaz@gmail.com>
 | 
						|
 *
 | 
						|
 *
 | 
						|
 * What:
 | 
						|
 *
 | 
						|
 * cpu_clock(i) provides a fast (execution time) high resolution
 | 
						|
 * clock with bounded drift between CPUs. The value of cpu_clock(i)
 | 
						|
 * is monotonic for constant i. The timestamp returned is in nanoseconds.
 | 
						|
 *
 | 
						|
 * ######################### BIG FAT WARNING ##########################
 | 
						|
 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
 | 
						|
 * # go backwards !!                                                  #
 | 
						|
 * ####################################################################
 | 
						|
 *
 | 
						|
 * There is no strict promise about the base, although it tends to start
 | 
						|
 * at 0 on boot (but people really shouldn't rely on that).
 | 
						|
 *
 | 
						|
 * cpu_clock(i)       -- can be used from any context, including NMI.
 | 
						|
 * local_clock()      -- is cpu_clock() on the current cpu.
 | 
						|
 *
 | 
						|
 * sched_clock_cpu(i)
 | 
						|
 *
 | 
						|
 * How:
 | 
						|
 *
 | 
						|
 * The implementation either uses sched_clock() when
 | 
						|
 * !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK, which means in that case the
 | 
						|
 * sched_clock() is assumed to provide these properties (mostly it means
 | 
						|
 * the architecture provides a globally synchronized highres time source).
 | 
						|
 *
 | 
						|
 * Otherwise it tries to create a semi stable clock from a mixture of other
 | 
						|
 * clocks, including:
 | 
						|
 *
 | 
						|
 *  - GTOD (clock monotomic)
 | 
						|
 *  - sched_clock()
 | 
						|
 *  - explicit idle events
 | 
						|
 *
 | 
						|
 * We use GTOD as base and use sched_clock() deltas to improve resolution. The
 | 
						|
 * deltas are filtered to provide monotonicity and keeping it within an
 | 
						|
 * expected window.
 | 
						|
 *
 | 
						|
 * Furthermore, explicit sleep and wakeup hooks allow us to account for time
 | 
						|
 * that is otherwise invisible (TSC gets stopped).
 | 
						|
 *
 | 
						|
 */
 | 
						|
#include <linux/spinlock.h>
 | 
						|
#include <linux/hardirq.h>
 | 
						|
#include <linux/export.h>
 | 
						|
#include <linux/percpu.h>
 | 
						|
#include <linux/ktime.h>
 | 
						|
#include <linux/sched.h>
 | 
						|
#include <linux/static_key.h>
 | 
						|
#include <linux/workqueue.h>
 | 
						|
#include <linux/compiler.h>
 | 
						|
 | 
						|
/*
 | 
						|
 * Scheduler clock - returns current time in nanosec units.
 | 
						|
 * This is default implementation.
 | 
						|
 * Architectures and sub-architectures can override this.
 | 
						|
 */
 | 
						|
unsigned long long __weak sched_clock(void)
 | 
						|
{
 | 
						|
	return (unsigned long long)(jiffies - INITIAL_JIFFIES)
 | 
						|
					* (NSEC_PER_SEC / HZ);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(sched_clock);
 | 
						|
 | 
						|
__read_mostly int sched_clock_running;
 | 
						|
 | 
						|
#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
 | 
						|
static struct static_key __sched_clock_stable = STATIC_KEY_INIT;
 | 
						|
static int __sched_clock_stable_early;
 | 
						|
 | 
						|
int sched_clock_stable(void)
 | 
						|
{
 | 
						|
	return static_key_false(&__sched_clock_stable);
 | 
						|
}
 | 
						|
 | 
						|
static void __set_sched_clock_stable(void)
 | 
						|
{
 | 
						|
	if (!sched_clock_stable())
 | 
						|
		static_key_slow_inc(&__sched_clock_stable);
 | 
						|
}
 | 
						|
 | 
						|
void set_sched_clock_stable(void)
 | 
						|
{
 | 
						|
	__sched_clock_stable_early = 1;
 | 
						|
 | 
						|
	smp_mb(); /* matches sched_clock_init() */
 | 
						|
 | 
						|
	if (!sched_clock_running)
 | 
						|
		return;
 | 
						|
 | 
						|
	__set_sched_clock_stable();
 | 
						|
}
 | 
						|
 | 
						|
static void __clear_sched_clock_stable(struct work_struct *work)
 | 
						|
{
 | 
						|
	/* XXX worry about clock continuity */
 | 
						|
	if (sched_clock_stable())
 | 
						|
		static_key_slow_dec(&__sched_clock_stable);
 | 
						|
}
 | 
						|
 | 
						|
static DECLARE_WORK(sched_clock_work, __clear_sched_clock_stable);
 | 
						|
 | 
						|
void clear_sched_clock_stable(void)
 | 
						|
{
 | 
						|
	__sched_clock_stable_early = 0;
 | 
						|
 | 
						|
	smp_mb(); /* matches sched_clock_init() */
 | 
						|
 | 
						|
	if (!sched_clock_running)
 | 
						|
		return;
 | 
						|
 | 
						|
	schedule_work(&sched_clock_work);
 | 
						|
}
 | 
						|
 | 
						|
struct sched_clock_data {
 | 
						|
	u64			tick_raw;
 | 
						|
	u64			tick_gtod;
 | 
						|
	u64			clock;
 | 
						|
};
 | 
						|
 | 
						|
static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data);
 | 
						|
 | 
						|
static inline struct sched_clock_data *this_scd(void)
 | 
						|
{
 | 
						|
	return &__get_cpu_var(sched_clock_data);
 | 
						|
}
 | 
						|
 | 
						|
static inline struct sched_clock_data *cpu_sdc(int cpu)
 | 
						|
{
 | 
						|
	return &per_cpu(sched_clock_data, cpu);
 | 
						|
}
 | 
						|
 | 
						|
void sched_clock_init(void)
 | 
						|
{
 | 
						|
	u64 ktime_now = ktime_to_ns(ktime_get());
 | 
						|
	int cpu;
 | 
						|
 | 
						|
	for_each_possible_cpu(cpu) {
 | 
						|
		struct sched_clock_data *scd = cpu_sdc(cpu);
 | 
						|
 | 
						|
		scd->tick_raw = 0;
 | 
						|
		scd->tick_gtod = ktime_now;
 | 
						|
		scd->clock = ktime_now;
 | 
						|
	}
 | 
						|
 | 
						|
	sched_clock_running = 1;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Ensure that it is impossible to not do a static_key update.
 | 
						|
	 *
 | 
						|
	 * Either {set,clear}_sched_clock_stable() must see sched_clock_running
 | 
						|
	 * and do the update, or we must see their __sched_clock_stable_early
 | 
						|
	 * and do the update, or both.
 | 
						|
	 */
 | 
						|
	smp_mb(); /* matches {set,clear}_sched_clock_stable() */
 | 
						|
 | 
						|
	if (__sched_clock_stable_early)
 | 
						|
		__set_sched_clock_stable();
 | 
						|
	else
 | 
						|
		__clear_sched_clock_stable(NULL);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * min, max except they take wrapping into account
 | 
						|
 */
 | 
						|
 | 
						|
static inline u64 wrap_min(u64 x, u64 y)
 | 
						|
{
 | 
						|
	return (s64)(x - y) < 0 ? x : y;
 | 
						|
}
 | 
						|
 | 
						|
static inline u64 wrap_max(u64 x, u64 y)
 | 
						|
{
 | 
						|
	return (s64)(x - y) > 0 ? x : y;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * update the percpu scd from the raw @now value
 | 
						|
 *
 | 
						|
 *  - filter out backward motion
 | 
						|
 *  - use the GTOD tick value to create a window to filter crazy TSC values
 | 
						|
 */
 | 
						|
static u64 sched_clock_local(struct sched_clock_data *scd)
 | 
						|
{
 | 
						|
	u64 now, clock, old_clock, min_clock, max_clock;
 | 
						|
	s64 delta;
 | 
						|
 | 
						|
again:
 | 
						|
	now = sched_clock();
 | 
						|
	delta = now - scd->tick_raw;
 | 
						|
	if (unlikely(delta < 0))
 | 
						|
		delta = 0;
 | 
						|
 | 
						|
	old_clock = scd->clock;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * scd->clock = clamp(scd->tick_gtod + delta,
 | 
						|
	 *		      max(scd->tick_gtod, scd->clock),
 | 
						|
	 *		      scd->tick_gtod + TICK_NSEC);
 | 
						|
	 */
 | 
						|
 | 
						|
	clock = scd->tick_gtod + delta;
 | 
						|
	min_clock = wrap_max(scd->tick_gtod, old_clock);
 | 
						|
	max_clock = wrap_max(old_clock, scd->tick_gtod + TICK_NSEC);
 | 
						|
 | 
						|
	clock = wrap_max(clock, min_clock);
 | 
						|
	clock = wrap_min(clock, max_clock);
 | 
						|
 | 
						|
	if (cmpxchg64(&scd->clock, old_clock, clock) != old_clock)
 | 
						|
		goto again;
 | 
						|
 | 
						|
	return clock;
 | 
						|
}
 | 
						|
 | 
						|
static u64 sched_clock_remote(struct sched_clock_data *scd)
 | 
						|
{
 | 
						|
	struct sched_clock_data *my_scd = this_scd();
 | 
						|
	u64 this_clock, remote_clock;
 | 
						|
	u64 *ptr, old_val, val;
 | 
						|
 | 
						|
#if BITS_PER_LONG != 64
 | 
						|
again:
 | 
						|
	/*
 | 
						|
	 * Careful here: The local and the remote clock values need to
 | 
						|
	 * be read out atomic as we need to compare the values and
 | 
						|
	 * then update either the local or the remote side. So the
 | 
						|
	 * cmpxchg64 below only protects one readout.
 | 
						|
	 *
 | 
						|
	 * We must reread via sched_clock_local() in the retry case on
 | 
						|
	 * 32bit as an NMI could use sched_clock_local() via the
 | 
						|
	 * tracer and hit between the readout of
 | 
						|
	 * the low32bit and the high 32bit portion.
 | 
						|
	 */
 | 
						|
	this_clock = sched_clock_local(my_scd);
 | 
						|
	/*
 | 
						|
	 * We must enforce atomic readout on 32bit, otherwise the
 | 
						|
	 * update on the remote cpu can hit inbetween the readout of
 | 
						|
	 * the low32bit and the high 32bit portion.
 | 
						|
	 */
 | 
						|
	remote_clock = cmpxchg64(&scd->clock, 0, 0);
 | 
						|
#else
 | 
						|
	/*
 | 
						|
	 * On 64bit the read of [my]scd->clock is atomic versus the
 | 
						|
	 * update, so we can avoid the above 32bit dance.
 | 
						|
	 */
 | 
						|
	sched_clock_local(my_scd);
 | 
						|
again:
 | 
						|
	this_clock = my_scd->clock;
 | 
						|
	remote_clock = scd->clock;
 | 
						|
#endif
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Use the opportunity that we have both locks
 | 
						|
	 * taken to couple the two clocks: we take the
 | 
						|
	 * larger time as the latest time for both
 | 
						|
	 * runqueues. (this creates monotonic movement)
 | 
						|
	 */
 | 
						|
	if (likely((s64)(remote_clock - this_clock) < 0)) {
 | 
						|
		ptr = &scd->clock;
 | 
						|
		old_val = remote_clock;
 | 
						|
		val = this_clock;
 | 
						|
	} else {
 | 
						|
		/*
 | 
						|
		 * Should be rare, but possible:
 | 
						|
		 */
 | 
						|
		ptr = &my_scd->clock;
 | 
						|
		old_val = this_clock;
 | 
						|
		val = remote_clock;
 | 
						|
	}
 | 
						|
 | 
						|
	if (cmpxchg64(ptr, old_val, val) != old_val)
 | 
						|
		goto again;
 | 
						|
 | 
						|
	return val;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Similar to cpu_clock(), but requires local IRQs to be disabled.
 | 
						|
 *
 | 
						|
 * See cpu_clock().
 | 
						|
 */
 | 
						|
u64 sched_clock_cpu(int cpu)
 | 
						|
{
 | 
						|
	struct sched_clock_data *scd;
 | 
						|
	u64 clock;
 | 
						|
 | 
						|
	if (sched_clock_stable())
 | 
						|
		return sched_clock();
 | 
						|
 | 
						|
	if (unlikely(!sched_clock_running))
 | 
						|
		return 0ull;
 | 
						|
 | 
						|
	preempt_disable_notrace();
 | 
						|
	scd = cpu_sdc(cpu);
 | 
						|
 | 
						|
	if (cpu != smp_processor_id())
 | 
						|
		clock = sched_clock_remote(scd);
 | 
						|
	else
 | 
						|
		clock = sched_clock_local(scd);
 | 
						|
	preempt_enable_notrace();
 | 
						|
 | 
						|
	return clock;
 | 
						|
}
 | 
						|
 | 
						|
void sched_clock_tick(void)
 | 
						|
{
 | 
						|
	struct sched_clock_data *scd;
 | 
						|
	u64 now, now_gtod;
 | 
						|
 | 
						|
	if (sched_clock_stable())
 | 
						|
		return;
 | 
						|
 | 
						|
	if (unlikely(!sched_clock_running))
 | 
						|
		return;
 | 
						|
 | 
						|
	WARN_ON_ONCE(!irqs_disabled());
 | 
						|
 | 
						|
	scd = this_scd();
 | 
						|
	now_gtod = ktime_to_ns(ktime_get());
 | 
						|
	now = sched_clock();
 | 
						|
 | 
						|
	scd->tick_raw = now;
 | 
						|
	scd->tick_gtod = now_gtod;
 | 
						|
	sched_clock_local(scd);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * We are going deep-idle (irqs are disabled):
 | 
						|
 */
 | 
						|
void sched_clock_idle_sleep_event(void)
 | 
						|
{
 | 
						|
	sched_clock_cpu(smp_processor_id());
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
 | 
						|
 | 
						|
/*
 | 
						|
 * We just idled delta nanoseconds (called with irqs disabled):
 | 
						|
 */
 | 
						|
void sched_clock_idle_wakeup_event(u64 delta_ns)
 | 
						|
{
 | 
						|
	if (timekeeping_suspended)
 | 
						|
		return;
 | 
						|
 | 
						|
	sched_clock_tick();
 | 
						|
	touch_softlockup_watchdog();
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
 | 
						|
 | 
						|
/*
 | 
						|
 * As outlined at the top, provides a fast, high resolution, nanosecond
 | 
						|
 * time source that is monotonic per cpu argument and has bounded drift
 | 
						|
 * between cpus.
 | 
						|
 *
 | 
						|
 * ######################### BIG FAT WARNING ##########################
 | 
						|
 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
 | 
						|
 * # go backwards !!                                                  #
 | 
						|
 * ####################################################################
 | 
						|
 */
 | 
						|
u64 cpu_clock(int cpu)
 | 
						|
{
 | 
						|
	if (!sched_clock_stable())
 | 
						|
		return sched_clock_cpu(cpu);
 | 
						|
 | 
						|
	return sched_clock();
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Similar to cpu_clock() for the current cpu. Time will only be observed
 | 
						|
 * to be monotonic if care is taken to only compare timestampt taken on the
 | 
						|
 * same CPU.
 | 
						|
 *
 | 
						|
 * See cpu_clock().
 | 
						|
 */
 | 
						|
u64 local_clock(void)
 | 
						|
{
 | 
						|
	if (!sched_clock_stable())
 | 
						|
		return sched_clock_cpu(raw_smp_processor_id());
 | 
						|
 | 
						|
	return sched_clock();
 | 
						|
}
 | 
						|
 | 
						|
#else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
 | 
						|
 | 
						|
void sched_clock_init(void)
 | 
						|
{
 | 
						|
	sched_clock_running = 1;
 | 
						|
}
 | 
						|
 | 
						|
u64 sched_clock_cpu(int cpu)
 | 
						|
{
 | 
						|
	if (unlikely(!sched_clock_running))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	return sched_clock();
 | 
						|
}
 | 
						|
 | 
						|
u64 cpu_clock(int cpu)
 | 
						|
{
 | 
						|
	return sched_clock();
 | 
						|
}
 | 
						|
 | 
						|
u64 local_clock(void)
 | 
						|
{
 | 
						|
	return sched_clock();
 | 
						|
}
 | 
						|
 | 
						|
#endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
 | 
						|
 | 
						|
EXPORT_SYMBOL_GPL(cpu_clock);
 | 
						|
EXPORT_SYMBOL_GPL(local_clock);
 |