These two instructions exceptionally take a single precision register as their operand. This means we can't use vfp_get_dm() to read the register number - we need to use vfp_get_sm() instead. Add a flag to indicate this exception to the general rule. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
		
			
				
	
	
		
			1204 lines
		
	
	
	
		
			28 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1204 lines
		
	
	
	
		
			28 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 *  linux/arch/arm/vfp/vfpdouble.c
 | 
						|
 *
 | 
						|
 * This code is derived in part from John R. Housers softfloat library, which
 | 
						|
 * carries the following notice:
 | 
						|
 *
 | 
						|
 * ===========================================================================
 | 
						|
 * This C source file is part of the SoftFloat IEC/IEEE Floating-point
 | 
						|
 * Arithmetic Package, Release 2.
 | 
						|
 *
 | 
						|
 * Written by John R. Hauser.  This work was made possible in part by the
 | 
						|
 * International Computer Science Institute, located at Suite 600, 1947 Center
 | 
						|
 * Street, Berkeley, California 94704.  Funding was partially provided by the
 | 
						|
 * National Science Foundation under grant MIP-9311980.  The original version
 | 
						|
 * of this code was written as part of a project to build a fixed-point vector
 | 
						|
 * processor in collaboration with the University of California at Berkeley,
 | 
						|
 * overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
 | 
						|
 * is available through the web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
 | 
						|
 * arithmetic/softfloat.html'.
 | 
						|
 *
 | 
						|
 * THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort
 | 
						|
 * has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
 | 
						|
 * TIMES RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO
 | 
						|
 * PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
 | 
						|
 * AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
 | 
						|
 *
 | 
						|
 * Derivative works are acceptable, even for commercial purposes, so long as
 | 
						|
 * (1) they include prominent notice that the work is derivative, and (2) they
 | 
						|
 * include prominent notice akin to these three paragraphs for those parts of
 | 
						|
 * this code that are retained.
 | 
						|
 * ===========================================================================
 | 
						|
 */
 | 
						|
#include <linux/kernel.h>
 | 
						|
#include <linux/bitops.h>
 | 
						|
 | 
						|
#include <asm/div64.h>
 | 
						|
#include <asm/vfp.h>
 | 
						|
 | 
						|
#include "vfpinstr.h"
 | 
						|
#include "vfp.h"
 | 
						|
 | 
						|
static struct vfp_double vfp_double_default_qnan = {
 | 
						|
	.exponent	= 2047,
 | 
						|
	.sign		= 0,
 | 
						|
	.significand	= VFP_DOUBLE_SIGNIFICAND_QNAN,
 | 
						|
};
 | 
						|
 | 
						|
static void vfp_double_dump(const char *str, struct vfp_double *d)
 | 
						|
{
 | 
						|
	pr_debug("VFP: %s: sign=%d exponent=%d significand=%016llx\n",
 | 
						|
		 str, d->sign != 0, d->exponent, d->significand);
 | 
						|
}
 | 
						|
 | 
						|
static void vfp_double_normalise_denormal(struct vfp_double *vd)
 | 
						|
{
 | 
						|
	int bits = 31 - fls(vd->significand >> 32);
 | 
						|
	if (bits == 31)
 | 
						|
		bits = 63 - fls(vd->significand);
 | 
						|
 | 
						|
	vfp_double_dump("normalise_denormal: in", vd);
 | 
						|
 | 
						|
	if (bits) {
 | 
						|
		vd->exponent -= bits - 1;
 | 
						|
		vd->significand <<= bits;
 | 
						|
	}
 | 
						|
 | 
						|
	vfp_double_dump("normalise_denormal: out", vd);
 | 
						|
}
 | 
						|
 | 
						|
u32 vfp_double_normaliseround(int dd, struct vfp_double *vd, u32 fpscr, u32 exceptions, const char *func)
 | 
						|
{
 | 
						|
	u64 significand, incr;
 | 
						|
	int exponent, shift, underflow;
 | 
						|
	u32 rmode;
 | 
						|
 | 
						|
	vfp_double_dump("pack: in", vd);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Infinities and NaNs are a special case.
 | 
						|
	 */
 | 
						|
	if (vd->exponent == 2047 && (vd->significand == 0 || exceptions))
 | 
						|
		goto pack;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Special-case zero.
 | 
						|
	 */
 | 
						|
	if (vd->significand == 0) {
 | 
						|
		vd->exponent = 0;
 | 
						|
		goto pack;
 | 
						|
	}
 | 
						|
 | 
						|
	exponent = vd->exponent;
 | 
						|
	significand = vd->significand;
 | 
						|
 | 
						|
	shift = 32 - fls(significand >> 32);
 | 
						|
	if (shift == 32)
 | 
						|
		shift = 64 - fls(significand);
 | 
						|
	if (shift) {
 | 
						|
		exponent -= shift;
 | 
						|
		significand <<= shift;
 | 
						|
	}
 | 
						|
 | 
						|
#ifdef DEBUG
 | 
						|
	vd->exponent = exponent;
 | 
						|
	vd->significand = significand;
 | 
						|
	vfp_double_dump("pack: normalised", vd);
 | 
						|
#endif
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Tiny number?
 | 
						|
	 */
 | 
						|
	underflow = exponent < 0;
 | 
						|
	if (underflow) {
 | 
						|
		significand = vfp_shiftright64jamming(significand, -exponent);
 | 
						|
		exponent = 0;
 | 
						|
#ifdef DEBUG
 | 
						|
		vd->exponent = exponent;
 | 
						|
		vd->significand = significand;
 | 
						|
		vfp_double_dump("pack: tiny number", vd);
 | 
						|
#endif
 | 
						|
		if (!(significand & ((1ULL << (VFP_DOUBLE_LOW_BITS + 1)) - 1)))
 | 
						|
			underflow = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Select rounding increment.
 | 
						|
	 */
 | 
						|
	incr = 0;
 | 
						|
	rmode = fpscr & FPSCR_RMODE_MASK;
 | 
						|
 | 
						|
	if (rmode == FPSCR_ROUND_NEAREST) {
 | 
						|
		incr = 1ULL << VFP_DOUBLE_LOW_BITS;
 | 
						|
		if ((significand & (1ULL << (VFP_DOUBLE_LOW_BITS + 1))) == 0)
 | 
						|
			incr -= 1;
 | 
						|
	} else if (rmode == FPSCR_ROUND_TOZERO) {
 | 
						|
		incr = 0;
 | 
						|
	} else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vd->sign != 0))
 | 
						|
		incr = (1ULL << (VFP_DOUBLE_LOW_BITS + 1)) - 1;
 | 
						|
 | 
						|
	pr_debug("VFP: rounding increment = 0x%08llx\n", incr);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Is our rounding going to overflow?
 | 
						|
	 */
 | 
						|
	if ((significand + incr) < significand) {
 | 
						|
		exponent += 1;
 | 
						|
		significand = (significand >> 1) | (significand & 1);
 | 
						|
		incr >>= 1;
 | 
						|
#ifdef DEBUG
 | 
						|
		vd->exponent = exponent;
 | 
						|
		vd->significand = significand;
 | 
						|
		vfp_double_dump("pack: overflow", vd);
 | 
						|
#endif
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If any of the low bits (which will be shifted out of the
 | 
						|
	 * number) are non-zero, the result is inexact.
 | 
						|
	 */
 | 
						|
	if (significand & ((1 << (VFP_DOUBLE_LOW_BITS + 1)) - 1))
 | 
						|
		exceptions |= FPSCR_IXC;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Do our rounding.
 | 
						|
	 */
 | 
						|
	significand += incr;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Infinity?
 | 
						|
	 */
 | 
						|
	if (exponent >= 2046) {
 | 
						|
		exceptions |= FPSCR_OFC | FPSCR_IXC;
 | 
						|
		if (incr == 0) {
 | 
						|
			vd->exponent = 2045;
 | 
						|
			vd->significand = 0x7fffffffffffffffULL;
 | 
						|
		} else {
 | 
						|
			vd->exponent = 2047;		/* infinity */
 | 
						|
			vd->significand = 0;
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		if (significand >> (VFP_DOUBLE_LOW_BITS + 1) == 0)
 | 
						|
			exponent = 0;
 | 
						|
		if (exponent || significand > 0x8000000000000000ULL)
 | 
						|
			underflow = 0;
 | 
						|
		if (underflow)
 | 
						|
			exceptions |= FPSCR_UFC;
 | 
						|
		vd->exponent = exponent;
 | 
						|
		vd->significand = significand >> 1;
 | 
						|
	}
 | 
						|
 | 
						|
 pack:
 | 
						|
	vfp_double_dump("pack: final", vd);
 | 
						|
	{
 | 
						|
		s64 d = vfp_double_pack(vd);
 | 
						|
		pr_debug("VFP: %s: d(d%d)=%016llx exceptions=%08x\n", func,
 | 
						|
			 dd, d, exceptions);
 | 
						|
		vfp_put_double(d, dd);
 | 
						|
	}
 | 
						|
	return exceptions;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Propagate the NaN, setting exceptions if it is signalling.
 | 
						|
 * 'n' is always a NaN.  'm' may be a number, NaN or infinity.
 | 
						|
 */
 | 
						|
static u32
 | 
						|
vfp_propagate_nan(struct vfp_double *vdd, struct vfp_double *vdn,
 | 
						|
		  struct vfp_double *vdm, u32 fpscr)
 | 
						|
{
 | 
						|
	struct vfp_double *nan;
 | 
						|
	int tn, tm = 0;
 | 
						|
 | 
						|
	tn = vfp_double_type(vdn);
 | 
						|
 | 
						|
	if (vdm)
 | 
						|
		tm = vfp_double_type(vdm);
 | 
						|
 | 
						|
	if (fpscr & FPSCR_DEFAULT_NAN)
 | 
						|
		/*
 | 
						|
		 * Default NaN mode - always returns a quiet NaN
 | 
						|
		 */
 | 
						|
		nan = &vfp_double_default_qnan;
 | 
						|
	else {
 | 
						|
		/*
 | 
						|
		 * Contemporary mode - select the first signalling
 | 
						|
		 * NAN, or if neither are signalling, the first
 | 
						|
		 * quiet NAN.
 | 
						|
		 */
 | 
						|
		if (tn == VFP_SNAN || (tm != VFP_SNAN && tn == VFP_QNAN))
 | 
						|
			nan = vdn;
 | 
						|
		else
 | 
						|
			nan = vdm;
 | 
						|
		/*
 | 
						|
		 * Make the NaN quiet.
 | 
						|
		 */
 | 
						|
		nan->significand |= VFP_DOUBLE_SIGNIFICAND_QNAN;
 | 
						|
	}
 | 
						|
 | 
						|
	*vdd = *nan;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If one was a signalling NAN, raise invalid operation.
 | 
						|
	 */
 | 
						|
	return tn == VFP_SNAN || tm == VFP_SNAN ? FPSCR_IOC : VFP_NAN_FLAG;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Extended operations
 | 
						|
 */
 | 
						|
static u32 vfp_double_fabs(int dd, int unused, int dm, u32 fpscr)
 | 
						|
{
 | 
						|
	vfp_put_double(vfp_double_packed_abs(vfp_get_double(dm)), dd);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static u32 vfp_double_fcpy(int dd, int unused, int dm, u32 fpscr)
 | 
						|
{
 | 
						|
	vfp_put_double(vfp_get_double(dm), dd);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static u32 vfp_double_fneg(int dd, int unused, int dm, u32 fpscr)
 | 
						|
{
 | 
						|
	vfp_put_double(vfp_double_packed_negate(vfp_get_double(dm)), dd);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static u32 vfp_double_fsqrt(int dd, int unused, int dm, u32 fpscr)
 | 
						|
{
 | 
						|
	struct vfp_double vdm, vdd;
 | 
						|
	int ret, tm;
 | 
						|
 | 
						|
	vfp_double_unpack(&vdm, vfp_get_double(dm));
 | 
						|
	tm = vfp_double_type(&vdm);
 | 
						|
	if (tm & (VFP_NAN|VFP_INFINITY)) {
 | 
						|
		struct vfp_double *vdp = &vdd;
 | 
						|
 | 
						|
		if (tm & VFP_NAN)
 | 
						|
			ret = vfp_propagate_nan(vdp, &vdm, NULL, fpscr);
 | 
						|
		else if (vdm.sign == 0) {
 | 
						|
 sqrt_copy:
 | 
						|
			vdp = &vdm;
 | 
						|
			ret = 0;
 | 
						|
		} else {
 | 
						|
 sqrt_invalid:
 | 
						|
			vdp = &vfp_double_default_qnan;
 | 
						|
			ret = FPSCR_IOC;
 | 
						|
		}
 | 
						|
		vfp_put_double(vfp_double_pack(vdp), dd);
 | 
						|
		return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * sqrt(+/- 0) == +/- 0
 | 
						|
	 */
 | 
						|
	if (tm & VFP_ZERO)
 | 
						|
		goto sqrt_copy;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Normalise a denormalised number
 | 
						|
	 */
 | 
						|
	if (tm & VFP_DENORMAL)
 | 
						|
		vfp_double_normalise_denormal(&vdm);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * sqrt(<0) = invalid
 | 
						|
	 */
 | 
						|
	if (vdm.sign)
 | 
						|
		goto sqrt_invalid;
 | 
						|
 | 
						|
	vfp_double_dump("sqrt", &vdm);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Estimate the square root.
 | 
						|
	 */
 | 
						|
	vdd.sign = 0;
 | 
						|
	vdd.exponent = ((vdm.exponent - 1023) >> 1) + 1023;
 | 
						|
	vdd.significand = (u64)vfp_estimate_sqrt_significand(vdm.exponent, vdm.significand >> 32) << 31;
 | 
						|
 | 
						|
	vfp_double_dump("sqrt estimate1", &vdd);
 | 
						|
 | 
						|
	vdm.significand >>= 1 + (vdm.exponent & 1);
 | 
						|
	vdd.significand += 2 + vfp_estimate_div128to64(vdm.significand, 0, vdd.significand);
 | 
						|
 | 
						|
	vfp_double_dump("sqrt estimate2", &vdd);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * And now adjust.
 | 
						|
	 */
 | 
						|
	if ((vdd.significand & VFP_DOUBLE_LOW_BITS_MASK) <= 5) {
 | 
						|
		if (vdd.significand < 2) {
 | 
						|
			vdd.significand = ~0ULL;
 | 
						|
		} else {
 | 
						|
			u64 termh, terml, remh, reml;
 | 
						|
			vdm.significand <<= 2;
 | 
						|
			mul64to128(&termh, &terml, vdd.significand, vdd.significand);
 | 
						|
			sub128(&remh, &reml, vdm.significand, 0, termh, terml);
 | 
						|
			while ((s64)remh < 0) {
 | 
						|
				vdd.significand -= 1;
 | 
						|
				shift64left(&termh, &terml, vdd.significand);
 | 
						|
				terml |= 1;
 | 
						|
				add128(&remh, &reml, remh, reml, termh, terml);
 | 
						|
			}
 | 
						|
			vdd.significand |= (remh | reml) != 0;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	vdd.significand = vfp_shiftright64jamming(vdd.significand, 1);
 | 
						|
 | 
						|
	return vfp_double_normaliseround(dd, &vdd, fpscr, 0, "fsqrt");
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Equal	:= ZC
 | 
						|
 * Less than	:= N
 | 
						|
 * Greater than	:= C
 | 
						|
 * Unordered	:= CV
 | 
						|
 */
 | 
						|
static u32 vfp_compare(int dd, int signal_on_qnan, int dm, u32 fpscr)
 | 
						|
{
 | 
						|
	s64 d, m;
 | 
						|
	u32 ret = 0;
 | 
						|
 | 
						|
	m = vfp_get_double(dm);
 | 
						|
	if (vfp_double_packed_exponent(m) == 2047 && vfp_double_packed_mantissa(m)) {
 | 
						|
		ret |= FPSCR_C | FPSCR_V;
 | 
						|
		if (signal_on_qnan || !(vfp_double_packed_mantissa(m) & (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1))))
 | 
						|
			/*
 | 
						|
			 * Signalling NaN, or signalling on quiet NaN
 | 
						|
			 */
 | 
						|
			ret |= FPSCR_IOC;
 | 
						|
	}
 | 
						|
 | 
						|
	d = vfp_get_double(dd);
 | 
						|
	if (vfp_double_packed_exponent(d) == 2047 && vfp_double_packed_mantissa(d)) {
 | 
						|
		ret |= FPSCR_C | FPSCR_V;
 | 
						|
		if (signal_on_qnan || !(vfp_double_packed_mantissa(d) & (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1))))
 | 
						|
			/*
 | 
						|
			 * Signalling NaN, or signalling on quiet NaN
 | 
						|
			 */
 | 
						|
			ret |= FPSCR_IOC;
 | 
						|
	}
 | 
						|
 | 
						|
	if (ret == 0) {
 | 
						|
		if (d == m || vfp_double_packed_abs(d | m) == 0) {
 | 
						|
			/*
 | 
						|
			 * equal
 | 
						|
			 */
 | 
						|
			ret |= FPSCR_Z | FPSCR_C;
 | 
						|
		} else if (vfp_double_packed_sign(d ^ m)) {
 | 
						|
			/*
 | 
						|
			 * different signs
 | 
						|
			 */
 | 
						|
			if (vfp_double_packed_sign(d))
 | 
						|
				/*
 | 
						|
				 * d is negative, so d < m
 | 
						|
				 */
 | 
						|
				ret |= FPSCR_N;
 | 
						|
			else
 | 
						|
				/*
 | 
						|
				 * d is positive, so d > m
 | 
						|
				 */
 | 
						|
				ret |= FPSCR_C;
 | 
						|
		} else if ((vfp_double_packed_sign(d) != 0) ^ (d < m)) {
 | 
						|
			/*
 | 
						|
			 * d < m
 | 
						|
			 */
 | 
						|
			ret |= FPSCR_N;
 | 
						|
		} else if ((vfp_double_packed_sign(d) != 0) ^ (d > m)) {
 | 
						|
			/*
 | 
						|
			 * d > m
 | 
						|
			 */
 | 
						|
			ret |= FPSCR_C;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static u32 vfp_double_fcmp(int dd, int unused, int dm, u32 fpscr)
 | 
						|
{
 | 
						|
	return vfp_compare(dd, 0, dm, fpscr);
 | 
						|
}
 | 
						|
 | 
						|
static u32 vfp_double_fcmpe(int dd, int unused, int dm, u32 fpscr)
 | 
						|
{
 | 
						|
	return vfp_compare(dd, 1, dm, fpscr);
 | 
						|
}
 | 
						|
 | 
						|
static u32 vfp_double_fcmpz(int dd, int unused, int dm, u32 fpscr)
 | 
						|
{
 | 
						|
	return vfp_compare(dd, 0, VFP_REG_ZERO, fpscr);
 | 
						|
}
 | 
						|
 | 
						|
static u32 vfp_double_fcmpez(int dd, int unused, int dm, u32 fpscr)
 | 
						|
{
 | 
						|
	return vfp_compare(dd, 1, VFP_REG_ZERO, fpscr);
 | 
						|
}
 | 
						|
 | 
						|
static u32 vfp_double_fcvts(int sd, int unused, int dm, u32 fpscr)
 | 
						|
{
 | 
						|
	struct vfp_double vdm;
 | 
						|
	struct vfp_single vsd;
 | 
						|
	int tm;
 | 
						|
	u32 exceptions = 0;
 | 
						|
 | 
						|
	vfp_double_unpack(&vdm, vfp_get_double(dm));
 | 
						|
 | 
						|
	tm = vfp_double_type(&vdm);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we have a signalling NaN, signal invalid operation.
 | 
						|
	 */
 | 
						|
	if (tm == VFP_SNAN)
 | 
						|
		exceptions = FPSCR_IOC;
 | 
						|
 | 
						|
	if (tm & VFP_DENORMAL)
 | 
						|
		vfp_double_normalise_denormal(&vdm);
 | 
						|
 | 
						|
	vsd.sign = vdm.sign;
 | 
						|
	vsd.significand = vfp_hi64to32jamming(vdm.significand);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we have an infinity or a NaN, the exponent must be 255
 | 
						|
	 */
 | 
						|
	if (tm & (VFP_INFINITY|VFP_NAN)) {
 | 
						|
		vsd.exponent = 255;
 | 
						|
		if (tm == VFP_QNAN)
 | 
						|
			vsd.significand |= VFP_SINGLE_SIGNIFICAND_QNAN;
 | 
						|
		goto pack_nan;
 | 
						|
	} else if (tm & VFP_ZERO)
 | 
						|
		vsd.exponent = 0;
 | 
						|
	else
 | 
						|
		vsd.exponent = vdm.exponent - (1023 - 127);
 | 
						|
 | 
						|
	return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, "fcvts");
 | 
						|
 | 
						|
 pack_nan:
 | 
						|
	vfp_put_float(vfp_single_pack(&vsd), sd);
 | 
						|
	return exceptions;
 | 
						|
}
 | 
						|
 | 
						|
static u32 vfp_double_fuito(int dd, int unused, int dm, u32 fpscr)
 | 
						|
{
 | 
						|
	struct vfp_double vdm;
 | 
						|
	u32 m = vfp_get_float(dm);
 | 
						|
 | 
						|
	vdm.sign = 0;
 | 
						|
	vdm.exponent = 1023 + 63 - 1;
 | 
						|
	vdm.significand = (u64)m;
 | 
						|
 | 
						|
	return vfp_double_normaliseround(dd, &vdm, fpscr, 0, "fuito");
 | 
						|
}
 | 
						|
 | 
						|
static u32 vfp_double_fsito(int dd, int unused, int dm, u32 fpscr)
 | 
						|
{
 | 
						|
	struct vfp_double vdm;
 | 
						|
	u32 m = vfp_get_float(dm);
 | 
						|
 | 
						|
	vdm.sign = (m & 0x80000000) >> 16;
 | 
						|
	vdm.exponent = 1023 + 63 - 1;
 | 
						|
	vdm.significand = vdm.sign ? -m : m;
 | 
						|
 | 
						|
	return vfp_double_normaliseround(dd, &vdm, fpscr, 0, "fsito");
 | 
						|
}
 | 
						|
 | 
						|
static u32 vfp_double_ftoui(int sd, int unused, int dm, u32 fpscr)
 | 
						|
{
 | 
						|
	struct vfp_double vdm;
 | 
						|
	u32 d, exceptions = 0;
 | 
						|
	int rmode = fpscr & FPSCR_RMODE_MASK;
 | 
						|
	int tm;
 | 
						|
 | 
						|
	vfp_double_unpack(&vdm, vfp_get_double(dm));
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Do we have a denormalised number?
 | 
						|
	 */
 | 
						|
	tm = vfp_double_type(&vdm);
 | 
						|
	if (tm & VFP_DENORMAL)
 | 
						|
		exceptions |= FPSCR_IDC;
 | 
						|
 | 
						|
	if (tm & VFP_NAN)
 | 
						|
		vdm.sign = 0;
 | 
						|
 | 
						|
	if (vdm.exponent >= 1023 + 32) {
 | 
						|
		d = vdm.sign ? 0 : 0xffffffff;
 | 
						|
		exceptions = FPSCR_IOC;
 | 
						|
	} else if (vdm.exponent >= 1023 - 1) {
 | 
						|
		int shift = 1023 + 63 - vdm.exponent;
 | 
						|
		u64 rem, incr = 0;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * 2^0 <= m < 2^32-2^8
 | 
						|
		 */
 | 
						|
		d = (vdm.significand << 1) >> shift;
 | 
						|
		rem = vdm.significand << (65 - shift);
 | 
						|
 | 
						|
		if (rmode == FPSCR_ROUND_NEAREST) {
 | 
						|
			incr = 0x8000000000000000ULL;
 | 
						|
			if ((d & 1) == 0)
 | 
						|
				incr -= 1;
 | 
						|
		} else if (rmode == FPSCR_ROUND_TOZERO) {
 | 
						|
			incr = 0;
 | 
						|
		} else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vdm.sign != 0)) {
 | 
						|
			incr = ~0ULL;
 | 
						|
		}
 | 
						|
 | 
						|
		if ((rem + incr) < rem) {
 | 
						|
			if (d < 0xffffffff)
 | 
						|
				d += 1;
 | 
						|
			else
 | 
						|
				exceptions |= FPSCR_IOC;
 | 
						|
		}
 | 
						|
 | 
						|
		if (d && vdm.sign) {
 | 
						|
			d = 0;
 | 
						|
			exceptions |= FPSCR_IOC;
 | 
						|
		} else if (rem)
 | 
						|
			exceptions |= FPSCR_IXC;
 | 
						|
	} else {
 | 
						|
		d = 0;
 | 
						|
		if (vdm.exponent | vdm.significand) {
 | 
						|
			exceptions |= FPSCR_IXC;
 | 
						|
			if (rmode == FPSCR_ROUND_PLUSINF && vdm.sign == 0)
 | 
						|
				d = 1;
 | 
						|
			else if (rmode == FPSCR_ROUND_MINUSINF && vdm.sign) {
 | 
						|
				d = 0;
 | 
						|
				exceptions |= FPSCR_IOC;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	pr_debug("VFP: ftoui: d(s%d)=%08x exceptions=%08x\n", sd, d, exceptions);
 | 
						|
 | 
						|
	vfp_put_float(d, sd);
 | 
						|
 | 
						|
	return exceptions;
 | 
						|
}
 | 
						|
 | 
						|
static u32 vfp_double_ftouiz(int sd, int unused, int dm, u32 fpscr)
 | 
						|
{
 | 
						|
	return vfp_double_ftoui(sd, unused, dm, FPSCR_ROUND_TOZERO);
 | 
						|
}
 | 
						|
 | 
						|
static u32 vfp_double_ftosi(int sd, int unused, int dm, u32 fpscr)
 | 
						|
{
 | 
						|
	struct vfp_double vdm;
 | 
						|
	u32 d, exceptions = 0;
 | 
						|
	int rmode = fpscr & FPSCR_RMODE_MASK;
 | 
						|
	int tm;
 | 
						|
 | 
						|
	vfp_double_unpack(&vdm, vfp_get_double(dm));
 | 
						|
	vfp_double_dump("VDM", &vdm);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Do we have denormalised number?
 | 
						|
	 */
 | 
						|
	tm = vfp_double_type(&vdm);
 | 
						|
	if (tm & VFP_DENORMAL)
 | 
						|
		exceptions |= FPSCR_IDC;
 | 
						|
 | 
						|
	if (tm & VFP_NAN) {
 | 
						|
		d = 0;
 | 
						|
		exceptions |= FPSCR_IOC;
 | 
						|
	} else if (vdm.exponent >= 1023 + 32) {
 | 
						|
		d = 0x7fffffff;
 | 
						|
		if (vdm.sign)
 | 
						|
			d = ~d;
 | 
						|
		exceptions |= FPSCR_IOC;
 | 
						|
	} else if (vdm.exponent >= 1023 - 1) {
 | 
						|
		int shift = 1023 + 63 - vdm.exponent;	/* 58 */
 | 
						|
		u64 rem, incr = 0;
 | 
						|
 | 
						|
		d = (vdm.significand << 1) >> shift;
 | 
						|
		rem = vdm.significand << (65 - shift);
 | 
						|
 | 
						|
		if (rmode == FPSCR_ROUND_NEAREST) {
 | 
						|
			incr = 0x8000000000000000ULL;
 | 
						|
			if ((d & 1) == 0)
 | 
						|
				incr -= 1;
 | 
						|
		} else if (rmode == FPSCR_ROUND_TOZERO) {
 | 
						|
			incr = 0;
 | 
						|
		} else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vdm.sign != 0)) {
 | 
						|
			incr = ~0ULL;
 | 
						|
		}
 | 
						|
 | 
						|
		if ((rem + incr) < rem && d < 0xffffffff)
 | 
						|
			d += 1;
 | 
						|
		if (d > 0x7fffffff + (vdm.sign != 0)) {
 | 
						|
			d = 0x7fffffff + (vdm.sign != 0);
 | 
						|
			exceptions |= FPSCR_IOC;
 | 
						|
		} else if (rem)
 | 
						|
			exceptions |= FPSCR_IXC;
 | 
						|
 | 
						|
		if (vdm.sign)
 | 
						|
			d = -d;
 | 
						|
	} else {
 | 
						|
		d = 0;
 | 
						|
		if (vdm.exponent | vdm.significand) {
 | 
						|
			exceptions |= FPSCR_IXC;
 | 
						|
			if (rmode == FPSCR_ROUND_PLUSINF && vdm.sign == 0)
 | 
						|
				d = 1;
 | 
						|
			else if (rmode == FPSCR_ROUND_MINUSINF && vdm.sign)
 | 
						|
				d = -1;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	pr_debug("VFP: ftosi: d(s%d)=%08x exceptions=%08x\n", sd, d, exceptions);
 | 
						|
 | 
						|
	vfp_put_float((s32)d, sd);
 | 
						|
 | 
						|
	return exceptions;
 | 
						|
}
 | 
						|
 | 
						|
static u32 vfp_double_ftosiz(int dd, int unused, int dm, u32 fpscr)
 | 
						|
{
 | 
						|
	return vfp_double_ftosi(dd, unused, dm, FPSCR_ROUND_TOZERO);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static struct op fops_ext[32] = {
 | 
						|
	[FEXT_TO_IDX(FEXT_FCPY)]	= { vfp_double_fcpy,   0 },
 | 
						|
	[FEXT_TO_IDX(FEXT_FABS)]	= { vfp_double_fabs,   0 },
 | 
						|
	[FEXT_TO_IDX(FEXT_FNEG)]	= { vfp_double_fneg,   0 },
 | 
						|
	[FEXT_TO_IDX(FEXT_FSQRT)]	= { vfp_double_fsqrt,  0 },
 | 
						|
	[FEXT_TO_IDX(FEXT_FCMP)]	= { vfp_double_fcmp,   OP_SCALAR },
 | 
						|
	[FEXT_TO_IDX(FEXT_FCMPE)]	= { vfp_double_fcmpe,  OP_SCALAR },
 | 
						|
	[FEXT_TO_IDX(FEXT_FCMPZ)]	= { vfp_double_fcmpz,  OP_SCALAR },
 | 
						|
	[FEXT_TO_IDX(FEXT_FCMPEZ)]	= { vfp_double_fcmpez, OP_SCALAR },
 | 
						|
	[FEXT_TO_IDX(FEXT_FCVT)]	= { vfp_double_fcvts,  OP_SCALAR|OP_SD },
 | 
						|
	[FEXT_TO_IDX(FEXT_FUITO)]	= { vfp_double_fuito,  OP_SCALAR|OP_SM },
 | 
						|
	[FEXT_TO_IDX(FEXT_FSITO)]	= { vfp_double_fsito,  OP_SCALAR|OP_SM },
 | 
						|
	[FEXT_TO_IDX(FEXT_FTOUI)]	= { vfp_double_ftoui,  OP_SCALAR|OP_SD },
 | 
						|
	[FEXT_TO_IDX(FEXT_FTOUIZ)]	= { vfp_double_ftouiz, OP_SCALAR|OP_SD },
 | 
						|
	[FEXT_TO_IDX(FEXT_FTOSI)]	= { vfp_double_ftosi,  OP_SCALAR|OP_SD },
 | 
						|
	[FEXT_TO_IDX(FEXT_FTOSIZ)]	= { vfp_double_ftosiz, OP_SCALAR|OP_SD },
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
static u32
 | 
						|
vfp_double_fadd_nonnumber(struct vfp_double *vdd, struct vfp_double *vdn,
 | 
						|
			  struct vfp_double *vdm, u32 fpscr)
 | 
						|
{
 | 
						|
	struct vfp_double *vdp;
 | 
						|
	u32 exceptions = 0;
 | 
						|
	int tn, tm;
 | 
						|
 | 
						|
	tn = vfp_double_type(vdn);
 | 
						|
	tm = vfp_double_type(vdm);
 | 
						|
 | 
						|
	if (tn & tm & VFP_INFINITY) {
 | 
						|
		/*
 | 
						|
		 * Two infinities.  Are they different signs?
 | 
						|
		 */
 | 
						|
		if (vdn->sign ^ vdm->sign) {
 | 
						|
			/*
 | 
						|
			 * different signs -> invalid
 | 
						|
			 */
 | 
						|
			exceptions = FPSCR_IOC;
 | 
						|
			vdp = &vfp_double_default_qnan;
 | 
						|
		} else {
 | 
						|
			/*
 | 
						|
			 * same signs -> valid
 | 
						|
			 */
 | 
						|
			vdp = vdn;
 | 
						|
		}
 | 
						|
	} else if (tn & VFP_INFINITY && tm & VFP_NUMBER) {
 | 
						|
		/*
 | 
						|
		 * One infinity and one number -> infinity
 | 
						|
		 */
 | 
						|
		vdp = vdn;
 | 
						|
	} else {
 | 
						|
		/*
 | 
						|
		 * 'n' is a NaN of some type
 | 
						|
		 */
 | 
						|
		return vfp_propagate_nan(vdd, vdn, vdm, fpscr);
 | 
						|
	}
 | 
						|
	*vdd = *vdp;
 | 
						|
	return exceptions;
 | 
						|
}
 | 
						|
 | 
						|
static u32
 | 
						|
vfp_double_add(struct vfp_double *vdd, struct vfp_double *vdn,
 | 
						|
	       struct vfp_double *vdm, u32 fpscr)
 | 
						|
{
 | 
						|
	u32 exp_diff;
 | 
						|
	u64 m_sig;
 | 
						|
 | 
						|
	if (vdn->significand & (1ULL << 63) ||
 | 
						|
	    vdm->significand & (1ULL << 63)) {
 | 
						|
		pr_info("VFP: bad FP values in %s\n", __func__);
 | 
						|
		vfp_double_dump("VDN", vdn);
 | 
						|
		vfp_double_dump("VDM", vdm);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Ensure that 'n' is the largest magnitude number.  Note that
 | 
						|
	 * if 'n' and 'm' have equal exponents, we do not swap them.
 | 
						|
	 * This ensures that NaN propagation works correctly.
 | 
						|
	 */
 | 
						|
	if (vdn->exponent < vdm->exponent) {
 | 
						|
		struct vfp_double *t = vdn;
 | 
						|
		vdn = vdm;
 | 
						|
		vdm = t;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Is 'n' an infinity or a NaN?  Note that 'm' may be a number,
 | 
						|
	 * infinity or a NaN here.
 | 
						|
	 */
 | 
						|
	if (vdn->exponent == 2047)
 | 
						|
		return vfp_double_fadd_nonnumber(vdd, vdn, vdm, fpscr);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We have two proper numbers, where 'vdn' is the larger magnitude.
 | 
						|
	 *
 | 
						|
	 * Copy 'n' to 'd' before doing the arithmetic.
 | 
						|
	 */
 | 
						|
	*vdd = *vdn;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Align 'm' with the result.
 | 
						|
	 */
 | 
						|
	exp_diff = vdn->exponent - vdm->exponent;
 | 
						|
	m_sig = vfp_shiftright64jamming(vdm->significand, exp_diff);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the signs are different, we are really subtracting.
 | 
						|
	 */
 | 
						|
	if (vdn->sign ^ vdm->sign) {
 | 
						|
		m_sig = vdn->significand - m_sig;
 | 
						|
		if ((s64)m_sig < 0) {
 | 
						|
			vdd->sign = vfp_sign_negate(vdd->sign);
 | 
						|
			m_sig = -m_sig;
 | 
						|
		} else if (m_sig == 0) {
 | 
						|
			vdd->sign = (fpscr & FPSCR_RMODE_MASK) ==
 | 
						|
				      FPSCR_ROUND_MINUSINF ? 0x8000 : 0;
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		m_sig += vdn->significand;
 | 
						|
	}
 | 
						|
	vdd->significand = m_sig;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static u32
 | 
						|
vfp_double_multiply(struct vfp_double *vdd, struct vfp_double *vdn,
 | 
						|
		    struct vfp_double *vdm, u32 fpscr)
 | 
						|
{
 | 
						|
	vfp_double_dump("VDN", vdn);
 | 
						|
	vfp_double_dump("VDM", vdm);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Ensure that 'n' is the largest magnitude number.  Note that
 | 
						|
	 * if 'n' and 'm' have equal exponents, we do not swap them.
 | 
						|
	 * This ensures that NaN propagation works correctly.
 | 
						|
	 */
 | 
						|
	if (vdn->exponent < vdm->exponent) {
 | 
						|
		struct vfp_double *t = vdn;
 | 
						|
		vdn = vdm;
 | 
						|
		vdm = t;
 | 
						|
		pr_debug("VFP: swapping M <-> N\n");
 | 
						|
	}
 | 
						|
 | 
						|
	vdd->sign = vdn->sign ^ vdm->sign;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If 'n' is an infinity or NaN, handle it.  'm' may be anything.
 | 
						|
	 */
 | 
						|
	if (vdn->exponent == 2047) {
 | 
						|
		if (vdn->significand || (vdm->exponent == 2047 && vdm->significand))
 | 
						|
			return vfp_propagate_nan(vdd, vdn, vdm, fpscr);
 | 
						|
		if ((vdm->exponent | vdm->significand) == 0) {
 | 
						|
			*vdd = vfp_double_default_qnan;
 | 
						|
			return FPSCR_IOC;
 | 
						|
		}
 | 
						|
		vdd->exponent = vdn->exponent;
 | 
						|
		vdd->significand = 0;
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If 'm' is zero, the result is always zero.  In this case,
 | 
						|
	 * 'n' may be zero or a number, but it doesn't matter which.
 | 
						|
	 */
 | 
						|
	if ((vdm->exponent | vdm->significand) == 0) {
 | 
						|
		vdd->exponent = 0;
 | 
						|
		vdd->significand = 0;
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We add 2 to the destination exponent for the same reason
 | 
						|
	 * as the addition case - though this time we have +1 from
 | 
						|
	 * each input operand.
 | 
						|
	 */
 | 
						|
	vdd->exponent = vdn->exponent + vdm->exponent - 1023 + 2;
 | 
						|
	vdd->significand = vfp_hi64multiply64(vdn->significand, vdm->significand);
 | 
						|
 | 
						|
	vfp_double_dump("VDD", vdd);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
#define NEG_MULTIPLY	(1 << 0)
 | 
						|
#define NEG_SUBTRACT	(1 << 1)
 | 
						|
 | 
						|
static u32
 | 
						|
vfp_double_multiply_accumulate(int dd, int dn, int dm, u32 fpscr, u32 negate, char *func)
 | 
						|
{
 | 
						|
	struct vfp_double vdd, vdp, vdn, vdm;
 | 
						|
	u32 exceptions;
 | 
						|
 | 
						|
	vfp_double_unpack(&vdn, vfp_get_double(dn));
 | 
						|
	if (vdn.exponent == 0 && vdn.significand)
 | 
						|
		vfp_double_normalise_denormal(&vdn);
 | 
						|
 | 
						|
	vfp_double_unpack(&vdm, vfp_get_double(dm));
 | 
						|
	if (vdm.exponent == 0 && vdm.significand)
 | 
						|
		vfp_double_normalise_denormal(&vdm);
 | 
						|
 | 
						|
	exceptions = vfp_double_multiply(&vdp, &vdn, &vdm, fpscr);
 | 
						|
	if (negate & NEG_MULTIPLY)
 | 
						|
		vdp.sign = vfp_sign_negate(vdp.sign);
 | 
						|
 | 
						|
	vfp_double_unpack(&vdn, vfp_get_double(dd));
 | 
						|
	if (negate & NEG_SUBTRACT)
 | 
						|
		vdn.sign = vfp_sign_negate(vdn.sign);
 | 
						|
 | 
						|
	exceptions |= vfp_double_add(&vdd, &vdn, &vdp, fpscr);
 | 
						|
 | 
						|
	return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, func);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Standard operations
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * sd = sd + (sn * sm)
 | 
						|
 */
 | 
						|
static u32 vfp_double_fmac(int dd, int dn, int dm, u32 fpscr)
 | 
						|
{
 | 
						|
	return vfp_double_multiply_accumulate(dd, dn, dm, fpscr, 0, "fmac");
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * sd = sd - (sn * sm)
 | 
						|
 */
 | 
						|
static u32 vfp_double_fnmac(int dd, int dn, int dm, u32 fpscr)
 | 
						|
{
 | 
						|
	return vfp_double_multiply_accumulate(dd, dn, dm, fpscr, NEG_MULTIPLY, "fnmac");
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * sd = -sd + (sn * sm)
 | 
						|
 */
 | 
						|
static u32 vfp_double_fmsc(int dd, int dn, int dm, u32 fpscr)
 | 
						|
{
 | 
						|
	return vfp_double_multiply_accumulate(dd, dn, dm, fpscr, NEG_SUBTRACT, "fmsc");
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * sd = -sd - (sn * sm)
 | 
						|
 */
 | 
						|
static u32 vfp_double_fnmsc(int dd, int dn, int dm, u32 fpscr)
 | 
						|
{
 | 
						|
	return vfp_double_multiply_accumulate(dd, dn, dm, fpscr, NEG_SUBTRACT | NEG_MULTIPLY, "fnmsc");
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * sd = sn * sm
 | 
						|
 */
 | 
						|
static u32 vfp_double_fmul(int dd, int dn, int dm, u32 fpscr)
 | 
						|
{
 | 
						|
	struct vfp_double vdd, vdn, vdm;
 | 
						|
	u32 exceptions;
 | 
						|
 | 
						|
	vfp_double_unpack(&vdn, vfp_get_double(dn));
 | 
						|
	if (vdn.exponent == 0 && vdn.significand)
 | 
						|
		vfp_double_normalise_denormal(&vdn);
 | 
						|
 | 
						|
	vfp_double_unpack(&vdm, vfp_get_double(dm));
 | 
						|
	if (vdm.exponent == 0 && vdm.significand)
 | 
						|
		vfp_double_normalise_denormal(&vdm);
 | 
						|
 | 
						|
	exceptions = vfp_double_multiply(&vdd, &vdn, &vdm, fpscr);
 | 
						|
	return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, "fmul");
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * sd = -(sn * sm)
 | 
						|
 */
 | 
						|
static u32 vfp_double_fnmul(int dd, int dn, int dm, u32 fpscr)
 | 
						|
{
 | 
						|
	struct vfp_double vdd, vdn, vdm;
 | 
						|
	u32 exceptions;
 | 
						|
 | 
						|
	vfp_double_unpack(&vdn, vfp_get_double(dn));
 | 
						|
	if (vdn.exponent == 0 && vdn.significand)
 | 
						|
		vfp_double_normalise_denormal(&vdn);
 | 
						|
 | 
						|
	vfp_double_unpack(&vdm, vfp_get_double(dm));
 | 
						|
	if (vdm.exponent == 0 && vdm.significand)
 | 
						|
		vfp_double_normalise_denormal(&vdm);
 | 
						|
 | 
						|
	exceptions = vfp_double_multiply(&vdd, &vdn, &vdm, fpscr);
 | 
						|
	vdd.sign = vfp_sign_negate(vdd.sign);
 | 
						|
 | 
						|
	return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, "fnmul");
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * sd = sn + sm
 | 
						|
 */
 | 
						|
static u32 vfp_double_fadd(int dd, int dn, int dm, u32 fpscr)
 | 
						|
{
 | 
						|
	struct vfp_double vdd, vdn, vdm;
 | 
						|
	u32 exceptions;
 | 
						|
 | 
						|
	vfp_double_unpack(&vdn, vfp_get_double(dn));
 | 
						|
	if (vdn.exponent == 0 && vdn.significand)
 | 
						|
		vfp_double_normalise_denormal(&vdn);
 | 
						|
 | 
						|
	vfp_double_unpack(&vdm, vfp_get_double(dm));
 | 
						|
	if (vdm.exponent == 0 && vdm.significand)
 | 
						|
		vfp_double_normalise_denormal(&vdm);
 | 
						|
 | 
						|
	exceptions = vfp_double_add(&vdd, &vdn, &vdm, fpscr);
 | 
						|
 | 
						|
	return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, "fadd");
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * sd = sn - sm
 | 
						|
 */
 | 
						|
static u32 vfp_double_fsub(int dd, int dn, int dm, u32 fpscr)
 | 
						|
{
 | 
						|
	struct vfp_double vdd, vdn, vdm;
 | 
						|
	u32 exceptions;
 | 
						|
 | 
						|
	vfp_double_unpack(&vdn, vfp_get_double(dn));
 | 
						|
	if (vdn.exponent == 0 && vdn.significand)
 | 
						|
		vfp_double_normalise_denormal(&vdn);
 | 
						|
 | 
						|
	vfp_double_unpack(&vdm, vfp_get_double(dm));
 | 
						|
	if (vdm.exponent == 0 && vdm.significand)
 | 
						|
		vfp_double_normalise_denormal(&vdm);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Subtraction is like addition, but with a negated operand.
 | 
						|
	 */
 | 
						|
	vdm.sign = vfp_sign_negate(vdm.sign);
 | 
						|
 | 
						|
	exceptions = vfp_double_add(&vdd, &vdn, &vdm, fpscr);
 | 
						|
 | 
						|
	return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, "fsub");
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * sd = sn / sm
 | 
						|
 */
 | 
						|
static u32 vfp_double_fdiv(int dd, int dn, int dm, u32 fpscr)
 | 
						|
{
 | 
						|
	struct vfp_double vdd, vdn, vdm;
 | 
						|
	u32 exceptions = 0;
 | 
						|
	int tm, tn;
 | 
						|
 | 
						|
	vfp_double_unpack(&vdn, vfp_get_double(dn));
 | 
						|
	vfp_double_unpack(&vdm, vfp_get_double(dm));
 | 
						|
 | 
						|
	vdd.sign = vdn.sign ^ vdm.sign;
 | 
						|
 | 
						|
	tn = vfp_double_type(&vdn);
 | 
						|
	tm = vfp_double_type(&vdm);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Is n a NAN?
 | 
						|
	 */
 | 
						|
	if (tn & VFP_NAN)
 | 
						|
		goto vdn_nan;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Is m a NAN?
 | 
						|
	 */
 | 
						|
	if (tm & VFP_NAN)
 | 
						|
		goto vdm_nan;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If n and m are infinity, the result is invalid
 | 
						|
	 * If n and m are zero, the result is invalid
 | 
						|
	 */
 | 
						|
	if (tm & tn & (VFP_INFINITY|VFP_ZERO))
 | 
						|
		goto invalid;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If n is infinity, the result is infinity
 | 
						|
	 */
 | 
						|
	if (tn & VFP_INFINITY)
 | 
						|
		goto infinity;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If m is zero, raise div0 exceptions
 | 
						|
	 */
 | 
						|
	if (tm & VFP_ZERO)
 | 
						|
		goto divzero;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If m is infinity, or n is zero, the result is zero
 | 
						|
	 */
 | 
						|
	if (tm & VFP_INFINITY || tn & VFP_ZERO)
 | 
						|
		goto zero;
 | 
						|
 | 
						|
	if (tn & VFP_DENORMAL)
 | 
						|
		vfp_double_normalise_denormal(&vdn);
 | 
						|
	if (tm & VFP_DENORMAL)
 | 
						|
		vfp_double_normalise_denormal(&vdm);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Ok, we have two numbers, we can perform division.
 | 
						|
	 */
 | 
						|
	vdd.exponent = vdn.exponent - vdm.exponent + 1023 - 1;
 | 
						|
	vdm.significand <<= 1;
 | 
						|
	if (vdm.significand <= (2 * vdn.significand)) {
 | 
						|
		vdn.significand >>= 1;
 | 
						|
		vdd.exponent++;
 | 
						|
	}
 | 
						|
	vdd.significand = vfp_estimate_div128to64(vdn.significand, 0, vdm.significand);
 | 
						|
	if ((vdd.significand & 0x1ff) <= 2) {
 | 
						|
		u64 termh, terml, remh, reml;
 | 
						|
		mul64to128(&termh, &terml, vdm.significand, vdd.significand);
 | 
						|
		sub128(&remh, &reml, vdn.significand, 0, termh, terml);
 | 
						|
		while ((s64)remh < 0) {
 | 
						|
			vdd.significand -= 1;
 | 
						|
			add128(&remh, &reml, remh, reml, 0, vdm.significand);
 | 
						|
		}
 | 
						|
		vdd.significand |= (reml != 0);
 | 
						|
	}
 | 
						|
	return vfp_double_normaliseround(dd, &vdd, fpscr, 0, "fdiv");
 | 
						|
 | 
						|
 vdn_nan:
 | 
						|
	exceptions = vfp_propagate_nan(&vdd, &vdn, &vdm, fpscr);
 | 
						|
 pack:
 | 
						|
	vfp_put_double(vfp_double_pack(&vdd), dd);
 | 
						|
	return exceptions;
 | 
						|
 | 
						|
 vdm_nan:
 | 
						|
	exceptions = vfp_propagate_nan(&vdd, &vdm, &vdn, fpscr);
 | 
						|
	goto pack;
 | 
						|
 | 
						|
 zero:
 | 
						|
	vdd.exponent = 0;
 | 
						|
	vdd.significand = 0;
 | 
						|
	goto pack;
 | 
						|
 | 
						|
 divzero:
 | 
						|
	exceptions = FPSCR_DZC;
 | 
						|
 infinity:
 | 
						|
	vdd.exponent = 2047;
 | 
						|
	vdd.significand = 0;
 | 
						|
	goto pack;
 | 
						|
 | 
						|
 invalid:
 | 
						|
	vfp_put_double(vfp_double_pack(&vfp_double_default_qnan), dd);
 | 
						|
	return FPSCR_IOC;
 | 
						|
}
 | 
						|
 | 
						|
static struct op fops[16] = {
 | 
						|
	[FOP_TO_IDX(FOP_FMAC)]	= { vfp_double_fmac,  0 },
 | 
						|
	[FOP_TO_IDX(FOP_FNMAC)]	= { vfp_double_fnmac, 0 },
 | 
						|
	[FOP_TO_IDX(FOP_FMSC)]	= { vfp_double_fmsc,  0 },
 | 
						|
	[FOP_TO_IDX(FOP_FNMSC)]	= { vfp_double_fnmsc, 0 },
 | 
						|
	[FOP_TO_IDX(FOP_FMUL)]	= { vfp_double_fmul,  0 },
 | 
						|
	[FOP_TO_IDX(FOP_FNMUL)]	= { vfp_double_fnmul, 0 },
 | 
						|
	[FOP_TO_IDX(FOP_FADD)]	= { vfp_double_fadd,  0 },
 | 
						|
	[FOP_TO_IDX(FOP_FSUB)]	= { vfp_double_fsub,  0 },
 | 
						|
	[FOP_TO_IDX(FOP_FDIV)]	= { vfp_double_fdiv,  0 },
 | 
						|
};
 | 
						|
 | 
						|
#define FREG_BANK(x)	((x) & 0x0c)
 | 
						|
#define FREG_IDX(x)	((x) & 3)
 | 
						|
 | 
						|
u32 vfp_double_cpdo(u32 inst, u32 fpscr)
 | 
						|
{
 | 
						|
	u32 op = inst & FOP_MASK;
 | 
						|
	u32 exceptions = 0;
 | 
						|
	unsigned int dest;
 | 
						|
	unsigned int dn = vfp_get_dn(inst);
 | 
						|
	unsigned int dm;
 | 
						|
	unsigned int vecitr, veclen, vecstride;
 | 
						|
	struct op *fop;
 | 
						|
 | 
						|
	vecstride = (1 + ((fpscr & FPSCR_STRIDE_MASK) == FPSCR_STRIDE_MASK));
 | 
						|
 | 
						|
	fop = (op == FOP_EXT) ? &fops_ext[FEXT_TO_IDX(inst)] : &fops[FOP_TO_IDX(op)];
 | 
						|
 | 
						|
	/*
 | 
						|
	 * fcvtds takes an sN register number as destination, not dN.
 | 
						|
	 * It also always operates on scalars.
 | 
						|
	 */
 | 
						|
	if (fop->flags & OP_SD)
 | 
						|
		dest = vfp_get_sd(inst);
 | 
						|
	else
 | 
						|
		dest = vfp_get_dd(inst);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * f[us]ito takes a sN operand, not a dN operand.
 | 
						|
	 */
 | 
						|
	if (fop->flags & OP_SM)
 | 
						|
		dm = vfp_get_sm(inst);
 | 
						|
	else
 | 
						|
		dm = vfp_get_dm(inst);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If destination bank is zero, vector length is always '1'.
 | 
						|
	 * ARM DDI0100F C5.1.3, C5.3.2.
 | 
						|
	 */
 | 
						|
	if ((fop->flags & OP_SCALAR) || (FREG_BANK(dest) == 0))
 | 
						|
		veclen = 0;
 | 
						|
	else
 | 
						|
		veclen = fpscr & FPSCR_LENGTH_MASK;
 | 
						|
 | 
						|
	pr_debug("VFP: vecstride=%u veclen=%u\n", vecstride,
 | 
						|
		 (veclen >> FPSCR_LENGTH_BIT) + 1);
 | 
						|
 | 
						|
	if (!fop->fn)
 | 
						|
		goto invalid;
 | 
						|
 | 
						|
	for (vecitr = 0; vecitr <= veclen; vecitr += 1 << FPSCR_LENGTH_BIT) {
 | 
						|
		u32 except;
 | 
						|
		char type;
 | 
						|
 | 
						|
		type = fop->flags & OP_SD ? 's' : 'd';
 | 
						|
		if (op == FOP_EXT)
 | 
						|
			pr_debug("VFP: itr%d (%c%u) = op[%u] (d%u)\n",
 | 
						|
				 vecitr >> FPSCR_LENGTH_BIT,
 | 
						|
				 type, dest, dn, dm);
 | 
						|
		else
 | 
						|
			pr_debug("VFP: itr%d (%c%u) = (d%u) op[%u] (d%u)\n",
 | 
						|
				 vecitr >> FPSCR_LENGTH_BIT,
 | 
						|
				 type, dest, dn, FOP_TO_IDX(op), dm);
 | 
						|
 | 
						|
		except = fop->fn(dest, dn, dm, fpscr);
 | 
						|
		pr_debug("VFP: itr%d: exceptions=%08x\n",
 | 
						|
			 vecitr >> FPSCR_LENGTH_BIT, except);
 | 
						|
 | 
						|
		exceptions |= except;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * CHECK: It appears to be undefined whether we stop when
 | 
						|
		 * we encounter an exception.  We continue.
 | 
						|
		 */
 | 
						|
		dest = FREG_BANK(dest) + ((FREG_IDX(dest) + vecstride) & 3);
 | 
						|
		dn = FREG_BANK(dn) + ((FREG_IDX(dn) + vecstride) & 3);
 | 
						|
		if (FREG_BANK(dm) != 0)
 | 
						|
			dm = FREG_BANK(dm) + ((FREG_IDX(dm) + vecstride) & 3);
 | 
						|
	}
 | 
						|
	return exceptions;
 | 
						|
 | 
						|
 invalid:
 | 
						|
	return ~0;
 | 
						|
}
 |