In case 1, it passes down the BLACK color from G to p and u, and maintains the color of n. By doing so, it maintains the black height of the sub-tree. While in the comment, it marks the color of n to BLACK. This is a typo and not consistents with the code. This patch fixs this typo in comment. Signed-off-by: Wei Yang <weiyang@linux.vnet.ibm.com> Acked-by: Michel Lespinasse <walken@google.com> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			560 lines
		
	
	
	
		
			15 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			560 lines
		
	
	
	
		
			15 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|   Red Black Trees
 | |
|   (C) 1999  Andrea Arcangeli <andrea@suse.de>
 | |
|   (C) 2002  David Woodhouse <dwmw2@infradead.org>
 | |
|   (C) 2012  Michel Lespinasse <walken@google.com>
 | |
| 
 | |
|   This program is free software; you can redistribute it and/or modify
 | |
|   it under the terms of the GNU General Public License as published by
 | |
|   the Free Software Foundation; either version 2 of the License, or
 | |
|   (at your option) any later version.
 | |
| 
 | |
|   This program is distributed in the hope that it will be useful,
 | |
|   but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|   GNU General Public License for more details.
 | |
| 
 | |
|   You should have received a copy of the GNU General Public License
 | |
|   along with this program; if not, write to the Free Software
 | |
|   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 | |
| 
 | |
|   linux/lib/rbtree.c
 | |
| */
 | |
| 
 | |
| #include <linux/rbtree_augmented.h>
 | |
| #include <linux/export.h>
 | |
| 
 | |
| /*
 | |
|  * red-black trees properties:  http://en.wikipedia.org/wiki/Rbtree
 | |
|  *
 | |
|  *  1) A node is either red or black
 | |
|  *  2) The root is black
 | |
|  *  3) All leaves (NULL) are black
 | |
|  *  4) Both children of every red node are black
 | |
|  *  5) Every simple path from root to leaves contains the same number
 | |
|  *     of black nodes.
 | |
|  *
 | |
|  *  4 and 5 give the O(log n) guarantee, since 4 implies you cannot have two
 | |
|  *  consecutive red nodes in a path and every red node is therefore followed by
 | |
|  *  a black. So if B is the number of black nodes on every simple path (as per
 | |
|  *  5), then the longest possible path due to 4 is 2B.
 | |
|  *
 | |
|  *  We shall indicate color with case, where black nodes are uppercase and red
 | |
|  *  nodes will be lowercase. Unknown color nodes shall be drawn as red within
 | |
|  *  parentheses and have some accompanying text comment.
 | |
|  */
 | |
| 
 | |
| static inline void rb_set_black(struct rb_node *rb)
 | |
| {
 | |
| 	rb->__rb_parent_color |= RB_BLACK;
 | |
| }
 | |
| 
 | |
| static inline struct rb_node *rb_red_parent(struct rb_node *red)
 | |
| {
 | |
| 	return (struct rb_node *)red->__rb_parent_color;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Helper function for rotations:
 | |
|  * - old's parent and color get assigned to new
 | |
|  * - old gets assigned new as a parent and 'color' as a color.
 | |
|  */
 | |
| static inline void
 | |
| __rb_rotate_set_parents(struct rb_node *old, struct rb_node *new,
 | |
| 			struct rb_root *root, int color)
 | |
| {
 | |
| 	struct rb_node *parent = rb_parent(old);
 | |
| 	new->__rb_parent_color = old->__rb_parent_color;
 | |
| 	rb_set_parent_color(old, new, color);
 | |
| 	__rb_change_child(old, new, parent, root);
 | |
| }
 | |
| 
 | |
| static __always_inline void
 | |
| __rb_insert(struct rb_node *node, struct rb_root *root,
 | |
| 	    void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
 | |
| {
 | |
| 	struct rb_node *parent = rb_red_parent(node), *gparent, *tmp;
 | |
| 
 | |
| 	while (true) {
 | |
| 		/*
 | |
| 		 * Loop invariant: node is red
 | |
| 		 *
 | |
| 		 * If there is a black parent, we are done.
 | |
| 		 * Otherwise, take some corrective action as we don't
 | |
| 		 * want a red root or two consecutive red nodes.
 | |
| 		 */
 | |
| 		if (!parent) {
 | |
| 			rb_set_parent_color(node, NULL, RB_BLACK);
 | |
| 			break;
 | |
| 		} else if (rb_is_black(parent))
 | |
| 			break;
 | |
| 
 | |
| 		gparent = rb_red_parent(parent);
 | |
| 
 | |
| 		tmp = gparent->rb_right;
 | |
| 		if (parent != tmp) {	/* parent == gparent->rb_left */
 | |
| 			if (tmp && rb_is_red(tmp)) {
 | |
| 				/*
 | |
| 				 * Case 1 - color flips
 | |
| 				 *
 | |
| 				 *       G            g
 | |
| 				 *      / \          / \
 | |
| 				 *     p   u  -->   P   U
 | |
| 				 *    /            /
 | |
| 				 *   n            n
 | |
| 				 *
 | |
| 				 * However, since g's parent might be red, and
 | |
| 				 * 4) does not allow this, we need to recurse
 | |
| 				 * at g.
 | |
| 				 */
 | |
| 				rb_set_parent_color(tmp, gparent, RB_BLACK);
 | |
| 				rb_set_parent_color(parent, gparent, RB_BLACK);
 | |
| 				node = gparent;
 | |
| 				parent = rb_parent(node);
 | |
| 				rb_set_parent_color(node, parent, RB_RED);
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			tmp = parent->rb_right;
 | |
| 			if (node == tmp) {
 | |
| 				/*
 | |
| 				 * Case 2 - left rotate at parent
 | |
| 				 *
 | |
| 				 *      G             G
 | |
| 				 *     / \           / \
 | |
| 				 *    p   U  -->    n   U
 | |
| 				 *     \           /
 | |
| 				 *      n         p
 | |
| 				 *
 | |
| 				 * This still leaves us in violation of 4), the
 | |
| 				 * continuation into Case 3 will fix that.
 | |
| 				 */
 | |
| 				parent->rb_right = tmp = node->rb_left;
 | |
| 				node->rb_left = parent;
 | |
| 				if (tmp)
 | |
| 					rb_set_parent_color(tmp, parent,
 | |
| 							    RB_BLACK);
 | |
| 				rb_set_parent_color(parent, node, RB_RED);
 | |
| 				augment_rotate(parent, node);
 | |
| 				parent = node;
 | |
| 				tmp = node->rb_right;
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * Case 3 - right rotate at gparent
 | |
| 			 *
 | |
| 			 *        G           P
 | |
| 			 *       / \         / \
 | |
| 			 *      p   U  -->  n   g
 | |
| 			 *     /                 \
 | |
| 			 *    n                   U
 | |
| 			 */
 | |
| 			gparent->rb_left = tmp;  /* == parent->rb_right */
 | |
| 			parent->rb_right = gparent;
 | |
| 			if (tmp)
 | |
| 				rb_set_parent_color(tmp, gparent, RB_BLACK);
 | |
| 			__rb_rotate_set_parents(gparent, parent, root, RB_RED);
 | |
| 			augment_rotate(gparent, parent);
 | |
| 			break;
 | |
| 		} else {
 | |
| 			tmp = gparent->rb_left;
 | |
| 			if (tmp && rb_is_red(tmp)) {
 | |
| 				/* Case 1 - color flips */
 | |
| 				rb_set_parent_color(tmp, gparent, RB_BLACK);
 | |
| 				rb_set_parent_color(parent, gparent, RB_BLACK);
 | |
| 				node = gparent;
 | |
| 				parent = rb_parent(node);
 | |
| 				rb_set_parent_color(node, parent, RB_RED);
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			tmp = parent->rb_left;
 | |
| 			if (node == tmp) {
 | |
| 				/* Case 2 - right rotate at parent */
 | |
| 				parent->rb_left = tmp = node->rb_right;
 | |
| 				node->rb_right = parent;
 | |
| 				if (tmp)
 | |
| 					rb_set_parent_color(tmp, parent,
 | |
| 							    RB_BLACK);
 | |
| 				rb_set_parent_color(parent, node, RB_RED);
 | |
| 				augment_rotate(parent, node);
 | |
| 				parent = node;
 | |
| 				tmp = node->rb_left;
 | |
| 			}
 | |
| 
 | |
| 			/* Case 3 - left rotate at gparent */
 | |
| 			gparent->rb_right = tmp;  /* == parent->rb_left */
 | |
| 			parent->rb_left = gparent;
 | |
| 			if (tmp)
 | |
| 				rb_set_parent_color(tmp, gparent, RB_BLACK);
 | |
| 			__rb_rotate_set_parents(gparent, parent, root, RB_RED);
 | |
| 			augment_rotate(gparent, parent);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Inline version for rb_erase() use - we want to be able to inline
 | |
|  * and eliminate the dummy_rotate callback there
 | |
|  */
 | |
| static __always_inline void
 | |
| ____rb_erase_color(struct rb_node *parent, struct rb_root *root,
 | |
| 	void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
 | |
| {
 | |
| 	struct rb_node *node = NULL, *sibling, *tmp1, *tmp2;
 | |
| 
 | |
| 	while (true) {
 | |
| 		/*
 | |
| 		 * Loop invariants:
 | |
| 		 * - node is black (or NULL on first iteration)
 | |
| 		 * - node is not the root (parent is not NULL)
 | |
| 		 * - All leaf paths going through parent and node have a
 | |
| 		 *   black node count that is 1 lower than other leaf paths.
 | |
| 		 */
 | |
| 		sibling = parent->rb_right;
 | |
| 		if (node != sibling) {	/* node == parent->rb_left */
 | |
| 			if (rb_is_red(sibling)) {
 | |
| 				/*
 | |
| 				 * Case 1 - left rotate at parent
 | |
| 				 *
 | |
| 				 *     P               S
 | |
| 				 *    / \             / \
 | |
| 				 *   N   s    -->    p   Sr
 | |
| 				 *      / \         / \
 | |
| 				 *     Sl  Sr      N   Sl
 | |
| 				 */
 | |
| 				parent->rb_right = tmp1 = sibling->rb_left;
 | |
| 				sibling->rb_left = parent;
 | |
| 				rb_set_parent_color(tmp1, parent, RB_BLACK);
 | |
| 				__rb_rotate_set_parents(parent, sibling, root,
 | |
| 							RB_RED);
 | |
| 				augment_rotate(parent, sibling);
 | |
| 				sibling = tmp1;
 | |
| 			}
 | |
| 			tmp1 = sibling->rb_right;
 | |
| 			if (!tmp1 || rb_is_black(tmp1)) {
 | |
| 				tmp2 = sibling->rb_left;
 | |
| 				if (!tmp2 || rb_is_black(tmp2)) {
 | |
| 					/*
 | |
| 					 * Case 2 - sibling color flip
 | |
| 					 * (p could be either color here)
 | |
| 					 *
 | |
| 					 *    (p)           (p)
 | |
| 					 *    / \           / \
 | |
| 					 *   N   S    -->  N   s
 | |
| 					 *      / \           / \
 | |
| 					 *     Sl  Sr        Sl  Sr
 | |
| 					 *
 | |
| 					 * This leaves us violating 5) which
 | |
| 					 * can be fixed by flipping p to black
 | |
| 					 * if it was red, or by recursing at p.
 | |
| 					 * p is red when coming from Case 1.
 | |
| 					 */
 | |
| 					rb_set_parent_color(sibling, parent,
 | |
| 							    RB_RED);
 | |
| 					if (rb_is_red(parent))
 | |
| 						rb_set_black(parent);
 | |
| 					else {
 | |
| 						node = parent;
 | |
| 						parent = rb_parent(node);
 | |
| 						if (parent)
 | |
| 							continue;
 | |
| 					}
 | |
| 					break;
 | |
| 				}
 | |
| 				/*
 | |
| 				 * Case 3 - right rotate at sibling
 | |
| 				 * (p could be either color here)
 | |
| 				 *
 | |
| 				 *   (p)           (p)
 | |
| 				 *   / \           / \
 | |
| 				 *  N   S    -->  N   Sl
 | |
| 				 *     / \             \
 | |
| 				 *    sl  Sr            s
 | |
| 				 *                       \
 | |
| 				 *                        Sr
 | |
| 				 */
 | |
| 				sibling->rb_left = tmp1 = tmp2->rb_right;
 | |
| 				tmp2->rb_right = sibling;
 | |
| 				parent->rb_right = tmp2;
 | |
| 				if (tmp1)
 | |
| 					rb_set_parent_color(tmp1, sibling,
 | |
| 							    RB_BLACK);
 | |
| 				augment_rotate(sibling, tmp2);
 | |
| 				tmp1 = sibling;
 | |
| 				sibling = tmp2;
 | |
| 			}
 | |
| 			/*
 | |
| 			 * Case 4 - left rotate at parent + color flips
 | |
| 			 * (p and sl could be either color here.
 | |
| 			 *  After rotation, p becomes black, s acquires
 | |
| 			 *  p's color, and sl keeps its color)
 | |
| 			 *
 | |
| 			 *      (p)             (s)
 | |
| 			 *      / \             / \
 | |
| 			 *     N   S     -->   P   Sr
 | |
| 			 *        / \         / \
 | |
| 			 *      (sl) sr      N  (sl)
 | |
| 			 */
 | |
| 			parent->rb_right = tmp2 = sibling->rb_left;
 | |
| 			sibling->rb_left = parent;
 | |
| 			rb_set_parent_color(tmp1, sibling, RB_BLACK);
 | |
| 			if (tmp2)
 | |
| 				rb_set_parent(tmp2, parent);
 | |
| 			__rb_rotate_set_parents(parent, sibling, root,
 | |
| 						RB_BLACK);
 | |
| 			augment_rotate(parent, sibling);
 | |
| 			break;
 | |
| 		} else {
 | |
| 			sibling = parent->rb_left;
 | |
| 			if (rb_is_red(sibling)) {
 | |
| 				/* Case 1 - right rotate at parent */
 | |
| 				parent->rb_left = tmp1 = sibling->rb_right;
 | |
| 				sibling->rb_right = parent;
 | |
| 				rb_set_parent_color(tmp1, parent, RB_BLACK);
 | |
| 				__rb_rotate_set_parents(parent, sibling, root,
 | |
| 							RB_RED);
 | |
| 				augment_rotate(parent, sibling);
 | |
| 				sibling = tmp1;
 | |
| 			}
 | |
| 			tmp1 = sibling->rb_left;
 | |
| 			if (!tmp1 || rb_is_black(tmp1)) {
 | |
| 				tmp2 = sibling->rb_right;
 | |
| 				if (!tmp2 || rb_is_black(tmp2)) {
 | |
| 					/* Case 2 - sibling color flip */
 | |
| 					rb_set_parent_color(sibling, parent,
 | |
| 							    RB_RED);
 | |
| 					if (rb_is_red(parent))
 | |
| 						rb_set_black(parent);
 | |
| 					else {
 | |
| 						node = parent;
 | |
| 						parent = rb_parent(node);
 | |
| 						if (parent)
 | |
| 							continue;
 | |
| 					}
 | |
| 					break;
 | |
| 				}
 | |
| 				/* Case 3 - right rotate at sibling */
 | |
| 				sibling->rb_right = tmp1 = tmp2->rb_left;
 | |
| 				tmp2->rb_left = sibling;
 | |
| 				parent->rb_left = tmp2;
 | |
| 				if (tmp1)
 | |
| 					rb_set_parent_color(tmp1, sibling,
 | |
| 							    RB_BLACK);
 | |
| 				augment_rotate(sibling, tmp2);
 | |
| 				tmp1 = sibling;
 | |
| 				sibling = tmp2;
 | |
| 			}
 | |
| 			/* Case 4 - left rotate at parent + color flips */
 | |
| 			parent->rb_left = tmp2 = sibling->rb_right;
 | |
| 			sibling->rb_right = parent;
 | |
| 			rb_set_parent_color(tmp1, sibling, RB_BLACK);
 | |
| 			if (tmp2)
 | |
| 				rb_set_parent(tmp2, parent);
 | |
| 			__rb_rotate_set_parents(parent, sibling, root,
 | |
| 						RB_BLACK);
 | |
| 			augment_rotate(parent, sibling);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Non-inline version for rb_erase_augmented() use */
 | |
| void __rb_erase_color(struct rb_node *parent, struct rb_root *root,
 | |
| 	void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
 | |
| {
 | |
| 	____rb_erase_color(parent, root, augment_rotate);
 | |
| }
 | |
| EXPORT_SYMBOL(__rb_erase_color);
 | |
| 
 | |
| /*
 | |
|  * Non-augmented rbtree manipulation functions.
 | |
|  *
 | |
|  * We use dummy augmented callbacks here, and have the compiler optimize them
 | |
|  * out of the rb_insert_color() and rb_erase() function definitions.
 | |
|  */
 | |
| 
 | |
| static inline void dummy_propagate(struct rb_node *node, struct rb_node *stop) {}
 | |
| static inline void dummy_copy(struct rb_node *old, struct rb_node *new) {}
 | |
| static inline void dummy_rotate(struct rb_node *old, struct rb_node *new) {}
 | |
| 
 | |
| static const struct rb_augment_callbacks dummy_callbacks = {
 | |
| 	dummy_propagate, dummy_copy, dummy_rotate
 | |
| };
 | |
| 
 | |
| void rb_insert_color(struct rb_node *node, struct rb_root *root)
 | |
| {
 | |
| 	__rb_insert(node, root, dummy_rotate);
 | |
| }
 | |
| EXPORT_SYMBOL(rb_insert_color);
 | |
| 
 | |
| void rb_erase(struct rb_node *node, struct rb_root *root)
 | |
| {
 | |
| 	struct rb_node *rebalance;
 | |
| 	rebalance = __rb_erase_augmented(node, root, &dummy_callbacks);
 | |
| 	if (rebalance)
 | |
| 		____rb_erase_color(rebalance, root, dummy_rotate);
 | |
| }
 | |
| EXPORT_SYMBOL(rb_erase);
 | |
| 
 | |
| /*
 | |
|  * Augmented rbtree manipulation functions.
 | |
|  *
 | |
|  * This instantiates the same __always_inline functions as in the non-augmented
 | |
|  * case, but this time with user-defined callbacks.
 | |
|  */
 | |
| 
 | |
| void __rb_insert_augmented(struct rb_node *node, struct rb_root *root,
 | |
| 	void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
 | |
| {
 | |
| 	__rb_insert(node, root, augment_rotate);
 | |
| }
 | |
| EXPORT_SYMBOL(__rb_insert_augmented);
 | |
| 
 | |
| /*
 | |
|  * This function returns the first node (in sort order) of the tree.
 | |
|  */
 | |
| struct rb_node *rb_first(const struct rb_root *root)
 | |
| {
 | |
| 	struct rb_node	*n;
 | |
| 
 | |
| 	n = root->rb_node;
 | |
| 	if (!n)
 | |
| 		return NULL;
 | |
| 	while (n->rb_left)
 | |
| 		n = n->rb_left;
 | |
| 	return n;
 | |
| }
 | |
| EXPORT_SYMBOL(rb_first);
 | |
| 
 | |
| struct rb_node *rb_last(const struct rb_root *root)
 | |
| {
 | |
| 	struct rb_node	*n;
 | |
| 
 | |
| 	n = root->rb_node;
 | |
| 	if (!n)
 | |
| 		return NULL;
 | |
| 	while (n->rb_right)
 | |
| 		n = n->rb_right;
 | |
| 	return n;
 | |
| }
 | |
| EXPORT_SYMBOL(rb_last);
 | |
| 
 | |
| struct rb_node *rb_next(const struct rb_node *node)
 | |
| {
 | |
| 	struct rb_node *parent;
 | |
| 
 | |
| 	if (RB_EMPTY_NODE(node))
 | |
| 		return NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we have a right-hand child, go down and then left as far
 | |
| 	 * as we can.
 | |
| 	 */
 | |
| 	if (node->rb_right) {
 | |
| 		node = node->rb_right; 
 | |
| 		while (node->rb_left)
 | |
| 			node=node->rb_left;
 | |
| 		return (struct rb_node *)node;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * No right-hand children. Everything down and left is smaller than us,
 | |
| 	 * so any 'next' node must be in the general direction of our parent.
 | |
| 	 * Go up the tree; any time the ancestor is a right-hand child of its
 | |
| 	 * parent, keep going up. First time it's a left-hand child of its
 | |
| 	 * parent, said parent is our 'next' node.
 | |
| 	 */
 | |
| 	while ((parent = rb_parent(node)) && node == parent->rb_right)
 | |
| 		node = parent;
 | |
| 
 | |
| 	return parent;
 | |
| }
 | |
| EXPORT_SYMBOL(rb_next);
 | |
| 
 | |
| struct rb_node *rb_prev(const struct rb_node *node)
 | |
| {
 | |
| 	struct rb_node *parent;
 | |
| 
 | |
| 	if (RB_EMPTY_NODE(node))
 | |
| 		return NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we have a left-hand child, go down and then right as far
 | |
| 	 * as we can.
 | |
| 	 */
 | |
| 	if (node->rb_left) {
 | |
| 		node = node->rb_left; 
 | |
| 		while (node->rb_right)
 | |
| 			node=node->rb_right;
 | |
| 		return (struct rb_node *)node;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * No left-hand children. Go up till we find an ancestor which
 | |
| 	 * is a right-hand child of its parent.
 | |
| 	 */
 | |
| 	while ((parent = rb_parent(node)) && node == parent->rb_left)
 | |
| 		node = parent;
 | |
| 
 | |
| 	return parent;
 | |
| }
 | |
| EXPORT_SYMBOL(rb_prev);
 | |
| 
 | |
| void rb_replace_node(struct rb_node *victim, struct rb_node *new,
 | |
| 		     struct rb_root *root)
 | |
| {
 | |
| 	struct rb_node *parent = rb_parent(victim);
 | |
| 
 | |
| 	/* Set the surrounding nodes to point to the replacement */
 | |
| 	__rb_change_child(victim, new, parent, root);
 | |
| 	if (victim->rb_left)
 | |
| 		rb_set_parent(victim->rb_left, new);
 | |
| 	if (victim->rb_right)
 | |
| 		rb_set_parent(victim->rb_right, new);
 | |
| 
 | |
| 	/* Copy the pointers/colour from the victim to the replacement */
 | |
| 	*new = *victim;
 | |
| }
 | |
| EXPORT_SYMBOL(rb_replace_node);
 | |
| 
 | |
| static struct rb_node *rb_left_deepest_node(const struct rb_node *node)
 | |
| {
 | |
| 	for (;;) {
 | |
| 		if (node->rb_left)
 | |
| 			node = node->rb_left;
 | |
| 		else if (node->rb_right)
 | |
| 			node = node->rb_right;
 | |
| 		else
 | |
| 			return (struct rb_node *)node;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| struct rb_node *rb_next_postorder(const struct rb_node *node)
 | |
| {
 | |
| 	const struct rb_node *parent;
 | |
| 	if (!node)
 | |
| 		return NULL;
 | |
| 	parent = rb_parent(node);
 | |
| 
 | |
| 	/* If we're sitting on node, we've already seen our children */
 | |
| 	if (parent && node == parent->rb_left && parent->rb_right) {
 | |
| 		/* If we are the parent's left node, go to the parent's right
 | |
| 		 * node then all the way down to the left */
 | |
| 		return rb_left_deepest_node(parent->rb_right);
 | |
| 	} else
 | |
| 		/* Otherwise we are the parent's right node, and the parent
 | |
| 		 * should be next */
 | |
| 		return (struct rb_node *)parent;
 | |
| }
 | |
| EXPORT_SYMBOL(rb_next_postorder);
 | |
| 
 | |
| struct rb_node *rb_first_postorder(const struct rb_root *root)
 | |
| {
 | |
| 	if (!root->rb_node)
 | |
| 		return NULL;
 | |
| 
 | |
| 	return rb_left_deepest_node(root->rb_node);
 | |
| }
 | |
| EXPORT_SYMBOL(rb_first_postorder);
 |